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Abstract

The objective of this paper was to further constrain scalar Millicharged particles charge-mass phase
space. The Millicharge’s contribution to the Lamb Shift (for the 2S 1

2
and 2P 1

2
splitting) was computed by

analyzing the 1-loop corrections to the Coulomb potential, allowing for the energy splitting to be determined.
Comparing to the current restrictions on the charge and mass, this analysis, for m > me, does not alter the
constraints. However, for m

me
≤ 7.297 × 10−4, the current limit of ε < 1 × 10−5 has been constrained to

ε < 3.011× 10−6.
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Introduction

2012 marked a significant achievement for particle physics with the discovery of the Higgs Boson since
all the constituents, predicted by the Standard Model, were discovered. Albeit a historic moment for the
field, the Standard Model fails to explain phenomena, such as dark matter, dark energy, and Quantum
Gravity. Consequently, theorists attempt to create Beyond the Standard Model theories to explain such
phenomenon, while experimentalists try to verify or disregard the proposed theories. Even with experiments
probing higher and higher energy scales, as of now, there as been iota success. As the energy scales increase,
the difficulty in reaching them does too, which results in an increased difficulty in probing some theories.

Millicharged particles (MCP), a potential solution to the demand for higher energy experiments, were
first proposed, seemingly, by [4] in 1979 and [8] in 1986, and they remain of interest to this day. MCP are a
hypothesized particle with a small mass, m, and a charge, qM = εe, much less than the elementary charge,
e, where ε << 1- hence the name ”millicharged.” Their small charge results in them weakly interacting with
ordinary matter, meaning MCP would have evaded detection at lower energy scales [15]. Instead of searching
for new physics at high energy, high precision tests at lower energies could potentially lead to the discovery
of the MCP, especially considering dark matter challenges the notion new physics is only at the high energy
frontier [5]. Typically, MCP are studied as a scalar or fermion [3]; in this paper, they will be analyzed as
the scalar variety.

MCP have become important in physics, specifically as a potential solution to dark matter, as they ap-
pear naturally in many theories [3]. Typically, they are introduced by implementing a new (hidden sector)
gauge group, UHS(1), with a corresponding gauge field, A′µ, called the dark photon. Under the assumption
the dark photon field is massless, MCP appear. Albeit there is no guarantee dark matter will interact with
ordinary matter, kinetic mixing serves as a possible avenue for it to interact; with a kinetic mixing term
ε
2F
′

µνF
µν between dark photons and photons, ordinary matter does not obtain extra charge, while MCP do

acquire a small charge with respect to ”our world,” leading to potential interactions from it with ordinary
matter [3, 11, 16].
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Albeit important to dark matter, MCP also appear in other areas of physics as a potential solution, such
as to the strong-CP problem [7], they could impact Big Bang Nucleosynthesis by increasing 4He produc-
tion [25] and/or influencing the baryon-to-photon ratio [24], and they might impact the luminosity distance
from supernova surveys, resulting in dimming [17]. The expansion rate of Universe, the creation of galac-
tic magnetic fields during galaxy formation, and the anisotropy power spectrum of the Cosmic Microwave
Background could be affected [24]. To test for their existence, there are a multitude of methods; here is a
general, non-complete list. They could be detected by light shining through a wall experiment [6], proton
and electron beam dump experiments [12], or in dark photon production and decay at the NA64 experiment
at CERN [23]. Proton fixed target experiments have also been proposed [3]. MCP might also be produced
at nuclear reactors, be a product of gamma rays interacting with the atmosphere, or dark matter gamma
rays, consisting of MCP, may accompany ordinary gamma rays, bombarding earth’s atmosphere [16]. Cer-
tain rare positronium decays, resulting in invisible final states, could be an indicator of MCP [2], or liquid
argon neutrino experiments might detect them [18]. SLAC has, as well, been utilized to search for MCP
[1]. The Cosmic Microwave Background and Big Bang Nucleosynthesis have been used to put constraints
on the MCP [16] and could indicate they exist [11]; if Cosmic Microwave Background photons are lost due
to MCP pair production in galaxy cluster’s magnetic fields, anisotropies could provide information on the
MCP’s properties [9].

So far, from the experiments and searches, the charge-mass phase space of the MCP has been constrained.
Let m = µme, resulting in 1keV 7→ µ = 1.957 × 10−3. For µ < 1, the constraints are much stronger. Re-
actor experiments have placed a strict limit of ε < 1 × 10−5 for µ < 1.957 × 10−3 [3, 24]; for µ < 1 but
µ > 1.957 × 10−3, ortho-positronium decays provide the limit of ε < 3.4 × 10−5 [2]. For µ > 1, the bounds
are weaker with the following: for µ = 1.957, ε < 4.1 × 10−5 and, for µ = 1.957 × 102, ε < 5.8 × 10−4 [1];
for µ > 1.957 × 102, ε ∼ 10−2 and, for µ > 1.957 × 103, a maximum restraint is reached at ε = 0.1 [3, 24],
implying there is an overall constraint of ε ≤ 0.1∀µ.

Albeit there are a lot of ways to probe for MCP, we, in this paper, will be looking at Hydrogen
Spectroscopy- specifically, the Lamb Shift, the energy level difference between 2S 1

2
and 2P 1

2
in hydrogen,

which is caused by vacuum polarization- as a method to search for them. Since MCP weakly interact with
matter, and there already exists heavy constraints on them, one will require high precision testing to detect
them. Since hydrogen energy level transitions undergo high precision testing and are some of the best studied
observables [14, 21], and the Lamb Shift is one of the most precise measurements made [20], it is an obvious
avenue to probe for MCP.

To accomplish this, the scattering of two fermions, coupled to the Electromagnetic field, will be analyzed
in the non-relativistic limit. The 1-loop corrections will be examined; instead of a fermion-antifermion loop,
the loop will consist of MCP, coupled to the Electromagnetic field. Since the Electromagnetic field is a gauge
theory, where its Lagrangian is given by: LEM = − 1

4FµνF
µν , the MCP field must be a gauge theory as well,

thereby forcing it to be a complex scalar field so that it is invariant under the global U(1) transformation.
The massive complex scalar field Lagrangian [13, 22] will be used, which is given by:

LMCP = ∂µψ†∂µψ −m2ψ†ψ

To make the MCP a gauge theory- namely, invariant under a local U(1) transformation- the gauge field,
Aµ, is introduced and the minimal coupling prescription (i.e. ∂µ 7→ Dµ = ∂µ + iqMAµ) is followed [22].
Following this, we obtain the interaction Lagrangian for the MCP:

Lint = iqM
[
(∂µψ†)Aµψ −Aµψ†(∂µψ)

]
+ q2

Mψ
†ψAµAµ

from this, the Feynman rules were derived and can be found in Appendix A.
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The scattering amplitude of the fermions, interacting with the corrected photon propagator, will be calcu-
lated. Since we are considering the hydrogen atom, a bound state problem, the fermions will be a proton and
an electron. Using the Born-Approximation of the differential cross-section, a relation between the Coulomb
potential and the scattering amplitude will be established, which will give the corrected Coulomb potential.
Since the MCP mass is not known, the mass limits will be taken- namely, it will be assumed m2 << ~p2, the
low mass limit, and m2 >> ~p2, the high mass limit, where ~p is the 3-momentum of the photon.

An experimental value, allowing the prediction to be verified, will be calculated. The contribution to the
Lamb Shift due to the MCP 1-loop diagrams will be computed from ∆E = 〈ψ|∆V |ψ〉 , where ∆E is the
energy splitting of the hydrogen atom, ψ is the hydrogen atom’s wavefunction, and ∆V is the correction
term due to the MCP in the corrected Coulomb potential. Since qM and m are not known, and ∆E will
depend on those parameters, we will plot qM versus m for a corresponding energy, which will give bounds
on both qM and m.

Natural units (c = ~ = 1) and Heaviside-Lorentz units (εo = µo = 1) will be used.

Corrected Coulomb Potential

For fermion-fermion scattering with 1-loop MCP corrections, the relevant Feynman diagrams are:

f f

f f

γ +

f f

f f

γ

MM∗

γ

+

f f

f f

γ

M

M

The photon propagator will be redefined to include all of its self-energy (i.e. the sum of all 1-part

irreducible (1PI) diagrams), iΠµν
2 . It becomes: Dµν = Do

µν + Do
µλiΠ

ληDo
ην + ..., where Do

µν =
−igµν
p2+iε′ [22].

For 1-loop corrections to second order, Dµν = Do
µν +Do

µλiΠ
λη
2 Do

ην , where:

Dµν = p +

p

qq − p

p

+

p q

p

where p is the photons and q is the MCP’s 4-momentum. The 1PI self-energy will be calculated by evaluating
the two 1-loop diagrams for the MCP. Writing down and summing the amplitudes for the diagrams:
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iΠµν
2 = q2

M

∫
(2qµ − pµ) (2qν − pν)− 2gµν

(
(q − p)2 −m2

)
((q − p)2 −m2 + iε′) (q2 −m2 + iε′)

d4q

(2π)4

The full calculation can be found in Appendix C. After evaluating it, one obtains:

iΠµν
2 = −iq2

Mp
2gµνΠ2(p)

where Π2(p) = 1
8π2

1∫
0

x(2x− 1)
[

2
ε′ + ln

(
4πe−γeµ2

p2x(x−1)+m2

)
+O(ε′)

]
dx and γe is the Euler-Mascheroni constant.

A relationship between the corrected Coulomb potential and the scattering amplitude will be established in
Appendix C. The corrected Coulomb potential obtained is:

Ṽ (p) =
q2
f

p2

[
1− q2

MΠ2(p)
]

To renormalize it, we will use the on-shell renormalization condition. In classical Electrodynamics, we

know: Ṽ (po) = e2

p2o
, where e is the experimentally measured charge of the electron and proton, and po is

the momentum one made the measurement at. As p 7→ 0, we should obtain the macroscopically measured
charge value of e. Setting po = 0 and requiring our expression match experiment, we get: e2 = p2

oṼ (po) =
q2
f

[
1− q2

MΠ2(po)
]

=⇒ e2 = q2
f

[
1− q2

MΠ2(0)
]

=⇒ we want: Π2(0) = 0 =⇒ introducing a counterterm:
Π2(p) 7→ Π2(p) − Π2(0). With the pole removed, we have obtained the renormalized Coulomb potential,
where we have replaced qf , the bare charge, with e, the renormalized charge:

Ṽ (p) =
e2

p2

[
1− q2

MΠR
2 (p)

]
where ΠR

2 (p) = Π2(p)−Π2(0) = 1
8π2

1∫
0

x(2x− 1) ln
[

m2

m2+p2x(x−1)

]
dx. The evaluation of the mass limits can

be found in Appendix D; the calculation of ∆E can be found in Appendix E. The results are summarized
in Table 1.

Table 1: Mass Limits of the Corrected Coulomb Potential and the Corresponding Energy Splitting

Small Mass Limit (m2 << ~p2) Large Mass Limit (m2 >> ~p2)

Ṽ (~p) = − e
2

~p 2

[
1 +

q2
M

48π2
ln

(
~p 2

m2

)]
V (r) = − e2

4πr

[
1− q2

Mπ

3
(γe + ln (mr))

]
∆E = − e

2q2
M

144ao

Ṽ (~p) = − e
2

~p 2

[
1 +

q2
M~p

2

480π2m2

]
V (r) = − e2

4πr

[
1 +

q2
Mr

120πm2
δ(3)(~r)

]
∆E = − e2

3840π3a3
o

(qM
m

)2

where ao is the Bohr radius and r is the distance between the electron and proton.

4



Discussion

Before plotting the charge versus the mass, there are a two things to be addressed. Firstly, a quantitative
criteria is required as to where the mass limits will fail. Since ao ∼ 1

me
=⇒ p ∼ 1

ao
, the mass limits become:

m2 >> 1
a2o

and m2 << 1
a2o

.

Secondly, to utilize the Lamb Shift, its value is necessary. From [19], the best experimental for the Lamb
Shift is 1057.845(3)MHz. To analyze the effect the MCP would have on the Lamb Shift, we are interested in
the measurement’s error bound. Due to the fact the MCP effect must be smaller than the observed value,
∆E must be less than the experimental error bound so ∆E < 3kHz.

Figure 1: Log-log exclusion plot of charge as a function of mass. The cyan shading represents the region of
possible values for qM and m. Other than the limitations from the Lamb Shift, no other restrictions were
included on the plot. The charge is with respect to e and mass with respect to me.

The mass range was plotted from m = 0 to the value of m corresponding to ε = 1, which is µ = 84.275.
Of course, ε = 1 is far too large, but it was picked as to not exclude any part of the phase space1. The curve
could be plotted indefinitely, but, for µ > 84.275, any points above ε = 1 would not be shaded. However,
as will be discussed below, anything further does not contribute any new information. In the plot, the
space in between the mass limits was interpolated. With 10% error, we are assuming the limiting cases are
accurate in µ ∈

(
0, 7.297× 10−4

)
∪
(
7.297× 10−2,∞

)
, while the interpolation serves as an acceptable ap-

proximation between the two limits. Though, no quantitative statement can be made from the interpolation.

As one can note, the plot correctly predicts the result if ε = 0. MCP would not interact with matter,
have no effect on the Lamb Shift, so we would get ∆E = 0. In which case, searching for it via the Lamb
Shift would be futile, so let us analyze what ∆E 6= 0 yields. In Figure 1, ε > 0.001 at µ = 1 and increases
linearly. The current limitations on ε (ranging from 10−5 − 0.1) have been well surpassed. Therefore, it is
evident our analysis contributes no further restriction, which is why a larger range of m was not covered in
Figure 1.

For µ < 1 but µ > 1.957 × 10−3, it can be discerned that around µ = 0.002, from the interpola-
tion, ε < 3.4 × 10−5. Since the interpolation is only an approximation, no conclusive cut off point can
be made, except for there is some limit imposed in this region. For µ < 1.957 × 10−3, it is evident,
from the interpolation, ε < 1 × 10−5; other than the fact ε can be further constrained at each value of µ ∈(
7.297× 10−4, 1.957× 10−3

)
, nothing more can be concluded. However, we know, for µ ≤ 7.297×10−4 (with

≥ 90% accuracy), qM is dominated by the low mass limit. Therefore, it can be conclude ε < 3.011 × 10−6.

1From the µ > 1.957× 103 constraint, ε ≤ 0.1 ∀µ. This was ignored in the shading as explained in Figure 1.
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This lowers the current limitation in the region by ≈ 1
3 .

For future, it would be essential to plot the full solution to ∆E- not just the mass limits and the
interpolation- so that conclusive, quantitative results in the interpolation regions can be deduced. Albeit
higher order corrections (beyond 1-loop) to the Coulomb potential would have a minor effect on the overall
result, it would still be of benefit to examine what effects they would have on qM and m.

Conclusion

The objective of this paper was to determine the constraints on the scalar MCP’s charge-mass phase
space. This was accomplished by considering the contribution of the 1-loop corrections to the Coulomb
potential due to MCP, thereby allowing for the effect on the Lamb Shift to be calculated. From this, a
charge-mass exclusion plot determined what values of qM and m are possible according to the Lamb Shift.
Albeit no new restriction were placed on qM for µ > 1, the current limit of ε < 1×10−5 for µ ≤ 7.297×10−4

was constrained to ε < 3.011× 10−6.

For future, as discussed, the full solution to ∆E must be plotted so that quantitative results in the
interpolation region can be deduced since it is evident there will be some restriction on the currents limits.
As well, higher order corrections to the Coulomb potential can always be computed to observe the minor
effects they will have on qM and m.

Appendices

Appendix A: Feynman Rules

Here are the Feynman Rules [13] we utilized:

• MCP propagator: ∆̃(p) = i
p2−m2+iε′

• MCP two vertices:

1. Figure 2 to 5 has a vertex factor of: −iqM [α1p
µ
1 + α2p

ν
2 ], where αj = 1 for MCP and αj = −1 for

anti-MCP for j ∈ [1, 2], the particle on the left (for a vertex with only MCP or anti-MCP) gets
labeled with pµ1 , and- for a vertex with a MCP and anti-MCP- the MCP gets labeled with pµ1 .

2. Figure 6 has a vertex factor of: 2iq2
Mg

µν

• Photon propagator: Do
µν =

−igµν
p2+iε′

• Incoming and outgoing fermion external line’s spinors are: u(s)(p) and ū(s)(p), respectively.

• Incoming and outgoing anti-fermion external line’s spinors are: v̄(s)(p) and v(s)(p), respectively.

• Fermion vertex: −iqfγµ.
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γ

MM

p2p1

Figure 2: MCP Scattering Vertex

γ

M∗M∗

p2p1

Figure 3: Anti-MCP Scattering Vertex
γ

MM∗

p1p2

Figure 4: MCP and Anti-MCP Creation Vertex

γ

M∗M

p2p1

Figure 5: MCP and Anti-MCP Annihilation Vertex

γ γ

M M

Figure 6: Four Particle Vertex for MCP

Appendix B: Identities

Here are identities that are used. Identity 1 to 2 are from [13]. Below, identity 4 will be derived.

1.
∫

1
(k2−∆+iε′)

dDk
(2π)D

= i

(4π)
D
2

1

∆2−D
2

Γ
(
2− D

2

)
2.
∫

k2

(k2−∆+iε′)
dDk

(2π)D
= −D

2
i

(4π)
D
2

1

∆1−D
2

Γ
(
1− D

2

)
3. Taylor Expansion about ε′ = 0: xaε

′
= 1 + a ln(x)ε′ +O(ε2)

4. Taylor Expansion about ε′ = 0: Γ
(
ε′

2

)
= 2

ε′ − γe + ε′

4

(
γ2
e + π2

6

)
+O(ε′2)

Here is the derivation of identity 4. In its evaluation, we will use integration by parts, the fact t
ε′
2 =

∞∑
n=0

(
ε′

2

)n
lnn(t)
n! , and Mathematica to evaluate the integrals.

Γ

(
ε′

2

)
=

∞∫
0

e−tt
ε
2−1dt =

2

ε′

∞∫
0

e−tt
ε′
2 dt
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=

∞∑
n=0

(
ε′

2

)n−1
1

n!

∞∫
0

e−t lnn(t)dt

=
2

ε′
− γe +

ε′

4

(
γ2
e +

π2

6

)
+O(ε′2)

Appendix C: Corrected Coulomb Potential Calculation

Evaluating the Feynman Diagrams

iΠµν
2 = q2

M

∫
(2qµ − pµ) (2qν − pν)− 2gµν

(
(q − p)2 −m2

)
((q − p)2 −m2 + iε′) (q2 −m2 + iε′)

d4q

(2π)4

= q2
M

∫
4qµqν − 2qµpν − 2pµqν + pµpν − 2gµν

(
(q − p)2 −m2

)
((q − p)2 −m2 + iε′) (q2 −m2 + iε′)

d4q

(2π)4

= q2
M

∫
4qµqν − 2qµpν − 2pµqν − 2gµν

(
(q − p)2 −m2

)
((q − p)2 −m2 + iε′) (q2 −m2 + iε′)

d4q

(2π)4

where pµpν can be ignored due to gauge invariance (i.e. the Ward Identity); this fact will be used throughout

the derivation. Feynman Parameters will be introduced- namely, 1
AB =

1∫
0

1
[A+(B−A)x]2

dx. Calculating the

[A+ (B −A)x] term:

(
(q − p)2 −m2 + iε′

) (
q2 −m2 + iε′

)
=(q − p)2 −m2 + iε′ +

[
q2 − (q − p)2

]
x

=(q − p(1− x))2 − p2x(1− x)−m2 + iε′

Let λµ = qµ − pµ(1− x):

iΠµν
2 = q2

M

∫ 1∫
0

4qµqν − 2qµpν − 2pµqν − 2gµν
(
(q − p)2 −m2

)
[(q − p(1− x))2 − p2x(1− x)−m2 + iε′]

2 dx
d4q

(2π)4

= 2q2
M

∫ 1∫
0

2λµλν + λµpν(1− 2x) + pµλν(1− 2x)− gµν
(
(λ− px)2 −m2

)
[λ2 − p2x(1− x)−m2 + iε′]

2 dx
d4λ

(2π)4

= 2q2
M

∫ 1∫
0

2λµλν − gµν
(
λ2 + p2x2 −m2

)
[λ2 − p2x(1− x)−m2 + iε′]

2 dx
d4λ

(2π)4

where we used the fact 2gµνλpx, λµpν(1− 2x), and pµλν(1− 2x) are odd under d4λ.

At this point, a regularization method will need to be utilized; we will use Dimensional Regularization.
Since all physical quantities are finite, yet our integrals are divergent, it is a method to regulate the integrals
by isolating the divergence, which will allow us to calculate the integral and remove the divergence through
renormalization. A regulator, ε′, will be introduced to isolate the divergence; this will yield a finite result,
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except when ε′ 7→ 0. For Dimensional Regularization, the dimension of space-time is extended to D-
dimensional space; in the end, D will be set equal to D = 4− ε′. As we let ε′ 7→ 0 and expand terms about
ε′ = 0, our divergence will become a pole. To ensure Πµν

2 is dimensionless, a mass scale, µ2−D2 , will be
introduced. Introducing the regulator, using the fact λµλν → 1

Dλ
2gµν , and introducing the mass scale by

qM → qMµ
2−D2 , one obtains:

iΠµν
2 = 2q2

Mµ
4−D

∫ 1∫
0

2
Dλ

2gµν − gµν
(
λ2 + p2x2 −m2

)
[λ2 − p2x(1− x)−m2 + iε′]

2 dx
dDλ

(2π)D

= 2q2
Mµ

4−Dgµν
∫ 1∫

0

(
2
D − 1

)
λ2 −

(
p2x2 −m2

)
[λ2 − p2x(1− x)−m2 + iε′]

2 dx
dDλ

(2π)D

=
−2iq2

Mg
µν

(4π)
D
2

µ4−D
1∫

0

[
1− D

2

(p2x(x− 1) +m2)
1−D2

Γ

(
1− D

2

)]
−

[
p2x2 −m2

(p2x(x− 1) +m2)
2−D2

Γ

(
2− D

2

)]
dx

=
−2ip2q2

Mg
µν

(4π)
D
2

µ4−DΓ

(
2− D

2

) 1∫
0

x(2x− 1)

(p2x(x− 1) +m2)
2−D2

dx

where identity 1 and 2 (from Appendix B) were used. Expanding the terms about ε′ = 0 and using identity
3 and 4 (from Appendix B):

iΠµν
2 =

−2ip2q2
Mg

µν

(4π)2− ε′2
µε
′
Γ

(
ε′

2

) 1∫
0

x(2x− 1)

(p2x(x− 1) +m2)
ε′
2

dx

=
−ip2q2

Mg
µν

8π2

1∫
0

[
2

ε′
− γe + 2 ln(µ) + ln(4π)− ln(p2x(x− 1) +m2) +O(ε′)

]
x(2x− 1)dx

=
−ip2q2

Mg
µν

8π2

1∫
0

x(2x− 1)

[
2

ε′
+ ln

(
4πe−γeµ2

p2x(x− 1) +m2

)
+O(ε′)

]
dx

= −iq2
Mp

2gµνΠ2(p)

Born Approximation

We are looking at an electron-proton scattering in the non-relativistic limit. To establish a relationship
between the Coulomb potential and the scattering amplitude, we will use the Born Approximation and the

differential cross section of the scattering, which are dσ
dΩ =

m2
e

4π2

[
Ṽ (p)

]2
and dσ

dΩ = 1
64π2m2

p
[M]

2
, respectively

[13], where me and mp are the electron and proton’s mass, respectively. For the differential cross section,
the center of mass frame is approximated as the proton’s rest frame, and the process is assumed to be elastic
scattering.

The electron-proton t-channel diagram, where Dµν replaces Do
µν , will give us the matrix element. In the

non-relativistic limit, we are left with D00 [22], which yields:
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iM = ū3(p3)(−iqfγµ)u1(p1)Dµν ū
4(p4)(−iqfγν)u2(p2)

= 4iq2
fmemp

1

p2

[
1− q2

MΠ2(p)
]

∴ |M| = 4q2
fmemp

1

p2

[
1− q2

MΠ2(p)
]

Relating the two differential cross sections:

dσ

dΩ
=
m2
e

4π2

[
Ṽ (p)

]2
=

1

64π2m2
p

[M]
2

=⇒ me

2π
Ṽ (p) =

1

8πmp
|M|

=⇒ Ṽ (p) =
q2
f

p2

[
1− q2

MΠ2(p)
]

Appendix D: Mass Limits

For Electrostatics, the static case of the momentum will be considered. Let p2 = −~p2, then Ṽ (p) =

e2

p2

[
1− q2

MΠR
2 (p)

]
7→ Ṽ (~p) = − e2

~p2

[
1− q2

MΠR
2 (~p)

]
, where ΠR

2 (~p) = 1
8π2

1∫
0

x(2x− 1) ln
(

m2

~p2x(1−x)+m2

)
dx. The

two mass limits will be examined. Mathematica will evaluate all the integrals. For the m2 << ~p2 case:

ΠR
2 (~p) =

1

8π2

1∫
0

x(2x− 1) ln

(
m2

~p2x(1− x) +m2

)
dx

≈− 1

8π2

1∫
0

x(2x− 1) ln

(
~p2

m2
x(1− x)

)
dx

≈− 1

48π2
ln

(
~p2

m2

)

The Fourier transform of Ṽ (~p) can now be found. We will examine the second term in Ṽ (~p) since the

first term will, obviously, gives us − e2

4πr .

Ṽterm2(~p) = − e2q2
M

48π2~p2
ln

(
~p2

m2

)

Vterm2(r) = −e
2q2
M

48π2

∫ ln
(
~p2

m2

)
~p2

e−i~p·~rd3p

= −e
2q2
M

48π2

∞∫
0

π∫
0

2π∫
0

ln
(
ρ2

m2

)
ρ2

ρ2sin(θ)e−iρr cos(θ)dρdθdφ

= −e
2q2
M

12πr

∞∫
0

ln
(
ρ2

m2

)
ρ

sin(ρr)dρ
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=
e2q2

M

12r
[γe + ln(mr)]

∴ V (r) = − e2

4πr
+
e2q2

M

12r
[γe + ln(mr)]

For the m2 >> ~p2 case:

ΠR
2 (~p) =

1

8π2

1∫
0

x(2x− 1) ln

(
m2

~p2x(1− x) +m2

)
dx

=− 1

8π2

1∫
0

x(2x− 1) ln

(
1 +

~p2

m2
x(1− x)

)
dx

≈− 1

8π2

1∫
0

x(2x− 1)
~p2

m2
x(1− x)dx

=− 1

480π2

~p2

m2

The Fourier transform of Ṽ (~p) can now be found:

Ṽ (~p) = −e
2

~p2

[
1 +

q2
M~p

2

480π2m2

]
V (r) = − e2

4πr
− e2q2

M

480π2m2
δ3(~r)

where the Fourier transform will be stated without proof (it is readily found since it is identical, apart from
constants, to the one from Quantum Electrodynamics [13, 22]).

Appendix E: Determining ∆E

For the Lamb Shift, ∆E = ∆E(2S 1
2
) −∆E(2P 1

2
). Mathematica will evaluate all the integrals. For the

m2 << ~p2 case, ∆V (r) =
e2q2M
12r [γe + ln(mr)]. Since ψ200(r) = 1

4
√

2πa3o

[
2− r

ao

]
e−

r
2ao [10]:

∆E(2S 1
2
) = 〈ψ200(r)|∆V (r)|ψ200(r)〉

=
e2q2

M

12

[
γe 〈ψ200(r)|

(
1

r

)
|ψ200(r)〉+ 〈ψ200(r)|

(
ln(mr)

r

)
|ψ200(r)〉

]
=
e2q2

M

48ao

[
ln(aom) +

3

2

]

Since ψ210 = 1

4
√

2πa5o
r cos(θ)e−

r
2ao [10]:

∆E(2P 1
2
) = 〈ψ210(r)|∆V (r)|ψ210(r)〉
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=
e2q2

M

12

[
γe 〈ψ210(r)|

(
1

r

)
|ψ210(r)〉+ 〈ψ210(r)|

(
ln(mr)

r

)
|ψ210(r)〉

]
=
e2q2

M

48ao

[
ln(aom) +

11

6

]

Subtracting the two results:

∆E = − e
2q2
M

144ao

For the m2 >> ~p2 case, ∆V (r) = − e2q2M
480π2m2 δ

3(~r). It is obvious ∆E(2P 1
2
) = 0 due to the fact, at r = 0,

only l = 0 levels are non-zero. Therefore, we find ∆E is:

∆E = 〈ψ200(r)|∆V (r)|ψ200(r)〉

= − e2q2
M

480π2m2
|ψ200(0)|2

= − e2q2
M

3840π3a3
om

2
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