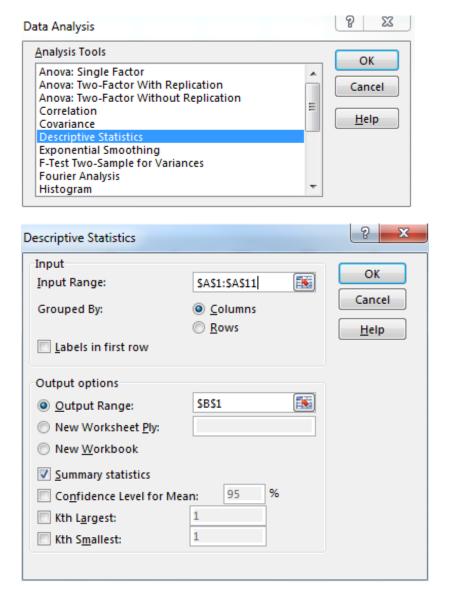
<u>Lab 8 – Statistics II</u>

This lab will cover how to do statistical analysis on data using the Data Analysis tool. The practice assignment (which is highly recommended) will then examine different data distributions.

LAB 8 QUICK VIEW The "Data Analysis" button can be found under the "Data" menu. If you can't find it, you may need to install it; refer to appendix A. Select "Descriptive Statistics" and press "OK". Select the data you want to analyze in the top bar, indicate where you want the results to appear, and make sure "Summary Statistics" are selected. Data Analysis Analysis Tools OK Anova: Single Factor • Anova: Two-Factor With Replication Cancel Anova: Two-Factor Without Replication E Correlation Help Covariance Descriptive Statistics **Exponential Smoothing** F-Test Two-Sample for Variances Fourier Analysis Histogram ? X **Descriptive Statistics** Input OK -Input Range: SAS1:SAS11 Cancel Grouped By: Columns Rows Help Labels in first row **Output options** SBS1 Output Range: New Worksheet Ply: New Workbook Summary statistics 95 Confidence Level for Mean: Kth Largest: Kth Smallest:


A) Using the Data Analysis Tool

The "Data Analysis" button can be found under the "Data" menu. If you can't find it, you may need to install it; refer to appendix A.

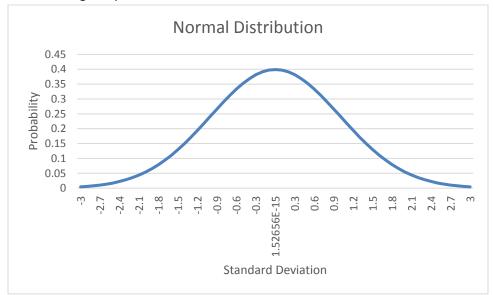
To begin, simply click on the "Data Analysis" button.

B) Selecting Descriptive Statistics

When the "Data Analysis" box opens, select "Descriptive Statistics" and press "OK". Select the data you want to analyze in the top bar, indicate where you want the results to appear, and make sure "Summary Statistics" are selected. All the relevant statistics of the data you have highlighted will be displayed.

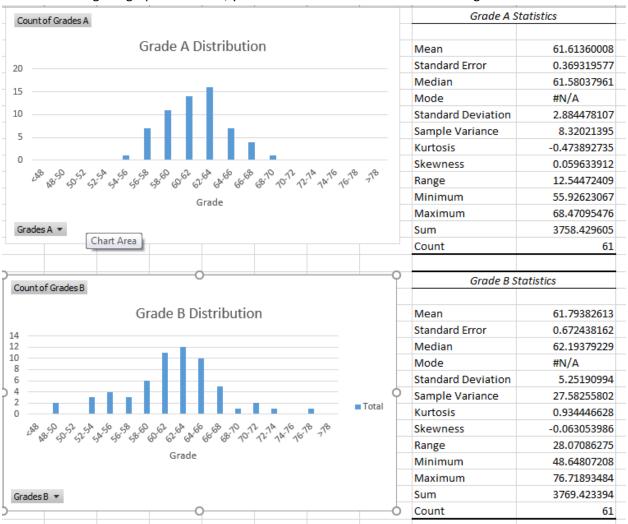
C) Statistics and Distribution Graphs

As seen last lab, you can use excel to create distribution graphs associated with the data and statistics. It is HIGHLY RECOMMENDED that you do the following practice lab to gain practice with statistics and different distributions.


Econ 299 Practice Lab 8

A) Download (highly recommended) or copy the following Data Sets into excel:

Sample Normal		Grades A	Grades B
-3	0.004432	60.86047	62.44795
-2.9	0.005953	61.90968	62.88122
-2.8	0.007915	60.31856	53.5515
-2.7	0.010421	56.41834	56.17649
-2.6	0.013583	62.58067	63.34905
-2.5	0.017528	61.97464	59.67693
-2.4	0.022395	66.03416	65.65271
-2.3	0.028327	58.53026	60.35796
-2.2	0.035475	63.49502	55.3605
-2.1	0.043984	58.95054	66.33189
-2	0.053991	61.34525	59.69853
-1.9	0.065616	64.00098	48.64807
-1.8	0.07895	63.81526	61.01121
-1.7	0.094049	61.24498	55.4177
-1.6	0.110921	60.99187	73.18807
-1.5	0.129518	62.19394	66.45635
-1.4	0.149727	60.45174	62.61245
-1.3	0.171369	61.47558	60.63273
-1.2	0.194186	62.38072	62.13276
-1.1	0.217852	62.3068	62.68866
-1	0.241971	61.57644	58.15622
-0.9	0.266085	65.02113	62.19379
-0.8	0.289692	62.99405	66.35142
-0.7	0.312254	65.62249	66.79126
-0.6	0.333225	57.24275	61.13455
-0.5	0.352065	65.18169	59.61976
-0.4	0.36827	63.11761	56.84461
-0.3	0.381388	65.38685	70.49537
-0.2	0.391043	61.58038	64.34149
-0.1	0.396953	61.04852	58.52377
1.53E-15	0.398942	66.1788	63.79475
0.1	0.396953	65.82011	53.59772
0.2	0.391043	64.34318	63.54769
0.3	0.381388	59.53082	63.30919
0.4	0.36827	62.46788	58.33784
0.5	0.352065	62.53234	61.91354
0.6	0.333225	66.978	61.89333
0.7	0.312254	59.05301	65.12013
0.8	0.289692	59.91217	65.6438
0.9	0.266085	55.92623	76.71893
1	0.241971	63.06782	60.46325
1.1	0.217852	61.25256	65.62548


```
0.194186
               60.85578
                         64.35946
1.2
    0.171369 56.70744
                         64.24739
1.3
    0.149727
               58.43395
                         66.09602
1.5
    0.129518
               63.62189
                         63.23573
    0.110921
              59.81248
                         68.46329
1.6
1.7
    0.094049
               68.47095
                         64.00166
      0.07895
               62.74366
                         60.04726
1.8
1.9
    0.065616
               56.99913
                         71.19028
 2
    0.053991
               63.12081
                         55.96049
2.1
    0.043984
               57.22736
                         63.38768
    0.035475
               62.56571
                         48.91259
2.3
    0.028327
               59.33284
                         60.00777
2.4
    0.022395
               57.98952
                         56.28011
2.5
    0.017528
               66.13623
                         52.44881
2.6 0.013583 57.31246
                         65.19903
2.7
    0.010421
                62.6698
                         64.61817
    0.007915
               59.22163
                         55.29817
2.8
2.9
    0.005953
               59.72472
                         61.00009
    0.004432
               58.36893
                         61.97875
```

B) To create a sample normal distribution (normal bell curve), highlight the first two "sample normal" columns, then under "Insert", choose "Recommended Charts" then "Line" to produce the following sample normal distribution. Edit titles as needed:

C) For both Grades A and Grades B, use a pivot chart to show each class' distribution (using a histogram), starting at 48%, ending at 78%, and with 2% groups. Also use the data analysis option to show each class' descriptive statistics.

D) After formatting the graphs and titles, your results should look like the following:

E) Notice that both classes have almost the same mean and both are somewhat normally distributed. (They were both created using normally distributed random variable generation). However, class B's results are more spread out, seen both in the distribution graphs and by the fact that class B has a higher deviation and variance.