
Chapter 9
Fourier Transform Method For PDEs
The general idea of the Fourier method for real-world problems is as follows. First,
we transform the given differential equation from x-domain to !-domain, do all
calculations in !-domain, and finally use the inverse transform to represent the
solution in x-domain. As we will see in the sequel, the work in !-domain is much
simpler than working in x-domain. Fig.9.1 shows that process schematically.
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9.1 1D problems

9.1.1 Heat problem and heat kernel
Consider the following homogeneous heat problem�

@tu= @xxu;¡1<x<1; t > 0
u(0; x)= u0(x)

: (9.1)

Note that there is no boundary condition for the problem. However, from the phys-
ical point of view, we pose the boundedness condition so that a true solution must
be bounded at jxj !1 for all t > 0. Let us first assume that the initial condition
u0(x) has the Fourier transform û0(!). By taking the Fourier transform of the
problem with respect to x, we reach the following equation(

@tû(t; !)=¡!2û(t; !)
û(0; !)= û0(!)

; (9.2)

where û(t; !) is the transform of u(t; x) with respect to x. Note that the obtained
problem is an ordinary equation in !-domain which is solved for

û(t; !)= û0(!) e¡!
2t: (9.3)
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Now, the solution u(t; x) is written by the aid of inverse transform as

u(t; x)=F¡1fû0(!) e¡!
2tg= 1

2�

Z
R

û0(!) e¡!
2t ei!x d!: (9.4)

Example 9.1. Consider the following problem�
@tu= @xxu;¡1<x<1; t > 0
u(0; x)= �(x)

;

where �(x) is the Dirac delta function. The problem in ! domain reads(
@tû=¡!2 û
û0(!)= 1

;

that is solved for û(t; !) = e¡!
2t. Therefore, the solution u(t; x) is derived by the

inverse transform

u(t; x)=F¡1fe¡!2tg= 1

4�t
p e

¡x2

4t :

This is the fundamental solution of a simple heat equation.

Example 9.2. Let us solve the following heat problem(
@tu= k@xxu;¡1<x<1; t > 0

u(0; x)= e¡jxj
;

where k > 0 is a constant. Taking transform of the above equation, we reach(
@tû=¡k!2 û
û(0; !)=

2

1+!2

;

and thus
û(t; !)=

2
1+!2

e¡k!
2t:

Note that û is even, and therefore

u(t; x)=
1
�

Z
¡1

1 e¡k!
2t

1+!2
cos(!x) d!:

The graph of the solution is shown in Fig.9.2 for k=1 and for t=0;0.1;0.5 and t=2.
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Remark 9.1. Observe that the solution spreads out in time and that the sharp
point in the initial heat profile (at x=0) immediately disappear. In fact, the solution
is averaged for t > 0. This averaging process conserves the total thermal energy of
the system, and makes the solution smooth.

Example 9.3. Let us solve the following problem(
@tu= @xxu+

�(t)

1+x2

u(0; x)= 0
:

By the Fourier transform of the equation, we reach the following equation(
@tû=¡!2û+�e¡j! j�(t)
û(0; !)= 0

:

The above differential equation can be solved, for example, by the Laplace trans-
form method. The solution is

(s+!2)Û(s; !)=�e¡j! j;

and therefore û(t; !)=�e¡j! je¡!
2t. Thus, the solution u is

u(t; x)=

Z
0

1
e¡! e¡!

2t cos(!x)d!:

It is simply verified that the obtained solution is the same as the solution to the
following problem (

@tu= @xxu

u(0; x)=
1

1+x2

:

9.1.2 Convolution representation of the solution

Back to formula (9.3), we can use the convolution formula and write the solution to
a heat equation as follows

F¡1fu0̂(!) e¡!
2tg=u0(x) �F¡1fe¡!

2tg=u0(x) �
1

4�t
p e

¡x2

4t :

The function �(t; x) =
1

4�t
p e

¡x2

4t is called the fundamental solution of the heat

equation or the heat kernel l. Therefore,

u(t; x)=

Z
R

u0(y)�(t; x¡ y) dy=
1

4�t
p

Z
R

u0(y) e
¡(x¡y)2

4t dy: (9.5)

Formulation presented in (9.5) has an advantage over (9.4). In fact, one can use
(9.4) only when u0(x) has a Fourier transform.
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Example 9.4. Let us solve the following heat problem8<: @tu= @xxu;¡1<x<1; t > 0

u(0; x)=
�
1 x< 0
2 x> 0

The relation (9.5) gives the solution

u(t; x)=
1

4�t
p

Z
¡1

0

e
¡(x¡y)

4t

2

dy+
2

4�t
p

Z
0

1
e
¡(x¡y)2

4t dy:

Notice that
1

4�t
p

Z
R

e
¡y2

4t dy=1;

and thus, at x=0 we obtain u(t;0)= 3

2
. Fig.9.3 shows the solution for t= 0.01;0.05;

0.2. As it is observed from the figure, the solution becomes smooth immediately for
t> 0.

−1. 0 −0. 5 0. 5 1. 0

1. 0

1. 5

2. 0

Figure 9.3.

9.1.3 Heat problems in semi-infinite domain
Consider a heat problem defined on the semi-infinite domain x2 (0;1)8<: @tu= @xxu; 0<x<1; t > 0

u(t; 0)= 0
u(0; x)= f(x)

: (9.6)

Because the domain of x is defined in (0; 1), we should use the sine or cosine
Fourier integrals. According to the given boundary condition, we choose the sine
Fourier transform for the problem and write(

@tûs(!)=¡!2 ûs(!)
ûs(0; !)= f̂s(!)

:

THe solution ûs(t; !) is

ûs(t; !)= f̂s(!) e
¡!2t;

and thus

u(t; x)=
1
�

Z
¡1

1
f̂s(!) e¡!

2t sin(!x) d!:
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Note that u(t; 0)=0 for all t� 0.

Example 9.5. Let us solve the following heat problem8<: @tu= @xxu+ tf(x); 0<x<1; t > 0
u(t; 0)=0
u(0; x)= 0

;

where f(x) = 1 for 0 < x < 1 and zero otherwise. Let us take the sine Fourier
transform of the problem and rewrite the equation as follows(

@tûs(t; !)=¡!2ûs(t; !)+ t
1¡ cos!

!

ûs(0; !)= 0
:

The above problem is solved for

ûs(t; !)=
1¡ cos!

!
e¡!

2t

Z
0

t

se!
2s ds=

1¡ cos!
!

(
t
!2
¡ 1¡ e¡!2t

!4

)
:

The solution u(t; x) is derived then by the following formula

u(t; x)=
2
�

Z
0

1
ûs(t; !) sin(!x) d!:

Fig.9.4 shows the solution for t= 0.5.
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Figure 9.4.

Remark 9.2. If the boundary condition is @xu(t; 0) = 0, we choose the cosine
Fourier transform for the problem.

9.1.4 Wave problem and d'Alembert formula
The method to solve a wave equation is completely similar to solve a heat problem.
Consider the following equation8>><>>:

@ttu= c2 @xxu;¡1<x<1
u(0; x)= f(x)
@tu(0; x)= g(x)

:
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Let us write the solution as follows

u(t; x)=
1
2�

Z
R

û(t; !) ei!x d!;

for an undetermined function û(t; !). To determine û, we substitute the integral
into the equation and obtain(

@tt û(t; !)=¡c2!2 û(t; !)
û(0; !)= f̂(!); @tû(0; !)= ĝ(!)

:

The general solution to the above initial value problem is

û(t; !)= f̂(!) cos(c!t)+
1
c!

ĝ(!) sin(c!t);

and thus

u(t; x)=F¡1ff̂(!) cos(c!t)g+ 1
c
F¡1

�
1
!
ĝ(!) sin(c!t)

�
:

According to the convolution formula, one can write

F¡1ff̂(!) cos(c!t)g= f(x) � 1
2
[�(x¡ ct)+ �(x+ ct)]=

1
2
[f(x¡ ct)+ f(x+ ct)]:

For the second term, we have

1
c
F¡1

�
1
!
ĝ(!) sin(c!t)

�
=
¡1
2c

�Z
0

x

g(s)ds

�
� [�(x¡ ct)¡ �(x+ ct)]=

=
1
2c

Z
x¡ct

x+ct

g(s)ds:

Therefore, the solution can be written as

u(t; x)=
1
2
[f(x¡ ct)+ f(x+ ct)] +

1
2c

Z
x¡ct

x+ct

g(s)ds: (9.7)

Example 9.6. Let us solve the following damped wave equation8>><>>:
@ttu+2�@tu= c2@xxu
u(0; x)= f(x)
@tu(0; x)= g(x)

:

By the Fourier transform, the problem reduces to(
@ttû+2�@tû=¡c2!2û
û(0; !)= f̂(!); @tû(0; !)= ĝ(!)

:

For example, if g=0 then the solution is

û(t; !)= e¡�tf̂(!)

�
cos(�t)+

�
�
sin(�t)

�
;
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where � = !2¡ �2
p

. The figure (9.5) shows the solution u(t; x) when c = 1 and

� = 0.5 if f(x) =
(
(1¡x2)/4 ¡1�x� 1
0 othersise

. Observe that two branches are not separated

completely due to the damping factor �.
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Figure 9.5.

9.1.5 Heat kernel
Consider the following heat problem�

@tu= @xxu;¡1<x<1; t > 0
u(0; x)= �(x¡ x0)

;

where x0 is an arbitrary point in (¡1; 1), and � is the Dirac delta function.
According to relation (9.5), the solution can be written as

u(t; x)=
1

4�t
p

Z
R

�(y¡x0) e¡
(x¡y)2
4t dy=

1

4�t
p e

¡(x¡x0)2

4t ;

and thus the fundamental solution �(t; x) is called sometime the impulse response
of the heat equation. Accordingly, the response to an arbitrary initial heat profile
can be written as

u(t; x)=u0(x) ��(t; x):

As it is observe from Fig.9.6, the solution shrinks at x0 for t! 0.
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Figure 9.6.
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The following proposition states that the initial thermal energy (if it is finite) is
conserved for t > 0.

Proposition 9.1. Assume that the initial heat profile u0(x) in (9:1) is integrable.
Then the solution decay in long term

lim
t!1

u(t; x)= 0; (9.8)

and furthermore Z
R

u(t; x) dx=

Z
R

u0(x) dx: (9.9)

Proof. We have

lim
t!1

u(t; x)= lim
t!1

Z
R

u0(y)�(t; x¡ y) dy=

Z
R

u0(y) lim
t!1

�(t; x¡ y) dy:

The limit can be passed inside the integral according to the dominant convergence
theorem. Note that

ju0(y)�(t; x¡ y)j< ju0(y)j;

and u0(x) is integrable. On the other hand, since we have

lim
t!1

�(t; x¡ y)= 0;

we conclude (9.8). To show (9.9), we take x¡ y= z and writeZ
R

u(t; x) dx=

Z
R

Z
R

u0(y)�(t; x¡ y)dy=

Z
R

�(t; z)

�Z
R

u0(x¡ z) dx
�
dz:

Since u0 is integrable, we haveZ
R

u0(x¡ z) dx=
Z
R

u0(x) dx;

and therefore Z
R

u(t; x) dx=

�Z
R

u0(x) dx

��Z
R

�(t; z)dz

�
It is simply verified that Z

R

�(t; x)dx=1;

and hence (9.9). �

Remark 9.3. Note that in general we can pass the limit inside the integrals and
write

lim
t!1

Z
R

u(t; x) dx=

Z
R

lim
t!1

u(t; x) dx:

In fact, if the relation holds, by property lim
t!1

u(t; x)= 0, we should have

lim
t!1

Z
R

u(t; x) dx=0;
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which is evidently wrong. Another example is � itself as

lim
t!1

Z
R

�(t; x) dx= lim
t!1

1=1;

and Z
R

lim
t!1

�(t; x) dx=0:

Proposition 9.2. Assume that f(x) is a bounded continuous function in R, then

lim
t!0

1

4�t
p

Z
R

f(y) e
¡(x¡y)2

4t dy= f(x):

Proof. Let y=2 t
p

z+x and then

1

4�t
p

Z
R

f(y) e
¡(x¡y)2

4t dy=
1

�
p

Z
R

f(2 t
p

z+x) e¡z
2
dz:

According to the dominant convergence theorem, we can write

lim
t!0

1

4�t
p

Z
R

f(y) e
¡(x¡y)2

4t dy=
1

�
p

Z
R

lim
t!0

f(2 t
p

y+ x) e¡z
2
dz

=
1

�
p

Z
R

f(x) e
¡z2

4t dz=
f(x)

�
p

Z
R

e
¡z2

4t dz= f(x);

and this completes the proof. �

Problem 9.1. Assume u0 is an admissible functions, and u(t;x) is the solution to the following
problem �

@tu= @xxu
u(0; x)=u0(x)

:

Show the following relation

lim
t!0

u(t; x) =u0(x)

Now, we use the relation (9.5) to show that u(t; x) is smooth even if the initial
data is discontinuous. The proof of the following theorem is given in the appendix
to this chapter.

Theorem 9.1. Assume that the initial data u0(x) is admissible, then u(t; x) given
in (9:5) is smooth for t > 0.

Proof. We show that u is continuous. Fix (t; x), t> 0 and let (tn; xn), tn> 0 be an
arbitrary sequence converging (t; x). We have

lim
n!1

u(tn; xn)= lim
n!1

Z
R

u0(y)�(tn; xn¡ y)dy:

Since tn> 0, tn! t, and t> 0, without loss of generality, we can assume that tn>"
for some " > 0 and for all n. On the other hand, for any " > 0 there is M > 0 such
that �(tn; x¡ y)<M regardless of x; y. In fact, we have

�(tn; x¡ y)=
1

4�tn
p e

¡(x¡y)2
4tn � 1

4�tn
p <

1

4�"
p =M:
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Therefore

ju0(y)�(tn; xn¡ y)j<M ju0(y)j:

Since f in integrable, we use the dominant convergence theorem and write

lim
n!1

u(tn; xn)=

Z
R

u0(y) lim
n!1

�(tn; xn¡ y)dy=

Z
R

u0(y)�(t; x¡ y)dy=u(t; x):

Hence, the continuity is proved. Let us show that u(t; x) is continuously differen-
tiable with respect to t for t>0. Fix t and let h be small enough such that t+h>0.
We have

u(t+h; x)¡u(t; x)
h

=

Z
R

u0(y)
�(t+h; x¡ y)¡�(t; x¡ y)

h
dy:

�(t; x) is smooth for t> 0, and thus there is M =M(t) such that

j@t�(t; x)j<M:

Therefore, we have

lim
h!0

u(t+ h; x)¡ u(t; x)
h

=

Z
R

u0(y)lim
h!0

�(t+h; x¡ y)¡�(t; x¡ y)
h

dy=Z
R

u0(y)@t�(t; x¡ y)dy:

The differentiability of higher orders with respect to t and x is proved by a similar
argument. �

Problems
Problem 9.2. Solve the following heat problem in (¡1;1) and draw the temperature at
x=1 with respect to time (

@tu=@xxu;

u(0; x) = e¡x
2 :

Problem 9.3. Solve the following damped wave equation on ¡1<x<1(
@ttu+2�@tu= @xxu

u(0; x) =0; @tu(0; x)= e¡jxj
;

where � > 0 is a constant.

Problem 9.4. Solve the following heat problem on 0<x<18>><>>:
@tu= k@xxu
u(t; 0)= 0

u(0; x)=
1

1+x2

;

where k > 0 is a constant.

Problem 9.5. Solve the following heat problem(
@tu= @xxu+ e¡jxj

u(0; x)= 0
;

and draw the solution for t=1.
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Problem 9.6. Solve the following heat problem8<: @tu= @xxu+
e¡jxj

1+x2

u(0; x)= 0
;

and draw the solution for t=1.

Problem 9.7. If f(x) is admissible function, show that following problems have same solution�
@tu= @xxu+ �(t) f(x)
u(0; x)= 0

;

�
@tu= @xxu
u(0; x)= f(x)

:

Problem 9.8. Solve the following heat problem in the domain (¡1;1)8<: @tu= @xxu

u(0; x)=
�
0 x< 0
1 x> 0

Problem 9.9. Solve the following heat equation on the domain (0;1)8>><>>:
@tu= @xxu
@xu(t; 0)= 0

u(0; x)= e¡x
:

Problem 9.10. Solve the following wave equation in the domain (0;1)8>>>><>>>>:
@ttu=4@xxu
u(t; 0)= 0

u(0; x) =0; @tu(0; x)= e
¡x2

2

:

Problem 9.11. Assume that the initial data f(x) in (9.1) is admissible.

a) Directly differentiate �(t; x) and verify

@t�(t; x) =@xx�(t; x):

b) Us the result in part (a) to show that the integral solution (9.5) is a true solution to
the problem (9.1).

Problem 9.12. Draw the solution of the problem8>>>>>>>><>>>>>>>>:
@ttu= @xxu

u(0; x) =

8<: (1¡x2)

4
¡1� x� 1

0 othersise

@tu(0; x)= 0

;

at times t= 0.5; 1; 1.5; 2.

Problem 9.13. Solve the following wave problem and draw the solution for different instance
of time 8>><>>:

@ttu=@xxu

u(0; x) = �(t¡ 1)e¡x2/2
@tu(0; x) =0

:

Problem 9.14. Show that the solution to the problem8<: @tu= @xxu x2 (0;1)
@xu(t; 0)= 0
u(0; x)= f(x) x2 (0;1)

;
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is

u(t; x)=
1
�

Z
¡1

1
f̂c(!) e!

2t cos(!x) d!;

where Fc(!) is the cosine Fourier transform of f(x).

Problem 9.15. Solve the following problem8>><>>:
@tu= @xxu x2 (0;1)
u(t; 0)=1

u(0; x)=
1

1+x2
x2 (0;1)

:

Problem 9.16. Even though we have the formula (9.9), use the Plancherel theorem and
(9.3) to show

lim
t!1

Z
¡1

1
ju(t; x)j2dx=0:

9.2 Higher dimensional problems

9.2.1 Laplace equation
We solve the Laplace equation �u=0 on semi-bounded domains.

Laplace equation on a half-plane

Consider the following problem defined on 
= f(x; y); y� 0g�
�u=0
u(x; 0)= f(x)

:

We look for solutions that remain bounded in 
, that is,

sup
(x;y)2


ju(x; y)j<1: (9.10)

The above problem is equivalent to the following one in !-domain(
@yyû(!; y)¡!2 û(!; y)= 0

û(!; 0)= f̂(!)
:

Therefore, û(!; y) is

û(!; y)=A(!) e!y+B(!) e¡!y;

for some undetermined coefficients functions A(!); B(!). To determine these coef-
ficients, we apply the boundedness condition. The coefficient A(!) must be zero for
! > 0, otherwise the solution goes unbounded for y!1. Similarly, B(!) must be
zero for ! < 0. Hence, û has the following form

û(!; y)=

�
B(!) e¡!y !> 0
A(!) e!y !< 0

:
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This is equivalent to û(!; y)=C(!)e¡y j! j for some function C(!). It is simply seen
that C(!)= f̂(!) and therefore

u(x; y)=F¡1fûg= 1
2�

Z
R

f̂ (!) e¡! jy j ei!x d!: (9.11)

Problem 9.17. Show that the above solution can be written in the following form

u(x; y)=
y
�

Z
R

f(�)
y2+(x¡ �)2

d�: (9.12)

Laplace equation in quadrant

Now let us solve the Laplace equation in quadrant 
= f(x; y); x> 0; y > 0g with
boundary condition u(0; y) = 0 and u(x; 0) = f(x) for x> 0. To solve the problem,
we extend the problem on the half-plane f(x; y); y >0g by extending f(x) as an odd
function fodd(x) for ¡1<x<1. Now, formula (9.11) implies

u(x; y)=
2
�

Z
0

1
f̂s(!) e

¡! jy j sin(!x) d!;

where f̂s(!) is the sine Fourier transform of f(x).

Laplace equation in a strip

Consider the following problem on strip 
= f(x; y); a< y < bg�
�u=0
u(x; a)= f(x); u(x; b)= g(x)

;

Since the domain is infinite in x-direction, we take the Fourier transform with
respect to x and obtain the following problem8>><>>:

@yyû¡!2û=0

û(!; a)= f̂(!)
û(!; b)= ĝ(!)

:

The solution of the above equation is

û(!; y)=A(!) e!y+B(!) e¡!y;

for some undetermined functions A(!);B(!) which are determined by the aid of the
given boundary conditions y= a and y= b as follows(

f̂(!)=A(!) e!a+B(!) e¡!a

ĝ(!)=A(!) e!b+B(!) e¡!b
:

Thus,

A(!)=
f̂(!) e¡!b¡ ĝ(!) e¡!a

2 sinh(!(a¡ b)) ; B(!)=¡ f̂(!) e
!b¡ ĝ(!) e!a

2 sinh(!(a¡ b)) ;

and finally

u(x; y)=
1
2�

Z
R

[A(!) e!y+B(!) e¡!y] ei!x d!:
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9.2.2 Heat and wave problems
We solve simple heat and wave problem in 2D. In particular, we solve problems
@tu= k�u, and @ttu= c2�u on semi-bounded domains.

Solution to heat equation

We first find the form of heat kernel in R2. For higher dimension, the form of the
solution is completely similar. Consider the following problem(

@tu=�u; (x; y)2R2

u(0; x; y)=u0(x; y)
: (9.13)

If the solution u(t; x; y) has a transform û, then it satisfies the following equation(
@tû(t; !x; !y)=¡!2 û(t; !x; !y)
û(0; !x; !y)= û0(!x; !y)

;

where != !x
2+!y

2
q

. The above equation is a linear ordinary equation with respect

to t and thus

û(t; !x; !y)= û0(!x; !y) e¡!
2t: (9.14)

This gives the solution u as follows

u(t; x; y)=
1
4�2

Z
R2

û0(!x; !y) e¡!
2t ei!xx ei!yy d!x d!y: (9.15)

By the convolution, we can write

u(t; x; y)=F¡1fû0(!x; !y) e¡!
2tg=u0(x; y) �F¡1

�
e¡(!x

2+!y
2)t
	
:

On the other hand, we have

F¡1
�
e¡(!x

2+!y
2)t
	
=

1
4�t

e
¡(x2+y2)

4t : (9.16)

The functions

�(t; x; y)=
1
4�t

e
¡(x2+y2)

4t

is called the fundamental solution or the heat kernel of 2D heat problem. Therefore,
the solution can be put in the following convolution form

u(t; x; y)=
1
4�t

Z
R2

u0(z1; z2) e
¡(x¡z1)2+(y¡z2)2

4t dz1 dz2: (9.17)

Heat problems on semi-infinite domains

Consider the following heat problem on the half-plane y > 0:8<: @tu=�u
u(t; x; 0)= 0
u(0; x; y)=u0(x; y)

: (9.18)
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If we extend u0(x; y) to R2 as an odd function with respect to y, then we reach a
problem on R2. Let uodd(x; y) be the odd extension of u0 with respect to y in R2.
We have

uodd(t; x; y)=
1
4�2

Z
R2

ûodd(!x; !y) e
¡!2t ei!xx ei!yy d!x d!y:

We claim uodd(t; x; 0)=0. In fact, ûodd(!x;¡!y)=¡ûodd(!x; !y) and thusZ
R2

ûodd(!x; !y) e¡!
2t ei!xx ei!yy=i

Z
R2

ûodd(!x; !y) e¡!
2t ei!xx sin(!yy);

that verifies the claim. Therefore, we can write

uodd(t; x; y)=
i
4�2

Z
R2

ûodd(!x; !y) e
¡!2t ei!xx sin(!yy) d!x d!y:

The solution u(t; x; y) then can be written as follows in the convolution form

u(t; x; y)= uodd(x; y) ��(t; x; y):

Non-homogeneous heat equations

Consider the following non-homogeneous equation8<: @tu=�u
u(t; x; 0)= f(x)
u(0; x; y)= u0(x; y)

:

In order to solve the problem, we use the superposition principle and split up the
problem into two sub-problems�

�v=0
v(x; 0)= f(x)

+

8<:
@tw=�w
w(t; x; 0)=0
w(0; x; y)=u0(x; y)¡ v(x; y)

:

It is simply seen that the solution of the original problem is as follows

u(t; x; y)= v(x; y)+w(t; x; y):

The function ve(x; y) is called the steady state solution contributed by the boundary
term. We have the following property

lim
t!1

u(t; x; y)= v(x; y)+ lim
t!1

w(t; x; y)= v(x; y):

Solution to wave equations

Now, we consider the wave equation @ttu= c2�u in R2. For the sake of simplicity,
we solve the following problem8>><>>:

@ttu= c2�u
u(0; x; y)= f(x; y)
@tu(0; x; y)= 0

:
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The ordinary differential equation for û(t; !x; !y) is8>><>>:
@ttû+ c2!2û=0

û(0; !x; !y)= f̂(!x; !y)

@tû(0; !x; !y)= 0

;

where ! = !x
2+!y

2
q

as before. The solution of the above ordinary initial value

problem is

û(t; !x; !y)= f̂(!x; !y) cos(ct!): (9.19)

Therefore, the solution u(t; x; y) can be written in the following convolution form

u(t; x; y)= f(x; y) �F¡1f cos(ct!)g: (9.20)

Let us try to find the inverse Fourier transform in the above formula. To do that,
we write !x; !y as !x=! cos, !y=! sin for  2 [¡�; �]. Therefore, we can write

F¡1f cos(ct!)g= 1
4�2

Z
¡�

�Z
0

1
cos(ct!)e¡i!(xcos+ysin)!d!d:

If we write x= � cos�, y= � sin�, we reach

F¡1f cos(ct!)g= 1
4�2

Z
¡�

�Z
0

1
cos(ct!)cos(�! cos( ¡ �))!d!d:

It turns out that
1
2�

Z
¡�

�

cos(s cos) d= J0(s);

where J0 is the Bessel function of the first kind. Therefore, we have

F¡1f cos(ct!)g= 1
2�

Z
0

1
J0(�!) cos(ct!)!d!:

We can write the right hand side of the above formula as follows

1
2�

Z
0

1
J0(�!) cos(ct!)!d!=

1
2�c

d
dt
1
�

Z
0

1
J0(!) sin

�
ct
�
!

�
d!:

We use the following formulaZ
0

1
J0(!) sin

�
ct
�
!

�
d!=

1

c2t2

�2
¡ 1

q ; � < ct

and obtain

F¡1f cos(ct!)g= 1
2�c

d
dt

1

c2t2¡ �2
p ; � < ct:

Finally, the solution u(t; x; y) in formula (9.20) can be written as follows

u(t; x; y)=
1
2pc

d
dt

Z
Bct(x;y)

f(z1; z2)

c2t2¡ (x¡ z1)2¡ (y¡ z2)2
p dz1dz2;
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where Bct(x; y) is the disk centered at (x; y) with radius ct. By a similar calculation,
it is shown that if @tu(0; x; y)= g(x) then the solution is

u(t; x; y)=
1
2pc

d
dt

Z
Bct(x;y)

f(z1; z2)

c2t2¡ (x¡ z1)2¡ (y¡ z2)2
p dz1dz2+

1
2pc

Z
Bct(x;y)

g(z1; z2)

c2t2¡ (x¡ z1)2¡ (y¡ z2)2
p dz1dz2:

Problems
Problem 9.18. Solve the following heat equation on R2(

@tu=4�u

u(0; x; y)= e¡x
2¡y2 :

Problem 9.19. Consider the following heat problem in the upper half plane y > 08>><>>:
@tu=�u

u(t; x; 0)= e¡jxj

u(0; x; y)= e¡x
2¡y2

:

What method you suggest to solve this problem? Try it and write the solution in the integral
form.

Problem 9.20. Solve the following heat equation on the upper half plane y > 08>><>>:
@tu=�u
@yu(t; x; 0)= 0

u(0; x; y)= e¡jxj e¡y
:

Problem 9.21. Consider the Laplace equation�
�u=0
u(x; 0)= f(x)

:

Show the the solution can be written as

u(x; y)=
y
�

Z
R

f(�)
y2+(x¡ �)2

d�:

At first glance, you may think lim
y!0

u(x; y) = 0. Plot the solution u(x; y) for y= 0.1; 0.05; 0.01

if f(x)= e¡jxj and observe it converges to f(x).

Problem 9.22. Solve the Laplace equation on the domain 
=f(x; y); x>0; y >0g with the
boundary conditions u(0; y) =u(x; 1)= 0 and u(x; 0)= e¡x.

Problem 9.23. Write the solution of the following heat problem defined in the quadrant x>0,
y > 0 in the integral form 8>>>>>><>>>>>>:

@tu=�u
u(t; 0; y)= f(x)
u(t; x; 0)=0
u(0; x; y)=u0(x; y)

:

Problem 9.24. Solve the Laplace equation �u= 0 on the domain 
= f(x; y); 0< x < 1g
with the boundary conditions u(0; y)= 0, u(1; y)= e¡y

2
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Problem 9.25. Solve the Laplace equation on the domain 
=f(x; y);0< y<1; x>0g with
the boundary conditions u(0; y)= 0, u(x; 1)= 0 and u(x; 0)= e¡x

2

Problem 9.26. Let 
 denote the strip f(x; y); 0< y< 1g

a) Show that the solution to the Laplace equation�
�u=0
u(x; 0)= 0; u(x; 1)= �(x+1)+ �(x¡ 1)

is

u(x; y)=
2
�

Z
0

1sinh(!y)
sinh(!)

cos(!) cos(!x) d!:

b) Find a solution if the boundary data changes to u(x; 1)= �(x+1)¡ �(x¡ 1).

Problem 9.27. Solve the following heat problem in the strip 
= f(x; y); 0< y < 1g8>>>><>>>>:
@tu=�u
u(t; x; 0)=u(t; x; 1)= 1

u(0; x; y)=
�
1 ¡1<x< 1
0 otherwise

:

18 Fourier Transform Method For PDEs


	9 Fourier Transform Method For PDEs
	9.1 1D problems
	9.1.1 Heat problem and heat kernel
	9.1.2 Convolution representation of the solution
	9.1.3 Heat problems in semi-infinite domain
	9.1.4 Wave problem and d'Alembert formula
	9.1.5 Heat kernel
	Problems

	9.2 Higher dimensional problems
	9.2.1 Laplace equation
	Laplace equation on a half-plane
	Laplace equation in quadrant
	Laplace equation in a strip

	9.2.2 Heat and wave problems
	Solution to heat equation
	Heat problems on semi-infinite domains
	Non-homogeneous heat equations
	Solution to wave equations

	Problems



