Similarities and differences between natural post-fire and post-harvest regeneration on upland sites in Alberta: what does this mean for the future?

Stefanie Gärtner, Ellen Macdonald, Mike Bokalo, Ken Stadt and Phil Comeau
Dept. of Renewable Resources
University of Alberta
Aspen regenerates quickly by suckering
White spruce:

- Seed source (masting species)
- Mineral soil seedbeds
- Can regenerate immediately post-fire (0 – 5 yrs) or later (35+ yrs on rotten logs)

Harvesting fire-origin stands

Juvenile data from post harvest stands

Mature data from fire-origin stands

Data are needed!
Objectives

• Quantify range of variation in post-fire regeneration in boreal mixedwoods
• Comparison between post-fire and post-harvest regeneration
What is the species composition and structure 10 to 20 years post fire?
Stands sampled 10, 13, 20 years post-fire

<table>
<thead>
<tr>
<th>Fire</th>
<th>Year</th>
<th>Size (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip Lake</td>
<td>1998</td>
<td>10,886</td>
</tr>
<tr>
<td>OChiese</td>
<td>1988</td>
<td>7,646</td>
</tr>
<tr>
<td>Virginia Hills</td>
<td>1998</td>
<td>163,138</td>
</tr>
<tr>
<td>Mariana Lakes</td>
<td>1995</td>
<td>132,679</td>
</tr>
<tr>
<td>Mitsue</td>
<td>1998</td>
<td>49,670</td>
</tr>
</tbody>
</table>

Stratification of sample areas within fires - by pre-fire cover type

2 - 4 ha patches:
- Conifer (white spruce) – dominated
- Conifer-leading mixedwood
- Deciduous-leading mixedwood
- Deciduous (aspen) dominated

504 sampled plots in five fires
Sampling: Standard regeneration survey protocol – plus additional data

Stocking (10m² plot):
C: 1+ conifer > 0.3 m
MX: 1+ conifer and 1+ deciduous tree > 0.3m
D: 1+ deciduous tree > 0.3m
NSR: no trees > 0.3m (unstocked)

Density per species (trees > 0.3 m height)
Semi-quantitative density: white spruce < 0.3 , height

Future crop tree(s): species of the tallest conifer and tallest deciduous (> 0.3 m)

Height of tallest conifer and deciduous

Competition: cover of alder, willow, grass
Stocking

- **Pre-fire cover type**
- **Number of plots** after 10-13 years and after 20 years

At least one conifer/deciduous tree of minimum height 0.3 m

Pre-fire cover type

Legend:
- D
- MX
- C
- NSR (unstocked)
Stocking - species composition (trees of required height)

Aspen
Birch
Aspen/pine
Birch/pine
Aspen/spruce
Birch/Spruce
Pine
Spruce
Black spruce

0.0 0.2 0.4 0.6 0.8 1.0
10-13 years
20 years

NSR
D
DC
CD
C

10-13 years
20 years
Key Findings

High variability in the regeneration composition between and within fires and pre-fire cover types.

Stands with a deciduous component pre-fire regenerated mostly to deciduous

Pre-fire pure conifer (white spruce) stands had the highest proportion of unstocked plots
Key Findings

- Stands with a conifer component pre-fire more often regenerated to a mixture but...

- When conifer regeneration occurred it was almost always pine even when there was no pine component in the pre-fire forest inventory.

- In the 20 yr old fire we found some small white spruce (around 30 cm); almost none in 10 to 13 year old fires.
Comparison of post-harvest vs post-fire

Pre-disturbance cover type: C or CD
Post-harvest regeneration: all planted to white spruce, tended and untended stands (data from Feng et al. 2005)

Paired fires with nearby harvested areas:

Chip Lake (CL) vs Weyerhaeuser Pembina (WeyPB)
Mitsue Fire (MI) vs Alberta Plywood
Virginia Hills (VH) vs Millar Western

Meta analysis
% of plots stocked to white spruce and/or aspen

<table>
<thead>
<tr>
<th>Stocking</th>
<th>Post-fire</th>
<th>Post-harvest Tended*</th>
<th>Post-harvest Untended*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3</td>
<td>52</td>
<td>7</td>
</tr>
<tr>
<td>MX</td>
<td>6</td>
<td>41</td>
<td>74</td>
</tr>
<tr>
<td>D</td>
<td>61</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>NSR</td>
<td>30</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*Alternative Regeneration Standard 2009 – plots with Aw and Sw
SMD (standardized mean difference): Postharvest minus postfire

null hypothesis (zero difference)

SMD 95% confidence interval

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SMD</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL_WeyPB</td>
<td>-0.48</td>
<td>[-0.73, -0.24]</td>
</tr>
<tr>
<td>ML_AbPI</td>
<td>-0.91</td>
<td>[-1.32, -0.51]</td>
</tr>
<tr>
<td>VH_MW</td>
<td>-1.28</td>
<td>[-1.69, -0.87]</td>
</tr>
<tr>
<td>RE Model</td>
<td>-0.85</td>
<td>[-1.24, -0.47]</td>
</tr>
</tbody>
</table>

Randomization to test for overall significance

0.2 small effect
0.5 medium effect
0.8 large effect
Deciduous density: post-harvest vs post-fire

Untended

Not sig.

Tended

P < 0.0001
Large effect
Post-harvest: lower density
Conifer density: post-harvest vs post-fire

Untended

Tended

Not sig.
Density (trees/ha)

<table>
<thead>
<tr>
<th>Stocking</th>
<th>Conifer/deciduous</th>
<th>post-fire</th>
<th>post-harvest tend</th>
<th>post-harvest no tend</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>387</td>
<td>4,862</td>
<td>4,440</td>
</tr>
<tr>
<td></td>
<td>White spruce</td>
<td></td>
<td>Any conifer</td>
<td></td>
</tr>
<tr>
<td>MX</td>
<td>D</td>
<td>12,363</td>
<td>6,585</td>
<td>12,606</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>224</td>
<td>4,436</td>
<td>6,738</td>
</tr>
<tr>
<td></td>
<td>White spruce</td>
<td></td>
<td>Any conifer</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>13,084</td>
<td>7,352</td>
<td>11,852</td>
</tr>
</tbody>
</table>

Tallest tree: size at performance age

<table>
<thead>
<tr>
<th></th>
<th>Aspen</th>
<th>White spruce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Post- fire (10-13 yrs)</td>
<td>Tended (12-13 yrs)</td>
</tr>
<tr>
<td>Av Ht (m)</td>
<td>4.59</td>
<td>3.59</td>
</tr>
<tr>
<td>Max Ht (m)</td>
<td>9.08</td>
<td>8.60</td>
</tr>
<tr>
<td>Av DBH (cm)</td>
<td>2.04</td>
<td>3.94</td>
</tr>
</tbody>
</table>
Key Findings

Post-harvest – higher % of plots stocked to C (tended) or MX (untended)

Post-fire – higher % of plots NSR (but these gaps could be small)

Conifer density post-harvest = post-fire (tended or not tended) BUT RECALL ..post-fire mostly pine
Key Findings

Aspen densities significantly lower in post-harvest tended stands; no difference for untended stands

Tallest aspen:
Untended > post-fire > tended

Tallest spruce:
Tended > undtended > fire
How will these stands develop in the future?
Creating an average post-fire C - CD stand in MGM

Mitsue L (10yr.) Virginia Hills (10yr.) Mariana L (13yr.)
Chip L (10yr.)
Creating an average post-fire C - CD stand in MGM

<table>
<thead>
<tr>
<th>White spruce</th>
<th>C</th>
<th>MX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av Ht (m)</td>
<td>0.4</td>
<td>0.63</td>
</tr>
<tr>
<td>stDev Ht (m)</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>Max Ht (m)</td>
<td>0.7</td>
<td>0.94</td>
</tr>
<tr>
<td>Av DBH (cm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>stDev DBH (cm)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspen</th>
<th>D</th>
<th>MX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av Ht (m)</td>
<td>4.63</td>
<td>4.52</td>
</tr>
<tr>
<td>stDev Ht (m)</td>
<td>1.6</td>
<td>1.47</td>
</tr>
<tr>
<td>Max Ht (m)</td>
<td>9.08</td>
<td>7.69</td>
</tr>
<tr>
<td>Av DBH (cm)</td>
<td>2.03</td>
<td>2.05</td>
</tr>
<tr>
<td>stDev DBH (cm)</td>
<td>0.61</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Postfire white spruce & aspen volume: 100 years...

In patch types:
- Pure conifer
- Mixed
- Pure deciduous
- Unstocked

Stand: weighted average

Spruce volume: 117 m³/ha
Aspen volume: 322 m³/ha

Postfire white spruce & aspen volume: 100 years...
Postfire white spruce and aspen volume: 150 years...

In patch types:
- Pure conifer
- Mixed
- Pure deciduous
- Unstocked

Stand:

Spruce volume

Aspen volume

C_TVol

D_TVol
Post-fire white spruce and aspen volume over 150 years (for each regeneration ‘patch’ type and stand total)

Without ingress

- **Aspen** 333 m³/ha
- **Mix** 323 m³/ha
- **Whole Stand** 221 m³/ha
- **White Spruce** 117 m³/ha
Stand volume over 150 years (total area weighted by regeneration type)

Postfire: only white spruce and aspen
Key Findings

The model suggests post-fire will have substantially lower volume of white spruce and aspen at rotation age than post-harvest (both tended and untended).

The model suggests post-fire stands will have little ‘pure’ white spruce – most of the volume from deciduous or mixed patches.

Recall post-fire conifer regeneration was predominantly pine.
Recommendations for Forest Management

• In order to learn about natural post-fire dynamics in boreal mixedwood forests a representative set of stands should be left unsalvaged within each fire.

• To provide a seed source for natural white spruce regeneration after fire, individuals or patches of white spruce should be retained (not salvaged).
Recommendations for Forest Management

• Under the natural dynamics of boreal mixedwoods, to get a similar conifer proportion as the pre-disturbance state, a longer rotation would be necessary.

• Under extensive management, allowing lower percentages of white spruce in stands and on the landscape should be considered acceptable in return for higher proportions of mixedwood stands on the landscape.
Acknowledgements

We are grateful to the following people, agencies and companies for financial support
Forest Resource Improvement Association of Alberta (FRIAA) and Mixedwood Management Association (MWMA)

and for their assistance

Farrah Gilchrist, Vern Peters
Alberta Pacific Forest Industries Ltd.
Alberta Plywood
Blue Ridge Lumber
Millar Western
Weyerhaeuser
Western Boreal Growth and Yield Association (WESBOGY)