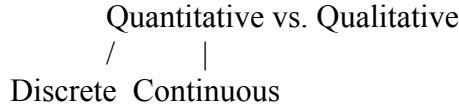


Chapters 1-6:

Population vs. sample → Parameter vs. statistic
Statistics: Descriptive vs. inferential

Types of variables



Tables, charts & graphs

- frequency tables
- qualitative: bar graph/pie chart
- stem-and-leaf plot/dot plot
- time plot
- histogram (modality)
 - traits: # of modes, tail weight, overall shape (symmetry, skewness)
 - identify skewness by TAIL
- boxplot (skewness)
 - outliers, overall shape (symmetry, skewness)
 - identify skewness inside box or entire graph

Measures of center/spread/position

- center: mean, median, mode
 - Outlier effect? Skewness effect?
- spread: range, variance, standard deviation, IQR
 - Why use squared and $(n - 1)$? Ever negative? Empirical Rule?
- position: min, max, percentiles (quartiles)
 - recall that we INCLUDE the median when determining quartiles
 - 5-number summary, boxplot, types of outliers

Chapters 7-10:

Displaying bivariate data

- scatterplot: visual aid to see form/strength/direction of relationship and/or outliers (large residual, high leverage, influential)
- correlation: numerical aid to see strength/direction of relationship (range?)
 - Warning: assumes linearity, sensitive to outliers

Simple linear regression analysis

- regression line: $\hat{y} = b_0 + b_1x$
- least-squares estimation gives $b_1 = r \left(\frac{s_y}{s_x} \right)$ and $b_0 = \bar{y} - b_1 \bar{x}$
- estimation: interpolation vs. extrapolation (BAD!)
- R-squared: r^2 = proportion of variation in y explained by x
- causation: association does NOT imply causation
- residual plots: observed vs. theoretical appearance
- transformation of a variable can help improve linearity

Chapter 11-13:

- observational/retrospective/prospective study, experiment/controlled clinical trial
 - population and causal inferences (what needs to be present for each?)
- types of bias (response, undercoverage, nonresponse)
- types of sampling: with/without replacement, SRS/stratified/cluster/
voluntary/convenience/systematic
- controlling factors: randomization, blocking, direct control, replication
- more experiment design definitions

Chapters 14-15:

- types of events: marginal, conditional, union, intersection, complement,
 - What common words identify them?
- relating events: dependent vs. disjoint vs. independent
 - Do these relations affect the rules below? If so, how?
 - Do they allow certain rules to be easily extended?
- probability laws:
 - conditional probability: $P(A | B) = \frac{P(A \cap B)}{P(B)}$
 - complement rule: $P(A^C) = 1 - P(A)$
 - multiplication rule: $P(A \cap B) = P(A \text{ and } B) = P(A) \times P(B | A) = P(B) \times P(A | B)$
 - addition rule: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 - total probability rule: $P(A) = P(A \cap B) + P(A \cap B^C)$
 - recall examples where we combined a few of these together

Chapter 16-17:

Distributions

- discrete (exact probability or intervals) vs. continuous (only intervals)
 - Discrete: If $P(X = a) > 0$, then $P(X \leq a) \neq P(X < a)$
 - Continuous: If $P(X = a) = P(X = b) = 0$, then $P(a \leq X \leq b) = P(a < X < b)$
- discrete distributions:
 - determine probability distribution (values of X and corresponding probabilities)
 - mean: $\mu = \sum x_i P(X = x_i)$
 - variance: $\sigma^2 = \sum (x_i - \mu)^2 P(X = x_i)$
- continuous distributions:
 - uniform distribution: finding an area of a rectangle (with a twist!)
 - normal distribution: symmetric, 2 parameters: μ and σ , other properties

Standard Normal Distribution (and its applications)

- $\mu = 0$ and $\sigma = 1$
- Table Z only gives areas to left of value z , conversion to these values required
→ use diagrams, complements, symmetry, etc.
- standardizing: $P(X \leq x) \rightarrow P\left(\frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma}\right) = P(Z \leq z)$
- identifying values for a given probability: $x = \mu + z\sigma$

Combinations and Functions of Random Variables

For any constants a and b ,

Means:

1. $E(a) = a$
2. $E(aX) = aE(X)$
3. $E(aX + b) = aE(X) + b$
4. $E(aX \pm bY) = aE(X) \pm bE(Y)$

Variances:

1. $V(a) = 0$
2. $V(aX) = a^2 V(X)$
3. $V(aX + b) = a^2 V(X)$
4. $V(aX \pm bY) = a^2 V(X) + b^2 V(Y) \pm 2ab\text{cov}(X, Y)$

$$Y = a_1X_1 + a_2X_2 + \dots + a_nX_n + b, E(Y) = a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n) + b$$

$$\text{If } X_1, X_2, \dots, X_n \text{ are independent, } V(Y) = a_1^2V(X_1) + a_2^2V(X_2) + \dots + a_n^2V(X_n)$$

Chapter 18:

Sampling Distributions

- sample proportion:

$$\text{Rule 1: } \mu_{\hat{p}} = p.$$

$$\text{Rule 2: } \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{pq}{n}}.$$

Rule 3: If np and $n(1-p)$ are both ≥ 10 , then \hat{p} has an approx. normal dist'n.

$$\text{All 3 rules } \rightarrow \text{If rule 3 holds, } Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

- sample mean:

$$\text{Rule 1: } \mu_{\bar{y}} = \mu$$

$$\text{Rule 2: } \sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$$

Rule 3: When the population distribution is normal, the sampling distribution of \bar{y} is also normal for any sample size n .

Rule 4 (CLT): When $n > 30$, the sampling distribution of \bar{y} is well approximated by a normal curve, even when the population distribution is not itself normal.

$$\text{All 4 rules } \rightarrow \text{If } n \text{ is large OR the population is normal, } Z = \frac{\bar{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

Chapter 19:

- how to interpret CI?
- generic CI: point estimate \pm (critical value) \times (standard error)
 - confidence level increases, ME increases
 - n increases, ME decreases
- sample proportion:

Assumptions: random sample, $n\hat{p} \geq 10$ and $n(1-\hat{p}) \geq 10$.

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- choosing n :

$$n \approx p^*(1-p^*) \left(\frac{CV}{ME} \right)^2 \quad \text{where } CV = z_{\alpha/2}$$

No previous info? Use $p^* = 0.5$ for safety.

Chapters 20/21:

Null vs. alternative hypotheses; 2-tailed vs. 1-tailed (lower or upper)

Rules for hypothesis construction:

1. No statistics, only parameters.
2. Parameter symbols and claimed values appear the same in H_0 and H_A .
3. The signs must be different between H_0 and H_A .
4. Equality signs ONLY appear in the null.

		Actual situation	
		H_0 is true	H_0 is false
Decision	Do not reject H_0	Correct decision	Type II or β error
	Reject H_0	Type I or α error	Correct decision

Test statistic, P -value → judgment approach (JA) OR significance level approach (SLA)

Significance Level Approach:

P -value $\leq \alpha \rightarrow$ reject H_0 ;
 P -value $> \alpha \rightarrow$ do not reject H_0

Judgment Approach:

$0 < P$ -value < 0.01 indicates convincing to strong evidence against H_0
 $0.01 < P$ -value < 0.05 indicates strong to moderate evidence
 $0.05 < P$ -value < 0.1 indicates moderate to suggestive, but inconclusive evidence
 $0.1 < P$ -value < 1 indicates weak evidence

Steps in a Hypothesis-Testing Analysis:

1. Assumptions; 2. Hypotheses (select α); 3. Test statistic; 4. P -value; 5. Conclusion

Test for Population Proportion

Assumptions: categorical variable, random sample, $np_0 \geq 10$ and $n(1 - p_0) \geq 10$.

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Chapter 22:

Two Independent Population Proportions

Assumptions:

independent random samples, n_1 & n_2 large ($n_i p_i \geq 10$ & $n_i(1 - p_i) \geq 10$ for $i = 1, 2$)

$$\text{CI: } \hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$H_0: p_1 - p_2 = 0 \quad \rightarrow \text{Because of } H_0, \text{ we use } \hat{p}_{\text{pooled}} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{y_1 + y_2}{n_1 + n_2}$$

$$\text{Then, under same assumptions, } z_0 = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\hat{p}_{\text{pooled}}(1 - \hat{p}_{\text{pooled}}) \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}}$$

Chapter 23:

- introduce t -distribution (same as z except for parameter (df) and NOT knowing σ)
- sample mean:

Assumptions: random sample, $n \geq 30$ OR population is normal, σ unknown

$$\bar{y} \pm t_{\alpha/2, n-1} \times \left(\frac{s}{\sqrt{n}} \right)$$

- choosing n :

$$n \approx \left(\frac{CV}{ME} \right)^2 \hat{\sigma}^2 \quad \text{where } CV = z_{\alpha/2}$$

No $\hat{\sigma}$? Use $\hat{\sigma} \approx \text{range}/6$ for approximately normal data.

Test for Population Mean

Assumptions: num. var., random sample, $n \geq 30$ OR population is normal, σ unknown

$$t_0 = \frac{\bar{Y} - \mu_0}{s / \sqrt{n}}$$

Chapters 24/25:

Independent samples

Assumptions:

independent random samples, n_1 & $n_2 \geq 30$ OR both pop'ns are normal, unknown and unequal standard deviations ($\sigma_1 \neq \sigma_2$) \rightarrow how do you check?

$$H_0: \mu_1 - \mu_2 = 0$$

$$SE(\bar{y}_1 - \bar{y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \quad t_0 = \frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{SE(\bar{y}_1 - \bar{y}_2)} \quad (df \geq \min\{n_1 - 1, n_2 - 1\})$$

$$CI \text{ (same assumptions): } \bar{y}_1 - \bar{y}_2 \pm t_{\alpha/2, df} \times SE(\bar{y}_1 - \bar{y}_2)$$

Assumptions:

independent random samples, n_1 & $n_2 \geq 30$ OR both pop'ns are normal, unknown and equal standard deviations ($\sigma_1 = \sigma_2$) \rightarrow how do you check?

$$H_0: \mu_1 - \mu_2 = 0$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \quad SE(\bar{y}_1 - \bar{y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \quad t_0 = \frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{SE(\bar{y}_1 - \bar{y}_2)}$$

$$CI \text{ (same assumptions): } \bar{y}_1 - \bar{y}_2 \pm t_{\alpha/2, df} \times SE(\bar{y}_1 - \bar{y}_2) \quad (df = n_1 + n_2 - 2)$$

Paired samples

Assumptions: paired samples, random sample of d 's, $n \geq 30$ OR pop'n dist'n is normal, σ_d unknown

$$H_0: \mu_d = 0 \quad (\text{define 'd' first})$$

$$t_0 = \frac{\bar{d} - \mu_d}{\frac{s_d}{\sqrt{n}}} \quad (df = n - 1) \quad CI \text{ (same assumptions): } \bar{d} \pm t_{\alpha/2, df} \times \left(\frac{s_d}{\sqrt{n}} \right)$$

Chapter 26:

$$\chi^2 = \sum_{\text{cells}} \frac{(Obs - Exp)^2}{Exp} \text{ follows } \chi^2\text{-dist'n}$$

Goodness-of-fit test	Test of homogeneity	Test of independence
- single random sample	- indep. random samples	- single random sample
- one categorical variable	- one variable per sample	- two categorical variables
- every expected count ≥ 5	- every expected count ≥ 5	- every expected count ≥ 5
- $df = \#Categories - 1$	- $df = (R - 1)(C - 1)$	- $df = (R - 1)(C - 1)$
- expected counts: np_i	$\frac{(row \text{ marginal total})(column \text{ marginal total})}{\text{grand total}}$	

$R = \# \text{ of rows}$; $C = \# \text{ of columns}$

Chapter 28:

ANOVA Assumptions:

independent and random samples, similar σ , normal distributions

- y_{ij} = observation for i^{th} subject in j^{th} group

- \bar{y}_j vs. \bar{y} to predict y_{ij}

- $H_0: \mu_1 = \dots = \mu_k$

- H_A : the μ_i are not all equal (OR, at least 2 μ_i are different)

SS_T = (variability between samples)

SS_E = (variability within samples)

$$F_0 = \frac{MS_T}{MS_E} = \frac{SS_T / (k-1)}{SS_E / (N-k)} \sim F_{k-1, N-k}$$

Reject H_0 when F_0 is large (greater than 10 works for most values of α) or use P -value.

ANOVA Table:

Source	df	SS	MS	F	P-value
Between	$k-1$	SS_T	MS_T	MS_T/MS_E	?
Within	$N-k$	SS_E	MS_E		
Total	$N-1$	SS_Y			

Note that $SS_Y = SS_T + SS_E$; $df(\text{total}) = df(\text{Between}) + df(\text{Within})$;

For each of the top two rows, $MS = SS/df$.

Also note that the estimate for common variance = $\hat{\sigma}^2 = MS_E$.

How to determine data structure?

1. Are you dealing with proportions or means?

2. How many samples are there?

3a. Are the samples independent or paired? 3b. How many variables/levels are there?

4a. Are the variances equal/unequal?