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One statement we likely all agree on:

Prosthetic control, feedback, interventions 
and user training can be improved through 

adaptation and sculpting to individuals, 
their unique body and needs.



One statement that may be controversial:

Prosthetic devices should continually adapt 
and sculpt their control and feedback to 

individuals and their needs during 
post-clinical deployed use.
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Objectives
We have a set of shared terms 
(e.g., constructivism and continual learning) 
…

… and a minimal set of concrete examples 
of what is now technologically possible …

… such that we can discuss the 
similarities, differences, and merits of 
these pathways in meeting user needs.



Nerlich, et al., Lancet, 356: 2176–79, 2000.
https://www.smithsonianmag.com/smart-news/study-reveals-secrets-ancient-cairo-toe-180963783/
https://www.theatlantic.com/technology/archive/2013/11/the-perfect-3-000-year-old-toe-a-brief-history-
of-prosthetic-limbs/281653/
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https://www.smithsonianmag.com/smart-news/study-reveals-secrets-ancient-cairo-toe-180963783/
https://www.theatlantic.com/technology/archive/2013/11/the-perfect-3-000-year-old-toe-a-brief-history-of-prosthetic-limbs/281653/
https://www.theatlantic.com/technology/archive/2013/11/the-perfect-3-000-year-old-toe-a-brief-history-of-prosthetic-limbs/281653/


Video courtesy: 
Amii / Chris Onciul

https://docs.google.com/file/d/1aK1ZRAzoEBpieZkWgQAO5W8fxYkq9K3_/preview


the control pathway

Micera, et al., 
2010



machine intelligence
Shehata, et al., 

IEEE Sig. Proc. Magazine, 2021



Schofield, et al., Expert Reviews of 
Medical Devices, 2014.

the feedback pathway
(mechanical, auditory, visual, and more)



machine learned feedback Parker, et al., 
ICORR , 2019



surgical interventions
for control & feedback

Kuiken, et al., JAMA, 2009 
Hebert, et al., IEEE TNSRE, 2014

Marasco, et al., Science Robotics, 2021



Ortiz-Catalan et al., N Engl J Med 
2020; 382:1732-8.

bone, 
muscle, 
and nerve
integration



In these areas, we likely still agree:

Prostheses can be improved through 
adaptation and sculpting to individuals, 

their unique body and needs.



Modern prosthetic technology has the 
necessary preconditions to construct or 
enhance many of these elements during 
deployed interactions with users over 
extended periods of time. 



continual 
learning

● Can learn context-dependent things;

● Learns while doing (during experience);

● Learning is task agnostic;

● Learns incrementally, no fixed training set;

● Learning can be built upon later;

● Retains previously learned abilities;

● Adapts efficiently to changes over time and 
recovers quickly.

… the constant and 
incremental 
development of 
increasingly complex 
knowledge and 
behaviors.

Khetarpal et al., 2020; Ring, 1997. https://arxiv.org/pdf/2012.13490.pdf



DATA GOALS

DECISIONS

REPRESENTATIONS

PREDICTIONS (models)

ACTIONS (Control and feedback)

And what might a prosthesis control 
system continually learn and use?
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Reinforcement Learning (RL) techniques 
are very well suited to 

continual learning.

Notably, learning of extended outcomes and value functions that can capture long-term 
forecasts of arbitrary signals of interest: Sutton et al., 1988; Sutton et al., 2011



Key Example
Adaptive & 

Autonomous
Switching

(2011-2022)



P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton, “Adaptive 
Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” IEEE Robotics & Automation 
Magazine, Vol. 20(1): 53–64, March 2013.



P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton, “Adaptive 
Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” IEEE Robotics & Automation 
Magazine, Vol. 20(1): 53–64, March 2013.

Continually Learned Forecasts of Future Control Outcomes



Highly Scalable

 tens of thousands of  
forecasts learned and 

made in real time 
about position, 

velocity, loads, EMG, 
temperatures, and 

more

MPL v3.0
Pilarski & Sherstan, BioRob, 2016.

Günther et al., AAAI-FS, 2018.
Günther et al., Frontiers in Robotics and AI 7:34, 2020.

https://docs.google.com/file/d/1CpZFm2WUbcaIXf9Am0MbFQVjZQoxS5fO/preview


Mappings from learned predictions to 
fixed outcomes provide a natural gateway 

to more complex adaptive interactions. 
(e.g., predictions change an interface)



Adaptive & Autonomous Switching
A. L. Edwards, et al. Prosthetics & Orthotics International, vol. 40, no. 5, 573–581, 2016.
A. L. Edwards, et al., 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and 
Biomechatronics (BioRob2016), June 26-29, 2016, Singapore, pp. 514–521
A. L. Edwards, MScRS Thesis, Faculty of Rehabilitation Medicine, University of Alberta, 2016.



Adaptive Switching Edwards et al., MEC, 2014
Edwards et al., Prosthetics Orthotics Int., 2016

https://docs.google.com/file/d/1BnSyCZXyC9iJVwXuLuX1EQ8EsDKnR5Q5/preview


Pilarski et al., BioRob, 2012. 



Edwards et al., Prosthetics Orthotics Int., 2016

Participant 
with 

amputation

Faster and Less Switches on a Modified Box and Blocks Tasks

Time Switches



Coordinating 
upper-limb 
joint 
synergies.

Sherstan, et 
al., ICORR, 
2015.

Pilarski, et 
al., ICORR, 
2013. 

Adaptive 
switching in 
real-time 
exoskeleton 
control.

Faridi et al., 
ICORR, 2022.

Intraspinal 
microstimulation 
for walking.

Dalrymple et al., J. 
Neural Eng., 2022.

Robot limb failure 
and anomaly 
detection.

Günther et al., 
Front. AI., 2020.

Günther et al., 
AAAI-FS, 2018.

Hazard prediction 
and machine 
learned feedback 
in robot limbs and 
VR decision 
making.

Parker et al., 
ICORR, 2019.

Brenneis et al., 
ALA, 2022

https://docs.google.com/file/d/1TgcahQKvuttEGbhmjywXF2rcCuSxk-Zq/preview
https://docs.google.com/file/d/1TgcahQKvuttEGbhmjywXF2rcCuSxk-Zq/preview


IEEE International Conference on Rehabilitation Robotics, 2011



Continual learning enables 
constructivism, and is a cornerstone of 
adaptation and sculpting to individuals.



constructivism
The perspective that perception, 
knowledge, understanding, and 
abilities are constructed through 
interaction and experience.

… an inherently continual and 
additive process of learning. Jean Piaget

(1896–1980)
https://piaget.org/about-piaget/
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Continual learning and constructed 
control and feedback is in essence putting 

the person and their needs and goals 
front and centre, and tasking the device 

to try to change in safe and stable ways to 
meet those needs and goals.



Solid evidence this is now computationally 
& technologically possible with present 

prosthetic hardware.



Is now the right time?

What critical evidence do we need?



Constructing and updating this 
during continual interaction is 
a powerful idea that unlocks 
transformative change in 
prosthetic interfaces!



Expert-Designed 
Channels

Emergent or 
Fully Constructed 

Interfaces

Ostensive-inferential Communication
Scott-Phillips, Speaking our Minds, 2014.

Joint Action
Sebanz, et al., 2006.

Beyond Code 
Channels



Continually learning 
tightly coupled 
intelligent systems
(Licklider, 1960)
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