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Abstract

This research project aims to provide a general overview for Asymptotic Safety (AS),
a criterion for quantum gravity in theoretical physics. The report begins with an intro-
duction to foundational concepts, such as renormalization group flows and fixed points,
with a discussion on how it relates to Weinberg’s criterion for AS. The subsequent part
details analysis on the Einstein-Hilbert truncation and the qualitative behavior of its
fixed points. Notably, an emphasis is placed on the UV-attractive fixed point that im-
plies pure gravity may be nonperturbatively renormalizable. Finally, applications of AS
to matter fields and the fine structure constant are discussed, and the report closes off
with a brief discussion of the issues with the theory.

1 Introduction

Theoretical physics currently stands on foundations provided by two of the most empirically
successful theories: the Standard Model (SM) of particle physics and Einstein’s General Rel-
ativity (GR). The concept of effective field theory lies at the intersection of these theories,
which provides a quantum interpretation of GR consistent with the SM at relatively low energy
scales, accomplished through the introduction of an energy cutoff, Λ. This approach, however,
begs the question of finding a universally applicable, ultraviolet (UV) complete theory that
remains valid at arbitrarily high energy scales, thus eliminating the need for Λ.

One of the foremost challenges in unifying General Relativity with the Standard Model is
its non-renormalizability; conventional renormalization techniques fail to address the infinities
and divergences that emerge. Traditionally, perturbation theory attempts to mitigate these
issues by introducing an infinite series of terms to counterbalance the divergences, resulting
in a model rendered useless by the infinite number of free parameters. This problem of UV
divergences and infinite free parameters can be resolved, in principle, using the framework of
Asymptotic Safety. In 1978, Weinberg suggested a generalized condition for renormalizability,
using ideas from Wilson’s renormalization group [24]. The renormalization group (RG) flow
represents the interaction strengths as a function of the energy, and using the functional RG
equations, we can determine a“fixed point”, where the RG flows halt. If such a fixed point
exists, then it is possible recover the scale invariance of the system, consequently eliminating
the need for a UV cutoff. With a fixed point, the coupling constants tend to a finite value,
independent of the energy scale. The prototypical example of asymptotic safety is QCD, where
in the high-energy limit the system converges to a Gaussian fixed point. In other words, this
is known as asymptotic freedom.

The feasibility of applying Asymptotic Safety within the context of quantum gravity was
first demonstrated by Reuter in 1998 [18] with a truncated version of the Einstein-Hilbert
action. It was shown that fixed points indeed exists, and one of them is a nontrivial UV-
attractive fixed point. This was a major breakthrough and set the example for many later
calculations to follow. A significant amount of later work sought to generalize this result. This
involved including higher order terms in the curvature polynomial f(R) [4] or incorporating
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contributions from the Riemann tensor and Ricci tensor. It was also observed by [3] that
couplings to matter fields significantly affected the behaviour of fixed points in the AS theory.
Beyond this, AS has been successfully applied to a number of phenomenological scenarios,
such as predicting the mass of the Higgs boson [22] and demonstrating the existence of a
well-behaved ultraviolet limit for the fine structure constant [9]. At the same time, AS is not
without critiques, which involve unitarity and performing calculations in Lorentzian metrics
as opposed to Euclidean metrics [2, 5]. This paper is structured as follows: in Section 2,
I provide a detailed introduction to renormalization groups (particularly the Wilsonian ap-
proach) and build on that to introduce Renormalization Group flows. From there, it is easy to
understand β-functions and the role they play. After explaining background ideas, in Section
3, I present a case study of Asymptotic Safety for the Einstein-Hilbert truncation and discuss
its implications. The last section gives an overview of the applications of Asymptotic Safety
and the criticisms surrounding it.

2 Renormalization Group

Our description of the physical world is fundamentally dependent on the scale which we
are considering; when studying chemical systems, we can safely ignore any details in the
nuclei. Down to the hadrons and mesons scale, we ignore processes going on with the quarks.
Therefore, all theories of physics amount to an effective theory, which gives a description of
the physical world based on the length (or energy) scale [10]. At smaller scales, the effective
theory breaks down. To describe our physical theories, we naturally need a scheme to transform
between energy scales–this procedure is known as renormalization.

Here I introduce the Wilsonian renormalization group staring with the idea of renormal-
ization as a demonstration of integrating out degrees of freedom to obtain an effective action.
Noting the form of the action, it is possible to rewrite the result such that the form of the
action is invariant, but it then induces a “flow” on the coupling constants, which naturally
leads into the renormalization group flow and β-functions.

2.1 Integrating out Degrees of Freedom

To begin, consider one of the simplest actions in quantum field theory: φ4-theory. The
Lagrangian density is written as:

L(φ) = 1

2

[
(∂µφ)

2 +m2φ2
]
+

λ

4!
φ4. (1)

The action S is given by the integral of the Lagrangian density:

S =

∫
ddxL =

∫
ddx

{
1

2

[
(∂µφ)

2 +m2φ2
]
+

λ

4!
φ4

}
, (2)

where d is an arbitrary dimension of spacetime. The path integral, as written in Peskin and
Schroeder [16] is given by the exponential of the action:

Z =

∫
[Dφ]Λ exp

{
−
∫

ddx

[
1

2
(∂µφ)

2 +
1

2
m2φ2 +

λ

4!
φ4

]}
, (3)
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with
[Dφ]Λ =

∏
|k|<Λ

dφ(k). (4)

This means that instead of integrating over all possible momenta for the fields, we only in-
tegrate the fields up to a cutoff Λ. We now consider the system at a lower energy bΛ, where
b < 1. This amounts to imposing a sharp-momentum cutoff that drops states with energy
higher than the new cutoff. The high-energy degrees of freedom (or states) are labeled as
follows:

φhigh(k) =

{
φ(k) for bΛ < |k| < Λ

0 otherwise
(5)

which comprises of all states with energies between bΛ < |k| < Λ. Consider now the low-
energy modes φlow(k) which are identical to φ(k), except that φlow(k) = φ(k) for |k| < bΛ,
and 0 otherwise. These are the low-energy degrees of freedom. We can then write the original
field φ(k) as the sum of the high- and low-energy degrees of freedom φ(k) = φhigh(k) +φlowk.
Substituting this into the functional integral in 3 gives:

Z =

∫
[D(φhigh + φlow)]Λ·

· exp
{
−
∫

ddx

[
1

2
(∂µφhigh + ∂µφlow)

2 +
1

2
m2(φhigh + φlow)

2 +
λ

4!
(φhigh + φlow)

4

]}
. (6)

Expanding out and noting that D[φhigh+φlow] factors as DφhighDφlow we can further simplify:

Z =

∫
Dφlow exp

{
−
∫

L(φlow)

}
·

·
∫

Dφhigh exp

{
−
∫

ddx

[
1

2
(∂µφhigh)

2 +
1

2
m2φ2

high+

λ

(
1

6
φ3
lowφhigh +

1

4
φ2
lowφ

2
high +

1

6
φlowφ

3
high +

1

4!
φ4
high

)]}
. (7)

If one performs the integration over the high energy modes φhigh then (7) transforms to:

Z =

∫
[Dφlow]bΛ exp

(
−
∫

ddxLeff

)
, (8)

where the effective Lagrangian is given by

Leff =
1

2
(∂µφlow)

2 +
1

2
m2φ2

low +
1

4!
λφ4

low + other terms (9)

So we recover an identical form for the path integral, except we have a different Lagrangian,
modified by our change of scales. In a sense, we preserve the form of the Lagrangian in
the process of renormalization. As a result, the action of renormalization behaves like group
addition, hence the naming of ”renormalization group”. It is important to note that this is
not an actual group, as the action is not invertible.
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For physical theories, their coupling constants flow with the energy or length scale, so it
is important to understand the behavior of the coupling constants as the energy varies. We
can always rescale the momenta and position, such that changing the variables x′ = xb and
k′ = k/b simplifies bΛ to Λ. As a result of integrating the high-energy modes, the action picks
some extra terms as compared to (9):∫

ddxLeff

=

∫
ddx

[
1

2
(1 + ∆Z)(∂µφ)

2 +
1

2
(m2 +∆m2)φ2 +

1

4!
(λ+∆λ)φ4 +∆C(∂µφ)

4 + · · ·
]
. (10)

In terms of the rescaled variable x′ we have∫
ddx′b−dLeff =∫

ddx

[
1

2
(1 + ∆Z)b2(∂µφ)

2 +
1

2
(m2 +∆m2)φ2 +

1

4!
(λ+∆λ)φ4 +∆Cb4(∂µφ)

4 + · · ·
]
. (11)

If we rescale the field by φ′ =
[
b2−d(1 + ∆Z)1/2

]
we recover the initial form of the effective

Lagrangian, except now in terms of the rescaled field φ′:∫
ddx′1

2

[
1

2
(∂µφ

′)2 +
1

2
(m′φ′)2 +

λ′

4!
φ′4

]
. (12)

Note that this transformation also changes the coupling constants m and λ

m′ = (m2 +∆m2)(1 + ∆Z)−1b−2, λ′ = (λ+∆λ)(1 + ∆Z)−2bd−4. (13)

The process of integrating out the higher-energy modes and performing a rescaling on variables
returns us with the same form of the Lagrangian, but with the coupling constants modified.
If we successively iterate this process while taking b close to 1, (so that the momentum shell
of the integration becomes infinitesimally thin), this process becomes a continuous way to
change between energy scales. As mentioned above, this idea is historically understood as the
renormalization group.

2.2 Renormalization Group Flow

2.2.1 β-functions and the Callan-Symanzik Equation

Further observe that while the form of the Lagrangian is preserved, the coupling constants
are certainly not — so the change in scale modifies coupling constants. Therefore, the renor-
malization procedure induces a “flow” on the coupling constants. It is natural to question the
behavior of such a flow. To do this, we turn to the Callan-Symanzik equation, which describes
the behavior of correlation functions as the energy scale varies.[

M
∂

∂M
+ β(λ)

∂

∂λ
+ nγ(λ)

]
G(n) ({xi};M,λ) = 0 (14)
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Here M is the renormalization scale and λ is the coupling constant in φ4-theory. G(n) is the n
point correlation function. Intuitively, the Callan-Symanzik equation tells us that for a shift
associated with the change in renormalization scale, we must have corresponding shifts in the
coupling constant and field strength to compensate (to get zero overall). This equation is an
example of a renormalization group equation. Using an explicit perturbative expansion for
the correlation functions in (14) returns a system of equations that can be used to solve for
β and γ as well. The β-function is defined as the rate of change of coupling constant with
respect to the scale:

β(λ) = M
∂

∂M
λ
∣∣∣
λ0,Λ

. (15)

Eq.(15) can also be written as:
d

d log k/M
λ̄ = β(λ̄), (16)

with k as the momentum. Furthermore, λ̄ is also known as the running coupling constant and
(16) is known as the renormalization group equation. If β is positive, we know that for large
momenta the coupling increases, and for negative β, large momenta correspond to decreasing
the coupling constant. For a Lagrangian with multiple coupling constants, (15) corresponds
to a system of coupled autonomous differential equations (i.e. without time dependence).

2.2.2 β-function for QED

The β-function for QED at one-loop correction for the fine structure constant reads [23]

β(α) =
2α2

3π
. (17)

From this, it is immediately evident that β(α) is strictly positive if α ̸= 0. This implies that
the coupling constant is forever increasing, since the β function describes how the coupling
constant (in this case α) varies as a function of scale. This implies the existence of a Landau
pole, where the coupling constant runs to infinity in the ultraviolet limit.

2.2.3 β-function for QCD

For QCD, interestingly, it is the opposite scenario. The coupling constant for the strong force
actually decreases as a function of the energy scale, leading to what is known as asymptotic
freedom. Let us consider the β-function for QCD at the lowest non-trivial order [8]:

β(αs) = −
(
11− ns

6
− 2nf

3

)
α2
s

2π
, (18)

where αs is the coupling constant for the strong force, ns = 3 for 3 gluons, and nf is the
number of flavours of quarks, known to be 6 . The N corresponds to the degree of the
underlying symmetry group SU(N), and since SU(3) is the gauge symmetry for QCD here
N = 3. Substituting N = 3 and nf = 6, we see that β is negative definite. As a result, αs

decreases if the energy scale increases. This is known as asymptotic freedom. In the language
of renormalization group flow, we see that there is an attractive trivial fixed point. The β
evaluates to zero only at αs = 0, and β < 0 implies that the fixed point is attractive.
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2.2.4 Fixed Points and the UV Critical Surface

In analogy to dynamical systems theory, the RG flow can have equilibrium or “fixed points”,
where the flow halts. Mathematically, the β functions evaluate to zero at the fixed point.
Physically, the coupling constants converge to a finite value. To convert to a more generalized
notation, let {gj(k)} denote the set of coupling constants for a system, with k describing the
running coupling scale. The system of ordinary differential equations arising from the RG flow
is given by:

k∂kg
i(k) = βi({gj}), (19)

which is the multi-component form of (15) [21]. As RG flows halt at the fixed points {uj
∗}, we

obtain the equation
βi({gj∗}) = 0. (20)

The β functions describe the rate of flow of the coupling constants, and at a fixed point the
rate of flow is zero (i.e. there is no flow) so β evaluates to zero at a fixed point. Similarly
to dynamical systems, we analyze the qualitative behavior of RG flow via the linearization of
(19) near fixed points {uj

∗}.

k∂kg
i(k) =

∑
j

Bi
j (g

j(k)− gj∗) +O
(
g2
)
, (21)

where

Bi
j ≡

∂

∂gj
βi

∣∣∣∣
g=g∗

, (22)

is the Jacobian evaluated at the fixed point (i.e. this is the linearization matrix). The eigen-
values of this matrix describe stability of fixed points and eigenvectors characterize the flow
direction, which may be repulsive or attractive. Let VI be the eigenvectors, and θI be the
stability coefficients associated with a fixed point. The stability coefficients are the negative
of the eigenvalues for the stability matrix. We denote by CJ the integration constants and by
k0 the reference scale. Then the solution to the linearized system is given by:

gi(k) = gi∗ +
∑
J

CJV
i
J

(
k0
k

)θI

. (23)

If Re(θ) > 0, then as k → ∞ (UV-limit) the sum approaches zero, corresponding to an UV-
attractive fixed point. In contrast, flow trajectories are repelled if Re(θ) > 0, so this case is a
UV-repulsive fixed point. Fixed points with θI > 0 are relevant while Re(θI) < 0 fixed points
are irrelevant. If Re(θI) = 0 then the theory is marginal. The set of all coupling constants
that flow towards a relevant (stable) fixed point is known as the UV critical surface. 2.2.4
shows what this might look like. As coupling constants flow with scale towards a stable fixed
point, they may approach zero, in which case we have a trivial, or Gaussian fixed point. The
obvious example of this is asymptotic freedom, to which the coupling constants for QCD tend
towards zero at ultraviolet energies. On the other hand, if the couplings run toward some
finite constant, this is regarded as a nontrivial fixed point, and more often this is the scenario
of interest.
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Figure 1: Depiction of UV critical surface as the set of theories with coupling constant flowing
towards an attractive fixed point. Theories not part of the UV critical surface are generally
unphysical due to their divergences. The arrows are drawn from UV to IR, by convention.
[17]

2.2.5 Asymptotic Safety and Weinberg’s Criterion

In Critical Phenomena for Field Theorists (1978), Weinberg argued that physical theories
should not have coupling constants approaching infinity such as k → ∞ [24]. Therefore, the-
ories with a physical interpretation must lie on the UV critical surface (i.e. they approach a
fixed point in the UV limit). Such a theory is free from divergences, and hence asymptotically
”safe”. Furthermore, Weinberg noted that there exist finitely many attractive eigenvectors
near a fixed point. As a result, this provides a criterion for choosing a physically meaningful
quantum field theory (i.e. one that is asymptotically safe). This ”may either explain renormal-
izability or else replace it” [25]. It is particularly interesting that gravity, while perturbatively
nonrenormalizable, may nonperturbatively renormalizable if it is asymptotically safe.

3 The Einstein Hilbert Truncation

When considering Asymptotic Safety in the context of gravity, it is particularly insightful
to study the Einstein-Hilbert truncation, the first concretely worked-out example of Steven
Weinberg’s suggestion. In 1998, Reuter presented his ”Nonperturbative Evolution Equation
for Quantum Gravity” [19], where he proposed a general framework for studying quantum
gravity based off the Wilsonian renormalization group and tested on the Einstein-Hilbert
action as a first application. His work with Saueressig in 2001 analyzed the qualitative behavior
of RG flows for the Einstein-Hilbert truncation using numerical approximations [20]. Here, I
present some of the results he obtained and the numerical solutions he derived.

Considering a general scale-dependent effective action, Reuter derived 1998 an exact renor-
malization group equation, which includes explicit dependence on the infrared (low-energy)
cutoff. Using that, he was able to obtain an equation describing the evolution of the effective
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average action Γk:

∂tΓk[g, ḡ] =
1

2
Tr

{(
κ−2Γ

(g)
k [g, ḡ] +Rgrav

k [ḡ]
)−1

∂tR
grav
k [ḡ]

}
− Tr

{(
−M[g, ḡ] +Rgh

k [ḡ]
)−1

∂tR
gh
k [ḡ]

}
, (24)

where Γk[g, ḡ] is the effective average action depending on a scale k, fixed background metric
ḡ, and the full metric g. Rgrav

k [ḡ] and Rgh
k [ḡ] are cutoff functions that suppress low-momentum

modes, and M is the Faddeev-Popov ghost operator. Here ∂t = k d
dk

is the logarithmic
derivative of the length scale (that is, t = ln k). This equation essentially evolves the system
to different energy scales. Importantly, the effective action satisfies a set of Ward identities
such that simple truncations can be made to the action while still preserving essential physics.
A first application of (24) was to study the (full) Einstein-Hilbert action

S =
1

16πḠ

∫
ddx

√
g
[
−R(g) + 2λ̄

]
. (25)

where Ḡ here is the bare Newton constant (i.e. value of gravitational constant before including
effects from renormalization) and similarly λ̄ is the bare cosmological constant. R(g) is the
Ricci scalar describing the scalar curvature. The later paper by Reuter and Saueressig in 2001
examined the renormalization group flow for this action with truncations from cutoff functions
(arising from the IR cutoff), which for this paper was chosen to have the form

Rgrav
k [ḡ] = Zgrav

k k2R(0)(−D̄/k2), Rgh
k [ḡ] = k2R(0)(−D̄/k2). (26)

Here (Zgrav
k )µνρσ is a matrix that acts on metric fluctuations hµν ≡ gµν − ḡµν , and D̄2 would

be the covariant Laplacian. The shape function R(0) is in general arbitrary with constraints

R(0) = 1, R(0)(z → ∞) = 0. (27)

This form corresponds to a cutoff of “TYPE A” (i.e. a cutoff formulated in terms of the metric
fluctuation hµν), and the cutoff functions are included in the IR-cutoff term ∆kS to suppress
low-energy/momentum modes.

∆kS[h,C, C̄; ḡ] =
1

2
κ2

∫
ddx

√
ḡhµν(R

grav
k [ḡ])µνρσhρσ +

√
2

∫
ddx

√
ḡC̄µR

gh
k [ḡ]Cµ. (28)

Cµ and C̄µ correspond to ghost fields which are not of particular relevance here. To obtain
the flow equation, one substitutes the effective average action into (24). For the problem at
hand, we approximate Γk[g, ḡ] by the Einstein-Hilbert truncation anstaz.

Γk[g, ḡ] = (16πGk)
−1

∫
ddx

√
ḡ
(
−R + 2λ̄k

)
+ classical gauge fixing. (29)

Substituting this into to (24) gives us the flow equations of the form in(19) for the dimensionless
cosmological constant λ̄k and Newton’s constant Gk. They are related to λk and gk through

gk ≡ Gkk
d−2, λk ≡ λ̄kk

−2. (30)
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Using the dimensionless couplings, the flow equation is given by

∂tλk = βλ(λk, gk), ∂tgk = βg(λk, gk). (31)

The β-functions are given as

βλ(λk, gk) = −(2− ηN)λ+
1

2
(4π)1−d/2g·

·
[
2d(d+ 1)Φ1

d/2(−2λ)− 8Φ1
d/2(0)− d(d+ 1)ηN Φ̃

1
d/2(−2λ)

]
, (32)

βg(λk, gk) = (d− 2 + ηN), (33)

Here ηN is the anomalous dimension of the operator
∫
ddx

√
gR, describing the changes in the

field dimension due to scale variations. The expression for ηN reads

ηN(g, λ) =
gB1(λ)

1− gB2(λ)
, (34)

with B1(λ), B2(λ) defined through

B1(λ) ≡
1

3
(4π)1−d/2

[
d(d+ 1)Φ1

d/2−1(−2λ)− 6d(d− 1)Φ2
d/2(−2λ)− 4dΦ1

d/2−1(0)− 24Φ1
d/2(0)

]
,

(35)

B2(λ) ≡ −1

6
(4π)1−d/2

[
d(d+ 1)Φ̃1

d/2(−2λ)− 6d(d− 1)Φ̃2
d/2(−2λ)

]
. (36)

The functions Φp
n(w), Φ̃

p
n(w)are threshold functions depending on the shape functions R(0).

Φp
n(w) =

1

Γ(n)

∫ ∞

0

dzzn−1R
(0)(z)− zR(0)′(z)

[z +R(0)(z) + w]
p , (37)

Φ̃p
n(w) =

1

Γ(n)

∫ ∞

0

dzzn−1 R(0)(z)

[z +R(0)(z) + w]
p . (38)

We now have the equations (and tools) to study the numerical solutions of that set of
horribly nonlinear differential equations. We set d = 4 (i.e. back to the real world). Let us
begin with identifying the fixed points that occur where the β-functions evaluate to zero. By
inspection, (33) and (32) evaluate trivially to zero at λ∗ = g∗ = 0, and this corresponds to
a trivial fixed point. However, the β-functions can also evaluate to zero for g∗ ̸= 0, but this
would resemble a non-Gaussian fixed point. To study behaviour near the fixed points, we
linearize the system of differential equations using the following general form

∂tgi ≈
∑
j

Bij(gj − g∗j ), B ≡ [Bij] =

[
∂βλ

∂λ
∂βλ

∂g
∂βg

∂λ

∂βg

∂g

]
(39)

In the case of the Einstein-Hilbert action, gi refers to λ and g. Calculating the required
derivatives for the Jacobian, we obtain

∂βλ

∂λ
= −(2− ηN) +

(
λ− g/2(4π)1−d/2d(d+ 1)Φ̃2

d/2(−2λ)
) ∂ηN

∂λ

+
g

2
(4π)1−d/2

(
4d(d+ 1)Φ2

d/2(−2λ)− 2d(d+ 1)Φ̃2
d/2(−2λ)

)
, (40)

Winter 2024 9



MA PH 499 Final Report Aneca Su

∂βλ

∂g
=

(
λ− g/2(4π)1−d/2d(d+ 1)Φ̃1

d/2(−2λ)
) ∂ηN

∂g

+
1

2
(4π)1−d/2

(
2d(d+ 1)Φ1

d/2(−2λ)− d(d+ 1)Φ̃1
d/2(−2λ)

)
, (41)

∂βg

∂λ
=

g2

1− gB2(λ)
(B′

1(λ) + ηNB
′
2(λ)), (42)

∂βg

∂g
= d− 2 +

(
2 +

gB2(λ)

1− gB2(λ)

)
ηN . (43)

The derivatives of ηN reads

∂ηN
∂g

=

(
2 +

gB2(λ)

1− gB2(λ)
ηN

)
. (44)

3.1 Trivial Fixed Point

Now, substituting in the trivial fixed point to the Jacobian gives the following stability matrix

B ≡
[
−2 (4π)1−d/2d(d− 3)Φ1

d/2(0)

0 d− 2

]
. (45)

Diagonalizing this matrix produces two eigenvalues (i.e. stability coefficients).

θ1 = 2, θ2 = 2− d, (46)

and the corresponding eigenvectors

V 1 =

(
1
0

)
, V 2 =

(
(4π)1−d/2d(d− 3)Φ1

d/2(0)

1

)
. (47)

This linearization tells us the qualitative behavior of the RG trajectories near the trivial fixed
point, and using this we obtain the linearized solutions for λk and gk

λk = α1
M2

k2
+ α2(4π)

1−d/2d(d− 3)Φ1
d/2(0)

kd−2

Md−2
, (48)

gk = α2
kd−2

Md−2
, (49)

with α1, α2 as integrating constants or initial conditions. Since we live in a 4-dimensional
spacetime, setting d = 4 gives us θ2 = −2. Now the eigenvalues are opposite in sign, so
the trivial fixed point has a saddle-point like behavior, where it is driven away along the
V 1 direction (i.e. repulsive), but is attractive in the V 2 direction. The behavior of λk itself
depends on the initial conditions, with the sign on α1 playing an especially important role. If
we restore the dimensions, the coupling constants λ̄k, Gk reads

Gk = G0, λ̄k = λ̄0 + (4π)1−d/2d(d− 3)Φ1
d/2(0)G0k

d, (50)

with α2 chosen to be 1 and λ̄0 = α1m
2
Pl and note that M is identified as the Planck mass (i.e.

M = mPl). Here it is evident that for k → 0 the coupling constants approach fixed values
(G0, λ0), which depend on an external parameter α1.
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3.2 The Non-trivial Fixed Point

It was identified earlier that we have a nontrivial fixed point for g∗ ̸= 0 , so now let us consider
the qualitative behaviour of trajectories near this fixed point. The β-function for g in (33)
implies that d−2+ηN(λ

∗, g∗) = 0, and using the expression for ηN from (34) gives g∗ in terms
of λ∗

g∗(λ∗) =
d− 2

(d− 2)B2(λ∗)−B1(λ∗)
, (51)

which may be further used to remove the dependence on g in βλ at the fixed point. Unfortu-
nately, solving for λ∗ in βλ(λ

∗, g∗) = 0 analytically is impossible. The matrix entries for the
stability matrix is given through

However, we can impose a “sharp cutoff” for the shape functions R(0) and use that to
simplify calculations for the nontrivial fixed point. The function Rk(p

2) is defined through

Rk(p
2) ≡ k2R(0)

(
p2

k2

)
, (52)

so that the sharp cutoff reads

Rk(p
2)sc ≡ R̂Θ

(
1− p2

k2

)
, (53)

where R̂ is a parameter that we send to infinity after performing the integral over p in the
threshold functions. Here Θ is the Heaviside step function. This choice of cutoff suppresses
modes with momentum p2 < k2. The nontrivial fixed point is then numerically determined to
be

λ∗ = 0.330, g∗ = 0.403. (54)

Following the same procedure as analyzing the trivial fixed point, the stability coefficients are
determined to be

θ1 ≡ θ′ + iθ′′ = 1.941 + i 3.147, (55)

θ2 ≡ θ′ − iθ = 1.941− i 3.147, (56)

which are clearly complex. Without explicitly determining the associated eigenvectors, we can
express the general solution as(

g(t)− g∗

λ(t)− λ∗

)
= α1 sin(−θ′′t)e−θ′t Re(V ) + α2 cos(−θ′′t)e−θ′t Im(V ), (57)

where V corresponds to the associated complex eigenvector. Here θ′ = 1.941 > 0, so the
nontrivial fixed point is attractive, with solutions spiraling into the fixed point. As a result of
the positive stability coefficient, taking t → ∞ the trajectories will be UV-attracted towards
the fixed point. Furthermore, this implies that between the trivial and nontrivial fixed point,
the nontrivial one will dominate for large t.
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Figure 2: Phase portrait of RG flow in the λ-g phase plane. There are two fixed points, a
trivial one at the origin and a nontrivial one in the positive λ-g region. The arrows indicate
the flow as k → 0.

3.3 The Phase Portrait

Earlier we have determined the autonomous differential equations that govern the RG flow of
g, λ. Now, we consider the phase portrait describing the RG flow and try to get a qualitative
understanding of the solutions. The phase portrait (see Fig. 2) is obtained by numerically
solving the differential equations for g, λ in equation (31). Examining Fig.2 reveals the exis-
tence of two fixed points – a trivial one at the origin and a nontrivial fixed point in the upper
right quadrant, in complete agreement with our earlier analysis. The former (if one looks
near the origin) has a saddle-like nature, corresponding to the two opposing-sign eigenvalues
obtained. The latter fixed point is clearly dominant for large t as solutions in the upper half
are strongly attracted toward that fixed point, with the telltale spiral behavior predicted by
the complex stability coefficients. More interestingly, there is a trajectory connecting the non-
trivial fixed point to the trivial fixed point in the k → 0 limit, implying that the renormalized
cosmological constant λ̄0 vanishes in the limit of k → 0. On a note about the more general
behavior, we can see that trajectories starting to the left of the separation line (where g =
0) are driven towards negative infinity. At the same time, those beginning to the right of the
separation line halt at λ = 1/2 at a finite value of k.

The important consequence of the results presented in Fig.2 is the non-Gaussian fixed point
that attracts all trajectories with g > 0 in the UV limit. Physically, this would correspond
to a stable constant value for the gravitational and cosmological constants in the high-energy
limit, and this would be a non-perturbative result. This reveals extremely interesting physical
behavior previously unobserved using perturbative calculations. The remaining question is
whether or not this behavior is present in the full theory for the Einstein-Hilbert action without
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the truncation. If so, gravity would have a non-perturbatively renormalizable interpretation,
described by taking the cutoff to infinity and recovering the fixed point–this is the critical
thinking behind Asymptotic Safety. This would allow (pure) Einstein gravity to be interpreted
as a complete and fundamental theory valid at all energy scales, in opposition to its current
effective theory description valid at low energies only. [15, 26].

3.4 Extensions of the Einstein-Hilbert Truncation

Since the establishment of two fixed points for the Einstein-Hilbert truncation, extensive efforts
have been made to further analyze the Einstein-Hilbert truncation. This involved considering
higher-order terms in the truncation, which would require incorporating more complicated
terms involving the metric and its curvature tensors. A notable example is from[11], where
the Einstein-Hilbert truncation is generalized by including a higher derivative term R2. This
introduces a third coupling constant in addition to λ and g. When investigating the resulting
three-dimensional RG flow, it was observed that the original Gaussian fixed point vanished, as
(0, 0, 0) was not a simultaneous zero of all three β-functions. On the other hand, there remains
a non-Gaussian fixed point, and surprisingly it continues to be UV-attractive. Moreover, it
yields a positive physical value for the constants λ∗, g∗. Further analysis in extensions of the
Einstein-Hilbert truncation included a contribution from the Riemann tensor RµνρσR

µνρσ, and
beyond this, the action involving R2, RµνR

µν , RµνρσR
µνρσ was also examined [1, 7, 13]. More

recently, there has been work on studying the action with polynomial functions of the scalar
curvature (f(R)-truncation), recently computed up to order 71 [2]. Similarly, researchers have
studied effective actions involving functions of the Riemann tensor and the Ricci tensors.
Notably, in all of these scenarios a non-Gaussian fixed point was identified, consistent with
the Weinberg criterion, which offers a strong expectation that the full theory should possess
a suitable fixed point.

4 Applications of Asymptotic Safety

4.1 Couplings with Matter Fields

The analysis of pure gravity via the Einstein-Hilbert truncation strongly suggests the existence
of a fixed point, but it is natural to question how gravitational couplings with matter fields
impact AS. Most studies on incorporating matter into AS use a minimal coupling, where it is
assumed that matter can only interact with gravity through mass and energy. This introduces
the minimum number of terms into the action.

In [6], Eichhorn showed that the inclusion of matter in the action generates new non-
vanishing couplings, which contribute to the RG flow. For a scalar field coupled with grav-
ity, the metric induced momentum-dependent self-interactions, and along with matter self-
interactions they remove a previously existing Gaussian fixed point corresponding a coupling
constant independent of momentum [3]. This means that including quantum gravity changes
the dynamics and properties of matter systems. It was also noted that this could fundamen-
tally change matter couplings, possibly from marginal to irrelevant.

With respect to the Standard Model, there is evidence that gravity remains asymptotically
safe even when coupled to observed matter fields [14]. More interestingly, it was very recently
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shown that the Standard Model couplings become asymptotically free due to asymptotically
safe gravity. Importantly, this allows AS to predict the quartic coupling as a calculable
quantity for the Higgs field, in the infrared limit. That is, one can use Asymptotic Safety
to calculate the mass of the Higgs boson. This calculation was completed by [22], and their
results predicted a mass of 126 GeV with minimal uncertainty. This theoretical result for the
Higgs mass is in excellent agreement with the experimentally observed value. This highlights
the predictive power of Asymptotic Safety. Moreover, the theory predicts IR values for Abelian
gauge couplings and Yukawa couplings, but there is significant uncertainty surrounding these
values, which is uncertain if the predictions are consistent with observations.

4.2 Fine Structure Constant

It is known that QED has a Landau pole for the fine structure constant α. However, if QED is
coupled to quantum gravity in AS, this is surprisingly not the case, as shown in [9]. Examining
the RG flow for a simple truncation of the effective average action (coupled with QED) shows
the existence of two non-trivial fixed points. One of them suggests that the fixed point value
of the fine structure constant is zero, that is, electromagnetic interactions play no role and
the system reduces to pure gravity. In this scenario, the infrared value for the fine structure
would have to be determined from experiment (i.e. it is a free parameter in the theory). The
other nontrivial fixed point is much more interesting. In this case, the value of α is non-zero
at the fixed point, which implies that one can predict the low-energy value of α entirely from
the theory in terms of the electron mass. That is, if one simultaneously considers QED and
Quantum Einstein Gravity (QEG), there is no Landau pole, and the theory is well-behaved
in the ultraviolet limit.

5 Controversies and Criticisms

One of the key principles in all quantum theories is the requirement that the probabilities sum
to one. However, it is unclear whether Asymptotic Safety satisfies this criterion. Therefore,
AS suffers from a lack of unitarity, directly due to the higher-derivative terms in the action.
This is a general result, present in classical theories according to Ostrogradsky’s theorem [12].
It essentially states that Hamiltonians with higher order time derivatives feature an instability
such that the Hamiltonian is unbounded. In quantum systems, this instability manifests itself
as ghost states that violate probability conservation [2, 5].

Another issue has to do with the Lorentzian nature of gravity. Currently (and thus far in
this report), all results shown and conclusions obtained were based on a functional integral
defined on an Euclidean metric (i.e.

∫
ddx). This had the benefit that the momentum squared

(k2) was positive semi-definite, so it made sense to define a direction on the RG flow. It was
easy to implement the Wilsonian RG approach of integrating out modes with higher momenta
and successively moving to lower values of k. While it is common practice to work in a
Euclidean signature via a Wick rotation, the presence of gravity makes it challenging to do so
for Asymptotic Safety [2, 5]. This remains one of the open questions for Asymptotic Safety.
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6 Conclusion

In conclusion, this report presents a general overview of Asymptotic Safety and its possible
implications for quantum gravity. Section 2 began with a discussion of renormalization as a
way to shift between energy scales via integrating out higher degrees of freedom. This then
leads into the idea of a Renormalization Group, where one observes that successive shifts
between energy scales are additive in the sense of a group (i.e. preserve the form of the
functional integral). Using this, it is easy to see that the effects of renormalization can be
absorbed into the coupling constants, and to study how the system evolves as a function of
energy, it is sufficient to consider how the coupling constants flow. This is the essential idea
behind the Renormalization Group flow. The details of the RG flow are characterized by β-
functions, which lead to a set of differential equations to be qualitatively studied via stability
analysis. A brief example of QED and QCD is given to illustrate how flows can vary.

With the important tools and background at hand, focus is turned to studying qualitatively
the RG flows for the Einstein-Hilbert truncation in Section 3. It was discovered that there
exist two fixed points, one Gaussian and the other non-Gaussian. The Gaussian fixed point
was shown to be IR-attractive, that is for low energies the gravitational and cosmological
constants tended to zero. For the non-Gaussian fixed point, however, analysis revealed it as
UV-attractive, so at arbitrarily high energies gravity appears asymptotically safe based on
the Einstein-Hilbert truncation. This result is reinforced by a extensive later calculations for
generalized versions of the Einstein-Hilbert truncation.

Section 4 more broadly examined the physical applications of Asymptotic Safety in the
context of coupling to matter fields, the Higgs mass, and the fine-structure constant. For cou-
pling to matter fields, calculations show that including quantum gravity interactions modifies
the fixed-point behavior and affects dynamics of matter fields. Within the Standard Model,
Asymptotic Safety showcases its predictive power in providing an accurate theoretical predic-
tion for the Higgs mass. It also offers predictions for other couplings, but due to uncertainties
it is unclear whether the results are in good agreement. In the latter case, AS suggests that
if one considers both QED and QEG then the Landau pole may not pose a problem at all
in the UV limit. Finally, we also considered some of the issues surrounding AS, such as the
emergence of ghost states violating unitarity due to higher order derivatives and the difficulty
in performing calculations for AS in the Lorentzian metric as opposed to the Euclidean metric.

Overall, AS is an interesting theory for quantum gravity in the sense that it works within
the existing framework of effective field theory and quantum field theory without the introduc-
tion of exotic assumptions (extra dimensions from string theory, supersymmetry..etc). Present
results from the Einstein-Hilbert action strongly suggest that gravity is asymptotically safe,
such gravity is likely to be non-perturbatively renormalizable.
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