
Some formulae of tensor calculus and differential geometry

1 General notation

We use Greek letters α, β . . . = 0, 1, 2, 3 for components of 4-vectors,tensors, etc and Roman letters
i, j, k . . . = 1, 2, 3 for their spatial components. Ordinary partial derivative with respect to coordinate
xα is often denoted by comma

∂

∂xα
A (xα) ≡ A,α (1)

Up or down position of the index after comma is generally important.
We often differentiate with respect to vectors (note, coordinates xα themselves do not constitute

vectors) or even tensors, for example, the Lagrangian density
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Note, that it matters, whether one differentiate with respect to covariant or contravariant components, i.e
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is a different object. We always write the derivatives with respect to vectors explicitly. One needs some
care with notation when the vector that we differentiate with respect to is itself the gradient of a scalar
function. Then we get the notation like ∂L

∂φ,α
which means ∂L

∂(φ,α) .

2 Coordinate transformations

Coordinate transformation is given by the set of functions x′ = x′(x). It is often convenient to add prime
to the index, i.e write xα′

(xα). This way α′ not only means that the vector is considered in other frame,
but also α′ being different index than α we save on Greek letters. Otherwise we would have to write
x′β (xα) to designate the dependence of β primed coordinate on α original one. This is especially useful for
differentiation, so we can write Aα

,β′ to say the α’s component of vector A in original frame is differentiated
wrt to β coordinate in another, primed, system.

We consider coordinate transformation invertible, i.e., there exist the inverse functions xα
(
xα′

)
. In

this case, using chain differentiation rule

∂xα
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=
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∂xβ
= δα
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the latter step following from condition that coordinates in the same system are independent on each
other. Similarly,

∂xα′

∂xα

∂xα

∂xβ′ = δα′
β′ (5)

∂xα

∂xα′ can be viewed as square matrices, but they are not tensors, since they are not objects defined in one
particular coordinate system (actually they mix two coordinate systems). Coordinates xα’s themselves do
not constitute a vector, and when they are viewed as functions of another coordinate set, the transformation
matrix is build from usual derivatives of these functions wrt their arguments. Quite similar with what you
have to deal with when, for example, you change variables in a multidimensional integral.



3 Tensor transformation rules

Tensors are defined by their transformation properties under coordinate change. One distinguishes co-
variant and contravariant indexes. Number of indexes is tensor’s rank, scalar and vector quantities are
particular case of tensors of rank zero and one.

Consider coordinate change xα = xα(xα′
). Transformation rules are

Scalar
S = S′ − scalar (tensor of 0 rank) is invariant under transformations (6)

Vector

V α = V α′ ∂xα

∂xα′ − contravariant vector (tensor of rank 1) (7)

Vα = Vα′
∂xα′

∂xα
− covariant vector (8)

Tensor

Tα...
β... = Tα′...

β′...
∂xα

∂xα′
∂xβ′

∂xβ
· · · − tensor of higher rank with mixed indexes (9)

In general, the position of the indexes matters. Above case where all covariant indexes are at the
end is a special case.

Contraction Contraction is a summation over a pair of one covariant and one contravariant indexes.
It creates a tensor of rank less than original by two. We use shorthand that when two indexes of
different type are labeled by the same latter it implies a summation over them.

S = VαV α, V α = Tαβ
β (10)

4 Special invariant tensors

There are two special tensors, which components are invariant under arbitrary coordinate transformations.
The first one is rank-2 unit tensor that is represented by the unit matrix

δα
β ≡ 1 if α = β, 0, ifα 6= β (11)

which is often called Kronecker symbol. Note that it has mixed components. One may encounter δαβ

which in some coordinate system is represented by unit matrix, but such tensor will have its components
changed in another frame (check !). The effect of contraction of the Kronecker symbol with another vector
is the replacement of the component index

δα
βAβ = Aα, δα

βAα = Aβ (12)

The second special tensor has rank equal to dimensionality N of the space, and is defined as

εαβγ... = ±1 if and only if α 6= β 6= γ . . . (13)

with e012... = 1 and changing sign with each permutation of a pair of indexes. Thus, e102... = −1, etc.
This tensor is known as fully antisymmetric tensor of rank N or Levi-Civita symbol. With its help one
can define a dual tensor to any fully antisymmetric tensor of rank r less than N . Such dual tensor will
have rank N − r. For example in 4D if Fγδ is antisymmetric, its dual is

(F ∗)αβ = εαβγδFγδ (14)

while for a tensor of rank 3, the dual will be a vector

(A∗)α = εαβγδAβγδ (15)



5 The metric tensor

Definition The metric tensor gαβ specifies the invariant interval (distance) between two neighbouring
points (events)

ds2 = gαβdxαdxβ (16)

Lowering of indexes
Aα = gαβAβ, Tαβ = gαγgβσT γσ (17)

Defining gαβ

gαβ ≡ gαγgγ
β ⇒ gγ

β = δγ
β , . . . ⇒ . . . gβσgγσ(≡ gγ

β) = δγ
β (18)

Rising of indexes
Aα = gαβAβ , Tαβ = gαγgβσTγσ (19)

6 Affine connection (Christoffel symbols)

Affine connection Γα
βγ describes relation between vectors at two neighbouring points.

δV α = −Γα
βγV βdxγ (20)

Covariant derivatives We denote ordinary derivatives with comma and the covariant ones with semi-
colon

S;µ = S,µ − for scalars derivatives are equal. (21)
V α

;µ = V α
,µ + Γα

µγV γ (22)
Vα;µ = Vα,µ − Γγ

µαVγ (23)

T β
α;µ = T β

α,µ − Γγ
µαT β

γ + Γβ
µγT γ

α (24)

Relation between Γα
βγ and gαβ: In GR we use affine connection which is related to the first derivatives

of the metric tensor by the requirement that gαβ;µ = 0 and restriction that connection is symmetric
Γα

βγ = Γα
γβ . Then

Γα
βγ =

1
2
gασ (gσβ,γ + gσγ,β − gβγ,σ) (25)

7 Curvature, Riemann and Ricci tensors, Ricci scalar

Covariant derivative in general is not commutative, V α
;ν;µ − V α

;µ;ν 6= 0. Namely

V α
;ν;µ − V α

;µ;ν ≡ Rα
γµνV

γ (26)

defines Riemann tensor Rα
γµν which gives invariant measure of the curvature of the space. The space

is flat if Rα
γµν = 0.

Riemann tensor Rα
γµν

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

γµΓγ
βν − Γα

γνΓ
γ
βµ (27)

Ricci tensor Rαβ is the contraction of the Riemann tensor

Rαβ ≡ Rγ
αγβ (28)

Ricci scalar R is the further contraction

R ≡ gαβRαβ = Rα
α (29)



8 Useful Computational Formulae

Rβν = Γµ
βν,µ − Γµ

βµ,ν + Γµ
γµΓγ

βν − Γµ
γνΓ

γ
βµ (30)

Γγ
αγ =

[
ln

(√
−g

)]
,α , g = |gαβ | (31)


