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Abstract: New advances in wide-angle cytometry have allowed re-
searchers to obtain micro- and nano-structural information from biological
cells. While the complex two-dimensional scattering patterns generated
by these devices contain vital information about the structure of a cell, no
computational analysis methods have been developed to rapidly extract
this information. In this work we demonstrate a multi-agent computational
pipeline that is able to extract features from a two-dimensional laser
scattering image, cluster these features into spatially distinct regions, and
extract a set of parameters relating to the structure of intensity regions
within the image. This parameterization can then be used to infer medically
relevant properties of the scattering object.
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1. Introduction

There is a great need for methods to extract and recognize patterns in cellular scattering im-
ages [1-5]. Scattering patterns contain vital information about the scattering source, and their
interpretation facilitates diagnostic techniques ranging from the analysis of protein and DNA
structure from x-ray diffraction [6-8], to the assessment of cell health based on patterns of laser
light scattered by cellular components [1-4]. In perhaps the best known example, Watson and
Crick used information from patterns seen in two-dimensional x-ray scatter plots to infer the
double-helix nature of DNA [8]. In assessing cellular structure, Sem’yanov et al. and Ghosh et
al. recognized regular patterns in one-dimensional cell scattering plots, and were able to use a
parameterization of these patterns to extract microstructural cell information [9-11].

Scattering pattern analysis techniques are especially crucial in light of new medically-
relevant optical analysis methods—specifically the development of the wide-angle cytometer.
Wide-angle cytometry devices are rapid, cost effective systems able to capture two-dimensional
scattering patterns from a single cell or particle suspended within a fluidic channel. In these de-
vices, laser light is propagated through a cellular body, where it scatters and is collected by a
digital imaging device (as described by Singh ef al. [1,2]). A schematic diagram of a wide-angle
cytometer is shown in Fig. 1.

Building on traditional cytometry schemes—which typically only capture scattered light at
a few fixed angles or an angular slice—these label-free (i.e. non-fluorescent) detection devices
provide extensive information about the internal structure of cells and are highly relevant to
medical diagnostic practices [1,2]. It is important to be able to rapidly ascertain small devia-
tions in cell structure, as the structure of a cell can be an indicator for the progression of dis-
eases (such as cancer) in patients [3, 5]. However, to infer cell structure from two-dimensional
scattering plots, a method must be developed to extract and parameterize intensity patterns in
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Fig. 1. Schematic diagram of a wide-angle cytometer. It includes a fluidic channel, a laser
source, and a two-dimensional charge-coupled device (CCD).
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Fig. 2. Simplified example images containing features known to be present in experimen-
tal and numerically simulated scattering patterns: a series of vertical intensity bands, like
those found in micro-structural scattering (left), and a number of randomly-placed high-
frequency intensity regions, characteristic of nano-structural Rayleigh scattering (middle).
Varying levels of high— and low- frequency intensity variation may be present in a sin-
gle image, leading to complex, information-rich image structures (right). These simulated
images were generated by the methods explained in the Sec. 3

cytometric scattering images. This is a previously unsolved problem, and we present here a
methodology for this.

Previous work has shown that when light scatters through the cellular body it generates a
complex and information-rich pattern of overlapping intensity regions. These regions are cre-
ated by interfering waves propagating through a variety of cellular structures with differing
size and optical properties [S]. Based on our current understanding of the scattering mecha-
nisms present in biological cells (as indicated experimentally [1,2,5,9] and through numerical
simulation [12-14]), these two-dimensional scattering images are typically comprised of a set
of scattering bands of varying intensity and width, with a number of additional high-frequency
intensity regions (e.g. resembling those in Fig. 2). For examples of experimentally acquired
scattering signatures, please see the recent work of Singh et al. [1,2].

Scattering intensity contributions in cells typically come from three sources: large cell struc-
tures with diameter d greater than the incident wavelength A (geometric scattering, d > A, on
the order of micrometers), cell structures slightly less than the wavelength of incident light (Mie
scattering, A /15 < d < A), and very small organelles (Rayleigh scattering, sizes on the order
of nanometers, d < A/15) [5]. These lead to three general image cases.

In the first case (geometric scattering, and Mie scattering as d approaches A1), the scattered
light will form large regular intensity bands, which—in the case of our wide-angle cytometers—
appear as vertical stripes in captured wide-angle scattering images [2]. While bands may arc
at low scattering angles (as shown by the images of Singh et al. [2]), they appear approxi-
mately linear over smaller solid angles—particularly in the side-scattering region (e.g. Fig. 2,
left). These larger intensity bands are most prominent (e.g. highest intensity) in the forward
and back scatter regions of a 180 x 180 degree scattering image, and are primarily due to the
geometry of the cell wall and the larger organelles within the cell [2,4, 5, 14].

In the second case, combining the influence of both large and medium-sized microstructural
elements (e.g. both geometric scatterers and larger Mie scatters), a scattering image may contain
bands that vary greatly in intensity along their length. Interference can lead to lighter or darker
regions positioned within the intensity band structure.

For cellular scattering, the presence of smaller micro— and nano-scale cellular structures (like
the mitochondria, which are primarily responsible for scattering at large angles [3]) will lead
to a set of small randomly-distributed intensity regions. The number, frequency, and size of the
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regions relates to the internal complexity of the cell. This is a result of the third case: Rayleigh
scattering (and also Mie scattering where d approaches A4 /15). Intensity contributions from
spatially distributed organelles will constructively and destructively interfere to create a number
of high-frequency intensity regions (e.g. Fig. 2, middle).

The end result is a complex scattering pattern that is comprised of interfering contributions
from high-frequency intensity components and a series of vertical intensity bands (such as in
Fig. 2, right), and which indicates the detailed internal morphology of the cellular body. The
combination of image cases one+two, one+three, or one+two+three will all lead to images
similar to the one presented in Fig. 2, right. We have observed this complex structure from both
our work with wide-angle cytometers and numerical Finite Difference Time Domain (FDTD)
simulations.

Computational methods have done little to take advantage of this rich image structure. One
of the major factors inhibiting the development of wide-angle diagnostic devices is the com-
putational effort needed to analyze the scattered light signatures. To deduce cellular informa-
tion from scattered laser light we must somehow solve the inverse scattering problem for light
through biological cells. This inverse scattering problem involves recreating the geometric pa-
rameters of a cell based on the observed path of light propagating through its cytoplasm. This
is a largely unsolved problem, and any direct mathematical methods are either computation-
ally intractable and/or lead to non-unique solutions [4]. While numerous attempts have been
made to simulate the effects of scattering in cellular bodies, a method for quickly inferring the
geometric structure of a cell based solely on its light scattering data still eludes researchers [4].

Given the challenge of solving the inverse problem for scattering from a living cell, the lit-
erature to date has focused on the empirical classification of cells based on their scatter at a
few specific angles or an angular slice through the center of the full two-dimensional scattering
pattern (commonly called the “indicatrix”). It is evident from the rich structure of the scat-
ter patterns (along both the ¢ and 6 axis) that there is far more information present than is
contained in simple angular slices.

Techniques have been developed to address this problem by mathematically calculating the
potential scattering patterns of cells [12—14]. In these ‘forward methods’, hypothetical cell ge-
ometries are used to generate simulated scattering signatures, which are then compared to ex-
perimental results. Further work has been done to use these calculated scattering patterns with
evolving computer programs (such as genetic algorithms and neural networks) to interpret scat-
tering data from crystals, proteins [6, 7], and single cells [11]. These methods largely involve
the creation and verification of multiple potential structures (e.g. “generate and test” through
repeated FDTD simulations [14]). These scattering simulations may take days to complete, and
require the use of large parallel-processing computer arrays.

As shown by the work of Sem’yanov et al., Ghosh et al., and Ulanowski et al., a more
computationally tractable method is to effect a ‘parametric solution’ to the inverse scattering
problem [4,9-11, 15]. In this two-step method (parameterization and pattern recognition), they
parameterize some aspect of a scattering pattern and use a set of mathematical relations [4, 9],
fast Fourier transforms [10], or standard data mining techniques [11] to relate the extracted
parameters to the initial structure of the scattering source. This process is rapid by comparison
to forward methods, and may allow a degree of structural generalization that alleviates some of
the problems caused by non-unique forward solutions.

Extracting viable parametric information from information-rich wide-angle scattering signa-
tures presents a number of computational challenges. Because of complex cellular geometries,
intensity bands may partially overlap in some places, the maximum intensity of each band may
differ greatly from that of its neighbours, and the ambient background intensity is not consistent
over the entire image. In addition, band boundaries are smooth gradients, not sharp intensity
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level transitions. These characteristics make it quite difficult to extract relevant features from
an image and group them into meaningful regions.

While researchers have addressed the individual components that make up this high-level
segmentation problem (e.g. feature detection/extraction, connected component labeling, noise
rejection, region clustering), to the best of our knowledge no groups have developed a way
to extract and analyze the full range of information present in two-dimensional cytometric
scattering images. This problem involves partitioning two-dimensional scattering images into
spatially distinct regions and extracting high-level semantic information (i.e. image parameters)
from the detected regions. In this work we integrate and extend upon several tested image
segmentation and computer vision techniques to enhance the diagnostic capacity of wide-angle
cytometry systems through the automated parameterization of scattering plots.

1.1.  Recent segmentation work

Computer vision and image segmentation lie at the heart of most medical image analysis
schemes [16-22]. These are widely studied areas of research that are covered extensively in the
literature. For the interested reader, Shapiro and Stockman (computer vision), and Pal and Pal
(image segmentation) provide excellent reviews of the relevant background literature [23,24].

While there are many possible methods to segment wide-angle scattering images, after sur-
veying the body of current segmentation literature we chose to design our system within the
framework of a multi-agent image processing environment (described below) due to its demon-
strated power, flexibility, and novelty. Multi-agent segmentation systems (such as that of Liu
et al. [17,25,26]) have been thoroughly tested in a number of image processing situations,
and demonstrate comparable or superior performance when compared to traditional methods.
In addition, the distributed nature of multi-agent systems is a benefit for future hardware im-
plementation. As such, they provide a solid basis for the development of a cytometric image
processing pipeline.

Cytometric image parameterization is primarily a high-level segmentation problem. A num-
ber of effective algorithms developed to subdivide an image into its component parts, using
everything from texture information [19, 24,27-29] and Markov Random Fields [30] (shown
to be computationally demanding [23, 30]), to standard image processing techniques [23, 24],
models based on the human visual processing system [31-34], and complex image processing
networks [16,20, 21, 35].

In addition, a large body of recent image segmentation work relies on the use of multi-
agent swarms, including particle swarm optimizations [22,36], evolutionary autonomous agents
[17,25,26,37-39], and ant-colony optimizations [40]. These multi-agent (‘swarm’) systems
are composed of a population of autonomous or semi-autonomous ‘agents’ that collaborate (di-
rectly, indirectly, and/or competitively) to achieve a common goal. In this context, an agent is
defined as a independent computational unit with a set of internal states and action rules; an
agent’s future behaviour depends on its current condition, programmed rules, and the state of
its environment [41]. (Multi-agent systems are finding widespread use in engineering and com-
puter science applications, ranging from process optimization to computer vision, population
modeling to industrial control; Engelbrecht provides a good introduction to this topic [41].)

All of these segmentation algorithms have one thing in common: they attempt to break a
complex image into a set of smaller regions, where each region is homogeneous with respect to
one or more parameters (e.g. contrast, intensity, texture) [23]. The effectiveness of each method
varies depending on the size, texture, orientation, and shape of features contained in an image;
no single approach will work well for every image [23]. In most cases, image sub-division is
a two stage process—an image is segmented into smaller sections which are then clustered into
groups based on some similarity metric [27,30] (i.e. the split-and-merge or region-growing
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approach, recently used for tracking cells in diagnostic images [42]).

Liu et al. have recently proposed several interesting agent-based approaches to region de-
tection and segmentation. They demonstrate a segmentation system capable of rapidly labeling
homogeneous tissue regions in detailed brain scan images [25], and present several methods
to quickly detect edges and track shape information via a swarm of evolving computational
instances (agents) [17,26]. In their swarm intelligence approach to image segmentation, the
behavior of an agent is influenced by the agent’s relation to other agents and local texture infor-
mation (contrast threshold, regional pixel intensity deviation, and mean pixel value) contained
in the analyzed image [17,25,26]. Their methods typically outperform traditional image pro-
cessing techniques, and are successful over a diverse range of input data. Liu ef al.’s method has
distinct advantages in that it is highly parallel (a benefit for future hardware implementations),
has proved successful in complex medical imaging environments, and facilitates a distributed
feature clustering procedure.

Localized action and communication are the key components of most agent-based systems.
Bourjot and colleagues have recently shown that a multi-agent system, based on the web-
spinning behavior of social spiders, can effectively classify regions of homogeneous color in
photographic images [37], and ant colony optimizations have been used in autonomous vehi-
cle navigation to detect roadways in low-contrast environments [40]. The work of Ghrist and
Lipsky with self-assembling tile structures demonstrates an effective method for high-level or-
ganization with no centralized control [43], and Omran et al. further show how particle swarm
optimizations can dynamically cluster information during image segmentation [36]. The dis-
tributed shape classification of Mirzayans et al. [39], and Wang and Yuan’s agent-based face
identification [38] also use local neighbourhoods to detect prominent features.

We use components of these successful swarm / image processing techniques ( [23,28, 38,
39,42]) to complement the approach of Liu ef al. and refine our system for use in a scattering
analysis situation. We have also developed a set of unique algorithms to fully parameterize the
detected image features in a way amenable to detailed scattering analysis.

Unlike most previous swarm segmentation work, our system does not involve agent repro-
duction or movement; the added complexity of agent dynamics, agent evolution, and agent
fitness evaluation (with the additional possibility of incomplete feature detection) offsets any
noticeable improvement for our particular application.

1.2.  Computational challenges

To parameterize scattering images we need to be able to detect continuous intensity regions
and characterize them with respect to their spatial orientation within the image, their intensity
profile, and their relationship to other parts of the image. This allows us to numerically repre-
sent the low and high frequency intensity structures present in scattering images (as described
above).

The complex image texture in cytometric scattering images makes simple feature detection
problematic [27]. It is not possible to simply extract contiguous regions—corresponding to inten-
sity bands—based solely on the raw intensity of the pixels (e.g basic threshold-based region/edge
detection [23]); the high intensity point of one band may be equal in value to the background in-
tensity at another point in the image. Feature detection methods based on local information have
proved useful in solving this problem [23]: compensation techniques such as adaptive thresh-
olding [23,24], and the contrast-based thresholding in Liu ef al.’s “Local Stimulus” [17] have
been effective at reducing the effect of differing background levels. In these systems an image
is divided up into sections and the detection threshold is set independently for each region. Due
to the success of this approach (as described in recent work [17,23-25]), our feature detection
method uses adaptive thresholding (within the framework of Liu et al.’s “Local Stimulus” [17])
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to compensate for varying background intensity.

Another challenge is “region bridging”, defined as the partial overlap of two intensity regions
along a small portion of their boundary. In some circumstances (e.g. low-resolution input data
and/or input images that contain greatly varying band width due to complex scattering source
structure) small groups of high intensity pixels will form in regions of overlap between two
distinct regions. This can cause two separate intensity bands to be classified as one continuous
region, greatly (and erroneously) altering the final parameter extraction.

Wang and Yuan demonstrate an effective method for separating partially blended (i.e.
weakly-connected) regions based on the number of shared boundary pixels [38]; only if the
number of pixels linking two regions is greater than a set threshold will two regions be merged
into a single region. Wang and Yuan’s technique effects a specialized form of the “erosion” and
“opening” operators, commonly used to separate weakly connected image regions in binary
morphology problems [24]. We use a similar bridge-eroding method in the feature detection
and clustering stages of our pipeline to mitigate the effect of region bridging.

In addition to the problems of feature detection and clustering, there is the additional chal-
lenge of extracting a relevant numerical parameter set from the segmented images (i.e. extract-
ing “region properties” [24]). Contiguous and homogeneous regions must be extracted as nu-
merical entities for later parametric analysis. We use a form of localized communication (based
on the widely-used classical connected component labeling [24]) to organize the detected image
features into a set of regions. These regions are parsed to extract a set of useful image parame-
ters. As shown by the work of Sem’yanov et al., Ulanowski et al., and Maltsev, once an input
image has been reduced to parametric form it is possible to infer some information regarding
the internal structure of the scattering source from the extracted parameter values; mathematical
relations and supervised learning algorithms were previously used to determine cell size and
hemoglobin concentration from the parametric profile of scattering intensity slices [4,9,11].

In this paper we present a computational intelligence parameterization method as the first
step in a parametric solution to the inverse scattering problem for laser light through a biolog-
ical cell. Our method combines and builds upon a series of successful image processing meth-
ods (image segmentation [23, 28, 42], multi-agent systems [17, 25, 38, 39, 43], and computer
vision [24]) to identify and group samples of local texture information into high-level patterns
(e.g. semantic information such as intensity band location and structure). While our system is
designed for cytometry problems i