Chapter 1

Def'n: Statistics:

- 1) are commonly known as numerical facts
- 2) is a field of discipline or study

Here, <u>statistics</u> is about variation.

3 main aspects of statistics:

- 1) Design ("Think"): Planning how to obtain data to answer questions.
- 2) Description ("Show"): Summarizing the obtained data.
- 3) Inference ("Tell"): Making decisions and predictions based on data.

Chapter 2 - Data

Def'n: A <u>population</u> consists of all elements whose characteristics are being studied.

Ex2.1)

A <u>sample</u> is a portion of the population selected for study.

Ex2.2)

A parameter is a summary measure calculated for population data.

A <u>statistic</u> is a summary measure calculated for sample data.

Types of statistics:

Descriptive: methods to view a given dataset.

 \rightarrow

Inferential: methods using sample results to infer conclusions about a larger population.

 \rightarrow

Def'n: A <u>variable</u> is any characteristic that is recorded for subjects in a study.

- Qualitative (categorical): cannot assume a numerical value but classifiable into 2 or more non-numeric categories. →
- Quantitative (numerical): measured numerically.
- Discrete: only certain values with no intermediate values. \rightarrow
- Continuous: any numerical value over a certain interval or intervals.

 \rightarrow

<u>Chapter 3 – Categorical Data Graphs</u>

Def'n: A <u>frequency table</u> (for qualitative data) is a listing of possible values for a variable, together with the # of observations for each value.

Major	Frequency (f)	Relative frequency	Percentage (%)
Science			
Arts			
Business			
Nursing			
Other			

$$Relative frequency = \frac{f}{\sum f}$$

Graphical Summaries

Def'n: A <u>bar chart</u> is a graph of bars whose heights represent the (relative) frequencies of respective categories. Ex3.1) (preceding table used in class)

Look for: frequently and infrequently occurring categories.

A <u>pie chart</u> is a circle divided into portions that represent (relative) frequency belonging to different categories. Ex3.2) (preceding table used in class)

Look for: categories that form large and small proportions of the data set.

A <u>segmented bar chart</u> uses a rectangular bar divided into segments that represent frequency or relative freq. of different categories. Ex3.3) (preceding table used in class)

Chapter 4 – Numerical Variable Graphs

Def'n: A <u>stem-and-leaf display</u> has each value divided into two portions: a stem and a leaf. The leaves for each stem are shown separately. (Values should be ranked.)

Look for: - typical values and corresponding spread

- gaps in the data or outliers
- presence of symmetry in the distribution
- number and location of peaks

Ex4.1)

Note: *Dotplots* also exist (see p. 52 in textbook), but "replace" the values with dots.

Def'n: A <u>histogram</u>, like a bar graph, graphically shows a frequency distribution. The data here, however, is quantitative.

Look for: - central or typical value and corresponding spread

- gaps in the data or outliers
- presence of symmetry in the distribution
- number and location of peaks

The data divide into intervals (normally of equal width).

Cumulative Relative Frequency = (Cumul. freq. of a class) / (Total obs'ns in dataset)

Table 4X0 – Total earnings as of Jan. 6/2015

Worldwide Box Office	Number of movies	Relative	Cumulative	
(in millions)	f	Frequency	rel. freq.	
200 to 599				
600 to 999				
1000 to 1399				
1400 to 1799				
1800 to 2199				
2200 to 2599				
2600 to 3000				

Ex4.2) (drawn in class using above data)

NOTE: Dot and S-and-L plots are good for small data sets because data values are retained. Histograms are better for large data sets to condense the data.

Histogram shapes/traits: (corresponding figures drawn in class)

- 1. Modes (unimodal, bimodal, multimodal, uniform)
- 2. Skewness (symmetric, left-skewed & right-skewed) → term refers to "TAIL"
- 3. Tail weight (normal, heavy-tailed, light-tailed)

Def'n: A timeplot is a graph of data collected over time (or a *time series*).

Look for: - a trend over time, denoting a decrease or increase.

- a pattern repeating at regular intervals (a cycle or seasonal variation)

Ex4.3) (drawn in class)

Chapters 4/5 – Summary measures (and one more graph)

Measures of Center

Def'n: An <u>outlier</u> is an obs'n that falls well above or below the overall bulk of the data.

Population mean:
$$\mu = \frac{\sum y_i}{N}$$
 Sample mean: $\bar{y} = \frac{y_1 + y_2 + ... + y_n}{n} = \frac{\sum y_i}{n}$

The median is the value of the midpoint of a data set that has been ranked in order, increasing or decreasing. If dataset has an even # of observations, use the average of the middle 2 values.

Note: median resistant to outliers, mean uses all observations.

Table 5X0 – Estimated provincial populations circa Jul. 2011 (in millions)

ON	PQ	BC	AB	MB	SK	NS	NB	NL	PEI
13.373	7.980	4.573	3.779	1.250	1.058	0.945	0.756	0.511	0.146

$$\mu = \frac{\sum y_i}{N} = \frac{13.373 + ... + 0.146}{10} = 3.437$$

Median pop'n of all provinces:

$$median = \frac{1.250 + 1.058}{2} = 1.154$$

Ex5.1) Avg. pop'n of all provinces:
$$\mu = \frac{\sum y_i}{N} = \frac{13.373 + ... + 0.146}{10} = 3.437$$
Avg. pop'n from sample of 3 provinces:
$$\overline{y} = \frac{\sum y_i}{n} = \frac{4.573 + 3.779 + 1.250}{3} = 3.201$$
Avg. pop'n from sample of 3 provinces:
$$\overline{y} = \frac{\sum y_i}{n} = \frac{4.573 + 3.779 + 1.250}{3} = 3.201$$
Outlier of fact? (remove Onterio, & Outlier of fact)

Outlier effect? (remove Ontario & Quebec)

$$\overline{y} = \frac{\sum y_i}{n} = \frac{4.573 + ... + 0.146}{8} = 1.627$$

Comparing Mean and Median: (corresponding figures drawn in class)

- 1. Symmetric curve & histogram
 - the 2 are identical, lie at center of distribution
- 2. Right-skewed: Median < Mean
- 3. Left-skewed: Mean < Median

Def'n: The mode is the most frequent value in a data set.

Ex5.2) Provinces \rightarrow

Movies \rightarrow

Measures of Spread

Def'n: Range = largest value - smallest value = max - min Ex5.3) (from Table 5X0) range =

Deviations from the Mean:

Ex5.4) 1, 2, 4, 3

y_i	$y_i - \overline{y}$
1	1 - 2.5 = -1.5
2	2 - 2.5 = -0.5
4	4 - 2.5 = 1.5
3	3 - 2.5 = 0.5
	$\sum (y_i - \overline{y}) = 0$

Note that $\sum (y_i - \mu)$ and $\sum (y_i - \overline{y})$, aka deviation of x from the mean, both equal zero.

Variance and Standard Deviation:

The most common measure of spread is standard deviation. Informally interpreted as the size of a "typical" deviation from the mean. Variance, however, must be calculated first. The basic formulas for variance are:

$$\sigma^{2} = \frac{\sum (y_{i} - \mu)^{2}}{N}$$
 $s^{2} = \frac{\sum (y_{i} - \overline{y})^{2}}{n - 1}$

where σ^2 is the population variance and s^2 the sample variance.

Since $\sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$, the variance formulas become

$$\sigma^{2} = \frac{1}{N} \left[\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{N} \right] \text{ and } s^{2} = \frac{1}{n-1} \left[\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{n} \right]$$

Finding the standard deviation only requires taking the *positive* square root of the variance.

Population: $\sigma = \sqrt{\sigma^2}$ Sample: $s = \sqrt{s^2}$

Ex5.5) 1, 2, 4, 3

Important notes:

- 1. Standard deviation measures spread *only* about the mean (i.e. not the median).
- 2. Values of variance and std. dev. are never negative. (Equals zero only if no spread.)
- 3. The measurement units of variance are always the square of the units of the original data.
- 4. Standard deviation, like the mean, is not resistant to outliers.
- 5. Consider the sample variance s^2 to have n-1 degrees of freedom. There are n observations, and n deviations from the mean. Since the total always sums to zero, n-1 of these quantities determines the remaining one. Thus, only n-1 of the n deviations, $y_i \overline{y}$, are freely determined. (Degrees of freedom apply only to samples.)

Measures of Position

Def'n: The p^{th} percentile is a value such that p percent of the observations fall below or at that value. Three useful percentiles are the <u>quartiles</u>. The *first quartile* has p = 25, the *second quartile* (a.k.a. the median) has p = 50, and the *third quartile* has p = 75.

The <u>five-number summary</u> consists of the min, Q_1 , median, Q_3 , and the max.

(visual representation of above drawn in class)

Def'n: The <u>interquartile range (IQR)</u> is the difference between the first and third quartiles. $IQR = Q_3 - Q_1$ (IQR is actually a measure of *spread*)

Ex5.6) 7.9 9.1 9.2 9.3 9.4 9.4 9.5 9.6 9.6 9.7

(examples regarding finding quartiles with other #'s of observations discussed in class) **Note:** For exams, INCLUDE the median in each half when calculating Q_1 and Q_3 .

Boxplots:

Def'n: A <u>boxplot</u> shows the center, spread, and skewness of a data set.

To construct it:

Step 1: Rank the data in increasing order and find the median, Q_1 , Q_3 , and IQR.

Step 2: Find the points beyond the boundaries: 1.5*IQR below Q_1 and 1.5*IQR above Q_3 , known as the lower & upper inner fences, respectively. These points are outliers.

Ex5.7)
$$1.5*IQR =$$

Lower i.f. = Upper i.f. =

Step 3: Determine smallest & largest values within the respective inner fences. small =large =

Step 4: Draw linear scale containing entire range of data.

Step 5: Draw perpendicular lines to the scale to indicate Q_1 and Q_3 . Connect ends of both lines. Box width = IQR

Step 6: Draw another line perpendicular to the scale to indicate the median inside the box.

Step 7: Draw two smaller lines perpendicular to the scale for the values from Step 3. Join their centers to the box to make whiskers. → (boxplot drawn in class)

What to do with outliers?

Consider lower & upper outer fences at 3.0*IQR below Q_1 and 3.0*IQR above Q_3 .

$$Ex5.8) 3.0*IQR =$$

Lower o.f.
$$=$$

Upper o.f. =

A (mild) outlier is outside an inner fence but inside the outer fence.

A far (or extreme) outlier is outside either outer fence.

All textbooks are different for distinguishing outliers. Our textbook uses open circles for mild and asterisks, '*', for far outliers.

Whiskers extend on each end to the most extreme observations that are *not* outliers.

Looking at center, spread, and skewness:

Approx. value of the center? Width of IQR? Symmetric or skewed?

Boxplot vs. Histogram: Each graph highlights different features of a data set (layers of skewness and skewness/modality, respectively), so it's always better to construct both.

<u>Chapter 6 – Standard Deviation as a Ruler</u>

Empirical Rule applies only to a bell-shaped distribution.

- 1. 68% of observations lie within 1σ of the mean.
- 2. 95% of observations lie within 2σ of the mean.
- 3. 99.7% of observations lie within 3σ of the mean.

Suppose we go further..., say, 5σ . Software produces a value of 99.99994%, which means far less chance for "error" (i.e. the observations beyond 5σ from the mean).

Extra Measure of Position/Potential Outlier Identifier

- z-score = (observation mean) / (std. dev.)
- *z*-score tells us how many standard deviations the value is from the mean, positive OR negative
- more useful when distribution approximately normal.
- a potential outlier is more than 3σ from the mean.

Ex6.1)
$$\mu = 31.6$$

$$\sigma = 26.4$$

$$y = 50$$