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Abstract: New advances in wide-angle cytometry have allowed re-
searchers to obtain micro- and nano-structural information from biological
cells. While the complex two-dimensional scattering patterns generated
by these devices contain vital information about the structure of a cell, no
computational analysis methods have been developed to rapidly extract
this information. In this work we demonstrate a multi-agent computational
pipeline that is able to extract features from a two-dimensional laser
scattering image, cluster these features into spatially distinct regions, and
extract a set of parameters relating to the structure of intensity regions
within the image. This parameterization can then be used to infer medically
relevant properties of the scattering object.
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1. Introduction

There is a great need for methods to extract and recognize patterns in cellular scattering im-
ages [1–5]. Scattering patterns contain vital information about the scattering source, and their
interpretation facilitates diagnostic techniques ranging from the analysis of protein and DNA
structure from x-ray diffraction [6–8], to the assessment of cell health based on patterns of laser
light scattered by cellular components [1–4]. In perhaps the best known example, Watson and
Crick used information from patterns seen in two-dimensional x-ray scatter plots to infer the
double-helix nature of DNA [8]. In assessing cellular structure, Sem’yanov et al. and Ghosh et
al. recognized regular patterns in one-dimensional cell scattering plots, and were able to use a
parameterization of these patterns to extract microstructural cell information [9–11].

Scattering pattern analysis techniques are especially crucial in light of new medically-
relevant optical analysis methods–specifically the development of the wide-angle cytometer.
Wide-angle cytometry devices are rapid, cost effective systems able to capture two-dimensional
scattering patterns from a single cell or particle suspended within a fluidic channel. In these de-
vices, laser light is propagated through a cellular body, where it scatters and is collected by a
digital imaging device (as described by Singh et al. [1,2]). A schematic diagram of a wide-angle
cytometer is shown in Fig. 1.

Building on traditional cytometry schemes–which typically only capture scattered light at
a few fixed angles or an angular slice–these label-free (i.e. non-fluorescent) detection devices
provide extensive information about the internal structure of cells and are highly relevant to
medical diagnostic practices [1, 2]. It is important to be able to rapidly ascertain small devia-
tions in cell structure, as the structure of a cell can be an indicator for the progression of dis-
eases (such as cancer) in patients [3, 5]. However, to infer cell structure from two-dimensional
scattering plots, a method must be developed to extract and parameterize intensity patterns in

Fig. 1. Schematic diagram of a wide-angle cytometer. It includes a fluidic channel, a laser
source, and a two-dimensional charge-coupled device (CCD).
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Fig. 2. Simplified example images containing features known to be present in experimen-
tal and numerically simulated scattering patterns: a series of vertical intensity bands, like
those found in micro-structural scattering (left), and a number of randomly-placed high-
frequency intensity regions, characteristic of nano-structural Rayleigh scattering (middle).
Varying levels of high– and low– frequency intensity variation may be present in a sin-
gle image, leading to complex, information-rich image structures (right). These simulated
images were generated by the methods explained in the Sec. 3

cytometric scattering images. This is a previously unsolved problem, and we present here a
methodology for this.

Previous work has shown that when light scatters through the cellular body it generates a
complex and information-rich pattern of overlapping intensity regions. These regions are cre-
ated by interfering waves propagating through a variety of cellular structures with differing
size and optical properties [5]. Based on our current understanding of the scattering mecha-
nisms present in biological cells (as indicated experimentally [1, 2, 5, 9] and through numerical
simulation [12–14]), these two-dimensional scattering images are typically comprised of a set
of scattering bands of varying intensity and width, with a number of additional high-frequency
intensity regions (e.g. resembling those in Fig. 2). For examples of experimentally acquired
scattering signatures, please see the recent work of Singh et al. [1, 2].

Scattering intensity contributions in cells typically come from three sources: large cell struc-
tures with diameter d greater than the incident wavelength λ (geometric scattering, d > λ , on
the order of micrometers), cell structures slightly less than the wavelength of incident light (Mie
scattering, λ/15 < d < λ ), and very small organelles (Rayleigh scattering, sizes on the order
of nanometers, d < λ/15) [5]. These lead to three general image cases.

In the first case (geometric scattering, and Mie scattering as d approaches λ ), the scattered
light will form large regular intensity bands, which–in the case of our wide-angle cytometers–
appear as vertical stripes in captured wide-angle scattering images [2]. While bands may arc
at low scattering angles (as shown by the images of Singh et al. [2]), they appear approxi-
mately linear over smaller solid angles–particularly in the side-scattering region (e.g. Fig. 2,
left). These larger intensity bands are most prominent (e.g. highest intensity) in the forward
and back scatter regions of a 180× 180 degree scattering image, and are primarily due to the
geometry of the cell wall and the larger organelles within the cell [2, 4, 5, 14].

In the second case, combining the influence of both large and medium-sized microstructural
elements (e.g. both geometric scatterers and larger Mie scatters), a scattering image may contain
bands that vary greatly in intensity along their length. Interference can lead to lighter or darker
regions positioned within the intensity band structure.

For cellular scattering, the presence of smaller micro– and nano-scale cellular structures (like
the mitochondria, which are primarily responsible for scattering at large angles [3]) will lead
to a set of small randomly-distributed intensity regions. The number, frequency, and size of the
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regions relates to the internal complexity of the cell. This is a result of the third case: Rayleigh
scattering (and also Mie scattering where d approaches λ/15). Intensity contributions from
spatially distributed organelles will constructively and destructively interfere to create a number
of high-frequency intensity regions (e.g. Fig. 2, middle).

The end result is a complex scattering pattern that is comprised of interfering contributions
from high-frequency intensity components and a series of vertical intensity bands (such as in
Fig. 2, right), and which indicates the detailed internal morphology of the cellular body. The
combination of image cases one+two, one+three, or one+two+three will all lead to images
similar to the one presented in Fig. 2, right. We have observed this complex structure from both
our work with wide-angle cytometers and numerical Finite Difference Time Domain (FDTD)
simulations.

Computational methods have done little to take advantage of this rich image structure. One
of the major factors inhibiting the development of wide-angle diagnostic devices is the com-
putational effort needed to analyze the scattered light signatures. To deduce cellular informa-
tion from scattered laser light we must somehow solve the inverse scattering problem for light
through biological cells. This inverse scattering problem involves recreating the geometric pa-
rameters of a cell based on the observed path of light propagating through its cytoplasm. This
is a largely unsolved problem, and any direct mathematical methods are either computation-
ally intractable and/or lead to non-unique solutions [4]. While numerous attempts have been
made to simulate the effects of scattering in cellular bodies, a method for quickly inferring the
geometric structure of a cell based solely on its light scattering data still eludes researchers [4].

Given the challenge of solving the inverse problem for scattering from a living cell, the lit-
erature to date has focused on the empirical classification of cells based on their scatter at a
few specific angles or an angular slice through the center of the full two-dimensional scattering
pattern (commonly called the “indicatrix”). It is evident from the rich structure of the scat-
ter patterns (along both the φ and θ axis) that there is far more information present than is
contained in simple angular slices.

Techniques have been developed to address this problem by mathematically calculating the
potential scattering patterns of cells [12–14]. In these ‘forward methods’, hypothetical cell ge-
ometries are used to generate simulated scattering signatures, which are then compared to ex-
perimental results. Further work has been done to use these calculated scattering patterns with
evolving computer programs (such as genetic algorithms and neural networks) to interpret scat-
tering data from crystals, proteins [6, 7], and single cells [11]. These methods largely involve
the creation and verification of multiple potential structures (e.g. “generate and test” through
repeated FDTD simulations [14]). These scattering simulations may take days to complete, and
require the use of large parallel-processing computer arrays.

As shown by the work of Sem’yanov et al., Ghosh et al., and Ulanowski et al., a more
computationally tractable method is to effect a ‘parametric solution’ to the inverse scattering
problem [4,9–11,15]. In this two-step method (parameterization and pattern recognition), they
parameterize some aspect of a scattering pattern and use a set of mathematical relations [4, 9],
fast Fourier transforms [10], or standard data mining techniques [11] to relate the extracted
parameters to the initial structure of the scattering source. This process is rapid by comparison
to forward methods, and may allow a degree of structural generalization that alleviates some of
the problems caused by non-unique forward solutions.

Extracting viable parametric information from information-rich wide-angle scattering signa-
tures presents a number of computational challenges. Because of complex cellular geometries,
intensity bands may partially overlap in some places, the maximum intensity of each band may
differ greatly from that of its neighbours, and the ambient background intensity is not consistent
over the entire image. In addition, band boundaries are smooth gradients, not sharp intensity
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level transitions. These characteristics make it quite difficult to extract relevant features from
an image and group them into meaningful regions.

While researchers have addressed the individual components that make up this high-level
segmentation problem (e.g. feature detection/extraction, connected component labeling, noise
rejection, region clustering), to the best of our knowledge no groups have developed a way
to extract and analyze the full range of information present in two-dimensional cytometric
scattering images. This problem involves partitioning two-dimensional scattering images into
spatially distinct regions and extracting high-level semantic information (i.e. image parameters)
from the detected regions. In this work we integrate and extend upon several tested image
segmentation and computer vision techniques to enhance the diagnostic capacity of wide-angle
cytometry systems through the automated parameterization of scattering plots.

1.1. Recent segmentation work

Computer vision and image segmentation lie at the heart of most medical image analysis
schemes [16–22]. These are widely studied areas of research that are covered extensively in the
literature. For the interested reader, Shapiro and Stockman (computer vision), and Pal and Pal
(image segmentation) provide excellent reviews of the relevant background literature [23, 24].

While there are many possible methods to segment wide-angle scattering images, after sur-
veying the body of current segmentation literature we chose to design our system within the
framework of a multi-agent image processing environment (described below) due to its demon-
strated power, flexibility, and novelty. Multi-agent segmentation systems (such as that of Liu
et al. [17, 25, 26]) have been thoroughly tested in a number of image processing situations,
and demonstrate comparable or superior performance when compared to traditional methods.
In addition, the distributed nature of multi-agent systems is a benefit for future hardware im-
plementation. As such, they provide a solid basis for the development of a cytometric image
processing pipeline.

Cytometric image parameterization is primarily a high-level segmentation problem. A num-
ber of effective algorithms developed to subdivide an image into its component parts, using
everything from texture information [19, 24, 27–29] and Markov Random Fields [30] (shown
to be computationally demanding [23, 30]), to standard image processing techniques [23, 24],
models based on the human visual processing system [31–34], and complex image processing
networks [16, 20, 21, 35].

In addition, a large body of recent image segmentation work relies on the use of multi-
agent swarms, including particle swarm optimizations [22,36], evolutionary autonomous agents
[17, 25, 26, 37–39], and ant-colony optimizations [40]. These multi-agent (‘swarm’) systems
are composed of a population of autonomous or semi-autonomous ‘agents’ that collaborate (di-
rectly, indirectly, and/or competitively) to achieve a common goal. In this context, an agent is
defined as a independent computational unit with a set of internal states and action rules; an
agent’s future behaviour depends on its current condition, programmed rules, and the state of
its environment [41]. (Multi-agent systems are finding widespread use in engineering and com-
puter science applications, ranging from process optimization to computer vision, population
modeling to industrial control; Engelbrecht provides a good introduction to this topic [41].)

All of these segmentation algorithms have one thing in common: they attempt to break a
complex image into a set of smaller regions, where each region is homogeneous with respect to
one or more parameters (e.g. contrast, intensity, texture) [23]. The effectiveness of each method
varies depending on the size, texture, orientation, and shape of features contained in an image;
no single approach will work well for every image [23]. In most cases, image sub-division is
a two stage process–an image is segmented into smaller sections which are then clustered into
groups based on some similarity metric [27, 30] (i.e. the split-and-merge or region-growing
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approach, recently used for tracking cells in diagnostic images [42]).
Liu et al. have recently proposed several interesting agent-based approaches to region de-

tection and segmentation. They demonstrate a segmentation system capable of rapidly labeling
homogeneous tissue regions in detailed brain scan images [25], and present several methods
to quickly detect edges and track shape information via a swarm of evolving computational
instances (agents) [17, 26]. In their swarm intelligence approach to image segmentation, the
behavior of an agent is influenced by the agent’s relation to other agents and local texture infor-
mation (contrast threshold, regional pixel intensity deviation, and mean pixel value) contained
in the analyzed image [17, 25, 26]. Their methods typically outperform traditional image pro-
cessing techniques, and are successful over a diverse range of input data. Liu et al.’s method has
distinct advantages in that it is highly parallel (a benefit for future hardware implementations),
has proved successful in complex medical imaging environments, and facilitates a distributed
feature clustering procedure.

Localized action and communication are the key components of most agent-based systems.
Bourjot and colleagues have recently shown that a multi-agent system, based on the web-
spinning behavior of social spiders, can effectively classify regions of homogeneous color in
photographic images [37], and ant colony optimizations have been used in autonomous vehi-
cle navigation to detect roadways in low-contrast environments [40]. The work of Ghrist and
Lipsky with self-assembling tile structures demonstrates an effective method for high-level or-
ganization with no centralized control [43], and Omran et al. further show how particle swarm
optimizations can dynamically cluster information during image segmentation [36]. The dis-
tributed shape classification of Mirzayans et al. [39], and Wang and Yuan’s agent-based face
identification [38] also use local neighbourhoods to detect prominent features.

We use components of these successful swarm / image processing techniques ( [23, 28, 38,
39, 42]) to complement the approach of Liu et al. and refine our system for use in a scattering
analysis situation. We have also developed a set of unique algorithms to fully parameterize the
detected image features in a way amenable to detailed scattering analysis.

Unlike most previous swarm segmentation work, our system does not involve agent repro-
duction or movement; the added complexity of agent dynamics, agent evolution, and agent
fitness evaluation (with the additional possibility of incomplete feature detection) offsets any
noticeable improvement for our particular application.

1.2. Computational challenges

To parameterize scattering images we need to be able to detect continuous intensity regions
and characterize them with respect to their spatial orientation within the image, their intensity
profile, and their relationship to other parts of the image. This allows us to numerically repre-
sent the low and high frequency intensity structures present in scattering images (as described
above).

The complex image texture in cytometric scattering images makes simple feature detection
problematic [27]. It is not possible to simply extract contiguous regions–corresponding to inten-
sity bands–based solely on the raw intensity of the pixels (e.g basic threshold-based region/edge
detection [23]); the high intensity point of one band may be equal in value to the background in-
tensity at another point in the image. Feature detection methods based on local information have
proved useful in solving this problem [23]: compensation techniques such as adaptive thresh-
olding [23, 24], and the contrast-based thresholding in Liu et al.’s “Local Stimulus” [17] have
been effective at reducing the effect of differing background levels. In these systems an image
is divided up into sections and the detection threshold is set independently for each region. Due
to the success of this approach (as described in recent work [17, 23–25]), our feature detection
method uses adaptive thresholding (within the framework of Liu et al.’s “Local Stimulus” [17])
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to compensate for varying background intensity.
Another challenge is “region bridging”, defined as the partial overlap of two intensity regions

along a small portion of their boundary. In some circumstances (e.g. low-resolution input data
and/or input images that contain greatly varying band width due to complex scattering source
structure) small groups of high intensity pixels will form in regions of overlap between two
distinct regions. This can cause two separate intensity bands to be classified as one continuous
region, greatly (and erroneously) altering the final parameter extraction.

Wang and Yuan demonstrate an effective method for separating partially blended (i.e.
weakly-connected) regions based on the number of shared boundary pixels [38]; only if the
number of pixels linking two regions is greater than a set threshold will two regions be merged
into a single region. Wang and Yuan’s technique effects a specialized form of the “erosion” and
“opening” operators, commonly used to separate weakly connected image regions in binary
morphology problems [24]. We use a similar bridge-eroding method in the feature detection
and clustering stages of our pipeline to mitigate the effect of region bridging.

In addition to the problems of feature detection and clustering, there is the additional chal-
lenge of extracting a relevant numerical parameter set from the segmented images (i.e. extract-
ing “region properties” [24]). Contiguous and homogeneous regions must be extracted as nu-
merical entities for later parametric analysis. We use a form of localized communication (based
on the widely-used classical connected component labeling [24]) to organize the detected image
features into a set of regions. These regions are parsed to extract a set of useful image parame-
ters. As shown by the work of Sem’yanov et al., Ulanowski et al., and Maltsev, once an input
image has been reduced to parametric form it is possible to infer some information regarding
the internal structure of the scattering source from the extracted parameter values; mathematical
relations and supervised learning algorithms were previously used to determine cell size and
hemoglobin concentration from the parametric profile of scattering intensity slices [4, 9, 11].

In this paper we present a computational intelligence parameterization method as the first
step in a parametric solution to the inverse scattering problem for laser light through a biolog-
ical cell. Our method combines and builds upon a series of successful image processing meth-
ods (image segmentation [23, 28, 42], multi-agent systems [17, 25, 38, 39, 43], and computer
vision [24]) to identify and group samples of local texture information into high-level patterns
(e.g. semantic information such as intensity band location and structure). While our system is
designed for cytometry problems involving vertical intensity bands with randomly distributed
high-frequency components, its modular analysis pipeline, numerical representation of regions,
and independent parameterization routine (all described in the following sections) give it the
flexibility to be easily adapted for a variety of other cytometric image analysis situations (e.g.
those with different band structures/orientations and/or arbitrarily shaped intensity regions).

To the best of our knowledge, our technique is the first computational system designed to
comprehensively parameterize wide-angle scattering signatures. We show that our system is
able to identify the overall structure and relationships present in a scattering image. The result-
ing parameterization scheme, built from the numerical characterization of intensity bands and
independent intensity blobs, can be used in the identification of cellular morphology. The end
goal of this work is to facilitate the rapid division of experimental samples into healthy and dis-
eased categories for expedient medical diagnosis. A pattern recognition system to infer cellular
structure from image parameterization values will be presented in future work (in preparation).
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2. The computational pipeline

We present a computational intelligence pipeline (called Cythe) to effectively segment, cluster,
and parameterize cytometric scattering images. The problem can be described as follows:

1. Given an input scattering image I of size u× v, where each of the u · v pixels represents
an 8-bit grey-scale intensity value, how can we effectively segment the image into its
component intensity bands and sub-band regions?

2. Furthermore, once the salient features of the image have been identified, how can we
extract relevant parametric information from these features and use this information to
categorize the initial input image I?

Previous work has shown viable two-stage image segmentation systems: in stage one all
salient pixels are labeled with one or more identifiers; in stage two all labeled pixels are clus-
tered and grouped according to some similarity or congruency metric [23,24,27,29,30]. In this
work we use an additional stage to organize the clustered regions and extract a set of relevant
parameters.

After performing an initial user-specified image size reduction, the first stage of our pipeline
(feature detection) is responsible for creating and fixing a population of computational agents
(A) to the salient features of the target image (as in the approach of Liu et al. [17, 25]). This
stage effectively labels all the pixels corresponding to relevant intensity regions; an explanation
of saliency determination will be presented in the following sub-section. Stage two (feature
clustering) is responsible for clustering the fixed agent population (A) into a list of spatially
distinct regional groups (G). The final stage of the pipeline (post-processing) removes large-
scale image noise, creates a band-like grouping structure from identified regions, and extracts
a parametric representation (P) of the input data.

Detailed explanations of each stage are presented in the following subsections, which also
describe the parameterization equations and the four major algorithms used to implement the in-
dividual stages of the pipeline. These are: the agent fixation() routine, which is responsible for
fixing the agent population to the salient image features; the propagate id() routine, responsible
for clustering agents into connected groups; the scrub() routine, which removes image noise
and erroneous groupings; and the join() routine, which joins groups into a band-like structure
of super-groups.

An animated example of the complete pipeline is presented in Fig. 3.

2.1. Feature detection

The first stage of the Cythe parameterization pipeline takes the input image I, scales it to user
specified dimensions u× v, renders the image as a two-dimensional array [35], and creates an

Fig. 3. (2.46 MB) Animated movie of the complete Cythe pipeline processing an example
10 pixel by 10 pixel image. Agents are represented by colored hemispheres. During the
ID propagation stage of the pipeline, ID values are indicated by agent radius. The final
extracted region groupings are shown by solid objects of uniform color.
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Fig. 4. Agent fixation is determined by comparing the image intensity at an agent’s position
to the average intensity (µa) within its view radius (left). After the agent fixation() routine,
members of the agent population will be fixed on areas of high intensity relative to the
local image texture (right - shown here for an agent view radius of r = 1). This adaptive
process detects edges independent of differing background levels. Pixel color indicates 8-
bit intensity, from 0 (black) to 255 (white).

agent population A equal in size to the number of pixels in the image grid. A single agent is
assigned to every pixel in the image grid. These agents then use the information available in
their local neighbourhood to detect features and sort themselves into regions; this is the standard
approach used in most agent-based image processing systems [17, 25, 28, 39]. To proceed we
must elaborate on several definitions:

Definition (Agent): An agent is a single computational unit that is assigned to a pixel or
region of the image grid I. Each agent has a number of internal states and potential actions,
and can alter these internal states and/or perform actions based on the information present in a
localized area of the image grid I.

Definition (Agent Neighborhood): The agent neighborhood N is a n×n region of the image
grid I centered on the agent location xa,ya. This region determines where an agent will look for
and communicate with other agents (as in Liu et al.’s “Neighbouring Region of an Agent” [17]).

Definition (Agent View Radius): The agent view radius R is a (2r + 1)× (2r + 1) region of
the image grid I centered on the agent location xa,ya (Fig. 4, left). This area helps determine
agent feature detection preferences, and the pixels within this area are used in the calculation
of Average Pixel Intensity µa. This is akin to the image region used in the “local binary pattern
and contrast measure” of Ojala and Pietikainen [28] and the area used to acquire local stimulus
by Liu et al. [17, 25] and Mirzayans et al. [39].

Definition (Average Pixel Intensity): This value, denoted µa, is the average pixel intensity
value that agent a observes within its view radius R. Average Pixel Intensity is equivalent to
the “mean pixel value” component of Liu et al.’s texture definition, as used in their multi-agent
feature detection routine [17].

During the feature detection stage of the pipeline, each agent calls on a fixation routine–
agent fixation()–to determine its immediate behavior [17, 39]. When the fixation routine is
called, the agent will perform one of two actions: an agent will affix to (and therefore identify
as a salient region) a pixel at image grid location I(xa,ya) if the pixel has an intensity value
greater than the agent-computed average pixel intensity µa, or, if this condition is not satisfied,
the agent a will be removed from the agent population A. In this way, agents are able to detect
salient intensity edges in the image I independent of differing background intensity values (i.e.
a fixation routine based on an agent’s relation to its “average pixel intensity” is an adaptive
thresholding function, as described by Pal and Pal [23]).

After the entire agent population has been polled for fixation, only agents that reside on
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Fig. 5. An example of horizontal bridge removal (before and after removal – left and right
respectively), following the agent fixation shown in Fig. 4. Green circles indicate fixed
agents. Red circles represent agents that will be removed, severing the connection between
the two minimally-connected bands. Numbers inside the pixels represent the ratio of hori-
zontal to vertical neighbours within the 4-neighbourhood of a given agent (H:V).

salient pixels will remain in the population [39] (Fig. 4, right). To aid in effective region seg-
mentation, we then scan the entire fixed agent population and remove all agents with more hor-
izontal neighbours than vertical neighbours. Recalling the vertical nature of the intensity bands
present in our scattering images (as discussed in the introductory section), we see that this helps
eliminate any horizontal intensity ‘bridges’; much like a horizontally-selective version of the
“opening” operator used in binary image analysis [24], the removal of these weakly-connected
‘bridges’ facilitates region discrimination (as shown by Wang and Yuan [38]). An example of
the removal process is shown in Fig. 5.

2.2. Feature clustering

Once the agent population has completely labeled all relevant pixels in the image grid, a
clustering process–propagate id()–takes over to form the population A into a set of spatially
distinct regions G (i.e. it links all adjacent agents to create spatially-connected sub-regions).
propagate id() is a form of the classical connected components labeling algorithm [24], tra-
ditionally used to identify spatially-connected image features. Each time the propagate id()
routine is called, a sweep is done over the entire agent population; each agent in the population
polls all other agents in its local neighbourhood (N) for their current ID value. Based on its ini-
tial scan, an agent records the highest ID value, idmax, in its local neighborhood. The agent then
re-propagates the value idmax to all neighbors with ID values less than idmax, and the receiv-
ing agents take on the new maximum ID value. The entire agent population is iterated through
until no further ID changes are observed [28]. At this point all agents in a separate physical
region will share a unique ID number. A single iteration of the propagation process is shown
graphically in Fig. 6.

It is important to note that ID propagation occurs in an agent’s 4-neighbourhood (i.e. to
agents left, right, above, and below the agent, but not on diagonal corners [24]). This aids in
band discrimination and removes additional band bridges. Due to the close horizontal proximity
of bands in the scaled image I, it was found that communication within an agent’s full 8-
neighbourhood could lead to a number of intensity regions being erroneously grouped into a
single region. Allowing diagonal communication between agents did not facilitate any useful
connections beyond those gained through purely horizontal and vertical transmission.

Since every agent starts with a unique ID value, the clustering process guarantees that every
connected image region will have a common unique identifier [24]; we can now form a set of
agent groups (G), where each group (G) contains a list of spatially-connected agents (Ag) that
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Fig. 6. Two parts of a single propagate id() cycle for an active agent (center pixel). Initially,
the agent surveys its local neighbourhood and records the ID values of its neighbours (left).
Seeing there is a higher ID in the area (shown in red), it takes on this ID value and re-
broadcasts the new ID to its neighbourhood (right). This leads to an agent neighborhood
that is homogeneous with respect to the highest ID value.

share a common ID value (Ag is a non-overlapping subset of the initial population A).

2.3. Post-processing

As in previous work, a feature detection stage followed by a clustering stage is able to effect
image segmentation. However, to utilize (and parameterize) the detected regions in the context
of scattering image analysis, we require a third stage to organize and parse the segmentation
results.

After the creation of homogeneous ID regions, several post-processing routines take over
to remove high-level noise, join vertically correlated regions into a band hierarchy (i.e. create
super-groups out of related regions), and extract the final parametric representation of the input
file. The first process–scrub()–searches through the list of agent groups G and removes all
groups (and their member agents) smaller than a given percentage of the image size from A
and G respectively; the removal size threshold θ can be empirically set by human users to
match the input image conditions. This method of removing small connected objects was used
by Prasad et al. to eliminate background noise in their cellular tracking system [42].

Each group that survives the scrub() routine is then analyzed for its dimensions and center
point (gx,gy). This effects a simple geometric characterization of all surviving groups in G.

Next, horizontally-related regions are connected into band-like structures using the join()
routine, a simplified variant of the standard one-dimensional k-means clustering algorithm [44].
As in the k-means algorithm, join() creates list of super-groups and assigns one or more image
regions g to each super-group g′ based on the horizontal distance d = |xg′ − xg| between the
group center and the super-group center. Assignment occurs if d is less than a user defined
threshold φ (specified as a percentage of the image size), and each group may be assigned to
only one super-group. A super-group’s center is iteratively re-calculated based on the location
of its member sub-groups. The join() process continues until every group has been assigned,
clustering image regions with respect to their horizontal proximity. This allows the recognition
of vertical bands in a scattering image while still retaining the detailed statistics of each indi-
vidual sub-group. As such, join() creates a region hierarchy out of the agent population which
can be stored at minimal cost for later retrieval and parameter estimation.

2.4. Parameterization

In the last step of the Cythe pipeline, the super-group hierarchy is traversed and cross-referenced
with the initial image I to extract a number of useful global parameters P (shown in Tab. 1).
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Table 1. The set of useful image parameters (P).
# Parameter Description
1 B The number of bands in the image
2 BSmin The minimum band spacing
3 BSmax The maximum band spacing
4 BSavg The average band spacing
5 aBWmin The average over all bands of minimum band width
6 aBWmax The average over all bands of maximum band width
7 aBWavg The average over all bands of average band width
8 aBWdev The average over all bands of band width deviation
9 aBImin The average over all bands of minimum band intensity
10 aBImax The average over all bands of maximum band intensity
11 aBIavg The average over all bands of average band intensity
12 aBIdev The average over all bands of band intensity deviation
13 aBInn The average over all bands of nearest-neighbour band intensity deviation

These parameters describe the overall structure and inherent complexity (in terms of spatial
frequency components) of the image I, and are used to numerically represent the image fea-
tures generated by light scattering through a biological cell (i.e. the number of regions, their
size/shape, their relation to each other, and the variance of region width and intensity).

While finding a direct correlation between scattering signatures and the initial model pa-
rameters of a FDTD simulation or the structure of a cell has been shown to be an unsolved
problem [4], the parameters in P allow us to infer structural information from the presence of
intensity regions with varying spatial frequency. The knowledge that certain cellular structures
will generate intensity regions of a given spatial frequency allows relationships to be made be-
tween the extracted image parameters P and the initial layout of the scattering source. From our
initial experiments, it is expected that there will be direct correlations between these parameters
and the underlying cell model parameters; we have found that this is true for relations between
small organelle content and several aBI / aBW parameters (work in preparation).

In this case, each super-group g′ extracted by the Cythe pipeline corresponds to a detected
intensity band ‘b’ in the scattering image. Based on our previous work [1, 2] and a series of
FDTD simulation experiments (which demonstrate the presence of vertical intensity bands in
our scattering images) we found it most effective to use a band-based parameterization scheme.
In this approach, the small high-frequency intensity areas resulting from smaller scattering cen-
ters are effectively described by variations to the width and intensity of existing intensity bands
(i.e the presence and magnitude of high-frequency intensity fluctuation is indicated by changes
to parameters 5-13, Tab. 1). A similar parameter set could be created for images without an
observable band-like structure.

These parameters are extracted from the final super-group hierarchy through a series of math-
ematical operations, shown in Eqs. (1) and (2) below. Every detected super-group is analyzed
with Eqs. (1) and (2), and the resulting values are combined into the set of parameters P. Width
statistics are derived by iterating through the agent population, intensity statistics are derived
by taking a single-pixel wide intensity sample down the vertical center line of each super-
group, and band spacing statistics are generated by comparing the horizontal centers of all
super-groups.

minb
x(y) and maxb

x(y) are defined as the minimum and maximum angular values that still
contain pixels belonging to band b at the vertical image position y. The function intensity(xb,y)
is the 8-bit intensity value at the horizontal center point x of band b, at the vertical position
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y. Set Yb is the set of vertical values for band b. The functions min(),max(), and avg() are
the standard minimum, maximum, and average operations performed on the list of values for
a band. Band spacing (BS) is defined as the distance between the horizontal centers of two
neighbouring bands: |xb−xb+1|. Values for the maximum, minimum, and average band spacing
are calculated using the standard operations.

BW b(y) = maxb
x(y)−minb

x(y) (1a)

BW b
min = min(BW b(y), y ∈ Yb) (1b)

BW b
max = max(BW b(y), y ∈ Yb) (1c)

BW b
avg = avg(BW b(y), y ∈ Yb) (1d)

BW b
dev =

1
|Yb| ∑

y∈Yb

|BW b(y)−BW b
avg| (1e)

BIb(y) = intensity(xb,y) (2a)

BIb
min = min(BIb(y), y ∈ Yb) (2b)

BIb
max = max(BIb(y), y ∈ Yb) (2c)

BIb
avg = avg(BIb(y), y ∈ Yb) (2d)

BIb
dev =

1
|Yb| ∑

y∈Yb

|BIb(y)−BIb
avg| (2e)

BIb
nn =

1
|Yb| ∑

y∈Yb

|BIb(y)−BIb(y−1)| (2f)

There is a dramatic increase in the amount of information available when we compare the
number of values in this extended parameter set to the number of indicatrix parameters derived
from one-dimensional scattering intensity slices. We expect this increase in parametric image
information will lead to a corresponding increase in the predictive power of future classification
systems. Intensity band relationships (such as band spacing BS, Tab. 1) can be used to predict
the nature of larger cell structures [9], while variations in region width and region intensity due
to high-frequency image components (Params. 5-13, Tab. 1) may be used to detect the presence
and number of micro- and nano- scale cellular organelles (work in preparation).

The final step in any automated diagnostic system is a method to deduce cellular structure
from the extracted scattering pattern parameters P. There are a number of potential machine
learning approaches that can successfully associate a set of extracted parameters with an initial
labeled data set to create a classifier with predictive power [44, 45]. We have developed a pat-
tern recognition system based on the parametrization approach described in this document (in
preparation).

3. Analysis methods

We employed two testing methods to verify the validity of the Cythe system: qualitative image
analysis, and a quantitative statistical breakdown. For our qualitative analysis we presented the
system with images representative of all three cellular scattering cases described in Sec. 1 (e.g.
intensity bands with a number of randomly placed intensity regions, as in Fig. 2, right). Due
to the difficulty surrounding quantitative segmentation analysis, our statistical breakdown was
performed on images containing the first two scattering cases (intensity bands and bands with
interference). This is explained below. In both cases our test images closely matched experi-
mental scattering patterns [1,2] and numerical FDTD simulations [14], both visually and in the
magnitude of the output parameters.
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In an ideal testing environment we would be able to use FDTD simulations and experimental
data to verify the success of our segmentation system. However, to numerically analyze system
accuracy it is necessary to identify the ‘true’ segmentation and parameterization of experimental
data. As ‘true’ image boundaries are subjective in all but the simplest segmentation problems,
most segmentation evaluation methods rely on qualitative boundary assessments for compar-
ison values [46]; the few attempts at true quantitative evaluation typically rely on correlation
data, and still involve comparisons with a manual (i.e. human) segmentation [23, 30, 46].

Thus, to quantitatively verify the validity of the Cythe extraction pipeline we used a math-
ematical model to create a set of viable test images. These images contained a fixed number
of vertical intensity bands of varying intensity and width, irregularly placed high-frequency in-
tensity components, intensity band overlap, differing background levels, blurring, and poorly
defined band boundaries (i.e. qualities we observed in experimental scattering images). Unlike
manually measured experimental scattering patterns, these model images were numerous and
provided a well defined set of ‘true’ parameter values (derived directly from our mathematical
image model) with which to statistically validate Cythe’s parameter extraction.

Despite this, it was still difficult to objectively define the ‘true’ band width values. As bands
are represented in our test images by smooth intensity gradients with no discrete edges, the
‘true’ band width parameter (BW b(y)real) was measured as the horizontal distance between
band points where the pixel intensity was 80% of the band’s maximum intensity, relative to a
black background. This width most accurately reflected observations about real scattering band
width. Because of this approximate edge value definition, the validation data for band width
parameters is slightly less precise than for other parameters, as seen in the following section.

These quantitative test images contained a more regular distribution of high-frequency in-
tensity components than was found in experimental images or our qualitative analysis images;
high-frequency intensity regions were randomly placed only on intensity bands, as in image
cases one and two, Sec. 1. This additional regularity was needed generate reliable true values for
band parameterization– images containing a completely random distribution of high-frequency
regions (as expected from Rayleigh scattering, image case three) would suffer from the same
subjective evaluation problems as real experimental data.

Thus, each quantitative test image consisted of a varying number of Gaussian intensity re-
gions superimposed on a series of vertical intensity bands. Like real scattering patterns, our test
images contained bands of varying width and maximum intensity that were placed at intervals
across a black background. The intensity profile of individual bands, the size and orientation
of Gaussian intensity regions, and the variation of maximum band intensity across the image
were picked to match the intensity profiles expected in actual scattering images. Finally, a 5× 5
Gaussian blur was applied to the images to smooth out any unrealistic intensity transitions.

These test images were then presented to the Cythe system for analysis. Each test image
was processed by the full computational pipeline (i.e. feature extraction, feature clustering, and
post-processing) to produce a set of output parameters (Pcythe). Another set of parameters were
derived directly from the mathematical model used to generate the test images; these parameters
(Preal) represented the ‘true parameter values’ used in the creation of the test images. We then
inspected how well the true parameters Preal matched the parameter values extracted by our
pipeline Pcythe (i.e. how well they demonstrated a correlated linear relationship that allowed
accurate prediction of the true parameter values). Both the true parameter set Preal and Cythe
parameter set Pcythe included all thirteen parameters outlined in Section 2. As explained in the
previous section, this band-based parameterization scheme (calculated with Eqs. (1) and (2))
can be used to represent the influence of both large scattering structures and nanostructure-
derived high-frequency intensity variation.

To assess the pipeline’s ability to detect changes in band width and band intensity, these tests
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were performed on 162 sample images. Two different test sets were generated. The first set (T1:
143 images) was used to determine the system’s ability to detect variation in band width and
band intensity– parameters primarily influenced by the presence of smaller scattering sources.
In this set the number of intensity bands was held constant while the number of Gaussian
intensity regions present in the image was varied between zero and fifty. The second set (T2: 19
images) was used to test the system’s ability to detect changes in band structure and spacing,
which relate to scattering from larger microstructural cellular objects. In test T2, the number
of intensity bands was varied between two and twenty, while the number of Gaussian regions
inserted into the image was held constant.

After each test set the Cythe parameter extractions were compared to the true parameters.
System success was determined by measuring how closely the Cythe parameters matched the
true parameters, as evaluated with a range of statistical tests for correlation and similarity (de-
scribed in the following section).

This procedure is similar to the comparison metric of Bovenkamp et al., where the plot of
human v.s. machine solutions was compared to a unity slope to determine accuracy [20]. In the
absence of any methods to objectively compare and evaluate segmentation schemes [23,30,46,
47], this approach allowed a quantitative characterization of system success.

In addition to these quantitative test images, we performed a series of qualitative tests on a
range images of containing features from all three scattering image cases presented in Sec. 1
(e.g. Fig. 2, right). This was done to determine the system’s ability to remove region bridges,
detect regions in noisy images, and join detected regions into a structural hierarchy. For these
tests, we generated a test series consisting of images with vertical intensity bands, randomly
distributed high-frequency intensity regions, and vertical intensity bands overlayed with a pat-
tern of randomly distributed high-frequency regions of irregular shape and size. Sample images
and the corresponding results are presented in the following section.

For these tests the scrub() and join() thresholds (θ ,φ ) were set to 0.0018% and 0.028%
respectively. The agent view radius was R = 5×5, and the agent neighbourhood was N = 3×3.
Images were reduced to I = 125×125. These values were empirically derived on a small subset
of the images, and subsequently used on the full set of test images without modification; one
parameter setting performed well for an entire family of images.

4. Results

As a summary of the following performance assessment: the Cythe pipeline was able to detect
relevant image features (e.g. intensity band pixels) in test images, remove horizontal region
bridges, and cluster the detected features into a set of spatially distinct regions (G). These re-
gions were then used to harvest a parametric representation (Pcythe) of the initial image that
directly matched the known parameters of the input image (Preal). As described earlier, the
parameter set P serves to numerically capture the structure of both the large bands and small
high-frequency intensity regions present in scattering images. This section will begin with qual-
itative verification results, and conclude with a quantitative numerical assessment of Cythe.

4.1. Qualitative assessment

As shown in Fig. 7, the Cythe pipeline was able to affix the agent population (A) to the vertical
intensity bands in the test image. A visual comparison of the Cythe labeling (Fig. 7, right) with
the initial image (Fig. 7, left) showed that the Cythe extraction matched quite closely with our
expectations from test image. We also observed that the system was able to detect the presence
and magnitude of width variations in the band structure (Fig. 7, bottom row).

In addition to being able to detect linear bands, Cythe was able to detect small, arbitrarily-
shaped intensity regions of varying brightness (Fig. 7, middle). As shown by the difference

#73966 - $15.00 USD Received 10 August 2006; revised 22 November 2006; accepted 1 December 2006
(C) 2006 OSA 25 December 2006 / Vol. 14,  No. 26 / OPTICS EXPRESS  12735



A

B

Fig. 7. A visual comparison of Cythe region detection (row B) with the initial test image
(row A) for images with vertical intensity bands (left), high-frequency intensity regions
(middle), and high-frequency regions overlayed onto a band structure (right, similar to
those observed in FDTD simulations). Region color was assigned based on each group’s
unique ID value; all regions were verified to contain distinct ID values.

between Fig. 7 left and right, Cythe was also able to detect the level of high-frequency varia-
tion present in images containing high-frequency components that overlap a pattern of vertical
intensity bands. This observation further supports the efficacy of the band-based parameteriza-
tion scheme P. Random intensity regions (like those expected from Rayleigh scattering) were
indicated by width and intensity deviations within the detected band structure– their intensity
contributed to and noticeably altered the shape of existing bands.

We found that Cythe was able to remove parameter-degrading horizontal intensity bridges
and use the clustering stage to group the agent population (A) into a set of distinct regions (G).
The removal of horizontal bridging can be seen in Fig. 8, and the ability to form a population
into spatially connected regions can be seen by the homogeneous region colors in Figs. 7 and 8.
As shown in the difference between the two agent populations in Fig. 8 (middle and right), we
found that horizontal bridges less than three pixels in width were removed during the feature
detection stage . In addition, the use of a 4-neighbourhood for communication in the feature
clustering stage prevented distinct bands from being classified as a single region due to any
remaining weak connections (Figs. 7 and 8, right).

The join() routine constructs a set of vertical bands g′ out of the detected image regions G.
For noisy images this process would not be possible without prior use of the scrub() routine
to filter out small unconnected intensity regions. Figure 9 illustrates the use of the join() and
scrub() routines in the creation of a vertical band structure for simple images with and without
10% of the images pixels assigned a random 8-bit intensity noise value (i.e. random or inde-
pendent noise, as expected from dust on a lense or bad CCD pixels). While portions of the
agent population affixed to noise-related pixel clusters (9, bottom middle), the scrub() routine
removed these small groups and the pipeline identified the same regions found in the noise-free
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Fig. 8. A visual example of horizontal bridge removal. Left - the initial test image. Middle
- the agent population directly after the agent fixation() routine; there are three bridges at
this point. Right - final region identification after post-processing; weak connections be-
tween bands did not adversely affect region identification–the two horizontal bridges were
removed in the feature detection stage, and the diagonal propagation restriction prevented
ID leaking over the remaining bridge (which was subsequently removed by the scrub()
routine). Green dots represent fixed agents (middle), and different colors in the clustering
image indicate spatially distinct regions (right).

image (9, right). In addition, the detected regions were joined into the same band structure for
both the noisy and noise-free image (as shown by the number and horizontal position of the
yellow vertical lines, Fig. 9, right). This lead to the same parameters being extracted for both
the noisy and noise-free images. Similar performance was observed for Poisson/couting noise,
though high levels of Gaussian noise required the use of a larger scrub threshold due to larger
detected noise regions. A join threshold of φ = 0.08 was used for the tests in Fig. 9.

In addition to accurately parameterizing our model test images, Cythe was able to extract
realistic parameters for a large set of FDTD scattering simulation images containing many
arbitrarily-shaped randomly-distributed high-frequency intensity regions, as derived from com-
plex cell structures with varying physical characteristics and organelle distributions (work in
preparation).

4.2. Quantitative assessment

We found that the parameters extracted by Cythe from the test images (Pcythe) allowed us to
accurately predict the true parameters Preal extracted from the initial test images. This was sta-
tistically determined by calculating the correlation coefficient (r – the amount of covariance
in the two populations, a good indicator of segmentation accuracy [23]), the statistical signif-
icance of the correlation (P(r) – the probability that correlation value r could have arisen by
pure chance for a given sample size), the chi-squared significance (P(χ2) – the probability of
both input and output variables coming from the same distribution), and the standard error (SE)
for each population of input/output variables (all calculated as per [48], using Eq. 12.11 and
Sec. 12.4 on Pgs. 268, 271–275 for P(χ2), Eq. 9.15 and Sec. 9.4 on Pgs. 217–220 for r / P(r),
and Eq. 4.14 on Pg. 102 for SE).

This comparison is shown in tabular form for tests T1 (band intensity parameters, Tab. 2,
and band width parameters, Tab. 3) and T2 (band number/spacing parameters; Tab. 4). These
tables present the statistics for an image reduction size of I = 125× 125. From statistical the-
ory [48], r values greater than 0.216 (test T1, 143 samples) and 0.561 (test T2, 20 samples)
indicate a statistical correlation (i.e. a probability P(r) < 0.01 that the correlation score could
have originated by pure chance). These threshold r values are based on the sample sizes used in
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Fig. 9. Extraction of a band hierarchy for a simple noise-free image (top row) and for
the same image with 10% of the images pixels assigned a random 8-bit intensity value
(i.e. random noise; bottom row): the initial image (left), the agent population after the
agent fixation() routine (middle), and the final regions after post-processing (right). Yel-
low lines indicate band position (xg′ ), and coloured regions in the post-processing image
indicate spatially distinct regions g.

our experiments. As shown in Tabs. 2–4, our derived values are consistently greater than these
minimum values for statistical correlation. Similarly, chi-squared significance values approach-
ing P(χ2) = 1.00 indicate no difference in the distribution of input and output values.

The uncertainty in each parameter was estimated by adding Poisson/counting noise (i.e. each
pixel was varied according to a normal distribution equal to the square root of the pixel value)
and processing the resulting image by the same method as the test data sets. This was done for
56 images, allowing the extraction of a standard deviation that then allowed the calculation of
chi-squared significance values.

As described in Sec. 2, the parameters shown in Tabs. 2 and 3 are used to characterize the
intensity contributions from smaller Mie and Rayleigh scattering sources, while the parame-
ters in Tab. 4 characterize the intensity contributions from larger Mie and geometric scattering
objects.

With regard to the system’s ability to correctly identify deviations in band intensity (test
T1), we found that Cythe was able to identify the magnitude and variance of intensity to
a high degree of certainty. At an image size of I = 125× 125 Cythe was able to correctly
identify the number of bands in every test image. The input and output intensity parameters
(aBImin/max/avg/dev/nn) showed strong correlation, as indicated by the r, P(r), and P(χ2) values
(Tab. 2). Standard error for these intensity parameters was less than half an intensity step on a
8-bit intensity scale.

The close relationship between input and output parameters was also evident for band width
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Table 2. Statistical analysis for band intensity parameters.
Parameter Description r P(r) P(χ2)
aBIavg Avg. Band Intensity Average 0.992 <0.0001 1.000
aBImin Avg. Band Intensity Minimum 1.000 <0.0001 1.000
aBImax Avg. Band Intensity Maximum 0.998 <0.0001 1.000
aBIdev Avg. Band Intensity Deviation 1.000 <0.0001 1.000
aBInn Avg. Band Intensity Deviation (NN1) 1.000 <0.0001 1.000
1 nearest neighbour.

Table 3. Statistical analysis for band width parameters.
Parameter Description r P(r) P(χ2)
aBWavg Avg. Band Width Average 0.386 <0.0001 1.000
aBWmin Avg. Band Width Minimum 0.872 <0.0001 0.528
aBWmax Avg. Band Width Maximum 0.724 <0.0001 1.000
aBWdev Avg. Band Width Deviation 0.907 <0.0001 0.286

Table 4. Statistical analysis for band number/spacing parameters.
Parameter Description r P(r) P(χ2)
B Number of bands 1.000 <0.0001 1.000
BSmin Minimum band spacing 0.995 <0.0001 1.000
BSmax Maximum band spacing 0.993 <0.0001 1.000
BSavg Average band spacing 1.000 <0.0001 1.000

and band width deviation parameters (aBWmin/max/avg/dev), as shown by the values in Tab. 3. As
explained in the previous section, difficulty defining the ‘true’ width values in the test images
lead to greater variability in the evaluation statistics r and χ2. While width statistics (Tab. 3) did
show lower correlation between input and output values than the other parameters (Tab. 2, Tab.
4), all other values represented an excellent fit. Width values were still well above the thresholds
for chance correlation, as indicated by r > 0.261, P(r)% 0.01. Despite having a high degree of
correlation, the parameters aBWdev and aBWmin exhibited a low P(χ2), and further investigation
showed that this deviation in input/output distribution similarity was due to a shallow (i.e < 0.5)
regression slope between the input and output parameter sets. Considering the lack of ‘true-
value’ precision when quantitatively analyzing spatial parameters in this situation, the set of
width statistics in Tab. 3 sufficiently demonstrated a distinct relation between the actual layout
of the test images and the Cythe parameter extraction.

In addition to band width and intensity parameters, we observed that the system was able
to accurately determine the number and spacing of bands (test T2). As shown in Tab. 4, the
correlation coefficient (r) for each band-structure parameter approached 1.0 (i.e perfect corre-
lation). This indicates a one-to-one correspondence between the input parameters Preal and the
output parameters Pcythe. For the parameters BSmin,BSmax,BSavg there was a standard error of
less than 1.1% of the image width for both reduction levels. There were no band number (B)
identification errors in test T2, and the chi-squared significance test for all parameters in Tab. 4
indicated no statistical difference between the input and output parameters.

With respect to the magnitude of observed values from Eq. 1, we found a typical range
of 0.72–9.6 pixels for aBWmin/max/avg, and 0.0–0.99 pixels for aBWdev. For Eq. 2, intensity
parameter values were typically between 127.2–157.2 for aBImin/max/avg, 0.59–4.29 for aBInn,
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and 0.26–72.7 for aBIdev. Band spacing parameters varied greatly depending on the number of
detected intensity bands in a sample image; for our tests we found spacing parameters between
6.46–14.8 (Test T1) and 6.48–72.2 pixels (Test T2). The standard deviation of parameter values
observed under conditions with counting noise and random noise was much less than the total
parameter range observed during these tests.

As the size of images presented to the system increased (with the Agent View Radius being
held constant), we found that Cythe began to identify small erroneous bands within the larger
regions of the image. At an image size of I = 150×150 the pipeline incorrectly identified one
extra band in 67 of the 143 T1 tests images. This lead to a noticeable decline in correlation
values, and incurred a corresponding increase in standard error. It is apparent that the relation-
ship between image size and Agent View Radius plays a role in feature detection; this will be
discussed in the following section.

5. Discussion

5.1. Remarks on feature detection

The success of the Cythe feature detection system is in a large part due to the use of re-
gional texture information to affect agent fixation. We chose to use an adaptive local thresh-
olding method based to its success within other texture-based segmentation problems and
its compatibility with agent-based image processing (as shown by a large body of previous
work [17, 19, 25, 28, 39]).

Edge detection is by its very nature a local undertaking [23] and thus lends itself well to an
agent-based framework. By determining fixation based on an adaptive local threshold (µa, the
average intensity value within an agent’s view radius R), Cythe was able to effectively label
all edges irrespective of the differing background intensity levels found in scattering images.
By setting the adaptive threshold level greater than the local average (as in the agent fixation()
routine), the system consistently labeled the high-intensity side of all edges, isolating the band
regions from the lower-intensity background.

Using an Agent View Radius of R = 5×5, we found I = 125×125 to be the most appropriate
size for image reduction. At this image size and view radius, the fixation routine was able to
accurately divide the image into spatially distinct regions regardless of differing background
levels and gradient slopes. The distance between identified band edges was small enough that
the two edge-labeling agent populations for a given band connected along the center of their
band. This allowed bands to be detected as continuous units in both our model test images and
complex FDTD scattering simulations.

We found that it was important to select a view radius close to the size of target image fea-
tures in the reduced image I. The two edge regions of a single band may not connect if the
Agent View Radius is significantly smaller than the band size. This lead to the identification
of extra bands by the clustering stage. By varying the size of the view radius (i.e. the adaptive
thresholding region [23]) to match the image reduction level, feature extraction remains ac-
curate at any image size (though increased image size comes with an increased computational
cost, as described below). This follows from recent work in image saliency detection and model
matching [31, 49].

5.2. Remarks on clustering

The propagate id() routine was a reliable and effective way to cluster the labeled pixels into
contiguous regions. This routine, which was based on the connected components labeling algo-
rithm commonly used in region identification problems [24], provided a simple way to identify
groups of connected agents. Much like the self-organizing tile behavior shown by Ghrist and
Lipsky [43], our system was able to effectively perform long-range organization through simple
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local interactions. In addition, the distributed approach lends itself well to parallelization–one
of the major advantages of multi-agent systems [41].

The removal of band bridging (as described in Section 2) was essential in the accurate clus-
tering of spatially distinct regions. The agent fixation stage eliminated direct horizontal com-
munication over bridges by eroding bridging agents (shown above in Fig. 8), while the use of
an agents 4-neighbourhood for communication prevented ID propagation over any remaining
(weak) junctions between band protrusions. Without the removal of band bridging it was im-
possible to successfully parameterize complex images. A similar restriction on the union of
weakly-connected regions has proved effective in other segmentation and image identification
situations [24, 38]. The assumption that there will be no strong horizontal links between bands
follows from the structure of experimental scattering images and our understanding of cellular
scattering mechanisms.

Using an agent neighbourhood of size N = 3×3 further prevented erroneous ID propagation
between distinct bands. By only allowing communication between adjacent agents, ID infor-
mation was not able to travel over gaps between neighbouring intensity bands.

Due to the nature of the local interactions and the multiple sweeps through the agent popu-
lation, the ID propagation routine was found to be the largest computational component of the
parameterization pipeline. As the proper choice of agent view radius and image reduction size
decreased the final size of experimental images to approximately I = 125×125, scalability was
not an issue for our application. In the case of larger images, the use of a union-find structure
(described in [24]) in the connected components algorithm would greatly reduce the number
of iterations through the agent population (though it would require a higher level of centralized
control).

5.3. Remarks on post-processing and parameterization

The join() routine was found to be an effective way to model the structure inherent in scattering
images. It has been shown that changes in the relationships between full bands are indicative of
large changes in cellular structure [9]. By linking several vertically aligned regions to a single
band structure, we were able to analyze the relationship between whole band units while still
retaining specific information regarding the variation present in each band and its associated
sub-regions.

As shown in the results section, the join() routine managed to consistently group smaller
regions into cohesive bands, even in the presence of noise. Noisy images were divided into
the same number of bands (i.e. super-groups) as noise-free images (Fig. 9). This is important
for the parameterization stage of the pipeline; band discrimination plays a large part in the
calculation of band-based statistics, which in turn contain vital information about the nature of
the scattering source.

The scrub() routine helped the parameter extraction process by removing any large noise
regions that remained after the initial image reduction. By keeping the scrub threshold low,
large features were still preserved (e.g. Fig. 9) while small agent clusters were rejected as
noise; this parameter can be tuned to the specific nature (ambient noise and feature size) of
the images under analysis. However, it should be noted that setting the scrub level too low can
cause erroneous band identification, whereby bands of small pixel mass may appear near the
edges of each real band. Extra bands will distort the extracted parameter space and should be
avoided.

With regard to the selection of the variables for join() and scrub() (i.e θ and φ ): these values
are derived empirically based on observations regarding the size of noise artifacts inherent in a
scattering image and the approximate size and frequency of bands in the image. Once selected,
the parameters performed effectively on the entire test set. If significant changes are made to
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the ambient background noise or the angular range of a scattering image, the system threshold
levels may need to be re-calculated.

While there are a number of other potential frequency analysis methods (such as Fast fourier
Transforms) which could be used to ascertain spatial frequency information from a scattering
image, the Cythe parameterization routine allowed the extraction of a related structure of im-
age regions within the context of a scattering situation (effectively embedding frequency infor-
mation within an interpretable band-like structure). This relationship information is of use to
human observers, both for validating the extracted parameter data and for comparing results
with those previously published in the cell scattering literature (which generally reference the
number and size of bands, or the angular location and span of intensity band maxima).

5.4. Remarks on image size reduction

Image size reduction was found to play an important role in both the generalization of region
boundaries and the rejection of low-level noise, as it influences the degree of abstraction ap-
plied to the input image [31, 32]. A similar reduction approach is used in saliency-based vision
systems to detect high-level features in natural scenes, where detail (and the associated noise)
is sacrificed to rapidly form an accurate structural impression of the image [31, 32].

Appropriate choice of image reduction size depends on the size of the Agent View Radius,
and the number, spacing, and width of intensity bands within an image. A large reduction to an
image with very narrow bands or important high-resolution features could merge independent
intensity regions, or render some relevant features undetectable. Failing to reduce an image
with wide bands could lead to erroneous band detection or extra computational cost / increased
run times. We found that disparity between image reduction size and Agent View Radius either
lead to the identification of too many small intensity regions (e.g. when the true aBWavg >> R)
or the grouping of many distinct initial regions into a small number of larger features (e.g. when
the true aBWavg << R).

Image reduction was also essential for manageable run times, as un-reduced experimental
cytometer images are typically greater than 700 pixels on a side. At an image reduction size
of I = 100x100, an entire pipeline run took approximately six seconds. At a reduction size of
I = 300x300 or larger, runs lasted two minutes or more. All performance tests were conducted
on a Pentium IV desktop computer. The entire Cythe pipeline and all related routines were
implemented in the Python programming language.

5.5. Remarks on versatility

Cythe is expandable and may be readily adapted to new scattering situations; once intensity
regions are segmented and numerically represented (as in the group list G) it is possible to test
for any number of spatial relationships. In addition, the pipeline should be robust to variations
in expected image structure. By adjusting the post-processing settings, agent view radius, and
image reduction size, Cythe can be made to detect intensity regions with greatly varying geo-
metric properties. Furthermore, due to the local nature of the parameter calculation equations,
slight band curvatures should not adversely affect parameter extraction.

In the event that images with different (e.g. non-vertical) spatial relationships need to be ana-
lyzed, the join() routine may be modified or replaced to create a different region hierarchy, and
orientation-related changes may be made to the band bridge removal process. This would also
allow identification of randomly-placed intensity regions, such as would be generated by a field
of Rayleigh scatters, without imposing a band structure on the intensity data. The additional
analysis of intensity region perimeter and area would allow further distinctions to be made be-
tween differing region types (e.g. independent regions and full bands). This would facilitate
the parameterization of heterogeneous images consisting of horizontal bands, tightly grouped
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region clusters, blobs arranged without a band structure, or any other arbitrary cluster shape.
To this end, we have used Cythe within other applications, including the identification of

geometric objects in natural scenes, and the detection of bright fluorescent regions during the
genetic analysis of cell populations [50].

The final goal of the Cythe system is the classification of biological samples based on light
scattering. Our preliminary results have shown that cell classes (e.g. those with features indicat-
ing cell health or malignancy) typically reside at the extremes of the possible parameter space
(work in preparation). The difference between cell classes appears to be much greater than the
variation due to noise, such as from imperfections in a fluid wave-guide or CCD. Thus, based
on the parameter deviation indicated from random and counting noise (as discussed in Sec 4.2),
measurement noise should only moderately detract from Cythes classification ability and the
correlations we observed between input and output parameters.

6. Conclusions

In this work we present a multi-agent system (Cythe) to parameterize laser scattering images of
the kind produced by a wide-angle 2D cytometer. Extending upon a solid base of tested image
processing methods, Cythe uses a three stage pipeline of feature detection, feature clustering,
and post-processing to create a parametric representation of an input scattering image. The
resulting parameter set numerically represents the complex image features created by light
scattering through a cellular body. This facilitates a parametric solution to the inverse scattering
problem of laser light through a single biological cell.

Comparison of the Cythe-extracted parameter sets with those derived from a mathematical
image model show that our pipeline is able to accurately extract information about the struc-
ture and variation present in an image. In addition to our model test images, Cythe is able to
parameterize complex FDTD scattering images containing a number of randomly distributed
high-frequency intensity regions. Cythe was also able to effectively extract information from
images without a noticeable band structure, and has been successfully modified to help detect
and parameterize fluorescent genetic material in populations of stained cells [50].

This is possible through the combination of an adaptive feature detection system, an agent-
based clustering scheme, and a set of post-processing routines that reject noise and extract
high-level information about the relationships between image features. Once a parameter set
has been extracted from a scattering signature, it is possible to infer cellular structure from
regularities in the extracted parameters [1, 9–11]. For example, we have observed correlations
between organelle content in simulated cells and several of the intensity and width parame-
ters present in Eqs. 1 and 2 (work in preparation). To date, no other group has developed an
computational system to extract detailed parametric information from wide-angle cytometric
scattering signatures.

A rapid method to infer cell characteristics from the information contained in two-
dimensional light scattering plots is essential to the further development of wide-angle cytom-
etry systems. We have developed a method of predicting micro- and nano-structural cellular
information from the parameters generated by Cythe. A full system integrating Cythe with a
machine learning classifier to characterize the organelle content of cells will be presented in
future work (in preparation).
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