Chapter 9

Fourier Transform Method For PDEs

The general idea of the Fourier method for real-world problems is as follows. First, we transform the given differential equation from x-domain to ω-domain, do all calculations in ω-domain, and finally use the inverse transform to represent the solution in x-domain. As we will see in the sequel, the work in ω-domain is much simpler than working in x-domain. Fig. 9.1 shows that process schematically.

Figure 9.1.

9.1 1D problems

9.1.1 Heat problem and heat kernel

Consider the following homogeneous heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u,-\infty<x<\infty, t>0 \tag{9.1}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

Note that there is no boundary condition for the problem. However, from the physical point of view, we pose the boundedness condition so that a true solution must be bounded at $|x| \rightarrow \infty$ for all $t>0$. Let us first assume that the initial condition $u_{0}(x)$ has the Fourier transform $\hat{u}_{0}(\omega)$. By taking the Fourier transform of the problem with respect to x, we reach the following equation

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}(t, \omega)=-\omega^{2} \hat{u}(t, \omega) \tag{9.2}\\
\hat{u}(0, \omega)=\hat{u}_{0}(\omega)
\end{array}\right.
$$

where $\hat{u}(t, \omega)$ is the transform of $u(t, x)$ with respect to x. Note that the obtained problem is an ordinary equation in ω-domain which is solved for

$$
\begin{equation*}
\hat{u}(t, \omega)=\hat{u}_{0}(\omega) e^{-\omega^{2} t} . \tag{9.3}
\end{equation*}
$$

Now, the solution $u(t, x)$ is written by the aid of inverse transform as

$$
\begin{equation*}
u(t, x)=\mathcal{F}^{-1}\left\{\hat{u}_{0}(\omega) e^{-\omega^{2} t}\right\}=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{u}_{0}(\omega) e^{-\omega^{2} t} e^{i \omega x} d \omega . \tag{9.4}
\end{equation*}
$$

Example 9.1. Consider the following problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u,-\infty<x<\infty, t>0 \\
u(0, x)=\delta(x)
\end{array}\right.
$$

where $\delta(x)$ is the Dirac delta function. The problem in ω domain reads

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}=-\omega^{2} \hat{u} \\
\hat{u}_{0}(\omega)=1
\end{array},\right.
$$

that is solved for $\hat{u}(t, \omega)=e^{-\omega^{2} t}$. Therefore, the solution $u(t, x)$ is derived by the inverse transform

$$
u(t, x)=\mathcal{F}^{-1}\left\{e^{-\omega^{2} t}\right\}=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}} .
$$

This is the fundamental solution of a simple heat equation.
Example 9.2. Let us solve the following heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=k \partial_{x x} u,-\infty<x<\infty, t>0 \\
u(0, x)=e^{-|x|}
\end{array}\right.
$$

where $k>0$ is a constant. Taking transform of the above equation, we reach

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}=-k \omega^{2} \hat{u} \\
\hat{u}(0, \omega)=\frac{2}{1+\omega^{2}}
\end{array},\right.
$$

and thus

$$
\hat{u}(t, \omega)=\frac{2}{1+\omega^{2}} e^{-k \omega^{2} t} .
$$

Note that \hat{u} is even, and therefore

$$
u(t, x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{-k \omega^{2} t}}{1+\omega^{2}} \cos (\omega x) d \omega
$$

The graph of the solution is shown in Fig.9.2 for $k=1$ and for $t=0,0.1,0.5$ and $t=2$.

Figure 9.2.

Remark 9.1. Observe that the solution spreads out in time and that the sharp point in the initial heat profile (at $x=0$) immediately disappear. In fact, the solution is averaged for $t>0$. This averaging process conserves the total thermal energy of the system, and makes the solution smooth.

Example 9.3. Let us solve the following problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u+\frac{\delta(t)}{1+x^{2}} \\
u(0, x)=0
\end{array}\right.
$$

By the Fourier transform of the equation, we reach the following equation

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}=-\omega^{2} \hat{u}+\pi e^{-|\omega|} \delta(t) \\
\hat{u}(0, \omega)=0
\end{array}\right.
$$

The above differential equation can be solved, for example, by the LAPLACE transform method. The solution is

$$
\left(s+\omega^{2}\right) \hat{U}(s, \omega)=\pi e^{-|\omega|}
$$

and therefore $\hat{u}(t, \omega)=\pi e^{-|\omega|} e^{-\omega^{2} t}$. Thus, the solution u is

$$
u(t, x)=\int_{0}^{\infty} e^{-\omega} e^{-\omega^{2} t} \cos (\omega x) \mathrm{d} \omega
$$

It is simply verified that the obtained solution is the same as the solution to the following problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u \\
u(0, x)=\frac{1}{1+x^{2}}
\end{array} .\right.
$$

9.1.2 Convolution representation of the solution

Back to formula (9.3), we can use the convolution formula and write the solution to a heat equation as follows

$$
\mathcal{F}^{-1}\left\{\hat{u}_{0}(\omega) e^{-\omega^{2} t}\right\}=u_{0}(x) * \mathcal{F}^{-1}\left\{e^{-\omega^{2} t}\right\}=u_{0}(x) * \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}} .
$$

The function $\Phi(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}$ is called the fundamental solution of the heat equation or the heat kernell. Therefore,

$$
\begin{equation*}
u(t, x)=\int_{\mathbb{R}} u_{0}(y) \Phi(t, x-y) d y=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} u_{0}(y) e^{-\frac{(x-y)^{2}}{4 t}} d y \tag{9.5}
\end{equation*}
$$

Formulation presented in (9.5) has an advantage over (9.4). In fact, one can use (9.4) only when $u_{0}(x)$ has a Fourier transform.

Example 9.4. Let us solve the following heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u,-\infty<x<\infty, t>0 \\
u(0, x)= \begin{cases}1 & x<0 \\
2 & x>0\end{cases}
\end{array}\right.
$$

The relation (9.5) gives the solution

Notice that

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{0} e^{-\frac{(x-y)^{2}}{4 t}} d y+\frac{2}{\sqrt{4 \pi t}} \int_{0}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} d y
$$

$$
\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{y^{2}}{4 t}} d y=1
$$

and thus, at $x=0$ we obtain $u(t, 0)=\frac{3}{2}$. Fig.9.3 shows the solution for $t=0.01,0.05$, 0.2 . As it is observed from the figure, the solution becomes smooth immediately for $t>0$.

Figure 9.3.

9.1.3 Heat problems in semi-infinite domain

Consider a heat problem defined on the semi-infinite domain $x \in(0, \infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u, 0<x<\infty, t>0 \tag{9.6}\\
u(t, 0)=0 \\
u(0, x)=f(x)
\end{array} .\right.
$$

Because the domain of x is defined in $(0, \infty)$, we should use the sine or cosine Fourier integrals. According to the given boundary condition, we choose the sine Fourier transform for the problem and write

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}_{s}(\omega)=-\omega^{2} \hat{u}_{s}(\omega) \\
\hat{u}_{s}(0, \omega)=\hat{f}_{s}(\omega)
\end{array} .\right.
$$

THe solution $\hat{u}_{s}(t, \omega)$ is

$$
\hat{u}_{s}(t, \omega)=\hat{f}_{s}(\omega) e^{-\omega^{2} t}
$$

and thus

$$
u(t, x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \hat{f}_{s}(\omega) e^{-\omega^{2} t} \sin (\omega x) \mathrm{d} \omega .
$$

Note that $u(t, 0)=0$ for all $t \geq 0$.
Example 9.5. Let us solve the following heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u+t f(x), 0<x<\infty, t>0 \\
u(t, 0)=0 \\
u(0, x)=0
\end{array}\right.
$$

where $f(x)=1$ for $0<x<1$ and zero otherwise. Let us take the sine Fourier transform of the problem and rewrite the equation as follows

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}_{s}(t, \omega)=-\omega^{2} \hat{u}_{s}(t, \omega)+t \frac{1-\cos \omega}{\omega} \\
\hat{u}_{s}(0, \omega)=0
\end{array}\right.
$$

The above problem is solved for

$$
\hat{u}_{s}(t, \omega)=\frac{1-\cos \omega}{\omega} e^{-\omega^{2} t} \int_{0}^{t} s e^{\omega^{2} s} d s=\frac{1-\cos \omega}{\omega}\left\{\frac{t}{\omega^{2}}-\frac{1-e^{-\omega^{2} t}}{\omega^{4}}\right\}
$$

The solution $u(t, x)$ is derived then by the following formula

$$
u(t, x)=\frac{2}{\pi} \int_{0}^{\infty} \hat{u}_{s}(t, \omega) \sin (\omega x) d \omega
$$

Fig.9.4 shows the solution for $t=0.5$.

Figure 9.4.
Remark 9.2. If the boundary condition is $\partial_{x} u(t, 0)=0$, we choose the cosine Fourier transform for the problem.

9.1.4 Wave problem and d'Alembert formula

The method to solve a wave equation is completely similar to solve a heat problem. Consider the following equation

$$
\left\{\begin{array}{l}
\partial_{t t} u=c^{2} \partial_{x x} u,-\infty<x<\infty \\
u(0, x)=f(x) \\
\partial_{t} u(0, x)=g(x)
\end{array}\right.
$$

Let us write the solution as follows

$$
u(t, x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{u}(t, \omega) e^{i \omega x} d \omega
$$

for an undetermined function $\hat{u}(t, \omega)$. To determine \hat{u}, we substitute the integral into the equation and obtain

$$
\left\{\begin{array}{l}
\partial_{t t} \hat{u}(t, \omega)=-c^{2} \omega^{2} \hat{u}(t, \omega) \\
\hat{u}(0, \omega)=\hat{f}(\omega), \partial_{t} \hat{u}(0, \omega)=\hat{g}(\omega)
\end{array} .\right.
$$

The general solution to the above initial value problem is

$$
\hat{u}(t, \omega)=\hat{f}(\omega) \cos (c \omega t)+\frac{1}{c \omega} \hat{g}(\omega) \sin (c \omega t)
$$

and thus

$$
u(t, x)=\mathcal{F}^{-1}\{\hat{f}(\omega) \cos (c \omega t)\}+\frac{1}{c} \mathcal{F}^{-1}\left\{\frac{1}{\omega} \hat{g}(\omega) \sin (c \omega t)\right\} .
$$

According to the convolution formula, one can write

$$
\mathcal{F}^{-1}\{\hat{f}(\omega) \cos (c \omega t)\}=f(x) * \frac{1}{2}[\delta(x-c t)+\delta(x+c t)]=\frac{1}{2}[f(x-c t)+f(x+c t)]
$$

For the second term, we have

$$
\begin{array}{r}
\frac{1}{c} \mathcal{F}^{-1}\left\{\frac{1}{\omega} \hat{g}(\omega) \sin (c \omega t)\right\}=\frac{-1}{2 c}\left(\int_{0}^{x} g(s) d s\right) *[\delta(x-c t)-\delta(x+c t)]= \\
=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
\end{array}
$$

Therefore, the solution can be written as

$$
\begin{equation*}
u(t, x)=\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s . \tag{9.7}
\end{equation*}
$$

Example 9.6. Let us solve the following damped wave equation

$$
\left\{\begin{array}{l}
\partial_{t t} u+2 \xi \partial_{t} u=c^{2} \partial_{x x} u \\
u(0, x)=f(x) \\
\partial_{t} u(0, x)=g(x)
\end{array} .\right.
$$

By the Fourier transform, the problem reduces to

$$
\left\{\begin{array}{l}
\partial_{t t} \hat{u}+2 \xi \partial_{t} \hat{u}=-c^{2} \omega^{2} \hat{u} \\
\hat{u}(0, \omega)=\hat{f}(\omega), \partial_{t} \hat{u}(0, \omega)=\hat{g}(\omega) .
\end{array}\right.
$$

For example, if $g=0$ then the solution is

$$
\hat{u}(t, \omega)=e^{-\xi t} \hat{f}(\omega)\left[\cos (\mu t)+\frac{\xi}{\mu} \sin (\mu t)\right],
$$

where $\mu=\sqrt{\omega^{2}-\xi^{2}}$. The figure (9.5) shows the solution $u(t, x)$ when $c=1$ and $\xi=0.5$ if $f(x)=\left\{\begin{array}{ll}\left(1-x^{2}\right) / 4 & -1 \leq x \leq 1 \\ 0 & \text { othersise }\end{array}\right.$. Observe that two branches are not separated completely due to the damping factor ξ.

Figure 9.5.

9.1.5 Heat kernel

Consider the following heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u,-\infty<x<\infty, t>0 \\
u(0, x)=\delta\left(x-x_{0}\right)
\end{array}\right.
$$

where x_{0} is an arbitrary point in $(-\infty, \infty)$, and δ is the DIRAC delta function. According to relation (9.5), the solution can be written as

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} \delta\left(y-x_{0}\right) e^{-\frac{(x-y)^{2}}{4 t}} d y=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{\left(x-x_{0}\right)^{2}}{4 t}},
$$

and thus the fundamental solution $\Phi(t, x)$ is called sometime the impulse response of the heat equation. Accordingly, the response to an arbitrary initial heat profile can be written as

$$
u(t, x)=u_{0}(x) * \Phi(t, x) .
$$

As it is observe from Fig.9.6, the solution shrinks at x_{0} for $t \rightarrow 0$.

Figure 9.6.

The following proposition states that the initial thermal energy (if it is finite) is conserved for $t>0$.

Proposition 9.1. Assume that the initial heat profile $u_{0}(x)$ in (9.1) is integrable. Then the solution decay in long term

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u(t, x)=0, \tag{9.8}
\end{equation*}
$$

and furthermore

$$
\begin{equation*}
\int_{\mathbb{R}} u(t, x) \mathrm{d} x=\int_{\mathbb{R}} u_{0}(x) \mathrm{d} x . \tag{9.9}
\end{equation*}
$$

Proof. We have

$$
\lim _{t \rightarrow \infty} u(t, x)=\lim _{t \rightarrow \infty} \int_{\mathbb{R}} u_{0}(y) \Phi(t, x-y) d y=\int_{\mathbb{R}} u_{0}(y) \lim _{t \rightarrow \infty} \Phi(t, x-y) d y
$$

The limit can be passed inside the integral according to the dominant convergence theorem. Note that

$$
\left|u_{0}(y) \Phi(t, x-y)\right|<\left|u_{0}(y)\right|,
$$

and $u_{0}(x)$ is integrable. On the other hand, since we have

$$
\lim _{t \rightarrow \infty} \Phi(t, x-y)=0
$$

we conclude (9.8). To show (9.9), we take $x-y=z$ and write

$$
\int_{\mathbb{R}} u(t, x) \mathrm{d} x=\int_{\mathbb{R}} \int_{\mathbb{R}} u_{0}(y) \Phi(t, x-y) \mathrm{d} y=\int_{\mathbb{R}} \Phi(t, z)\left(\int_{\mathbb{R}} u_{0}(x-z) d x\right) \mathrm{d} z .
$$

Since u_{0} is integrable, we have

$$
\int_{\mathbb{R}} u_{0}(x-z) d x=\int_{\mathbb{R}} u_{0}(x) \mathrm{d} x,
$$

and therefore

$$
\int_{\mathbb{R}} u(t, x) \mathrm{d} x=\left(\int_{\mathbb{R}} u_{0}(x) d x\right)\left(\int_{\mathbb{R}} \Phi(t, z) d z\right)
$$

It is simply verified that

$$
\int_{\mathbb{R}} \Phi(t, x) d x=1
$$

and hence (9.9).
Remark 9.3. Note that in general we can pass the limit inside the integrals and write

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}} u(t, x) d x=\int_{\mathbb{R}^{t \rightarrow \infty}} \lim _{n} u(t, x) d x
$$

In fact, if the relation holds, by property $\lim _{t \rightarrow \infty} u(t, x)=0$, we should have

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}} u(t, x) d x=0
$$

which is evidently wrong. Another example is Φ itself as

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}} \Phi(t, x) \mathrm{d} x=\lim _{t \rightarrow \infty} 1=1
$$

and

$$
\int_{\mathbb{R}} \lim _{t \rightarrow \infty} \Phi(t, x) \mathrm{d} x=0
$$

Proposition 9.2. Assume that $f(x)$ is a bounded continuous function in \mathbb{R}, then

$$
\lim _{t \rightarrow 0} \frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} f(y) e^{-\frac{(x-y)^{2}}{4 t}} d y=f(x)
$$

Proof. Let $y=2 \sqrt{t} z+x$ and then

$$
\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} f(y) e^{-\frac{(x-y)^{2}}{4 t}} d y=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} f(2 \sqrt{t} z+x) e^{-z^{2}} d z
$$

According to the dominant convergence theorem, we can write

$$
\begin{array}{r}
\lim _{t \rightarrow 0} \frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} f(y) e^{-\frac{(x-y)^{2}}{4 t}} d y=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} \lim _{t \rightarrow 0} f(2 \sqrt{t} y+x) e^{-z^{2}} d z \\
=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} f(x) e^{-\frac{z^{2}}{4 t}} d z=\frac{f(x)}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\frac{z^{2}}{4 t}} d z=f(x)
\end{array}
$$

and this completes the proof.
Problem 9.1. Assume u_{0} is an admissible functions, and $u(t, x)$ is the solution to the following problem

Show the following relation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u \\
u(0, x)=u_{0}(x)
\end{array}\right. \\
& \lim _{t \rightarrow 0} u(t, x)=u_{0}(x)
\end{aligned}
$$

Now, we use the relation (9.5) to show that $u(t, x)$ is smooth even if the initial data is discontinuous. The proof of the following theorem is given in the appendix to this chapter.

Theorem 9.1. Assume that the initial data $u_{0}(x)$ is admissible, then $u(t, x)$ given in (9.5) is smooth for $t>0$.

Proof. We show that u is continuous. Fix $(t, x), t>0$ and let $\left(t_{n}, x_{n}\right), t_{n}>0$ be an arbitrary sequence converging (t, x). We have

$$
\lim _{n \rightarrow \infty} u\left(t_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} u_{0}(y) \Phi\left(t_{n}, x_{n}-y\right) d y
$$

Since $t_{n}>0, t_{n} \rightarrow t$, and $t>0$, without loss of generality, we can assume that $t_{n}>\varepsilon$ for some $\varepsilon>0$ and for all n. On the other hand, for any $\varepsilon>0$ there is $M>0$ such that $\Phi\left(t_{n}, x-y\right)<M$ regardless of x, y. In fact, we have

$$
\Phi\left(t_{n}, x-y\right)=\frac{1}{\sqrt{4 \pi t_{n}}} e^{-\frac{(x-y)^{2}}{4 t_{n}}} \leq \frac{1}{\sqrt{4 \pi t_{n}}}<\frac{1}{\sqrt{4 \pi \varepsilon}}=M .
$$

Therefore

$$
\left|u_{0}(y) \Phi\left(t_{n}, x_{n}-y\right)\right|<M\left|u_{0}(y)\right| .
$$

Since f in integrable, we use the dominant convergence theorem and write

$$
\lim _{n \rightarrow \infty} u\left(t_{n}, x_{n}\right)=\int_{\mathbb{R}} u_{0}(y) \lim _{n \rightarrow \infty} \Phi\left(t_{n}, x_{n}-y\right) \mathrm{d} y=\int_{\mathbb{R}} u_{0}(y) \Phi(t, x-y) d y=u(t, x)
$$

Hence, the continuity is proved. Let us show that $u(t, x)$ is continuously differentiable with respect to t for $t>0$. Fix t and let h be small enough such that $t+h>0$. We have

$$
\frac{u(t+h, x)-u(t, x)}{h}=\int_{\mathbb{R}} u_{0}(y) \frac{\Phi(t+h, x-y)-\Phi(t, x-y)}{h} d y
$$

$\Phi(t, x)$ is smooth for $t>0$, and thus there is $M=M(t)$ such that

$$
\left|\partial_{t} \Phi(t, x)\right|<M
$$

Therefore, we have

$$
\begin{array}{r}
\lim _{h \rightarrow 0} \frac{u(t+h, x)-u(t, x)}{h}=\int_{\mathbb{R}} u_{0}(y) \lim _{h \rightarrow 0} \frac{\Phi(t+h, x-y)-\Phi(t, x-y)}{h} \mathrm{dy}= \\
\int_{\mathbb{R}} u_{0}(y) \partial_{t} \Phi(t, x-y) d y
\end{array}
$$

The differentiability of higher orders with respect to t and x is proved by a similar argument.

Problems

Problem 9.2. Solve the following heat problem in $(-\infty, \infty)$ and draw the temperature at $x=1$ with respect to time

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u \\
u(0, x)=e^{-x^{2}}
\end{array}\right.
$$

Problem 9.3. Solve the following damped wave equation on $-\infty<x<\infty$

$$
\left\{\begin{array}{l}
\partial_{t t} u+2 \xi \partial_{t} u=\partial_{x x} u \\
u(0, x)=0, \partial_{t} u(0, x)=e^{-|x|}
\end{array}\right.
$$

where $\xi>0$ is a constant.
Problem 9.4. Solve the following heat problem on $0<x<\infty$

$$
\left\{\begin{array}{l}
\partial_{t} u=k \partial_{x x} u \\
u(t, 0)=0 \\
u(0, x)=\frac{1}{1+x^{2}}
\end{array}\right.
$$

where $k>0$ is a constant.
Problem 9.5. Solve the following heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u+e^{-|x|} \\
u(0, x)=0
\end{array}\right.
$$

and draw the solution for $t=1$.

Problem 9.6. Solve the following heat problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u+\frac{e^{-|x|}}{1+x^{2}} \\
u(0, x)=0
\end{array}\right.
$$

and draw the solution for $t=1$.
Problem 9.7. If $f(x)$ is admissible function, show that following problems have same solution

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u+\delta(t) f(x) \\
u(0, x)=0
\end{array},\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u \\
u(0, x)=f(x)
\end{array}\right.\right.
$$

Problem 9.8. Solve the following heat problem in the domain $(-\infty, \infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u \\
u(0, x)= \begin{cases}0 & x<0 \\
1 & x>0\end{cases}
\end{array}\right.
$$

Problem 9.9. Solve the following heat equation on the domain $(0, \infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x x} u \\
\partial_{x} u(t, 0)=0 \\
u(0, x)=e^{-x}
\end{array}\right.
$$

Problem 9.10. Solve the following wave equation in the domain $(0, \infty)$

$$
\left\{\begin{array}{l}
\partial_{t t} u=4 \partial_{x x} u \\
u(t, 0)=0 \\
u(0, x)=0, \partial_{t} u(0, x)=e^{-\frac{x^{2}}{2}}
\end{array} .\right.
$$

Problem 9.11. Assume that the initial data $f(x)$ in (9.1) is admissible.
a) Directly differentiate $\Phi(t, x)$ and verify

$$
\partial_{t} \Phi(t, x)=\partial_{x x} \Phi(t, x)
$$

b) Us the result in part (a) to show that the integral solution (9.5) is a true solution to the problem (9.1).

Problem 9.12. Draw the solution of the problem

$$
\left\{\begin{array}{l}
\partial_{t t} u=\partial_{x x} u \\
u(0, x)= \begin{cases}\frac{\left(1-x^{2}\right)}{4} & -1 \leq x \leq 1 \\
0 & \text { othersise }\end{cases} \\
\partial_{t} u(0, x)=0
\end{array}\right.
$$

at times $t=0.5,1,1.5,2$.
Problem 9.13. Solve the following wave problem and draw the solution for different instance of time

$$
\left\{\begin{array}{l}
\partial_{t t} u=\partial_{x x} u \\
u(0, x)=\delta(t-1) e^{-x^{2} / 2} \\
\partial_{t} u(0, x)=0
\end{array}\right.
$$

Problem 9.14. Show that the solution to the problem

$$
\begin{cases}\partial_{t} u=\partial_{x x} u & x \in(0, \infty) \\ \partial_{x} u(t, 0)=0 & \\ u(0, x)=f(x) & x \in(0, \infty)\end{cases}
$$

is

$$
u(t, x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \hat{f}_{c}(\omega) e^{\omega^{2} t} \cos (\omega x) d \omega
$$

where $F_{c}(\omega)$ is the cosine Fourier transform of $f(x)$.
Problem 9.15. Solve the following problem

$$
\begin{cases}\partial_{t} u=\partial_{x x} u & x \in(0, \infty) \\ u(t, 0)=1 & \\ u(0, x)=\frac{1}{1+x^{2}} & x \in(0, \infty)\end{cases}
$$

Problem 9.16. Even though we have the formula (9.9), use the Plancherel theorem and (9.3) to show

$$
\lim _{t \rightarrow \infty} \int_{-\infty}^{\infty}|u(t, x)|^{2} d x=0
$$

9.2 Higher dimensional problems

9.2.1 Laplace equation

We solve the LAPLACE equation $\Delta u=0$ on semi-bounded domains.

LAPLACE equation on a half-plane

Consider the following problem defined on $\Omega=\{(x, y), y \geq 0\}$

$$
\left\{\begin{array}{l}
\Delta u=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

We look for solutions that remain bounded in Ω, that is,

$$
\begin{equation*}
\sup _{(x, y) \in \Omega}|u(x, y)|<\infty \tag{9.10}
\end{equation*}
$$

The above problem is equivalent to the following one in ω-domain

$$
\left\{\begin{array}{l}
\partial_{y y} \hat{u}(\omega, y)-\omega^{2} \hat{u}(\omega, y)=0 \\
\hat{u}(\omega, 0)=\hat{f}(\omega)
\end{array}\right.
$$

Therefore, $\hat{u}(\omega, y)$ is

$$
\hat{u}(\omega, y)=A(\omega) e^{\omega y}+B(\omega) e^{-\omega y}
$$

for some undetermined coefficients functions $A(\omega), B(\omega)$. To determine these coefficients, we apply the boundedness condition. The coefficient $A(\omega)$ must be zero for $\omega>0$, otherwise the solution goes unbounded for $y \rightarrow \infty$. Similarly, $B(\omega)$ must be zero for $\omega<0$. Hence, \hat{u} has the following form

$$
\hat{u}(\omega, y)= \begin{cases}B(\omega) e^{-\omega y} & \omega>0 \\ A(\omega) e^{\omega y} & \omega<0\end{cases}
$$

This is equivalent to $\hat{u}(\omega, y)=C(\omega) e^{-y|\omega|}$ for some function $C(\omega)$. It is simply seen that $C(\omega)=\hat{f}(\omega)$ and therefore

$$
\begin{equation*}
u(x, y)=\mathcal{F}^{-1}\{\hat{u}\}=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(\omega) e^{-\omega|y|} e^{i \omega x} d \omega . \tag{9.11}
\end{equation*}
$$

Problem 9.17. Show that the above solution can be written in the following form

$$
\begin{equation*}
u(x, y)=\frac{y}{\pi} \int_{\mathbb{R}} \frac{f(\xi)}{y^{2}+(x-\xi)^{2}} d \xi \tag{9.12}
\end{equation*}
$$

Laplace equation in quadrant

Now let us solve the LAPLACE equation in quadrant $\Omega=\{(x, y) ; x>0, y>0\}$ with boundary condition $u(0, y)=0$ and $u(x, 0)=f(x)$ for $x>0$. To solve the problem, we extend the problem on the half-plane $\{(x, y), y>0\}$ by extending $f(x)$ as an odd function $f_{\text {odd }}(x)$ for $-\infty<x<\infty$. Now, formula (9.11) implies

$$
u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \hat{f}_{s}(\omega) e^{-\omega|y|} \sin (\omega x) d \omega
$$

where $\hat{f}_{s}(\omega)$ is the sine Fourier transform of $f(x)$.

Laplace equation in a strip

Consider the following problem on strip $\Omega=\{(x, y) ; a<y<b\}$

$$
\left\{\begin{array}{l}
\Delta u=0 \\
u(x, a)=f(x), u(x, b)=g(x)
\end{array}\right.
$$

Since the domain is infinite in x-direction, we take the FOURIER transform with respect to x and obtain the following problem

$$
\left\{\begin{array}{l}
\partial_{y y} \hat{u}-\omega^{2} \hat{u}=0 \\
\hat{u}(\omega, a)=\hat{f}(\omega) . \\
\hat{u}(\omega, b)=\hat{g}(\omega)
\end{array}\right.
$$

The solution of the above equation is

$$
\hat{u}(\omega, y)=A(\omega) e^{\omega y}+B(\omega) e^{-\omega y}
$$

for some undetermined functions $A(\omega), B(\omega)$ which are determined by the aid of the given boundary conditions $y=a$ and $y=b$ as follows

$$
\left\{\begin{array}{l}
\hat{f}(\omega)=A(\omega) e^{\omega a}+B(\omega) e^{-\omega a} \\
\hat{g}(\omega)=A(\omega) e^{\omega b}+B(\omega) e^{-\omega b}
\end{array}\right.
$$

Thus,

$$
A(\omega)=\frac{\hat{f}(\omega) e^{-\omega b}-\hat{g}(\omega) e^{-\omega a}}{2 \sinh (\omega(a-b))}, \quad B(\omega)=-\frac{\hat{f}(\omega) e^{\omega b}-\hat{g}(\omega) e^{\omega a}}{2 \sinh (\omega(a-b))}
$$

and finally

$$
u(x, y)=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[A(\omega) e^{\omega y}+B(\omega) e^{-\omega y}\right] e^{i \omega x} d \omega
$$

9.2.2 Heat and wave problems

We solve simple heat and wave problem in 2D. In particular, we solve problems $\partial_{t} u=k \Delta u$, and $\partial_{t t} u=c^{2} \Delta u$ on semi-bounded domains.

Solution to heat equation

We first find the form of heat kernel in \mathbb{R}^{2}. For higher dimension, the form of the solution is completely similar. Consider the following problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u,(x, y) \in \mathbb{R}^{2} \tag{9.13}\\
u(0, x, y)=u_{0}(x, y)
\end{array}\right.
$$

If the solution $u(t, x, y)$ has a transform \hat{u}, then it satisfies the following equation

$$
\left\{\begin{array}{l}
\partial_{t} \hat{u}\left(t, \omega_{x}, \omega_{y}\right)=-\omega^{2} \hat{u}\left(t, \omega_{x}, \omega_{y}\right) \\
\hat{u}\left(0, \omega_{x}, \omega_{y}\right)=\hat{u}_{0}\left(\omega_{x}, \omega_{y}\right)
\end{array}\right.
$$

where $\omega=\sqrt{\omega_{x}^{2}+\omega_{y}^{2}}$. The above equation is a linear ordinary equation with respect to t and thus

$$
\begin{equation*}
\hat{u}\left(t, \omega_{x}, \omega_{y}\right)=\hat{u}_{0}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t} . \tag{9.14}
\end{equation*}
$$

This gives the solution u as follows

$$
\begin{equation*}
u(t, x, y)=\frac{1}{4 \pi^{2}} \int_{\mathbb{R}^{2}} \hat{u}_{0}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t} e^{i \omega_{x} x} e^{i \omega_{y} y} d \omega_{x} d \omega_{y} \tag{9.15}
\end{equation*}
$$

By the convolution, we can write

$$
u(t, x, y)=\mathcal{F}^{-1}\left\{\hat{u}_{0}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t}\right\}=u_{0}(x, y) * \mathcal{F}^{-1}\left\{e^{-\left(\omega_{x}^{2}+\omega_{y}^{2}\right) t}\right\} .
$$

On the other hand, we have

$$
\begin{equation*}
\mathcal{F}^{-1}\left\{e^{-\left(\omega_{x}^{2}+\omega_{y}^{2}\right) t}\right\}=\frac{1}{4 \pi t} e^{-\frac{\left(x^{2}+y^{2}\right)}{4 t}} \tag{9.16}
\end{equation*}
$$

The functions

$$
\Phi(t, x, y)=\frac{1}{4 \pi t} e^{-\frac{\left(x^{2}+y^{2}\right)}{4 t}}
$$

is called the fundamental solution or the heat kernel of 2D heat problem. Therefore, the solution can be put in the following convolution form

$$
\begin{equation*}
u(t, x, y)=\frac{1}{4 \pi t} \int_{\mathbb{R}^{2}} u_{0}\left(z_{1}, z_{2}\right) e^{-\frac{\left(x-z_{1}\right)^{2}+\left(y-z_{2}\right)^{2}}{4 t}} d z_{1} d z_{2} \tag{9.17}
\end{equation*}
$$

Heat problems on semi-infinite domains
Consider the following heat problem on the half-plane $y>0$:

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \tag{9.18}\\
u(t, x, 0)=0 \\
u(0, x, y)=u_{0}(x, y)
\end{array}\right.
$$

If we extend $u_{0}(x, y)$ to \mathbb{R}^{2} as an odd function with respect to y, then we reach a problem on \mathbb{R}^{2}. Let $u_{\text {odd }}(x, y)$ be the odd extension of u_{0} with respect to y in \mathbb{R}^{2}. We have

$$
u_{\text {odd }}(t, x, y)=\frac{1}{4 \pi^{2}} \int_{\mathbb{R}^{2}} \hat{u}_{\text {odd }}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t} e^{i \omega_{x} x} e^{i \omega_{y} y} d \omega_{x} d \omega_{y}
$$

We claim $u_{\text {odd }}(t, x, 0)=0$. In fact, $\hat{u}_{\text {odd }}\left(\omega_{x},-\omega_{y}\right)=-\hat{u}_{\text {odd }}\left(\omega_{x}, \omega_{y}\right)$ and thus

$$
\int_{\mathbb{R}^{2}} \hat{u}_{\text {odd }}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t} e^{i \omega_{x} x} e^{i \omega_{y} y}=i \int_{\mathbb{R}^{2}} \hat{u}_{\text {odd }}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t} e^{i \omega_{x} x} \sin \left(\omega_{y} y\right),
$$

that verifies the claim. Therefore, we can write

$$
u_{\text {odd }}(t, x, y)=\frac{i}{4 \pi^{2}} \int_{\mathbb{R}^{2}} \hat{u}_{\text {odd }}\left(\omega_{x}, \omega_{y}\right) e^{-\omega^{2} t} e^{i \omega_{x} x} \sin \left(\omega_{y} y\right) d \omega_{x} d \omega_{y}
$$

The solution $u(t, x, y)$ then can be written as follows in the convolution form

$$
u(t, x, y)=u_{\text {odd }}(x, y) * \Phi(t, x, y)
$$

Non-homogeneous heat equations
Consider the following non-homogeneous equation

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \\
u(t, x, 0)=f(x) \\
u(0, x, y)=u_{0}(x, y)
\end{array}\right.
$$

In order to solve the problem, we use the superposition principle and split up the problem into two sub-problems

$$
\left\{\begin{array}{l}
\Delta v=0 \\
v(x, 0)=f(x)
\end{array}+\left\{\begin{array}{l}
\partial_{t} w=\Delta w \\
w(t, x, 0)=0 \\
w(0, x, y)=u_{0}(x, y)-v(x, y)
\end{array}\right.\right.
$$

It is simply seen that the solution of the original problem is as follows

$$
u(t, x, y)=v(x, y)+w(t, x, y)
$$

The function $v_{e}(x, y)$ is called the steady state solution contributed by the boundary term. We have the following property

$$
\lim _{t \rightarrow \infty} u(t, x, y)=v(x, y)+\lim _{t \rightarrow \infty} w(t, x, y)=v(x, y)
$$

Solution to wave equations

Now, we consider the wave equation $\partial_{t t} u=c^{2} \Delta u$ in \mathbb{R}^{2}. For the sake of simplicity, we solve the following problem

$$
\left\{\begin{array}{l}
\partial_{t t} u=c^{2} \Delta u \\
u(0, x, y)=f(x, y) \\
\partial_{t} u(0, x, y)=0
\end{array}\right.
$$

The ordinary differential equation for $\hat{u}\left(t, \omega_{x}, \omega_{y}\right)$ is

$$
\left\{\begin{array}{l}
\partial_{t t} \hat{u}+c^{2} \omega^{2} \hat{u}=0 \\
\hat{u}\left(0, \omega_{x}, \omega_{y}\right)=\hat{f}\left(\omega_{x}, \omega_{y}\right) \\
\partial_{t} \hat{u}\left(0, \omega_{x}, \omega_{y}\right)=0
\end{array}\right.
$$

where $\omega=\sqrt{\omega_{x}^{2}+\omega_{y}^{2}}$ as before. The solution of the above ordinary initial value problem is

$$
\begin{equation*}
\hat{u}\left(t, \omega_{x}, \omega_{y}\right)=\hat{f}\left(\omega_{x}, \omega_{y}\right) \cos (c t \omega) \tag{9.19}
\end{equation*}
$$

Therefore, the solution $u(t, x, y)$ can be written in the following convolution form

$$
\begin{equation*}
u(t, x, y)=f(x, y) * \mathcal{F}^{-1}\{\cos (c t \omega)\} . \tag{9.20}
\end{equation*}
$$

Let us try to find the inverse Fourier transform in the above formula. To do that, we write ω_{x}, ω_{y} as $\omega_{x}=\omega \cos \gamma, \omega_{y}=\omega \sin \gamma$ for $\gamma \in[-\pi, \pi]$. Therefore, we can write

$$
\mathcal{F}^{-1}\{\cos (c t \omega)\}=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{0}^{\infty} \cos (c t \omega) e^{-i \omega(x \cos \gamma+y \sin \gamma)} \omega d \omega d \gamma
$$

If we write $x=\rho \cos \theta, y=\rho \sin \theta$, we reach

$$
\mathcal{F}^{-1}\{\cos (c t \omega)\}=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{0}^{\infty} \cos (c t \omega) \cos (\rho \omega \cos (\gamma-\theta)) \omega d \omega d \gamma .
$$

It turns out that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (s \cos \gamma) d \gamma=J_{0}(s)
$$

where J_{0} is the Bessel function of the first kind. Therefore, we have

$$
\mathcal{F}^{-1}\{\cos (c t \omega)\}=\frac{1}{2 \pi} \int_{0}^{\infty} J_{0}(\rho \omega) \cos (c t \omega) \omega d \omega .
$$

We can write the right hand side of the above formula as follows

$$
\frac{1}{2 \pi} \int_{0}^{\infty} J_{0}(\rho \omega) \cos (c t \omega) \omega d \omega=\frac{1}{2 \pi c} \frac{d}{d t} \frac{1}{\rho} \int_{0}^{\infty} J_{0}(\omega) \sin \left(\frac{c t}{\rho} \omega\right) d \omega .
$$

We use the following formula

$$
\int_{0}^{\infty} J_{0}(\omega) \sin \left(\frac{c t}{\rho} \omega\right) d \omega=\frac{1}{\sqrt{\frac{c^{2} t^{2}}{\rho^{2}}-1}}, \rho<c t
$$

and obtain

$$
\mathcal{F}^{-1}\{\cos (c t \omega)\}=\frac{1}{2 \pi c} \frac{d}{d t} \frac{1}{\sqrt{c^{2} t^{2}-\rho^{2}}}, \rho<c t .
$$

Finally, the solution $u(t, x, y)$ in formula (9.20) can be written as follows

$$
u(t, x, y)=\frac{1}{2 \pi c} \frac{d}{d t} \int_{B_{c t}(x, y)} \frac{f\left(z_{1}, z_{2}\right)}{\sqrt{c^{2} t^{2}-\left(x-z_{1}\right)^{2}-\left(y-z_{2}\right)^{2}}} d z_{1} d z_{2}
$$

where $B_{c t}(x, y)$ is the disk centered at (x, y) with radius $c t$. By a similar calculation, it is shown that if $\partial_{t} u(0, x, y)=g(x)$ then the solution is

$$
\begin{array}{r}
u(t, x, y)=\frac{1}{2 \pi c} \frac{d}{d t} \int_{B_{c t}(x, y)} \frac{f\left(z_{1}, z_{2}\right)}{\sqrt{c^{2} t^{2}-\left(x-z_{1}\right)^{2}-\left(y-z_{2}\right)^{2}}} d z_{1} d z_{2}+ \\
\frac{1}{2 \pi c} \int_{B_{c t}(x, y)} \frac{g\left(z_{1}, z_{2}\right)}{\sqrt{c^{2} t^{2}-\left(x-z_{1}\right)^{2}-\left(y-z_{2}\right)^{2}}} d z_{1} d z_{2} .
\end{array}
$$

Problems

Problem 9.18. Solve the following heat equation on \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
\partial_{t} u=4 \Delta u \\
u(0, x, y)=e^{-x^{2}-y^{2}}
\end{array}\right.
$$

Problem 9.19. Consider the following heat problem in the upper half plane $y>0$

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \\
u(t, x, 0)=e^{-|x|} \\
u(0, x, y)=e^{-x^{2}-y^{2}}
\end{array} .\right.
$$

What method you suggest to solve this problem? Try it and write the solution in the integral form.

Problem 9.20. Solve the following heat equation on the upper half plane $y>0$

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \\
\partial_{y} u(t, x, 0)=0 \\
u(0, x, y)=e^{-|x|} e^{-y}
\end{array}\right.
$$

Problem 9.21. Consider the Laplace equation

$$
\left\{\begin{array}{l}
\Delta u=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

Show the the solution can be written as

$$
u(x, y)=\frac{y}{\pi} \int_{\mathbb{R}} \frac{f(\xi)}{y^{2}+(x-\xi)^{2}} d \xi
$$

At first glance, you may think $\lim _{y \rightarrow 0} u(x, y)=0$. Plot the solution $u(x, y)$ for $y=0.1,0.05,0.01$ if $f(x)=e^{-|x|}$ and observe it converges to $f(x)$.
Problem 9.22. Solve the Laplace equation on the domain $\Omega=\{(x, y), x>0, y>0\}$ with the boundary conditions $u(0, y)=u(x, 1)=0$ and $u(x, 0)=e^{-x}$.
Problem 9.23. Write the solution of the following heat problem defined in the quadrant $x>0$, $y>0$ in the integral form

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \\
u(t, 0, y)=f(x) \\
u(t, x, 0)=0 \\
u(0, x, y)=u_{0}(x, y)
\end{array}\right.
$$

Problem 9.24. Solve the Laplace equation $\Delta u=0$ on the domain $\Omega=\{(x, y), 0<x<1\}$ with the boundary conditions $u(0, y)=0, u(1, y)=e^{-y^{2}}$

Problem 9.25. Solve the Laplace equation on the domain $\Omega=\{(x, y), 0<y<1, x>0\}$ with the boundary conditions $u(0, y)=0, u(x, 1)=0$ and $u(x, 0)=e^{-x^{2}}$

Problem 9.26. Let Ω denote the strip $\{(x, y) ; 0<y<1\}$
a) Show that the solution to the Laplace equation
is

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta u=0 \\
u(x, 0)=0, u(x, 1)=\delta(x+1)+\delta(x-1)
\end{array}\right. \\
& u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sinh (\omega y)}{\sinh (\omega)} \cos (\omega) \cos (\omega x) d \omega
\end{aligned}
$$

b) Find a solution if the boundary data changes to $u(x, 1)=\delta(x+1)-\delta(x-1)$.

Problem 9.27. Solve the following heat problem in the strip $\Omega=\{(x, y) ; 0<y<1\}$

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \\
u(t, x, 0)=u(t, x, 1)=1 \\
u(0, x, y)= \begin{cases}1 & -1<x<1 \\
0 & \text { otherwise }\end{cases}
\end{array} .\right.
$$

