FORMULA SHEET FOR ASSIGNMENT 2

1 Tensor transformation rules

Tensors are defined by their transformation properties under coordinate change. One distinguishes convariant and contravariant indexes. Number of indexes is tensor's rank, scalar and vector quantities are particular case of tensors of rank zero and one.

Consider coordinate change $x^{\alpha}=x^{\alpha}\left(x^{\prime \alpha}\right)$. Transformation rules are

Scalar

$$
\begin{equation*}
S=S^{\prime}-\text { scalar (tensor of } 0 \text { rank) is invariant under transformations } \tag{1}
\end{equation*}
$$

Vector

$$
\begin{align*}
V^{\alpha} & =V^{\alpha^{\prime}} \frac{\partial x^{\alpha}}{\partial x^{\alpha^{\prime}}}-\text { contravariant vector }(\text { tensor of rank } 1) \tag{2}\\
V_{\alpha} & =V_{\alpha^{\prime}} \frac{\partial x^{\alpha^{\prime}}}{\partial x^{\alpha}}-\text { covariant vector } \tag{3}
\end{align*}
$$

Tensor

$$
\begin{equation*}
T_{\beta \ldots}^{\alpha \ldots}=T_{\beta^{\prime} \ldots}^{\alpha^{\prime} \ldots} \frac{\partial x^{\alpha}}{\partial x^{\alpha^{\prime}}} \frac{\partial x^{\beta^{\prime}}}{\partial x^{\beta}} \cdots-\text { tensor of higher rank with mixed indexes } \tag{4}
\end{equation*}
$$

Contraction Contraction is a summation over a pair of one covariant and one contravariant indexes. It creates a tensor of rank less than original by two. We use shorthand that when two inderxes of different type are labeled by the same latter it implies a summation over them.

$$
\begin{equation*}
S=V_{\alpha} V^{\alpha}, \quad V^{\alpha}=T_{\beta}^{\alpha \beta} \tag{5}
\end{equation*}
$$

2 The metric tensor

Definition The metric tensor $g_{\alpha \beta}$ specifies the invariant interval (distance) between two neighbouring points (events)

$$
\begin{equation*}
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{6}
\end{equation*}
$$

Lowering of indexes

$$
\begin{equation*}
A_{\alpha}=g_{\alpha \beta} A^{\beta}, \quad T_{\alpha \beta}=g_{\alpha \gamma} g_{\beta \sigma} T^{\gamma \sigma} \tag{7}
\end{equation*}
$$

Defining $g^{\alpha \beta}$

$$
\begin{equation*}
g_{\alpha \beta} \equiv g_{\alpha \gamma} g_{\beta}^{\gamma} \Rightarrow g_{\beta}^{\gamma}=\delta_{\beta}^{\gamma}, \ldots \Rightarrow \ldots g_{\beta \sigma} g^{\gamma \sigma}\left(\equiv g_{\beta}^{\gamma}\right)=\delta_{\beta}^{\gamma} \tag{8}
\end{equation*}
$$

Rising of indexes

$$
\begin{equation*}
A^{\alpha}=g^{\alpha \beta} A_{\beta}, \quad T^{\alpha \beta}=g^{\alpha \gamma} g^{\beta \sigma} T_{\gamma \sigma} \tag{9}
\end{equation*}
$$

3 Affine connection (Christoffel symbols)

Affine connection $\Gamma_{\beta \gamma}^{\alpha}$ describes relation between vectors at two neighbouring points.

$$
\begin{equation*}
\delta V^{\alpha}=-\Gamma_{\beta \gamma}^{\alpha} V^{\beta} d x^{\gamma} \tag{10}
\end{equation*}
$$

Covariant derivatives We denote ordinary derivatives with comma and the covariant ones with semicolon

$$
\begin{align*}
S_{; \mu} & =S_{, \mu}-\text { for scalars derivatives are equal. } \tag{11}\\
V_{; \mu}^{\alpha} & =V_{, \mu}^{\alpha}+\Gamma_{\mu \gamma}^{\alpha} V^{\gamma} \tag{12}\\
V_{\alpha ; \mu} & =V_{\alpha, \mu}-\Gamma_{\mu \alpha}^{\gamma} V_{\gamma} \tag{13}\\
T_{\alpha ; \mu}^{\beta} & =T_{\alpha, \mu}^{\beta}-\Gamma_{\mu \alpha}^{\gamma} T_{\gamma}^{\beta}+\Gamma_{\mu \gamma}^{\beta} T_{\alpha}^{\gamma} \tag{14}
\end{align*}
$$

Relation between $\Gamma_{\beta \gamma}^{\alpha}$ and $g_{\alpha \beta}$: In GR we use affine connection which is related to the first derivatives of the metric tensor by the requirement that $g_{\alpha \beta ; \mu}=0$ and restriction that connection is symmetric $\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha}$. Then

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \sigma}\left(g_{\sigma \beta, \gamma}+g_{\sigma \gamma, \beta}-g_{\beta \gamma, \sigma}\right) \tag{15}
\end{equation*}
$$

4 Curvature, Riemann and Ricci tensors, Ricci scalar

Covariant derivative in general is not commutative, $V^{\alpha}{ }_{; \nu ; \mu}-V^{\alpha}{ }_{; \mu ; \nu} \neq 0$. Namely

$$
\begin{equation*}
V_{; \nu ; \mu}^{\alpha}-V_{; \mu, \nu}^{\alpha} \equiv R^{\alpha}{ }_{\gamma \mu \nu} V^{\gamma} \tag{16}
\end{equation*}
$$

defines Riemann tensor $R^{\alpha}{ }_{\gamma \mu \nu}$ which gives invariant measure of the curvature of the space. The space is flat if $R^{\alpha}{ }_{\gamma \mu \nu}=0$.

Riemann tensor $R^{\alpha}{ }_{\gamma \mu \nu}$

$$
\begin{equation*}
R^{\alpha}{ }_{\beta \mu \nu}=\Gamma_{\beta \nu, \mu}^{\alpha}-\Gamma_{\beta \mu, \nu}^{\alpha}+\Gamma_{\gamma \mu}^{\alpha} \Gamma_{\beta \nu}^{\gamma}-\Gamma_{\gamma \nu}^{\alpha} \Gamma_{\beta \mu}^{\gamma} \tag{17}
\end{equation*}
$$

Ricci tensor $R_{\alpha \beta}$ is the contraction of the Riemann tensor

$$
\begin{equation*}
R_{\alpha \beta} \equiv R^{\gamma}{ }_{\alpha \gamma \beta} \tag{18}
\end{equation*}
$$

Ricci scalar R is the further contraction

$$
\begin{equation*}
R \equiv g^{\alpha \beta} R_{\alpha \beta}=R^{\alpha}{ }_{\alpha} \tag{19}
\end{equation*}
$$

5 Useful Computational Formulae

$$
\begin{align*}
R_{\beta \nu} & =\Gamma_{\beta \nu, \mu}^{\mu}-\Gamma_{\beta \mu, \nu}^{\mu}+\Gamma_{\gamma \mu}^{\mu} \Gamma_{\beta \nu}^{\gamma}-\Gamma_{\gamma \nu}^{\mu} \Gamma_{\beta \mu}^{\gamma} \tag{20}\\
\Gamma_{\alpha \gamma}^{\gamma} & =[\ln (\sqrt{-g})]_{, \alpha}, \quad g=\left|g_{\alpha \beta}\right| \tag{21}
\end{align*}
$$

