Trends in net biomass production of North American boreal forests

Robbie Hember, Nicholas Coops, Werner Kurz

Postdoctoral Fellow
University of British Columbia
Vancouver, Canada
robbie@hember.name
Permanent Sample Plots

How can we study trends in forest productivity:

- Satellite-based vegetation indices
- Tree-ring measurements
- Atmospheric CO2 measurements
- Forest inventories (permanent sample plots)

Models:
- Statistical models
- Ecophysiological models
Three approaches using PSPs:

- **Comparison between ΔB and B**

 e.g. Caspersen et al. 2000; McMahon et al. 2009; Hember et al. 2012

- **Time series analysis**

 e.g. Ma et al. 2011; Hember 2011; Hember et al. 2012

- **Statistical model predictions**

 e.g. Hember 2011; Hember et al. 2012
Permanent Sample Plots

Plot locations

Climate space

Potential evapotranspiration (mm d⁻¹)

Days with frost

Desert

Forest

PSPs

Arctic
Plot Biomass Dynamics

$$\Delta B = G_s + G_r - M - R$$

$\Delta B =$ net biomass production

$G_s =$ growth of survivors

$G_r =$ growth of recruits

$M =$ loss due to natural mortality

$R =$ loss due to harvesting
ΔB - B Comparison

Boreal Plains Ecozone

White spruce

ΔB (Mg C ha⁻¹ yr⁻¹)

Stand age, years

Percent change in ΔB

P. Silver fir
Douglas-fir
Lodgepole pine
Subalpine fir
Engelmann spruce
White spruce
Aspen
Jack pine

Maritime
Montane
Boreal Plains
Boreal Plains Ecozone

Time Series Analysis

- Growth (survivors)
- Net production
- Growth (recruitment)
- Mortality

Flux (g C m$^{-2}$ yr$^{-1}$)

Time, years

28/10/2013

IBFRA 2013
Time Series Analysis

Boreal Shield Ecozone

![Map of Boreal Shield Ecozone]

![Graph showing Time Series Analysis]

- Growth (survivors)
- Net production
- Growth (recruitment)
- Mortality
- Removals

Flux (g C m\(^{-2}\) yr\(^{-1}\))

Time, years

Statistical Modelling

Solar radiation

Snowmelt

Actual evapotranspiration

Soil water content
Mortality:

- Traditional approach
 \[M = \mu B, \]
 \[\mu = \text{constant} \]

- Adjustment to account for water stress
 \[\mu = b_0 f(ET_p) \]
 or
 \[\mu = b_0 f(W_S) \]
Growth:

- **Heat**
 - Wheat, redrawn from de Vries et al. (1979)

- **Ambient CO₂**
 - Eldarica pine, redrawn from Idso and Kimball (1994).

- **Hydraulic Resistance**
Statistical Modelling

Boreal Plain Ecozone

Growth (Mg C ha$^{-1}$ yr$^{-1}$)

Mortality (Mg C ha$^{-1}$ yr$^{-1}$)

ΔB (Mg C ha$^{-1}$ yr$^{-1}$)

Time, years
Conclusions

Trends in net biomass production:

ΔB – B Comparison:

• Boreal Plain shows 15-25 % enhancement of ΔB

• Boreal Shield not yet reported

Time series analysis:

• Boreal Plain shows a -22 g C m2 trend in ΔB between 1968-2005

• Boreal Shield shows a 42 g C m2 trend in ΔB between 1972-2007
Final Thought

Transition from emphasis on calibration of static G&Y models to a stable monitoring programme capable of detecting early signs of environmental change.

Acknowledgements

Pacific Institute for Climate Solutions; Natural Resources Canada; Faculty of Forestry, U. of British Columbia

BC Ministry of Forests, Lands and Natural Resources: Inventory data; Alberta Environment and Sustainable Resource Development: Inventory data; Saskatchewan Ministry of Environment: Inventory data; Ontario Ministry of Natural Resources: Inventory data; Quebec Ressources Naturelles: Inventory data; New Brunswick Ministry of Environment: Inventory data; Nova Scotia Ministry of Environment: Inventory data; US Forest Service: National Inventory Database • PNW Integrated Database • Coastal Alaska database; Environment Canada: Online daily climate data archive • Adjusted and Homogenized Canadian Climate Data • Radiation database; National Oceanic and Atmospheric Administration: Earth System Research Laboratory including NCEP-NCAR Global Reanalysis • North American Regional Reanalysis • 20th Century Reanalysis • National Climatic Data Center, US Historical Climatology Network • National Climatic Data Center, Global Summary of the Day US Department of Energy: National Renewable Energy Laboratory; Centre for Forest Conservation Genetics: Normals for western North America; UK Met Office: Climate Research Unit TS 3.1 Database; PRISM Climate Group: Normals for the conterminous US;

Contact:
robbie@hember.name