Online Comfort-Constrained **HVAC Control via Feature Transfer**

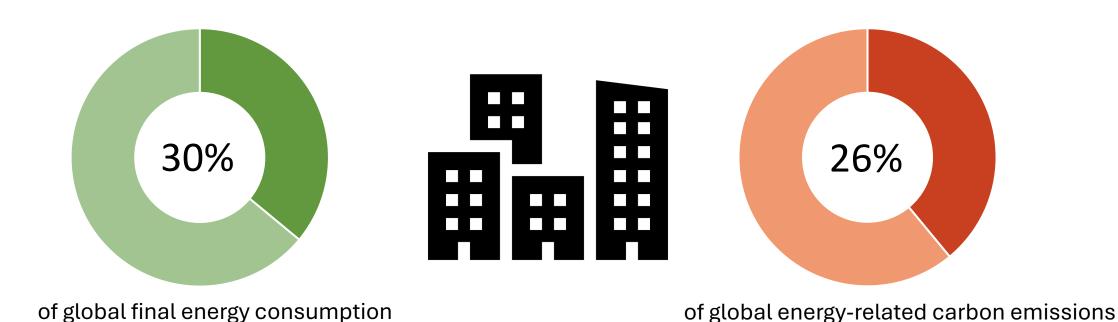
Jing Yu, Tianyu Zhang, Omid Ardakanian, Adam Wierman

ACM e-Energy

June 2025

Buildings are a Major Driver of Global Energy Use and Emissions

The operations of buildings account for

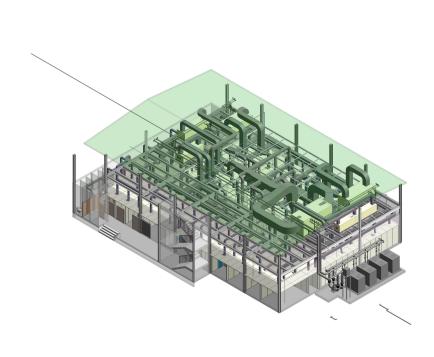


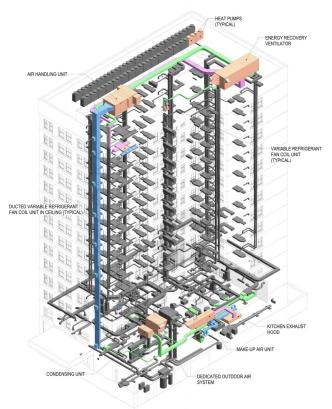
Buildings are a Major Driver of Global Energy Use and Emissions

HVAC is responsible for a significant proportion of a building's energy consumption

Learning-Based Strategies Yield Major Energy Savings

But they require extensive offline data or costly online interaction





Can we transfer and reuse a model (or a control policy) trained for a different building?

Transfer Learning for HVAC Control

Learn relevant features from source building(s) and adapt them to target building(s)

Pros:

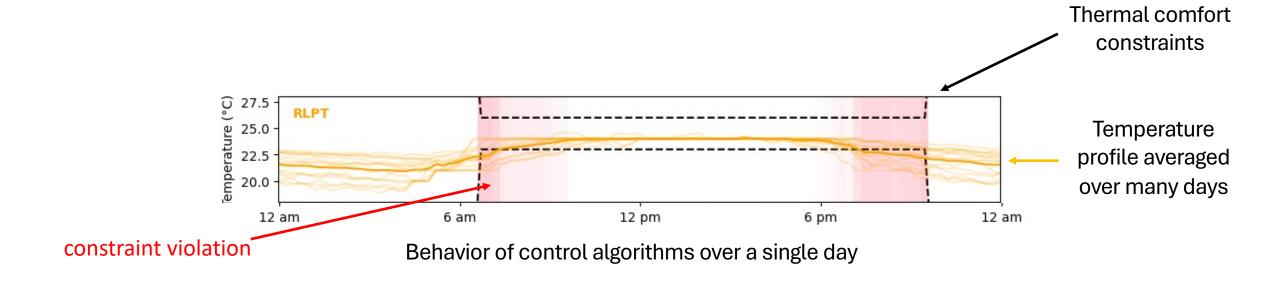
- Easy to adapt a dynamical model (or a control policy) to real-time conditions in a new building
- Significant reduction in energy consumption can be readily achieved [1]

Cons:

- Requires large and representative datasets to build high-quality candidate system models (or candidate control policies)
- Difficult to enforce the new building's constraints

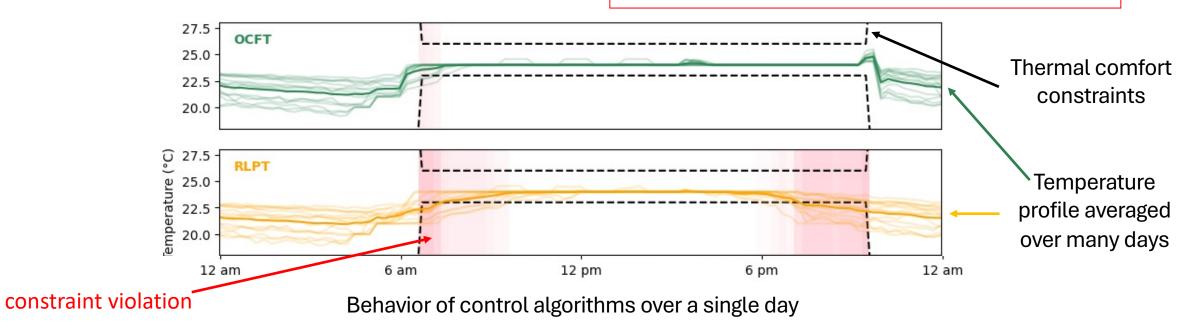
We proposed an online algorithm to augment a black-box policy with safety

A glimpse of the empirical result



A glimpse of the empirical result

Proposed method significantly reduces constraint violation while minimizing energy consumption



OCFT: Online Comfort-Constrained HVAC Control with Feature Transfer

- 1. Feature adaptation + augmentation for transfer of black-box policies
 - Tunable trade-off between energy efficiency & thermal comfort violations
- 2. Theoretical insights
 - Finite constraint violations & finite-time model learning guarantees
- **3. Empirical evaluations** in EnergyPlus
 - Comprehensive experiments in 19 U.S. climate zones
 - OCFT reduces constraint violations by 81.28% while using 11.23% more energy

System Model

Linear combination of nonlinear feature functions

• State-space Representation: system parameter source building $s_{t+1} = (\theta^*)^{\top} \Phi(s_t, z_t, a_t) + d_t \longrightarrow \text{disturbances}$ • Thermal Comfort Constraints: measurable states

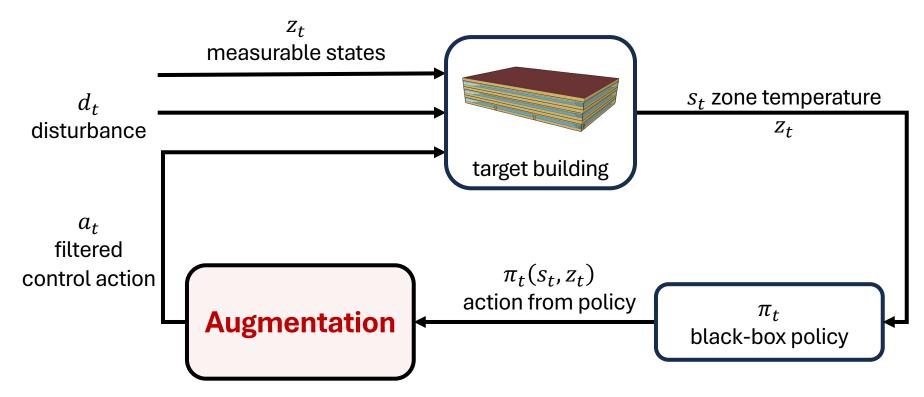
Exogenous Disturbances:

$$||d_t||_{\infty} \leq W$$

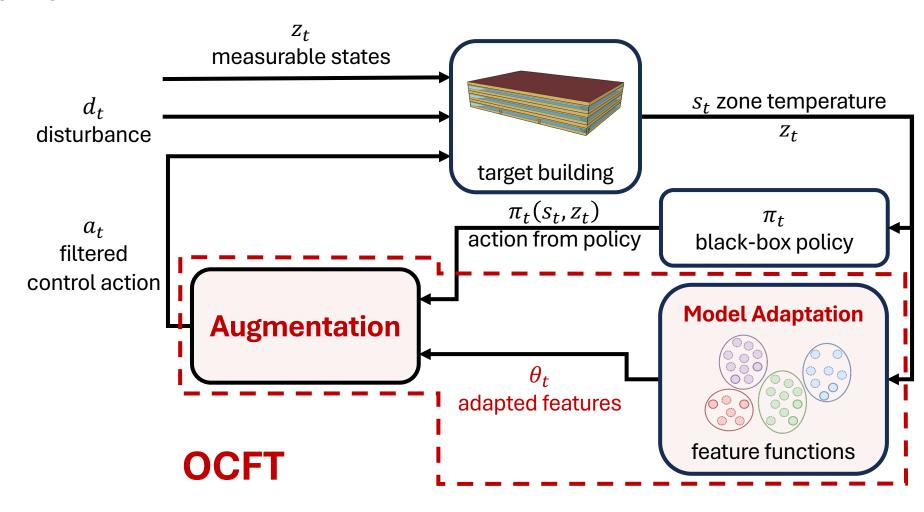
Goal: minimize energy consumption subject to thermal comfort constraints

Approach

Augmentation of black-box control policy with safety



An overview



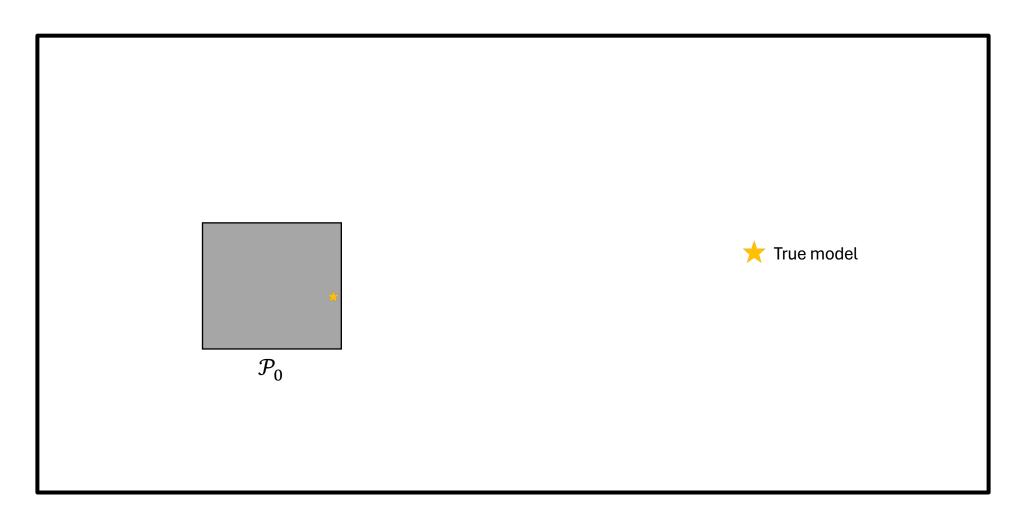
Warm start

- Construct the **initial parameter uncertainty set** based on the available log data ${\mathcal D}:$

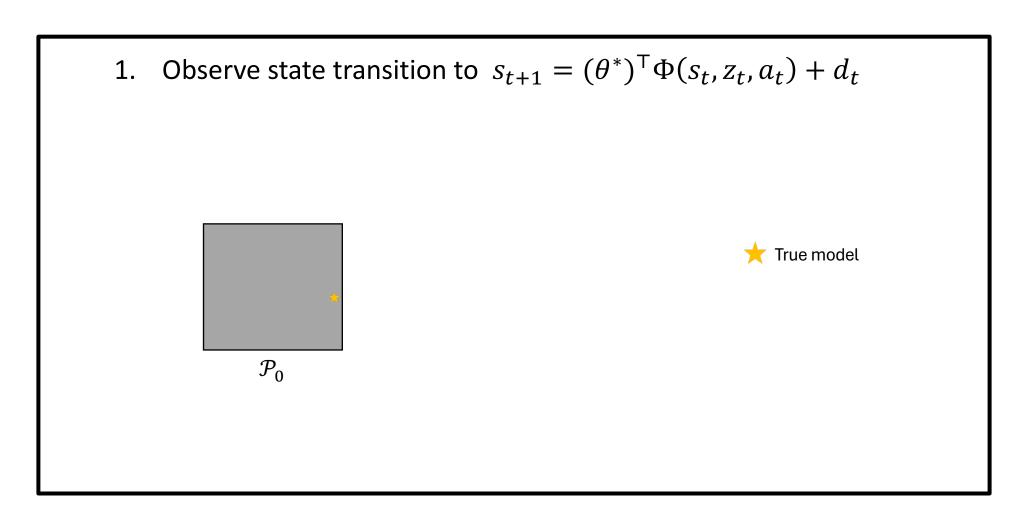
$$\mathcal{P}_0 = \{ \theta \in \Theta \colon \|s_{k+1} - \theta^{\mathsf{T}} \Phi(s_k, z_k, a_k)\|_{\infty} \leq W, \forall (s_k, z_k, a_k) \in \mathcal{D} \}.$$

- Log data: 14 days of data generated under default controller in the target building
- Interpretation: \mathcal{P}_0 contains all plausible models that could have generated the log data given the disturbance bound and feature functions

Model adaptation



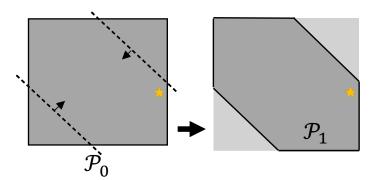
Model adaptation

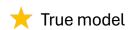


Model adaptation

- 1. Observe state transition to $s_{t+1} = (\theta^*)^T \Phi(s_t, z_t, a_t) + d_t$
- 2. Update the **consistent model set with new data**:

$$\mathcal{P}_t = \{ \theta \in \Theta \colon \| s_t - \theta^\top \Phi(s_{t-1}, z_{t-1}, a_{t-1}) \|_{\infty} \le W \} \cap \mathcal{P}_{t-1}$$

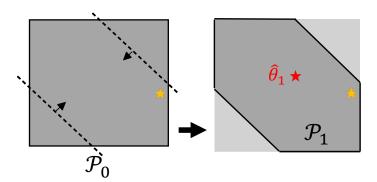




Model adaptation

- 1. Observe state transition to $s_{t+1} = (\theta^*)^T \Phi(s_t, z_t, a_t) + d_t$
- 2. Update the **consistent model set with new data**:

$$\mathcal{P}_t = \{ \theta \in \Theta \colon \| s_t - \theta^\top \Phi(s_{t-1}, z_{t-1}, a_{t-1}) \|_{\infty} \le W \} \cap \mathcal{P}_{t-1}$$



- ★ True model
- ★ Hypothesis model

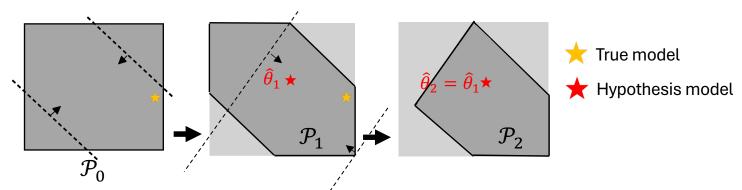
3. Pick a *hypothesis model* (potentially wrong): $\hat{\theta}_t \in \mathcal{P}_t$ using nested convex body chasing (NCBC)

Model adaptation

t+1

- Observe state transition to $s_{t+1} = (\theta^*)^T \Phi(s_t, z_t, a_t) + d_t$
- Update the **consistent model set with new data**:

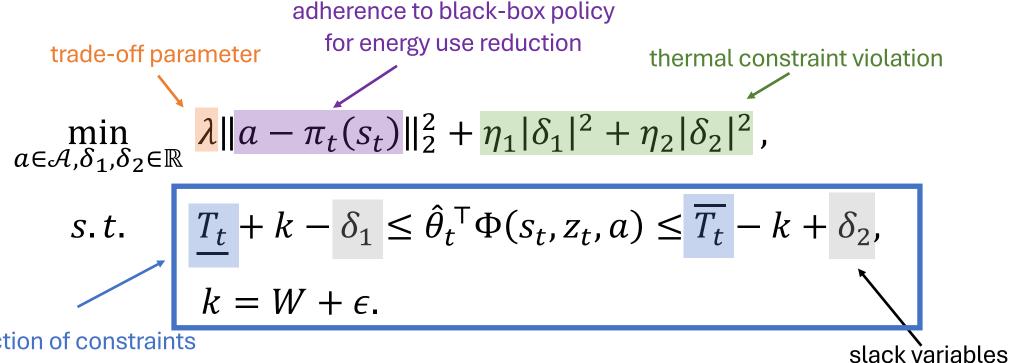
$$\mathcal{P}_t = \{ \theta \in \Theta \colon \| s_t - \theta^\top \Phi(s_{t-1}, z_{t-1}, a_{t-1}) \|_{\infty} \le W \} \cap \mathcal{P}_{t-1}$$



- Pick a **hypothesis model** (potentially wrong): $\hat{\theta}_t \in \mathcal{P}_t$ using
 - nested convex body chasing (NCBC)

Policy augmentation

Given black-box policy π_t , pass the suggested action through a filter based on $\hat{\theta}_t$:



robust satisfaction of constraints against worst-case disturbances

Theoretical insights

 Adversarial disturbances (worst-case model mismatch between our model and the true HVAC dynamics)

Guarantee: OCFT makes finitely many thermal constraint violations

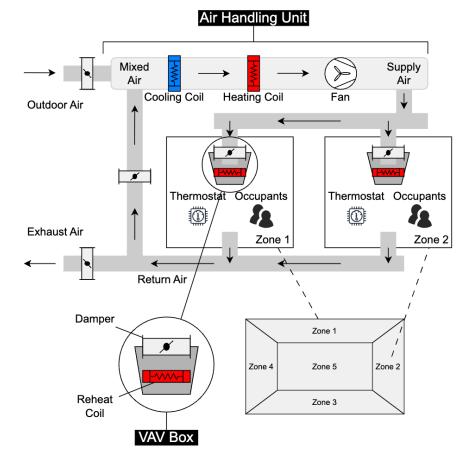
• Stochastic disturbances (when our model perfectly characterizes the true HVAC system dynamics)

Guarantee: OCFT will learn the true system model with finite-time convergence guarantee

Setup

Central AHU with zone-level VAV systems, each including a damper and a reheat coil. We control only the damper position.

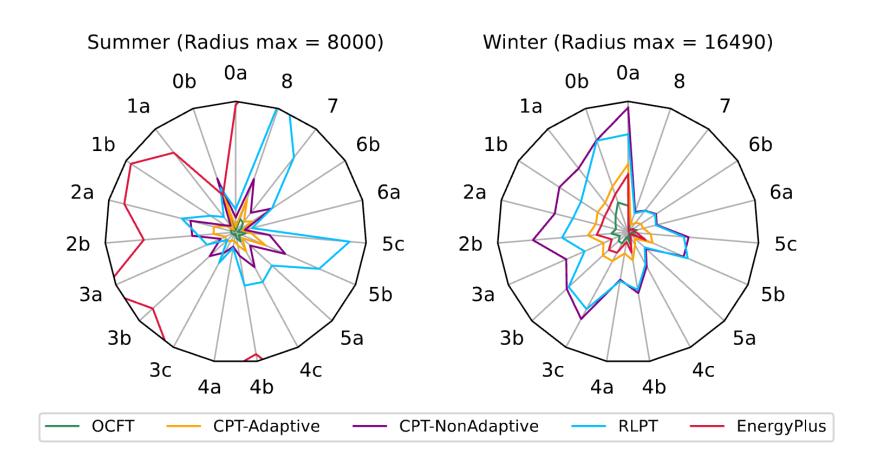
- Target building: 15-zone medium office building in 19 climates
- Experiment period: January and July
- Warm-start data: Two weeks of historical data from target building prior to each experiment period
- Transfer policies: 870 RL policies trained in a 5-zone building (Climate Zone 5B, January)
- Feature functions: ICNNs trained across various months in Climate Zone 5B



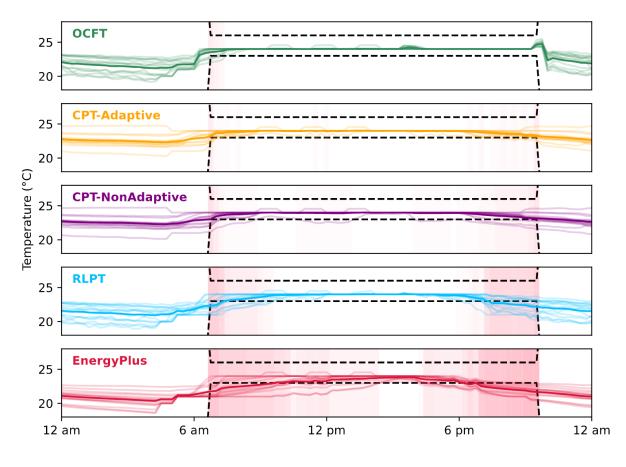
Baseline algorithms

- Reinforcement Learning Policy Transfer (RLPT)
- Constrained Policy Transfer with Feature Function Adaptation (CPT-Adaptive)
 - adapted ICNN used in the projection layer for constraint satisfaction
- Constrained Policy Transfer without Feature Function Adaptation (CPT-NonAdaptive)
 - transferred ICNN used in the projection layer for constraint satisfaction
- Default Air System Control Strategy (EnergyPlus)

Comfort constraint violations

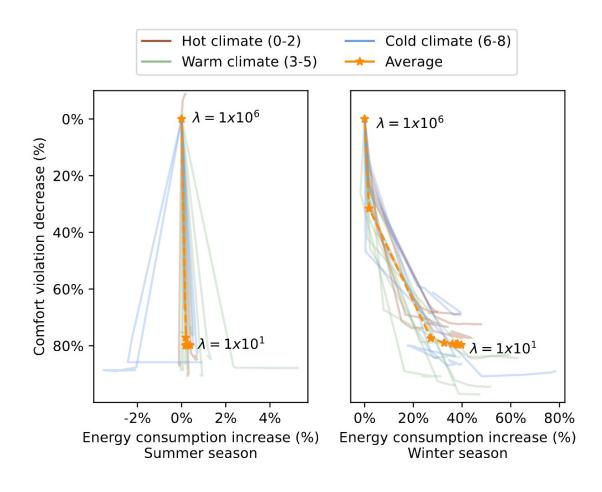


Temperature profile

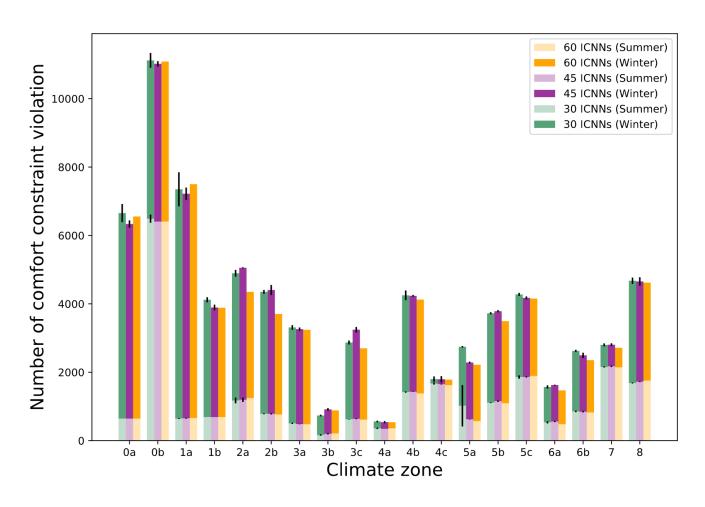


Climate 5b in July

Energy-comfort trade-off



Robustness to feature function selection



$$s_{t+1} = (\theta^*)^{\mathsf{T}} \Phi(s_t, z_t, a_t) + d_t$$

ICNN : feature functions $\Phi(s_t, z_t, a_t)$ trained from the source building

Takeaways

- OCFT augments black-box transfer learning algorithms
 - Robust to small and simple feature functions
 - Requires little data to warm start and minimal tuning of parameters
 - Code: github.com/sustainable-computing/ocft
- OCFT trades off energy consumption & thermal comfort constraints
 - Reduces constraint violation by 81% while using 11% extra energy (vs. most energyefficient baseline)
 - Reduces constraint violation by 59% while using 8% extra energy (vs. least constraintviolating baseline)

