

Chapter 1

Physics, $4^{\text {th }}$ Edition James S. Walker

Units of Chapter 1

- Physics and the Laws of Nature
- Units of Length, Mass, and Time
- Dimensional Analysis
- Significant Figures
- Converting Units
- Order-of-Magnitude Calculations
- Problem Solving in Physics

1-1 Physics and the Laws of Nature

Physics: the study of the fundamental laws of nature

- Physicists strive to find the most simple, general laws
- these laws are expressed as mathematical equations

$$
R_{i k}-\frac{1}{2} g_{i k} R=\frac{8 \pi G}{c^{4}} T_{i k}
$$

- much complexity can arise from relatively simple laws

1-2 Units of Length, Mass, and Time

SI units of length [L], mass [M], time [T]:
Length: the meter (m)
Was: one ten-millionth of the distance from the North Pole to the equator
Now: the distance traveled by light in a vacuum in $1 / 299,792,458$ of a second

Mass: the kilogram (kg)
One kilogram is the mass of a particular platinum-iridium cylinder kept at the International Bureau of Weights and Standards, Sèvres, France.

Time: the second (s)
One second is the time for radiation from a cesium-133 atom to complete $9,192,631,770$ oscillation cycles.

1-2 Units of Length, Mass, and Time

TABLE 1-1 Typical Distances

Distance from Earth to the nearest large galaxy (the Andromeda galaxy, M31)	$2 \times 10^{22} \mathrm{~m}$
Diameter of our galaxy (the Milky Way)	$8 \times 10^{20} \mathrm{~m}$
Distance from Earth to the nearest star (other than the sun)	$4 \times 10^{16} \mathrm{~m}$
One light year	$9.46 \times 10^{15} \mathrm{~m}$
Average radius of Pluto's orbit	$6 \times 10^{12} \mathrm{~m}$
Distance from Earth to the Sun	$1.5 \times 10^{11} \mathrm{~m}$
Radius of Earth	$6.37 \times 10^{6} \mathrm{~m}$
Length of a football field	$10^{2} \mathrm{~m}$
Height of a person	2 m
Diameter of a CD	0.12 m
Diameter of the aorta	0.018 m
Diameter of a period in a sentence	$5 \times 10^{-4} \mathrm{~m}$
Diameter of a red blood cell	$8 \times 10^{-6} \mathrm{~m}$
Diameter of the hydrogen atom	$10^{-10} \mathrm{~m}$
Diameter of a proton	$2 \times 10^{-15} \mathrm{~m}$

1-2 Units of Length, Mass, and Time

TABLE 1-2 Typical Masses

Galaxy (Milky Way) $\quad 4 \times 10^{41} \mathrm{~kg}$

Sun
Earth
Space shuttle
Elephant
Automobile
Human
Baseball
Honeybee
Red blood cell
Bacterium
Hydrogen atom
Electron

$$
2 \times 10^{30} \mathrm{~kg}
$$

$$
5.97 \times 10^{24} \mathrm{~kg}
$$

$$
2 \times 10^{6} \mathrm{~kg}
$$

$$
5400 \mathrm{~kg}
$$

$$
1200 \mathrm{~kg}
$$

$$
70 \mathrm{~kg}
$$

$$
0.15 \mathrm{~kg}
$$

$$
1.5 \times 10^{-4} \mathrm{~kg}
$$

$$
10^{-13} \mathrm{~kg}
$$

$$
10^{-15} \mathrm{~kg}
$$

$$
1.67 \times 10^{-27} \mathrm{~kg}
$$

$$
9.11 \times 10^{-31} \mathrm{~kg}
$$

1-2 Units of Length, Mass, and Time

TABLE 1-3 Typical Times	
Age of the universe	$5 \times 10^{17} \mathrm{~s}$
Age of the Earth	$1.3 \times 10^{17} \mathrm{~s}$
Existence of human species	$6 \times 10^{13} \mathrm{~s}$
Human lifetime	$2 \times 10^{9} \mathrm{~s}$
One year	$3 \times 10^{7} \mathrm{~s}$
One day	$8.6 \times 10^{4} \mathrm{~s}$
Time between heartbeats	0.8 s
Human reaction time	$5 \times 10^{-5} \mathrm{~s}$
One cycle of a high- pitched sound wave	$10^{-6} \mathrm{~s}$
One cycle of an AM radio wave	$2 \times 10^{-15} \mathrm{~s}$
One cycle of a visible light wave	

1-2 Units of Length, Mass, and Time

TABLE 1-4 Common Prefixes

Power	Prefix	Abbreviation
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f

1-3 Dimensional Analysis

Other physical quantities have composite units.
We use [] to designate unit type (called dimensionality) of the physical quantity, i.e in what units it is measured

TABLE 1-5 Dimensions of Some Common Physical Quantities		From the table:
Quantity	Dimension	
Distance	[L]	Distance $=$ velocity \times time
Area	[L^{2}]	Velocity $=$ acceleration \times time
Volume	[L ${ }^{3}$]	
Velocity	[L]/[T]	Energy $=$ mass $\times(\text { velocity })^{2}$
Acceleration	[L]/[T²]	
Energy	$[\mathrm{M}]\left[\mathrm{L}^{2}\right] /\left[\mathrm{T}^{2}\right]$	

1-3 Dimensional Analysis

- Any valid physical formula must be dimensionally consistent - each term must have the same dimensions

TABLE 1-5 Dimensions of Some
Common Physical Quantities

Quantity
Distance
Area
Volume
Velocity
Acceleration
Energy

Dimension
[L]
[L^{2}]
[L ${ }^{3}$]
[L]/[T]
$[\mathrm{L}] /\left[\mathrm{T}^{2}\right]$
$[\mathrm{M}]\left[\mathrm{L}^{2}\right] /\left[\mathrm{T}^{2}\right]$

Let us try iClicker Frequency is D A

From the table, which relation is incorrect
A. Distance = velocity x time
B. Velocity = acceleration / time
C. Energy $=$ mass $\times(\text { velocity })^{2}$
D. mass x acceleration x distance = Energy

1-4 Significant Figures

Is my height $2 \mathrm{~m}, 1.8 \mathrm{~m}, 1.82 \mathrm{~m}$ or 1.8165 m ?

- accuracy of measurements is limited
- significant figures: the number of digits in a quantity that are known with certainty - for example human height is usually measured to three significant figures
- number of significant figures after multiplication or division is the number of significant figures in the leastknown quantity

1-4 Significant Figures

number of significant figures after multiplication or division is the number of significant figures in the least-known quantity

Example:
A tortoise travels at 2.51 cm/s for 12.23 s . How far does the tortoise go?

Answer: $2.51 \mathrm{~cm} / \mathrm{s} \times 12.23 \mathrm{~s}=30.7 \mathrm{~cm}$ (three significant figures)

1-4 Significant Figures

Round-off error:
The last digit in a calculated number may vary depending on how it is calculated, due to rounding off of insignificant digits

Example:
$\$ 2.21+8 \%$ tax $=\$ 2.3868$, rounds to $\$ 2.39$
$\$ 1.35+8 \%$ tax $=\$ 1.458$, rounds to $\$ 1.49$
Sum: \$2.39 + \$1.49 = \$3.88
\$2.21 + \$1.35 = \$3.56
$\$ 3.56+8 \%$ tax $=\$ 3.84$

1-4 Significant Figures

Scientific Notation

- Leading or trailing zeroes can make it hard to determine number of significant figures: 2500, 0.000036
- Each of these has two significant figures
- Scientific notation writes these as a number from 1-10 multiplied by a power of 10 , making the number of significant figures much clearer:
$2500=2.5 \times 10^{3}$
If we write 2.50×10^{3}, it has three significant figures
$0.000036=3.6 \times 10^{-5}$

1-5 Converting Units

Converting feet to meters:
$1 \mathrm{~m}=3.281 \mathrm{ft} \quad$ (this is a conversion factor)
Or: $1=1$ m / 3.281 ft
$316 \mathrm{ft} \times(1 \mathrm{~m} / 3.281 \mathrm{ft})=96.3 \mathrm{~m}$
Note that the units cancel properly - this is the key to using the conversion factor correctly!

© 2010 Pearson Education, Inc.

Let us try iClicker

What is the most accurate conversion factor from km to miles that you can deduce from this picture ?
A. 1.6
B. 1.8
C. 1.56
D. 1.615
E. 0.81

1-6 Order-of-Magnitude Calculations

Why are estimates useful?

1. as a check for a detailed calculation - if your answer is very different from your estimate, you've probably made an error
2. to estimate numbers where a precise calculation cannot be done

1-6 Order-of-Magnitude Calculations Example:

Approximately how many times does an average human heart beat in a lifetime?
A) 3×10^{11}
B) 3×10^{10}
C) 3×10^{9}
D) 3×10^{8}
E) 4×10^{7}

1-8 Problem Solving in Physics

No recipe or plug-and-chug works all the time, but here are some guidelines:

1. Read the problem carefully
2. Sketch the system
3. Visualize the physical process
4. Strategize
5. Identify appropriate equations
6. Solve the equations
7. Check your answer
8. Explore limits and special cases
