Lab 10 - OLS Regressions II

This lab will cover how to perform a simple OLS regression using different functional forms.

LAB 10 QUICK VIEW

- Non-linear relationships between variables include:
 - $\circ \quad \text{Log-Lin: } \ln(Y_t) = \beta_1 + \beta_2 X_t + \varepsilon_t$
 - $\circ \quad \text{Lin-Log: } Y_t = \beta_1 + \beta_2 \ln(X_t) + \varepsilon_t$
 - $\circ \quad \text{Log-Log: } \ln(Y_t) = \beta_1 + \beta_2 \ln(X_t) + \varepsilon_t$
 - $\circ \quad \text{Reciprocal: } Y_t = \beta_1 + \frac{\beta_2}{X_t} + \varepsilon_t$
 - $\circ \quad \text{Simple Quadratic: } Y_t = \beta_1 + \beta_2 X_t^2 + \varepsilon_t$
 - Simple Power: $Y_t = \beta_1 + \beta_2 X_t^A + \varepsilon_t$, where A is any power
 - $\circ \quad \text{Square Root: } Y_t = \beta_1 + \beta_2 \sqrt{X_t} + \varepsilon_t$
 - Other Root: $Y_t = \beta_1 + \beta_2 \sqrt[4]{X_t} + \varepsilon_t$, where A represents the A-th root.
- > Useful excel formulas to modify data to reflect the above relationships include:
 - =ln(CELL) (to take the natural log of a variable)
 - =CELL^2 (to square a variable)
 - =CELL^A (to raise a variable to the power A)
 - =sqrt(CELL) (to take a square root of a variable)
 - =CELL^1/A (to take the A-th root of a variable)
- Proper functional form can be determined by plotting data (see scatter graphs and trend lines in chapter 4) and referring to existing economic research and theory.

A) Different Functional Forms

As introduced in class, the relationship between two variables can be expressed in many non-linear ways. Often the relationship between two variables can be estimated by plotting those two variables data (see scatter graphs and trend lines in chapter 4) or referring to existing research and theory.

- ightharpoonup Log-Lin: $ln(Y_t) = \beta_1 + \beta_2 X_t + \varepsilon_t$
- \triangleright Lin-Log: $Y_{i} = \beta_{1} + \beta_{2} \ln(X_{i}) + \varepsilon_{i}$
- \triangleright Log-Log: $\ln(Y_t) = \beta_1 + \beta_2 \ln(X_t) + \varepsilon_t$
- Reciprocal: $Y_t = \beta_1 + \frac{\beta_2}{X_t} + \varepsilon_t$
- \triangleright Simple Quadratic: $Y_t = \beta_1 + \beta_2 X_t^2 + \varepsilon_t$
- Simple Power: $Y_t = \beta_1 + \beta_2 X_t^A + \varepsilon_t$, where A is any power
- > Square Root: $Y_t = \beta_1 + \beta_2 \sqrt{X_t} + \varepsilon_t$
- > Other Root: $Y_t = \beta_1 + \beta_2 \sqrt[A]{X_t} + \varepsilon_t$, where A represents the A-th root.
- Plus others

B) Adjusting variables

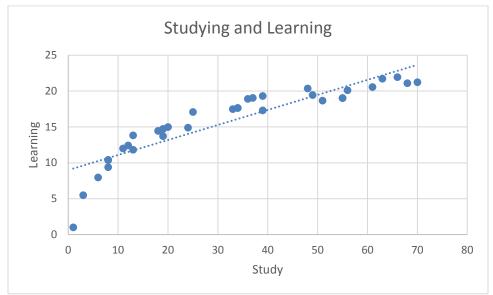
Both the X and Y variables can be modified to fit the above functional forms using the following equations (Where CELL refers to the excel cell location of the data):

=In(CELL) (to take the natural log of a variable) =CELL^2 (to square a variable) =CELL^A (to raise a variable to the power A) (to take a square root of a variable) =sqrt(CELL) =CELL^1/A (to take the A-th root of a variable)

C) OLS

An OLS estimation of the non-linear relationship between two variables can be run by choosing "Data Analysis" as seen in lab 9, then selecting the new variables created using the formulas under B above.

D) Trend Lines


One way to see if a non-linear functional form is required is to plot your data using a TREND LINE to do this, select your data to plot using a "Scatter Graph/Chart" and under "Chart Tools" and "Design" select "Add Chart Element -> Trendline - > Linear". If the linear trend line does not fit the data, another functional form may be more appropriate (See Practice Lab for an Example).

Econ 299 Practice Lab 10

A) Download (highly recommended) or copy the following Data Sets into excel:

Α	В
Study	Learning
5.	5 19.03667
1	3 11.82475
3	7 19.05459
5	6 20.12676
5.	5 19.03667
3	3 17.48254
	6 7.958797
20	0 14.97866
1:	1 11.98948
3(6 18.91759
6	3 21.71567
34	4 17.6318
5:	1 18.65913
19	9 14.72219
7(0 21.24248
	8 10.39721
18	8 14.45186
19	9 13.72219
4:	9 19.4591
4	8 20.35601
6:	1 20.55437
1	3 13.82475
24	4 14.89027
6	6 21.94827
3	9 17.31781
1	2 12.42453
	8 10.39721
34	4 17.6318
19	9 14.72219
3:	9 19.31781
	8 10.39721
6	8 21.09754
	9.397208
2.	5 17.09438
	1 0
	3 5.493061

B) Insert a Scatter Plot of these variables, with "Study" as your explanatory (x) variable. (See lab 4 for a refresher if needed.) Inserting a linear trend line, we see that a linear estimation isn't the best estimation:

- C) In column C, calculate the square root of the Study variable, along with an appropriate title.
- D) In column D, calculate the natural log of the Learning variable, along with an appropriate title.
- E) In column E, calculate the inverse of the Study variable, along with an appropriate title.
- F) In column F, calculate the natural log of the Study variable, along with an appropriate title.
- G) Use the "Regression" option under "Data Analysis" to estimate the real lin-log function $L_i=\beta_1+\beta_2\ln(S_i)+\varepsilon_i. \text{ Insert an appropriate title and report the OLS estimation. (For a real lab assignment, this can be written by hand afterwards.)}$
- H) Use the "Regression" option under "Data Analysis" to estimate the real log-lin function $\ln(L)_i = \beta_1 + \beta_2 S_i + \varepsilon_i$. Insert an appropriate title and report the OLS estimation. (For a real lab assignment, this can be written by hand afterwards.)
- I) Use the "Regression" option under "Data Analysis" to estimate the real log-log function $\ln(L)_i = \beta_1 + \beta_2 \ln(S_i) + \varepsilon_i \text{. Insert an appropriate title and report the OLS estimation. (For a real lab assignment, this can be written by hand afterwards.)$
- J) Use the "Regression" option under "Data Analysis" to estimate the real reciprocal function $L_i = \beta_1 + \frac{\beta_2}{S_i} + \varepsilon_i$. Insert an appropriate title and report the OLS estimation. (For a real lab assignment, this can be written by hand afterwards.)
- K) Use the "Regression" option under "Data Analysis" to estimate the real square root function $L_i=\beta_1+\beta_2\sqrt{S_i}+\varepsilon_i \,.$ Insert an appropriate title and report the OLS estimation. (For a real lab assignment, this can be written by hand afterwards.)

Econ 299 Practice Lab 10 Answers

Α	В	С	D	E	F
Study	Learning	Root(Study)	Ln(Learn)	1/Study	Ln(Study)
55	19.03667	7.41619849	2.946367	0.018182	4.007333
13	11.82475	3.60555128	2.470195	0.076923	2.564949
37	19.05459	6.08276253	2.947308	0.027027	3.610918
56	20.12676	7.48331477	3.00205	0.017857	4.025352
55	19.03667	7.41619849	2.946367	0.018182	4.007333
33	17.48254	5.74456265	2.861203	0.030303	3.496508
6	7.958797	2.44948974	2.074278	0.166667	1.791759
20	14.97866	4.47213595	2.706627	0.05	2.995732
11	11.98948	3.31662479	2.484029	0.090909	2.397895
36	18.91759	6	2.940092	0.027778	3.583519
63	21.71567	7.93725393	3.078034	0.015873	4.143135
34	17.6318	5.83095189	2.869704	0.029412	3.526361
51	18.65913	7.14142843	2.926335	0.019608	3.931826
19	14.72219	4.35889894	2.689356	0.052632	2.944439
70	21.24248	8.36660027	3.056003	0.014286	4.248495
8	10.39721	2.82842712	2.341537	0.125	2.079442
18	14.45186	4.24264069	2.670823	0.055556	2.890372
19	13.72219	4.35889894	2.619015	0.052632	2.944439
49	19.4591	7	2.968315	0.020408	3.89182
48	20.35601	6.92820323	3.013376	0.020833	3.871201
61	20.55437	7.81024968	3.023074	0.016393	4.110874
13	13.82475	3.60555128	2.62646	0.076923	2.564949
24	14.89027	4.89897949	2.700708	0.041667	3.178054
66	21.94827	8.1240384	3.088688	0.015152	4.189655
39	17.31781	6.244998	2.851735	0.025641	3.663562
12	12.42453	3.46410162	2.519673	0.083333	2.484907
8	10.39721	2.82842712	2.341537	0.125	2.079442
34	17.6318	5.83095189	2.869704	0.029412	3.526361
19	14.72219	4.35889894	2.689356	0.052632	2.944439
39	19.31781	6.244998	2.961027	0.025641	3.663562
8	10.39721	2.82842712	2.341537	0.125	2.079442
68	21.09754	8.24621125	3.049156	0.014706	4.219508
8	9.397208	2.82842712	2.240413	0.125	2.079442
25	17.09438	5	2.83875	0.04	3.218876
1	1	1	0	1	0
3	5.493061	1.73205081	1.703486	0.333333	1.098612

(Note: Important parts of the regression output have been highlighted, and the regression reporting can be written in by hand afterwards.)

Learn=f(ln(Studyll							
		T.	an -	_ 0 0	63 ST	5 02 1	n (Stan	day)
Regression	Statistics	Le	$e\hat{a}rn_i =$	(0.41	2)	(0.127)	п(ыш	$(y)_i$
Multiple R	0.989365							
RSquare	0.978844	M	= 36, R	$2^2 - 0$	9788			
Adjusted R S	0.978222	14	- 30, 1	. – 0	.5/66			
Standard Erro	0.727326							
Observations	36							
ANOVA								
	df	<i>5</i> 5	MS	F	anificance	F		
Regression	1	832.182508	32 832.18	1573.1	5E-30			
Residual	34	17.986113	12 0.529					
Total	35	850.16862	13					
-	Coefficients	Standard Em	or tStat	F-value	.oner.95%	lpper 95%	oner 95.0%	pper 35.0.
Intercept	-0.06384	0.41222480		0.8778				0.7739
Ln(Study)	5.020509	0.12658074	44 39.663	5E-30	4.7633		4.7633	5.2778
In(Learn)=f((Study)							
	-	1.	- ^		2.10			~. 1
Regression	Statistics	ln(Le ârn	ı), =	2.10	+ 0.0	0177	Study
<i>Regression</i> Multiple R	Statistics 0.677884	ln(Le ârn	ı) _i =	2.10	+ 0.0	0177	Study
<i>Regression</i> Multiple R R Square	Statistics 0.677884 0.459527			_			0177	Study
<i>Regression</i> Multiple R R Square Adjusted R Si	Statistics 0.677884 0.459527 0.44363		Le ârn = 36,	_			0177	Study
<i>Regression</i> Multiple R <mark>R Square</mark> Adjusted R Si Standard Erro	Statistics 0.677884 0.459527 0.44363 0.412916			_			0177	Study
<i>Regression</i> Multiple R R Square Adjusted R Si	Statistics 0.677884 0.459527 0.44363			_			0177	Study
<i>Regression</i> Multiple R <mark>R Square</mark> Adjusted R Si Standard Errc	Statistics 0.677884 0.459527 0.44363 0.412916			_			0177	Study
Regression Multiple R R Square Adjusted R So Standard Erro Observations	Statistics 0.677884 0.459527 0.44363 0.412916			$R^2 =$		95	0177	Study
Regression Multiple R R Square Adjusted R So Standard Erro Observations	Statistics 0.677884 0.459527 0.44363 0.412916 36	N	= 36, .	$R^2 =$	0.45	95	0177	Study
Regression Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA	Statistics 0.677884 0.459527 0.44363 0.412916 36	N SS	= 36,	R ² =	0.45	95	0177	Study
Regression Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression	Statistics 0.677884 0.459527 0.44363 0.412916 36	SS 4.92876795	= 36,	R ² =	0.45	95	0177	Study
Regression Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression Residual	Statistics 0.677884 0.459527 0.44363 0.412916 36	SS 4.92876799 5.79697999	= 36,	R ² =	0.45 milicance 6E-06	95 		
Regression Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression Residual Total	Statistics 0.677884 0.459527 0.44363 0.412916 36 4// 1 34 35	SS 4.92876799 5.79697999	= 36, ///S 52 4.9288 39 0.1705	R ² =	0.45	95 		
Regression Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression Residual Total	Statistics 0.677884 0.459527 0.44363 0.412916 36 4// 1 34 35	<i>SS</i> 4.92876795 5.79697998 10.7257475	= 36, MS 52 4.9288 39 0.1705 94	R ² =	9.45 gnilicance 6E-06	95 a.F. Japer 35%		

IIIILeaiiii-ii	(In(Study)							
		1 / 7	^ \		00.	0.50	1 (0	v. 7
Regression	Statistics	$\ln(L\epsilon)$	earn)	$P_i = I$.03 +	0.521	լա(Տ	tudy
Multiple R	0.915671			(0	.128)	(0.0392)	
RSquare	0.838454	37	2 C D	2 0	0205	,		
Adjusted R S		IV = 1	36, K	= 0	.8385			
Standard Erro	0.225747							
Observations	36							
ANOVA								
	ď	55	MS	F	gnificance	F		
Regression	1	8.993047049	8.993	176.47	5E-15			
Residual	34	1.732700892	0.051					
Total	35	10.72574794						
	C#:-:	Standard Error	t Stat	Bushin	9E1	laa 95°	95 A	oper 95.0%
Intercept	1.027068	0.127946163	8.0273	2E-09				1.2871
Intercept Ln(Study)	0.521906		13.284	5E-15			0.4421	0.6017
2.1(0.00)	0.02.000	0.000200010	10.201	02 10	0.1121	0.0011	0.1121	0.0011
Learn=F(1/S	Study)							
		1 7 ^		17	4	21 0	1/ 0/	7 \
Regression	Statistics	Le â	m , =	= 17	.4 –	21 .8	/(Stu	ıdy)
	<i>Statistics</i> 0.748056	Le â	m i =	= 17	.4 – :	21 .8	/(Stu	ıdy)
Multiple R	0.748056 0.559587				,	. ,	/(Stu	ıdy)
Multiple R R Square Adjusted R Sc	0.748056 0.559587 0.546634				,	. ,	/(Stu	ıdy)
Multiple R R Square	0.748056 0.559587 0.546634				.4 - : 21) = 0.5	. ,	/(Stu	ıdy)
Multiple R <mark>R Square</mark> Adjusted R Si Standard Erro	0.748056 0.559587 0.546634				,	. ,	/(Stu	ıdy)
Multiple R R Square Adjusted R Si Standard Erro Observations	0.748056 0.559587 0.546634 3.318509				,	. ,	/(Stu	ıdy)
Multiple R R Square Adjusted R Sc	0.748056 0.559587 0.546634 3.318509				,	5596	/(Stu	ıdy)
Multiple R R Square Adjusted R Si Standard Erro Observations	0.748056 0.559587 0.546634 3.318509 36	N =	36,	R^2	= 0.5	5596	/(Stu	idy)
Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression	0.748056 0.559587 0.546634 3.318509 36	N =	36 ,	R ² =	= 0.5	5596	/(Stu	idy)
Multiple R R Square Adjusted R Si Standard Erro Observations	0.748056 0.559587 0.546634 3.318509 36	N =	36 ,	R ² =	= 0.5	5596	/(Stu	ıdy)
Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression Residual Total	0.748056 0.559587 0.546634 3.318509 36 37 1 34 35	SS 475.7436546 374.4249668 850.1686213	36 ,	R ² =	= 0.5	5596		
Multiple R R Square Adjusted R Si Standard Erro Observations ANOVA Regression Residual Total	0.748056 0.559587 0.546634 3.318509 36 37 1 34 35	SS 475.7436546 374.4249668	36 ,	R ² =	= 0.5	5596		oper 95.00

Learn=ffSti	udy^1/2)								
Regression	Statistics	I a â	vn -	- 3 4	50 -	2 31	St	udv	=
Multiple R	0.960029	Le u	''' i	(0.6	47)	2.31	\sqrt{v}	шиу	İ
R Square	0.921656			(0.0	*, ,	(0.115	,		
Adjusted R S	0.919351	N -	36	R^2 -	= 0.9	217			
Standard Erro	1.399643		50,	Λ -	- 0.7	21/			
Observations	36								
ANOVA									
	ď	55	MS	F	gnificance	₽F			
Regression	1	783.5625903	783.56	399.98	2E-20				
Residual	34	66.60603106	1.959						
Total	35	850.1686213							
	Coefficients	Standard Error	र जिल्ल	P-value	.oner35%	Jpper 35%	orer 35.0	oper 95.0°	¥.
Intercept	3.50237	0.646597882	5.4166	5E-06	2.1883	4.8164	2.1883	4.8164	
	2.309182	0.115461862	20	2E-20	2.0745	2.5438	2.0745	2.5438	