<u>Chapter 12 – Simple Linear Regression</u>

Notation:

- bivariate sample: $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
- sample means: \bar{x} , \bar{y}
- sample std dev.: s_x , s_y
- sums of squares and cross-products:

$$S_{XX} = \sum (x_i - \bar{x})^2 = \sum x^2 - \frac{(\sum x)^2}{n} = (n - 1)s_x^2$$

$$S_{YY} = \sum (y_i - \bar{y})^2 = \sum y^2 - \frac{(\sum y)^2}{n} = (n - 1)s_y^2$$

$$S_{XY} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

Terminology:

\boldsymbol{x}	y
Explanatory variable	Response variable
Independent variable	Dependent variable
Predictor variable	Predicted variable

Ex12.1) Four variables of current Oilers roster: height, weight, jersey, age

- which relationships might be valid?
- how can we describe the relationship between any pair?
- how do we use the description to make predictions?
- how do we quantify errors in estimates and predictions?

Simple Linear Regression (SLR) model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 $E(Y_i | x_i) = \beta_0 + \beta_1 x_i, i = 1, ..., n$

- $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ are the observed data.
- $\epsilon_1, ..., \epsilon_n$ are unobserved "errors", assumed to be a random sample from $N(0, \sigma^2)$.
- $\beta_0, \beta_1, x_1, ..., x_n$ are assumed to be fixed; $y_1, ..., y_n$ are random variables.
- β_0 , β_1 , σ are unknown parameters.
 - o β_0 is the "population" intercept.
 - o β_1 is the average change in y associated with a 1-unit increase in x.
 - \circ σ determines the extent to which points deviate from the line
- The conditional distribution of y_i given x_i is $N(\beta_0 + \beta x_i, \sigma^2)$.

$$(E(Y | x) = E(\beta_0 + \beta_1 x + \epsilon) = \beta_0 + \beta_1 x + E(\epsilon) = \beta_0 + \beta_1 x$$

$$V(Y | x) = V(\beta_0 + \beta_1 x + \epsilon) = V(\beta_0 + \beta_1 x) + V(\epsilon) = 0 + \sigma^2$$

- Basic Assumptions of the SLR Model
 - The distribution of ϵ at any x has a mean of zero ($\mu_{\epsilon} = 0$ to aid linearity).
 - o The std. dev. of ϵ is the same for any x (i.e. it's constant).
 - The distribution of ϵ at any x is normal.
 - The random deviations $\epsilon_1, \epsilon_2, ..., \epsilon_n$ associated with different observations are independent of one another.

12.2 Fitting the Regression Line

Least squares estimation of β_0 and β_1 :

For any given line $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, the value $\epsilon_i = y_i - (\beta_0 + \beta_1 x_i)$ represents the vertical deviation of the point from the line. We want to choose (β_0, β_1) to minimize the sum of squared deviations (hence "least squares"):

$$\sum (y_i - \beta_0 - \beta_1 x_i)^2$$

Using calculus, the corresponding solution becomes

$$\hat{\beta}_1 = \frac{S_{XY}}{S_{YY}}$$
 and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Subsequently, the estimated regression line is: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$. We interpret \hat{y} as:

- estimator of $\beta_0 + \beta_1 x$ = the conditional mean of y given x
- predictor of new individual y values given x

NOTE: Extrapolation can be dangerous.

Ex12.2) Choosing to predict final pctg from midterm pctg (both vars. are continuous)

x = midterm percentage (in %), y = final percentage (in %) Via calculation, n = 99, $\bar{x} = 70.20$, $\bar{y} = 59.33$,

$$S_{XX} = 20845.96$$
, $S_{YY} = 23600.42$, $S_{XY} = 12680.25$

a) Determine the estimated regression line.

- b) Estimate final percentage when midterm percentage is 50%.
- c) Estimate final percentage when midterm percentage is zero.

(Excel example shown.)

Estimating error:

- Predicted or fitted values: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.
- Residuals: $e_i = y_i \hat{y}_i = y_i \beta_0 \beta_1 x_i$.
- Residual plots are often used as a diagnostic tool. Plot of x vs. residuals. (plots drawn in class and shown with Excel example)
- Residual sum of squares (formula not in textbook):

$$SSE = \sum (y_i - \hat{y}_i)^2 = S_{YY} - \hat{\beta}_1 S_{XY}$$

- Estimate the error variance σ^2 by

$$\hat{\sigma}^2 = s_e^2 = \frac{SSE}{n-2} = \frac{\sum y_i^2 - \hat{\beta}_0 \sum y_i - \hat{\beta}_1 \sum x_i y_i}{n-2}$$

- Warning: Do NOT confuse s_e with s_y or s_x .
- Why divide by n-2? (estimation of β_0 and β_1 is a loss of 2 degrees of freedom)

Ex12.3) Estimate σ .

12.3 Inferences on the Slope

When the 4 assumptions of the SLR model are satisfied, then $E(\hat{\beta}_1) = \beta_1$. Also,

$$V(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
 \Rightarrow $S.E.(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$

Since $\hat{\beta}_1$ is a linear combination of normally distributed random variables Y_i , then

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2 / S_{xx}).$$

Testing the significance of the slope creates H_0 : $\beta_1 = b_1$, such that the test statistic is

$$t_0 = \frac{\hat{\beta}_1 - b_1}{S.E.(\hat{\beta}_1)} \sim t_{n-2}$$

Both two-sided and one-sided tests are possible. More importantly, H_0 : $\beta_1 = 0$ can test for the *significance of regression*.

Confidence Interval:

If the observations are normally and independently distributed, the CI for β_1 is

$$\hat{\beta}_1 \pm t_{\alpha/2, n-2} \times S.E.(\hat{\beta}_1)$$

Ex12.4) a) Construct a 95% CI for β_1 .

b) Is there evidence that final percentage increases as midterm percentage increases?

12.6 ANOVA for SLR

A method called <u>ANalysis Of VAriance (ANOVA)</u> can also test significance of regression. For sources of variability in the SLR model, the *ANOVA identity* is

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$

where SST is the <u>total corrected sum of squares</u> and SSR is the <u>regression sum of squares</u>. This latter term summarizes how much less error there is in predicting y using the regression line compared to using \overline{y} . Due to the presence of "squares", an appropriate test requires a ratio of values. Thus, for H_0 : $\beta_1 = 0$, the test statistic is

$$F_0 = \frac{SSR/1}{SSE/(n-2)} = \frac{MSR}{MSE} \sim F_{1, n-2}$$

Def'n: The *F*-distribution has the following properties:

- 1. It is continuous and skewed to the right.
- 2. It has two parameters: v_1 for the numerator and v_2 for the denominator.
- 3. The units of an *F* distribution are nonnegative.

ANOVA Table

Source	SS	df	MS	F	<i>p</i> -value
Regression	SSR	1	MSR	MSR /MSE	$P(F_0 > F_{1, n-2})$
Error	SSE	n-2	MSE		
Total	SST	n-1			

Note: MS denotes <u>mean squares</u>, and, always, MS = SS/df for a particular row. Also, $\hat{\sigma}^2 = MSE$ and $F = t^2$.

(Excel example shown with full hypothesis test carried out in class.)

12.4/12.5 Inferences based on the estimated regression line

• CI for the mean value of y corresponding to x*

$$\hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\alpha/2, n-2} \times \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{XX}}}$$

Notice how the standard error increases with $(x^* - \overline{x})^2$. Why? (Being further away from the center of the x values denotes a "less precise" estimate.)

Prediction interval for an individual value of y corresponding to x*

$$\hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\alpha/2, n-2} \times \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{XX}}}$$

Why is the PI wider than the CI? (Considering individual value, not mean.)

Ex12.5)

a) Give a 95% CI for FPct when MPct = 75%. Compare with 95% PI.

b) Give a 95% CI for β_0 . Is this result consistent with $\beta_0 = 0$? (Intercept at origin.)

12.6/12.9 "R-squared"/Correlation

- R^2 = coefficient of determination = the proportion of variance of y explained by regression on x = $\frac{SSR}{SST} = 1 - \frac{SSE}{SST} = R^2$ = squared correlation coefficient
- The coefficient of determination is called R^2 in the context of multiple linear regression (several predictors), but we have $R^2 = r^2$ in the context of simple linear regression (one predictor).

Def'n: (Pearson's) sample correlation coefficient r is given by

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} z_x z_y$$
$$= \frac{S_{XY}}{\sqrt{S_{XX}} \sqrt{S_{YY}}}$$

(Example graphs to show correlation were drawn in class: 1. strong positive linear; 2. weak positive linear; 3. negative linear; 4. no pattern; 5. parabola; 6. exponential)

Properties of *r*:

- A measure of the LINEAR relationship between two variables.
- The population correlation is denoted by ρ (rho).
- $-1 \le r \le 1$ and $-1 \le \rho \le 1$
- The magnitude of *r* measures the strength of the relationship:
 - o If $r = \pm 1$, then the points follow a straight line.
 - \circ If r = 0, then the pattern of scatter suggest no linear relationship.
- The sign of r indicates the nature of the relationship:
 - o Positive association if r > 0,
 - o Negative association if r < 0.
- Sign of $r = \text{sign of } \beta_1$.
- The two variables x and y play symmetric roles.
- Location and scale invariance (unitless).
- We can have r = 0, even when the data reveal a strong nonlinear relationship.
- Correlation does not imply causation (or vice versa).
- Correlation is sensitive to outliers.

Ex12.6)

- a) What proportion of the variance of final percentage is explained by midterm percentage?
- b) What is the correlation between final percentage and midterm percentage?
- 12.7 Residual Analysis (discussed back in 12.2; consider also "normality plot" of e_i)