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I. INTRODUCTION

In 1989, the Nobel Prize in Physics was awarded in part to Hans G. Dehmelt and Wolfgang
Paul for development of the ion trap, a method of using electromagnetic fields to hold a
charged particle in place. Many areas of physics use the ideas of trapping atoms, particles,
or other tiny objects. Optical micromanipulation of nanoparticles using radiation pressure
from a laser invented by Arthur Ashkin [1] proved to be a useful tool in biology, and is
applied for holding single cells or bacteria for study. Acoustic tweezers are used for particle
and fluid micromanipulation [2].

If we consider a static electric field, we know that the electric potential is harmonic, that
is,

∆Φ = 0 (1)

Due to the maximum principle, the local maxima and minima of the potential can be only on
the boundary of the region. So, any charged particle will eventually move to the boundary
for any configuration of static electric fields. This shows that static electric fields cannot be
used to trap charged particles.

However, we can look at making traps with other means, such as by using oscillating
fields, or combining electric and magnetic fields. Penning traps [3], developed by Hans G.
Dehmelt, use the combination of homogeneous magnetic and quadrupole electric fields to
increase the time that a cloud electron is kept in a compact region. An axial magnetic field
causes the electrons to move in orbits around the magnetic field lines and slows the diffusion
of electrons to the walls [3].

Wolfgang Paul studied multi-pole electric and magnetic fields as tool to focus beams of
neutral particles that have an electric or magnetic dipole moment [4]. He proved that in
a static electric quadrupole field, ions traveling along the z-axis could be focused in one
transverse direction, such as along the x-axis, but not along the y-axis at the same time
[4]. This problem is important in the context of high energy particle beams in accelerators,
which need to be focused over long distances as they accelerate. It was then found that
focusing is possible in the transverse plane of charged particles in a beam passing through a
regular sequence of alternately converging and diverging electric or magnetic lenses [4]. The
spatially periodic focusing and defocusing along one axis and defocusing and focusing along
the other produce a beam that overall stays focused across the distance it travels.

The idea of a particle under the effect of oscillating fields has many interesting applica-
tions. The paper “Oscillating fields, Emergent Gravity and Particle Traps” [5] looks at how
high frequency oscillations affects the motions of a charged particle, and how it can be de-
scribed in terms of effective field theory. This work studies the motion of a massive particle
of mass m subjected to a static force G and a high frequency periodic force F cosωt. The
nature of the force is not assumed, and the analysis can be done without specific assump-
tions. The paper proved that the systems are well described by the motion in an effective
gravitational field [5].
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One assumption on the external force used in the derivation in the paper came from
considering of electromagnetic particle traps that typically have vanishing charge density.
This assumption holds for magnetic or electric fields. In terms of the vector function f , this
assumption reads ∂nf

n = 0. In the case of a charge in external oscillating electric field this
force f = q∇Φ, and when Φ satisfies equation (1) the condition ∂nf

n = 0 is satisfied.
My goal was to find the emergent Riemann space for a non divergence free field. After

the Riemann space and scalar curvate are known, my next goal was to find the effective
quantum Hamiltonian in terms of the scalar curvature. This new setup of the problem will
be applicable to more general set of systems when the external fields are not divergence free,
for example acoustic waves. My analysis found that the effective Hamiltonian was

Heff =
1

2
p̂iγ

ij p̂i −
~2

12
R(3) − 3

8
~2(∂j∂i∂ifn)(∂jf

n)− 5

16
~2(∂i∂ifn)(∂j∂jf

n) (2)

II. KAPITZA PENDULUM

One model demonstrating how high frequency oscillations of the external field may stabi-
lize the system is the Kapitza pendulum [6]. This is a rigid pendulum with the pivot point
oscillating in a vertical direction. Without oscillations of the pivot, there are two equilibrium
position of the pendulum: the down-position θ = 0 and the up-position θ = π.



FIG. 1. The Kapitza pendulum. The pivot is oscillating vertically with some high frequency ω.

The equation of motion for such a pendulum (setting the frequency of oscillation for
ω = 1) takes the form

θ̈ + [δ + ε cos t] sin θ = 0, (3)

where δ and ε are some constants satisfying the condition δ << ε << 1.
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Then, we split the dynamics into two parts: the slow motion and the fast oscillating
motion driven by the external force. This can be achieved by the assumption

θ = θs + a(θs) cos θ (4)

Which holds if the slow evolution of the angle satisfies the low frequency condition θ̇s << 1
and the amplitude of the fast vibrations is also small, a(θs) << 1.

The equation for the fast oscillations is

(−a+ ε sin θs) cos t = 0. (5)

And for the slow evolution it is

θ̈s + δθs + εa cos2 t cos θs = 0. (6)

Then, we time-average the equation for the slow evolution, cos2 t → 1/2 , and obtain the
effective equation for the slow evolution

θ̈s + δθs +
1

4
εa sin 2θs = 0. (7)

The Lagrangian describing this system is

L =
θ̇s
2
− V (8)

where the potential V (θs) is given by:

V = −δ cos θs −
ε2

8
cos(2θs) (9)

FIG. 2. The potential V (θs) for δ = 0.05.

From the shape of the potential term, we can see that when the amplitude ε = 0 the
θs = π equilibrium point is unstable, so small deviations from it will amplify with time and
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move the pendulum further away from this equilibrium point. However, for a sufficiently
large amplitude there appears a minimum in the upper part of the potential. The critical
value of the parameters when the new local minimum of the potential appears is

ε2 = 2δ. (10)

So, due to the high frequency oscillations, a new stable equilibrium appears, and the
overall motion of the pendulum at that equilibrium point is changed. The pendulum will
oscillate with a low frequency defined by the parameters δ and ε around the point θs = π.
This example demonstrates induced stability of a system in an oscillating field.

III. PAUL TRAPS

Paul ion traps use fluctuating electric fields to trap charged particles [4]. The traps create
potential wells that are up to several electron volts deep, and don’t depend on the internal
state of the ion [4].

To describe the physics of this trap, we consider an external field satisfying Laplace’s
equation (1) and consisting of static and oscillating parts. The review by Blatt et.al. [7]
starts with the electric potential,

Φ(x, y, z, t) =
1

2
U(αx2 + βy2 + γz2) +

1

2
Ũ cos(ωt)(α′x2 + β′y2 + γ′z2). (11)

Due to Laplace’s equation, we have the following conditions on the coefficients:

α + β + γ = 0,

α′ + β′ + γ′ = 0.
(12)

Different choices of these constants gives different configurations of trapping regions. For
example if

α = β = γ = 0,

−(α′ + β′) = γ 6= 0,
(13)

in which case the oscillating field leads to a three-dimensional confinement [7]. The other
choice

−(α + β) = γ > 0,

α′ = −β′ 6= 0,
(14)

describes the case when oscillatory part confines the ion in the x− y plane, while the static
potential confines the charged ions in the z direction [7].

If we consider the motion to be only in the x-direction, the equation of motion of the
charge q in the x direction becomes

ẍ = − q

m
∂xΦ = − q

m
[Uα + Ũ cos(ωt)α′]x (15)

Then, they introduce the new rescaled constants [7]

ξ =
ωt

2
, ax =

4qUα

mω2
, bx =

4qŨα′

mω2
(16)
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which make equation (15) take the form of the Mathieu equation

ẍ+ [ax − 2bx cos(2ξ)]x = 0 (17)

They looked for the solution to this equation perturbatively in the form

x(ξ) = Aeiβxξ
∞∑

n=−∞

C2ne
i2nξ +Be−iβxξ

∞∑
n=−∞

C2ne
−i2nξ

(18)

where βx and C2n are functions of ax and bx only and do not depend on initial conditions.
The constants A and B are defined to satisfy the initial conditions [7].

After the substitution (18) to (15) we can find the recursion relation for C2n

C2n+2 −D2nC2n + C2n−2 = 0,

D2n = [ax − (2n+ βx)
2]/bx.

(19)

In the leading order approximation, when ax � 1 and b2x � 1 the coefficient C4 ≈ 0. Then
from the initial condition A = B it follows that

βx ≈
√
ax +

1

2
b2x (20)

and the solution for x(t) reads

x(t) ≈ 2AC0 cos
(1

2
βxωt

)[
1− 1

2
bx cos(ωt)

]
(21)

In this form, it’s seen that in the leading approximation, this equation describes harmonic
oscillations with the frequency

Ω =
1

2
βxω (22)

and there are small high frequency ω oscillations around this trajectory. So, after after
averaging over time scale greater than ω−1 the system behaves as a harmonic oscillator with
frequency Ω [7].

IV. EMERGENT GRAVITY AND PARTICLE TRAPS

Next, we turn to the case of a charged particle in a rapidly oscillating field, and aim to
find the emergent Riemann space for the particle. We start with the equation of motion for
the particle,

R̈ + g(R) + f(R) cos t = 0. (23)

which describes a system affected by a high frequency external force with a small vector
amplitude f = fn, as well as a static force g. The perturbation theory leads to the dynamics
of the system described by the effective Lagrangian in the form

Leff =
vivj

2

[
δij −

3

2
∂if

n∂jf
n
]
− Veff (24)
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Where in the quadratic order

Veff = Vg +
1

4
fnfn +

1

4
fnf i∂ig

n (25)

The term in square brackets in Eq.(24) can be seen as the effective metric

γij = δij −
3

2
(∂if

n)(∂jf
n) (26)

where the Einstein notations were used for summation over the repetitive indices. In the
quadratic approximation, we can combine the terms in the effective Lagrangian depending
on the oscillating force fn to be written in terms of the Ricci scalar for this metric. Doing
this means that after averaging over the high frequency oscillations any system obeying
equation (23) behaves as if the particle is moving in a curved spacetime [5].

My goal was to check this property for a more general setup, when ∂nf
n 6= 0. I rederived

the expressions for the three and four dimensional curvatures for this more general case.
To do this, we consider an arbitrary metric ḡαβ and perturb it gαβ = ḡαβ + ∆gαβ. The

inverse metrics are defined by the requirements: gαεgβε = δαβ , ḡ
αεḡβε = δαβ . In the linear ap-

proximation, when ∆gαβ << ḡαβ we have gαβ = ḡαβ +∆gαβ and according to the variational
rule δgαβ = −gαµgβνδgµν we can write

∆gαβ = −ḡαµḡβνδgµν +O(∆g2αβ) (27)

V. THREE-DIMENSIONAL RICCI SCALAR

In order to derive the properties of the effective metric that appears in the Lagrangian
(24) we need to compute the Riemann curvature tensor to the quadratic order in the small
parameter v.

To compute the Ricci scalar, we first find the Riemann tensor and then contract it with
the metric to get the Ricci tensor and the Ricci scalar. In three dimensions gαβ → γij ,
ḡαβ → δij and ∆gαβ → −3

2
∂if

n∂jf
n. We get:

γij = δij − δikδjl∆gkl = δij +
3

2
(∂kf

n)(∂lf
n)δkiδlj

γij = δij +
3

2
(∂ifn)(∂jfn) +O(∆g2ij)

Then, we see that

∂if
n∂jf

n = (∂if
x)(∂jf

x) + (∂if
y)(∂jf

y) + (∂if
z)(∂jf

z) (28)

Because fn is assumed to be small, fn ≈ v, and ∆gij ≈ v2 we get:

γij = δij +
3

2
(∂ifn)(∂jfn) +O(v4) (29)

We see that the Christoffel symbols are linear in derivatives of the metric:

Γδαβ =
1

2
(∂αgβδ + ∂βgαδ − ∂δgαβ) (30)
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And so in the case of three-dimensional metric γij, we substitute gαβ → γij = δij + O(v2).
Then ∂αgβδ ≈ O(v2), so Γkij is on the order of v2. From this, we can compute the Riemann
tensor in the leading approximation in the small parameter v. Then, the leading term is of
order v2.

Γkij =
1

2
(∂igkj + ∂jgki − ∂kgij)

=
1

2
(∂i(−

3

2
∂kf

n∂jf
n) + ∂j(−

3

2
∂kf

n∂if
n)− (−3

2
∂k(∂if

n∂jf
n))

(31)

After expansion of partial derivatives we obtain

Γkij =− 3

4
(∂i∂kf

n(∂jf
n) + (∂kf

n)∂i∂jf
n

+ ∂j∂kf
n(∂if

n) + (∂kf
n)∂i∂jf

n − ∂k∂ifn(∂jf
n)− (∂if

n)∂k∂jf
n)

(32)

And then we find

Γkij = −3

2
(∂kf

n)(∂i∂jf
n) (33)

When we raise the first index with the inverse metric γij we obtain

Γlij = γlkΓkij = [δlk +
3

2
(∂lfn)(∂kfn) +O(v2)][−3

2
(∂kf

n)(∂i∂jf
n)]

= δlk[−3

2
(∂kf

n)(∂i∂jf
n)]− 9

4
(∂lfn)(∂kfn)[−3

2
∂kf

n∂i∂jf
n]

Γlij = −3

2
(∂lfn)(∂i∂jf

n) +O(v4) (34)

Then we can see that Γlij ≈ v2.
Similarly, we evaluate the components of the three-dimensional Riemann tensor. Using

the observation that Γlij ≈ v2 in application to the Riemann tensor we see

Rkilj =
1

2
[gkj,il + gil,kj − gkl,ij − gij,kl] +O(v4) (35)

We see that only the first term in square brackets is important in the leading v2 approxima-
tion because Γ ∼ v2. In our case gij ≡ γij

γij = δij + ∆gij

∆gij = −3

2
(∂if

n)(∂jf
n)

and

Rkilj =
1

2
(−3

2
)[∂i∂l(∂kf

n∂jf
n) + ∂k∂j(∂if

n∂lf
n)− ∂i∂j(∂kfn∂lfn)− ∂k∂l(∂ifn∂jfn)]

Then, we expand all partial derivatives

Rkilj = −3

4
[(∂i∂l∂kf

n)(∂jf
n) + (∂i∂kf

n)(∂l∂jf
n) + (∂l∂kf

n)(∂i∂jf
n) + (∂kf

n)(∂i∂l∂jf
n)

+ (∂k∂j∂jf
n)(∂lf

n) + (∂k∂if
n)(∂j∂lf

n) + (∂j∂if
n)(∂k∂lf

n) + (∂if
n)(∂k∂j∂lf

n)

− (∂i∂j∂kf
n)(∂lf

n)− (∂i∂kf
n)(∂j∂lf

n)− (∂j∂kf
n)(∂i∂lf

n)− (∂kf
n)(∂i∂j∂lf

n)

− (∂k∂l∂if
n)(∂jf

n)− (∂k∂if
n)(∂l∂jf

n)− (∂l∂if
n)(∂k∂jf

n)− (∂if
n)(∂k∂l∂jf

n)]
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And this expression reduces to

Rkilj = −3

2
[(∂i∂jf

n)(∂k∂lf
n)− (∂)i∂lf

n)(∂j∂kf
n)] +O(v4) (36)

Rkilj ≈ v2

The Ricci tensor is obtained by contraction of this expression with the inverse metric γij

Rij = γklRkilj = [δkl +
3

2
(∂kf

n)(∂lf
n)]Rkilj (37)

So, with an accuracy to order v2 we get

Rij = δklRkjilj +O(v4) (38)

and

Rij = −3

2
[(∂i∂jf

n)(∂k∂kf
n)− (∂i∂kf

n)(∂j∂
kfn)] (39)

The Ricci scalar in the same order in v2 is computed similarly

R = γijRij = (δij + ∆γij)Rij = δijRij +O(v4) (40)

So, we obtain the required general expression for the three-dimensional Ricci scalar

R =
3

2
[(∂i∂jf

n)(∂i∂jfn)− (∂i∂
ifn)(∂j∂

jfn)] (41)

In (41) there appear the new terms of the form

(∂i∂
ifn)(∂j∂

jfn) = (∂i∂
ifx)2 + (∂i∂

if y)2 + (∂i∂
if z)2 6= 0 (42)

that are not present in the original paper [5].

VI. FOUR-DIMENSIONAL RICCI SCALAR

In four dimensions the Riemann tensor can be computed similarly.

Rαβγδ =
1

2
[gαδ,βγ + gβγ,αδ − gαγ,βδ − gβδ,αγ] +O(v4) (43)

The four-dimensional metric gαβ is given by

g00 = 1 +
1

2
fnfn, gij = −γij (44)

The Ricci tensor and the Ricci scalar are defined as follows

Rβδ = gαγRαβγδ

R = gβγRβδ = g00R00 + gijRij
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And, after writing separately the temporal and spatial components we get the expression

Rij = gαγRαiγj = g00R0i0j + gklRkilj

R = g00R00 + g00R0i0jg
ij + gklRkiljg

ij

Because gij = −γij we have R
[gij ]
kilj = −R(3)[γij ]

kilj , whereR
(3)[γij ]
kilj denotes the Riemann tensor

of the three dimensional metric γij. So

g00R00 = g00gijR0i0j

R = 2g00gijR0i0j +R[gij ]

Because R0i0j is of the order of v2 we can use g00 = 1 + O(v2), gij = δij + O(v2) and
R = 2R0i0jδ

ij +R[gij ]

R0i0j =
1

2
[−∂0∂0gij − ∂i∂jg00]

R0i0j = −1

2
(∂i∂jg00) = −1

2
[∂i∂j(1 +

1

2
fnfn)]

R0i0j = −1

4
∂i[2(∂jf

n)fn] = −1

2
[(∂i∂jf

n)fn + (∂if
n)(∂jf

n)]

R[gij ] = −R[γij ] = −3

2
[(∂i∂jf

n)(∂i∂jfn)− (∂i∂
ifn)(∂j∂

jfn)]

So we get the formula for the four-dimensional Ricci scalar in the leading v2 order

R = [(∂i∂
ifn)fn + (∂if

n)(∂ifn)]− 3

2
[(∂i∂jf

n)(∂i∂ifn)− (∂i∂
ifn)(∂j∂

jfn)] (45)

VII. EFFECTIVE HAMILTONIAN

To generalize the effective Hamiltonian Eq.(16) of the paper by Penin and Su I rederived
it through the following steps. Consider the operator p̂i = −i~∂i. We see that

[p̂ip̂i, γ
ij] = (p̂ip̂jγ

ij) + 2p̂iγ
ij p̂j (46)

The effective hamiltonian then becomes

Heff =
1

8
([p̂ip̂i, γ

ij] + 2p̂iγ
ij p̂j) +

~2

16
(∂i∂jf

n)(∂i∂jf
n) (47)

After expanding commutators of operators p̂i we can write

Heff =
1

8
((p̂ip̂iγ

ij) + 4p̂iγ
ij p̂j) +

~2

16
(∂i∂jf

n)(∂i∂jfn) (48)

Using

γij = δij +
3

2
(∂if

n)(∂jf
n)
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we obtain

(p̂ip̂jγ
ij) = −~2(∂i∂j[δij +

3

2
(∂if

n)(∂jf
n)]) = −~23

2
∂i∂j[(∂if

n)(∂jf
n)] (49)

and

(p̂ip̂iγ
ij) = −~23

2
(2(∂j∂i∂if

n)(∂jf
n) + (∂i∂jf

n)(∂i∂jf
n) + (∂i∂if

n)(∂j∂jf
n)) (50)

The three-dimensional Ricci scalar has the form

R(3) =
3

2
((∂i∂jf

n)(∂i∂jf
n)− (∂i∂if

n)(∂j∂jf
n)) (51)

From (50) and (51) we get that the the operators acting on the metric in terms of the Ricci
scalar is

(p̂ip̂iγ
ij) = −~2R(3) − 3~2(∂j∂i∂ifn)(∂jf

n)− 3~2(∂i∂ifn)(∂j∂jf
n) (52)

and

Heff =
1

2
p̂iγ

ij p̂i −
~2

12
R(3) − 3

8
~2(∂j∂i∂ifn)(∂jf

n)− 5

16
~2(∂i∂ifn)(∂j∂jf

n) (53)

Where no conditions on ∂i∂if
n were assumed. The last two terms in (19) are new com-

pared the result of the paper, and generalize their result for the case when there are no
imposed conditions on the amplitude fn except its smallness of the order of v2 [5].
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