The Emerging Role of Machine-Learned Feedback in Neuroprostheses

Patrick M. Pilarski, Ph.D.

Canada CIFAR AI Chair, Dept. of Medicine, University of Alberta
Fellow and Board of Directors, Alberta Machine Intelligence Institute (Amii)
Research Scientist and Edmonton Office Co-Lead, DeepMind
C.O.I. Disclosure

No affiliation (financial or otherwise) with pharmaceutical, medical device or medical communications organizations.

Other Industry Affiliations:

Senior Staff Research Scientist and Office Co-Lead, *DeepMind*
Board of Directors, *Alberta Machine Intelligence Institute*
950BC - 700BC, The "Cairo Toe" (The University of Manchester),
Video courtesy:
Amii / Chris Onciul
Extension
Engelbart, 1962
Serino, 2019
Amplification
Ashby, 1956
Tightly Coupled
Licklider, 1960
the control pathway

Hallworth, et al.,
MEC, 2020
machine intelligence

the **feedback** path
(mechanical, auditory, visual)
engineered feedback

surgically enhanced feedback

Marasco, et al., Science Robotics, 2021
Hebert, et al., IEEE TNSRE, 2014
machine learned feedback

Parker, et al.,
ICORR, 2019
Expert-Designed
or Fixed Signalling

Emergent or Fully
Learned Signalling

scientific gap
Expert-Designed or Fixed Signalling

Emergent or Fully Learned Signalling
Expert-Designed or Fixed Signalling

Emergent or Fully Learned Signalling

a first, natural stepping stone
Pavlovian signalling

Butcher et al., 2022; Brenneis et al., 2022; Pilarski et al., 2022.
Pavlovian signalling is a process wherein learned, temporally extended predictions

Butcher et al., 2022; Brenneis et al., 2022; Pilarski et al., 2022.
Pavlovian signalling is a process wherein learned, temporally extended predictions are mapped in a defined way to signals intended for receipt by a decision-making agent.

Butcher et al., 2022; Brenneis et al., 2022; Pilarski et al., 2022.
Pavlovian signalling is a process wherein learned, temporally extended predictions are mapped in a defined way to signals intended for receipt by a decision-making agent, and where these signals are grounded for the sender in the definition of the predictive question and mapping approach that generated them.

Butcher et al., 2022; Brenneis et al., 2022; Pilarski et al., 2022.
Butcher et al., 2022; Brenneis et al., 2022; Pilarski et al., 2022.
Pavlovian Signalling Co-Agent

Thresholded GVF Prediction

Binary Signal

A/V State

Reward

Event

Action

Human

Butcher et al., 2022; Brenneis et al., 2022; Pilarski et al., 2022.
Waiting for wind to pass...

The Frost Hollow Experiments

Pavlovian signalling in **motor prediction**.
Parker et al., *IEEE SMC 2022* (submitted); Parker et al., *ICORR 2019*.

Switching-based **exoskeleton control**.
Faridi et al., *ICORR 2022*.

Emergent communication during navigation.
Kalinowska et al., *CogSci 2022*; Kalinowska et al., *ICLR EmeCom 2022*.

Pavlovian signalling in **mode switching**.
Edwards et al., *BioRob 2016*.
Pavlovian signalling in **motor prediction**. Parker et al., IEEE SMC 2022 (submitted); Parker et al., ICORR 2019.

Switching-based **exoskeleton control**. Faridi et al., ICORR 2022.

Emergent communication during navigation. Kalinowska et al., CogSci 2022; Kalinowska et al., ICLR EmeCom 2022.
Pavlovian signalling in **motor prediction**. Parker et al., *IEEE SMC* 2022 (submitted); Parker et al., *ICORR* 2019.

Switching-based **exoskeleton control**. Faridi et al., *ICORR* 2022.

Pavlovian signalling in **motor prediction.** Parker et al., IEEE SMC 2022 (submitted); Parker et al., ICORR 2019.

Switching-based **exoskeleton control.** Faridi et al., ICORR 2022.

Emergent communication during navigation. Kalinowska et al., CogSci 2022; Kalinowska et al., ICLR EmeCom 2022.

Emergent communication during navigation. Kalinowska et al., CogSci 2022; Kalinowska et al., ICLR EmeCom 2022.
Context

Video courtesy:
Amii / Chris Onciul
Interpretation

Assessment

Video courtesy: Amii / Chris Onciul
Pavlovian signalling

Expert-Designed or Fixed Signalling

Emergent or Fully Learned Signalling
Expert-Designed or Fixed Signalling

Pavlovian Signalling

context

assessment

policy learning

frameworks

model learning

Emergent or Fully Learned Signalling
Ostensive-inferential Communication

Expert-Designed
or Fixed Signalling

Joint Action
Sebanz, et al., 2006.

Emergent or Fully
Learned Signalling
machine learned bidirectional coordination
Continually learning tightly coupled intelligent systems
Post-surgery Osseointegration Rehabilitation conducted at the Glenrose Rehabilitation Hospital
Thank you and questions!

Jacqueline Hebert
Richard Sutton
Craig Chapman
Albert Vette
Vivian Mushahwar
Adam White
Joseph Modayil
Jason Carey
Mahdi Tavakoli
Kim Adams
Martin Ferguson-Pell
Simon Grange
Liping Qí
Matt Botvinick
Todd Murphey
K. Ming Chan
Erik Scheme
Michael Bowling
Kory Mathewson
Craig Sherstan
Elnáz Davoodi
Thomas Degris
Michael Johanson
Ahmed Shehata
Johannes Gunther
Florian Strub
Ivana Kajic
Claudio Castellini
Jon Sensinger
Paul Marasco
Aida Valevicius
Hiroki Tanikawa
Michael Rory Dawson
Mayank Rehani
Glyn Murgatroyd
Dylan Brenneis
Andrew Butcher
Leslie Acker
Andrew Bolt
Adam Parker
Heather Williams
Ola Kalinowska
Alden Christianson
Ann Edwards
Alex Kearney
Nadia Ady
Ewen Lavoie
Katherine Schoepf
Pouria Faridi
Travis Dick
Vivek Veeriah
Riley Dawson
Quinn Boser
Jaden Travnik
Gautham Vasan
Anna Koop
Kodi Cheng
Emma Durocher
Devin Bradburn
Helen Zhao
Liam Jack
Roshan Shariff
Nathan Wisinski
Ben Hallworth

... and all the other members of our teams
and labs advising or contributing to aspects
the presented work.

With additional funding and
support from: NSERC, CFI,
Canada Research Chairs,
Canada CIFAR AI Chairs,
DARPA HAPTIX, GRHF, UHF,
Alberta Innovates, and the
Government of Alberta.