next up previous
Next: Curvature, Riemann and Ricci Up: geom_formulas Previous: The metric tensor

Affine connection (Christoffel symbols)

Affine connection $\Gamma^{\alpha}_{\beta\gamma}$ describes relation between vectors at two neighbouring points.
\begin{displaymath}
\delta V^{\alpha} = - \Gamma^{\alpha}_{\beta\gamma} V^{\beta} dx^{\gamma}
\end{displaymath} (20)

Covariant derivatives
We denote ordinary derivatives with comma and the covariant ones with semicolon
$\displaystyle S_{;\mu}$ $\textstyle =$ $\displaystyle S_{,\mu}   -    for scalars derivatives are equal.$ (21)
$\displaystyle {V^{\alpha}}_{;\mu}$ $\textstyle =$ $\displaystyle {V^{\alpha}}_{,\mu} + \Gamma^{\alpha}_{\mu\gamma} V^{\gamma}$ (22)
$\displaystyle V_{\alpha;\mu}$ $\textstyle =$ $\displaystyle V_{\alpha,\mu} - \Gamma^{\gamma}_{\mu\alpha} V_{\gamma}$ (23)
$\displaystyle {T^{\beta}}_{\alpha;\mu}$ $\textstyle =$ $\displaystyle {T^{\beta}}_{\alpha,\mu} - \Gamma^{\gamma}_{\mu\alpha} {T^{\beta}}_{\gamma}
+ \Gamma^{\beta}_{\mu\gamma} {T^{\gamma}}_{\alpha}$ (24)

Relation between $\Gamma^{\alpha}_{\beta\gamma}$ and $g_{\alpha\beta}$:

In GR we use affine connection which is related to the first derivatives of the metric tensor by the requirement that $g_{\alpha\beta ; \mu} = 0$ and restriction that connection is symmetric $\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta} $. Then

\begin{displaymath}
\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} g^{\alpha\sigma}...
...
+ g_{\sigma\gamma , \beta} - g_{\beta\gamma , \sigma} \right)
\end{displaymath} (25)


next up previous
Next: Curvature, Riemann and Ricci Up: geom_formulas Previous: The metric tensor
Dmitri Pogosyan 2009-10-23