

Chapters 1-6:

Population vs. sample → Parameter vs. statistic
Statistics: Descriptive vs. inferential

Types of variables

Tables, charts & graphs

- frequency tables
- qualitative: bar graph/pie chart
- stem-and-leaf plot/dot plot
- time plot
- histogram (modality)
 - traits: # of modes, tail weight, overall shape (symmetry, skewness)
 - identify skewness by TAIL
- boxplot (skewness)
 - outliers, overall shape (symmetry, skewness)
 - identify skewness inside box or entire graph

Measures of center/spread/position

- center: mean, median, mode
 - Outlier effect? Skewness effect?
- spread: range, variance, standard deviation, IQR
 - Why use squared and $(n - 1)$? Ever negative? Empirical Rule?
- position: min, max, percentiles (quartiles)
 - recall that we INCLUDE the median when determining quartiles
 - 5-number summary, boxplot, types of outliers

Chapters 7-10:

Displaying bivariate data

- scatterplot: visual aid to see form/strength/direction of relationship and/or outliers (large residual, high leverage, influential)
- correlation: numerical aid to see strength/direction of relationship (range?)
 - Warning: assumes linearity, sensitive to outliers

Simple linear regression analysis

- regression line: $\hat{y} = b_0 + b_1x$
- least-squares estimation gives $b_1 = r \left(\frac{s_y}{s_x} \right)$ and $b_0 = \bar{y} - b_1 \bar{x}$
- estimation: interpolation vs. extrapolation (BAD!)
- R-squared: r^2 = proportion of variation in y explained by x
- causation: association does NOT imply causation
- residual plots: observed vs. theoretical appearance
- transformation of a variable can help improve linearity

Chapter 11-13:

- observational/retrospective/prospective study, experiment/controlled clinical trial
 - population and causal inferences (what needs to be present for each?)
- types of bias (response, undercoverage, nonresponse)
- types of sampling: with/without replacement, SRS/stratified/cluster/
voluntary/convenience/systematic
- controlling factors: randomization, blocking, direct control, replication
- more experiment design definitions

Chapters 14-15:

- types of events: marginal, conditional, union, intersection, complement,
 - What common words identify them?
- relating events: dependent vs. disjoint vs. independent
 - Do these relations affect the rules below? If so, how?
 - Do they allow certain rules to be easily extended?
- probability laws:
 - conditional probability: $P(A | B) = \frac{P(A \cap B)}{P(B)}$
 - complement rule: $P(A^C) = 1 - P(A)$
 - multiplication rule: $P(A \cap B) = P(A \text{ and } B) = P(A) \times P(B | A) = P(B) \times P(A | B)$
 - addition rule: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 - total probability rule: $P(A) = P(A \cap B) + P(A \cap B^C)$
 - recall examples where we combined a few of these together

Chapter 16-17:

Distributions

- discrete (exact probability or intervals) vs. continuous (only intervals)
 - Discrete: If $P(X = a) > 0$, then $P(X \leq a) \neq P(X < a)$
 - Continuous: If $P(X = a) = P(X = b) = 0$, then $P(a \leq X \leq b) = P(a < X < b)$
- discrete distributions:
 - determine probability distribution (values of X and corresponding probabilities)
 - mean: $\mu = \sum x_i P(X = x_i)$
 - variance: $\sigma^2 = \sum (x_i - \mu)^2 P(X = x_i)$
- continuous distributions:
 - uniform distribution: finding an area of a rectangle (with a twist!)
 - normal distribution: symmetric, 2 parameters: μ and σ , other properties

Standard Normal Distribution (and its applications)

- $\mu = 0$ and $\sigma = 1$
- Table Z only gives areas to left of value z , conversion to these values required
→ use diagrams, complements, symmetry, etc.
- standardizing: $P(X \leq x) \rightarrow P\left(\frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma}\right) = P(Z \leq z)$
- identifying values for a given probability: $x = \mu + z\sigma$

Combinations and Functions of Random Variables

For any constants a and b ,

Means:

1. $E(a) = a$
2. $E(aX) = aE(X)$
3. $E(aX + b) = aE(X) + b$
4. $E(aX \pm bY) = aE(X) \pm bE(Y)$

Variances:

1. $V(a) = 0$
2. $V(aX) = a^2 V(X)$
3. $V(aX + b) = a^2 V(X)$
4. $V(aX \pm bY) = a^2 V(X) + b^2 V(Y) \pm 2ab\text{cov}(X, Y)$

$$Y = a_1X_1 + a_2X_2 + \dots + a_nX_n + b, E(Y) = a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n) + b$$

$$\text{If } X_1, X_2, \dots, X_n \text{ are independent, } V(Y) = a_1^2V(X_1) + a_2^2V(X_2) + \dots + a_n^2V(X_n)$$

Chapter 18:

Sampling Distributions

- sample proportion:

$$\text{Rule 1: } \mu_{\hat{p}} = p.$$

$$\text{Rule 2: } \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{pq}{n}}.$$

Rule 3: If np and $n(1-p)$ are both ≥ 15 , then \hat{p} has an approx. normal dist'n.

$$\text{All 3 rules } \rightarrow Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

- sample mean:

$$\text{Rule 1: } \mu_{\bar{y}} = \mu.$$

$$\text{Rule 2: } \sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}.$$

Rule 3: When the population distribution is normal, the sampling distribution of \bar{y} is also normal for any sample size n .

Rule 4 (CLT): When $n > 30$, the sampling distribution of \bar{y} is well approximated by a normal curve, even when the population distribution is not itself normal.

$$\text{All 4 rules } \rightarrow \text{If } n \text{ is large OR the population is normal, } Z = \frac{\bar{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$