
Chapter 6

3D Linear Second-Order Equations

In this chapter, we delve into the study of linear problems, encompassing Poisson, heat,
and wave equations on Cartesian, cylindrical, and spherical domains. The cylindrical and
spherical domains are obtained through linear transformations from a cube in R3, enabling
us to employ the separation of variables technique for their solutions.

6.1 Cartesian coordinate

In this section, we initiate our exploration by solving Laplace's equations defined on cubes
(x0; x1)� (y0; y1)� (z0; z1) in R3. This foundational step will enable us to tackle linear heat,
wave, and Poisson equations with nonhomogeneous boundary conditions.

6.1.1 Laplace equation

Ler 
 be the cube (x0; x1) � (y0; y1) � (z0; z1). We consider the Laplace equation �u=0
subject to the boundary condition:

�u+ �
@u
@n

= f ;

on the boundary bnd(
). For this problem, we assume that the boundary condition is
homogeneous on the sides x and y. By applying the separation of variables method, we
assume u(x; y; z) can be represented as �(x; y)Z(z), which transforms the Laplace equation
into:

�(x;y)�

�
=¡¡Z

Z
:

To satisfy this equality, we introduce a constant, denoted as ¡�, which leads to the following
eigenvalue problem: (

��=¡�� on


��+ �
@�

@n
=0 onbnd(
)

:

The differential equation for Z(z) becomes:

Z 00¡�Z =0:
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Example 6.1. Let's solve the following problem on a unit cube (0; 1)� (0; 1)� (0; 1)8>>>>>><>>>>>>:
�u=0
u(x; y; 1)= xy
u(1; y; z)= sin( �z)
u=0 other sides

:

According to the boundary condition, we split the problem as�
�u=0
uj
1=0

+

�
�u=0
uj
3=0

:

The first problem has the solution of the form

u=
X
n;m=1

1

Bnm sinh ( �nm
p

z)�nm(x; y);

where �nm=(n2+m2)�2, and

Bnm=
4

sinh( �nm
p

)

Z
0

1Z
0

1

xy sin(n�x) sin(m�y) dydx=
4 cos(n�) cos(m�)
nm�2 sinh( �nm

p
)
:

For the second problem, we can write the solution as (why?)

u=
X
n=1

1

Bn sinh
¡

n2+1
p

�x
�
sin(n�y) sin(�z);

where

Bn=
2

sinh
¡

n2+1
p

�
�Z

0

1

sin(n�y) dy=
2(1¡ cos(n�))

sinh
¡

n2+1
p

�
�
n�

;

and finally

u(x; y; z)=
X
n;m=1

1
4 cos(n�) cos(m�)

nm�2 sinh
¡

n2+m2
p

�
� sinh¡ n2+m2

p
�z
�
sin(n�x) sin(m�y)+

+
X
n=1

1
2(1¡ cos(n�))

n� sinh
¡

n2+1
p

�
� sinh¡ n2+1

p
�x
�
sin(n�y) sin(�z):

Problem 6.1. Solve the following Laplace equation on 
 := (0; �)� (0; �) (0; �)8<: �u=0
u(x; �; z)= sin(x) sin(z)
u=0 other sides

:

Problem 6.2. Solve the following problem on 
 := (0; �)� (0; �) (0; �)8<: �u+2@xu¡u=0
u(�; y; z)= sin(y) sin(z)
u=0 other sides
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6.1.2 Eigenfunction of Laplacian in Cartesian coordinate
We solve the following problem on 
 (

��=¡��
�jbnd(
)=0

:

It is simply seen that �> 0. In fact, we haveZZZ



���=¡�
ZZZ




j�j2;

and by the integration by parts formula,ZZZ



���=

ZZ


bnd(
)
�@n�¡

ZZZ



jr�j2;

that gives � > 0. Now, By the separation � = X(x) Y (y) Z(z), we reach the following
eigenvalue problems�

X 00=¡�X
X(0)=X(a)= 0

;

�
Y 00=¡�Y
Y (0)=Y (b)=0

;

�
Z 00=¡�Z
Z(0)=Z(c)=0

;

and finally

�nmp(x; y; z)= sin
� n�
a
x
�
sin
�m�

b
y
�
sin
� p�
c
z
�
;

with associated eigenvalues

�nmp=
� n�
a

�
2
+
�m�

b

�
2
+
� p�
c

�
2
:

Example 6.2. Let us solve the following Poisson equation on 
 := (0; 1)� (0; 1)�(0; 1)8>>>>>><>>>>>>:
�u= sin(�y) sin(2�z)
u(x; y; 1)=xy
u(1; y; z)= sin(�z)
u=0 other sides

:

The solution can be written as u= v+w, where v solves the Laplace equation with given
boundary conditions that we solved in the previous example. The equation for w reads(

�w=  1;2(y; z)

w jbnd(
)=0
;

for  1;2= sin(�y) sin(2�z). The solution can be written as follows (why?)

w(x; y; z)=

"X
n=1

1

An sin(n�x)

#
 1;2(y; z)

By substituting the series into the equation, we obtainX
n=1

1

¡(n2+5)�2An sin(n�x)  1;2(y; z)=  1;2(y; z);
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and thus X
n=1

1

¡(n2+5)�2An sin(n�x)= 1;

that results

An=
¡2(1¡ cos(n�))
(n2+5)n�3

;

and finally,

w(x; y; z)=

"X
n=1

1 ¡2(1¡ cos(n�))
(n2+5)n�3

sin(n�x)

#
 1;2(y; z):

Remark 6.1. We could also assume the form of w as w(x; y; z) =W (x)  1;2(y; z) for an
unknown function W . By this method, we obtain the following equation for W (x)(

W 00¡ 5�2W =1
W (0)=W (1)=0

;

that is solved for

W (x)=
1¡ cosh( 5

p
� )

5�2 sinh( 5
p

� )
sinh( 5

p
�x)+

cosh( 5
p

�x)¡ 1
5�2

;

and thus

w(x; y; z)=

�
1¡ cosh( 5

p
�)

5�2 sinh( 5
p

� )
sinh( 5

p
�x)+

1
5�2

(cosh( 5
p

�x)¡ 1)
�
 1;2(y; z):

This is the closed form solution of the equation for w. It turns out that the closed form
solution is equivalent to the series solution obtained above.

Problem 6.3. Solve the following wave equation on 
 := (0; �)� (0; �)� (0; �)8>>>>>><>>>>>>:
@ttu=�u
uj
=0
u(0; x; y; z)= sin(x) sin(z)
@tu(0; x; y; z)=0

Problem 6.4. Solve the following heat equation with Neumann boundary conditions on 
 := (0;
�)� (0; �)� (0; �) 8<: @tu=�u

@nuj
=0
u(0; x; y; z)= cos(y) cos(2z)

6.2 Problems in cylindrical domains

6.2.1 Cylindrical coordinate
A point p in spherical coordinate is represented by the triple (r; �; z), where r � 0 is the
distance of the projection of p in the (x; y)-plane to the origin, � 2 [¡�; �] is the angle of
the projected point on the (x; y)-plane with respect to x-axis, and z is the height of point p.
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y

x

z
p

z

� r

Let 
 denote the following cylinder


= f(r; �; z); 0� r <a;¡� � ���; 0<z <Hg; (6.1)

with boundary bnd(
)=f(r; �; 0)g[f(r; �;H)g[f(a; �; z)g. The Laplacian operator in the
cylindrical coordinate is

�u=�(r;�)u+uzz= @rru+
1
r
@ru+

1
r2
@��u+ @zzu: (6.2)

Note that the cube [0; a)� [¡�; �]� (0;H) is transformed to 
 by the following transforma-
tion 8<: x= r cos�

y= r sin�
z= z

;

that allows us to use the separation of variables technique for solving linear equations on a
cylinder.

Problem 6.5. The unit vectors r̂ ; �̂ ; ẑ in the spherical coordinate are respectively

r̂=
�
dx

dr
;
dy

dr
;
dz

dr

�
=(cos�; sin�; 0)

�̂= 1
r

�
dx
d�
;
dy
d�
;
dz
d�

�
=(¡sin�; cos�; 0)

ẑ=
�
dx
dz
;
dy
dz
;
dz
dz

�
=(0; 0; 1)

a) Show that the nabla operator r in the coordinate is

r= r̂ @r+
1
r
�̂ @�+ ẑ @z:

b) Find the form of � through the relation �=r �r.

6.2.2 Laplace equation: Type I
Consider the following problem8<: �u=0

u(a; �; z)=0
u(r; �; 0)= f(r; �); u(r; �;H)= g(r; �)

: (6.3)
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Note that u is homogeneous on the side surface of 
 and is equal to functions f ; g on the
bottom and upper caps respectively. We relax this condition later and study the case u=h
on the side surface. By the separation of variable u(r; �; z) = �(r; �) Z(z), we reach the
following equation

�(r;�)�

�
+
Z 00

Z
=0; (6.4)

where �(r;�) stands for the Laplacian on the disk. The associate eigenvalue of Eq.6.4 is(
�(r;�)�=¡��
�(a; �)=0

:

As we saw in the last chapter, the set of eigenpairs is as follows

�= fJ0p(r); Jnp(r)cos(n�); Jnp(r) sin(n�)gn;p=11 ; �np=
znp
2

a2
(6.5)

The equation for Z becomes accordingly

Z 00¡�npZ =0;

and therefore

Z =
�
cosh

¡
�np

p
z
�
; sinh

¡
�np

p
z
�	
:

Finally, the series solution u is

u(r; �; z)=
X
n=0

1 X
p=1

1

cosh
¡

�np
p

z
�
Jnp(r)fAnp cos(n�)+Bnp sin(n�)g+

+
X
n=0

1 X
p=1

1

sinh
¡

�np
p

z
�
Jnp(r)fCnpcos(n�)+Dnp sin(n�)g:

The boundary conditions at z=0 and z=H determine constants A;B;C;D.

Example 6.3. Let a=1 and H =1. Consider the problem8>>>>>><>>>>>>:
�u=0;
u(1; �; z)= 0
u(r; �; 0)= 0
u(r; �; 1)= (1¡ r)cos�

:

According to the boundary condition, it makes sense to write the solution as

u(r; �; z)=
X
p=1

1

fApcosh(z1pz)+Bp sinh(z1pz)gJ1p(r) cos(�)

The condition at z=0 determines Ap=0 for all p. Therefore we write

u(r; �; z)=

"X
p=1

1

Bp sinh(z1p z)J1p(r)

#
cos(�):
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Substituting the condition at z=1 determines Bp as

Bp=
1

kJ1pk2 sinh(z1p)

Z
0

1

J1p(r) (1¡ r) rdr;

where

kJ1pk2=
Z
0

1

jJ1(z1p r)j2 rdr:

6.2.3 Laplace equation: Type II

Now, we solve the Laplace equation when u(a; �; z)= f(�; z) but u(r; �;0)=u(r; �;H)=0.
According to Eq.6.4, we solve first the following boundary value problem for Z�

Z 00=¡�Z
Z(0)=Z(H)= 0

:

The solution is

Zp(z)= sin
� p�
H
z
�
; �p=

p2�2

H2
:

Therefore the equation for � becomes

�(r;�)�¡
p2�2

H2
�=0:

Using the separation of variables �(r; �)=R(r)�(�), we reach the following equation

r2R 00+ rR0

R
+
�00

�
=
p2�2

H2
r2; (6.6)

and thus

�n(�)= f cos(n�); sin(n�)g:

Substituting �n into (6.6) yields

r2R00+ rR 0+

�
¡p

2�2

H2
r2¡n2

�
R=0: (6.7)

Note that the equation is similar to the Bessel equation except the negative sign of r2. If

we take x= ¡p2�2

H2

q
r= i

p�

H
r, then the equation reduces to the standard Bessel equation

x2R00(x)+xR0(x)+ (x2¡n2)R(x)=0:

Therefore, the solution of Eq.(6.7) is

Rnp(r)= Jn

�
i�p
H

r

�
:

6.2 Problems in cylindrical domains 7



What is the series of Jn(ix)? From the series of Jn(x), we have

Jn(ix)=
X
k=0

1
(¡1)k

k!(k+n)!

�
ix
2

�
2k+n

=(i)n
X
k=0

1
1

k!(k+n)!

�
x
2

�
2k+n

:

The series

In(x)=
X
k=0

1
1

k!(k+n)!

�
x
2

�
2k+n

;

is called the modified Bessel functions of the first kind. For simplicity, we denote In
¡ �p
H
r
�

by Inp(r) and write

�np(r; �)= fInp(r) cos(n�); Inp(r) sin(n�)g:

Using the superposition principle, u(r; �; z) can be represented as follows

u(r; �; z)=
X
n=0

1 X
p=1

1

sin
�
�p

H
z
�
Inp(r)(Anp cos(n�)+Bnp sin(n�)): (6.8)

The coefficients Anp; Bnp are determined by the aid of the boundary data.

Example 6.4. Let 
 denote a solid cylinder with the radius a= 1 and height H = 1. Let
us solve the following equation defined on 
�8<: �u=0

u(1; �; z)= z cos(�)
u(r; �; 0)= u(r; �; 1)=0

:

Based on the boundary condition, u has the series representation

u(r; �; z)=

"X
p=1

1

Up I1p(r) sin(�pz)

#
cos(�):

For r=1, we have

z=
X
p=1

1

Up sin(�pz) I1p(1);

and thus

Up=
2 (¡1)p
p�I1p(1)

:

The solution u is as follows

u(r; �; z)=

"X
p=1

1
2 (¡1)p I1p(r)
p�I1p(1)

sin(�pz)

#
cos(�):

6.2.4 Eigenfunctions of the Laplacian
Consider the following eigenvalue problem(

��=¡��
�jbnd(
)=0

; (6.9)
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where 
 denotes a solid cylinder with radius a and height H. Since ��=�(r;�)�+ �zz, we
use the separation of variables �(r; �; z)=  (r; �)Z(z), and write

�(r;�) 

 
+
Z 00

Z
=¡�: (6.10)

The ordinary differential equation for Z is solved for sine functions

Zm(z)= sin
�
m�
H
z
�
:

Substituting Zm into (6.10) results to

�(r;�) =¡
�
�¡ m2�2

H2

�
 : (6.11)

Take � as �=�¡ m2�2

H2 , and write the problem as follows(
�(r;�) =¡� 
 (a; �)= 0

: (6.12)

As we saw before, the eigenfunctions of the above problem are

 np(r; �)= fJnp(r) cos(n�); Jnp(r) sin (n�)g:

Therefore, the eigenfunctions of � on a cylinder are

�mnp(r; �; z)=
n
sin
�m�
H
z
�
Jnp(r) cos(n�); sin

�m�
H
z
�
Jnp(r)sin (n�)

o
; (6.13)

with eigenvalues �mnp=
m2�2

H2 +
znp
2

a2
.

Remark 6.2. For problems defined on the side surface of a cylinder (when r=a), we solve
the eigenvalue problem ��=¡�� on the following set

D := f(�; z);¡� � ���; 0� z �Hg:

It is simply seen that in this case, the eigenfunctions are

�mn(�; z)=
n
sin
�
m�
H
z
�
cos(n�); sin

�
m�
H
z
�
sin (n�)

o
; (6.14)

with eigenvalues �nm=
m2�2

H2 +n2.

6.2.5 Linear problems on the surface of a cylinder
Let D denote the side surface of a cylinder of radius a and height H (without top and bottom
caps).

Example 6.5. Let us solve the following Poisson equation�
�u= z
u(�; 0)=0; u(�; �)= cos(�)

;

6.2 Problems in cylindrical domains 9



where u is defined in the side surface of a cylinder of radius 1 and height �. By superposition
principle, the solution consists two terms, the solution that is contributed by the boundary
data, and the solution that is contributed by the source term. For the contribution from
boundary, we solve the following equation�

�v=0
v(�; 0)=0; v(�; �)= cos(�)

:

Since cos(�) is a part of the eigenfunction sin
¡m�

H
z
�
cos(�), we write v=V (z)cos(�), for some

unknown function V (z). Substituting this into the equation leads to the following one�
V 00¡V =0
V (0)=0; V (�)= 1

;

that is solved for

V (z)=
1

sinh(�)
sinh(z);

and thus v= 1

sinh(�) sinh(z)cos(�). For the contribution by the source z, we solve the following
Poisson equation �

�w= z
w(�; 0)= 0; w(�; �)= 0

:

Note that the source term is independent f � and thus we can write w=W (z). Substituting
w into the equation leads to the following equation�

W 00= z
W (0)=W (�)= 0

;

that is solved for W (z)=
1

6
z(z2¡�2). Finally, the solution is

u(�; z)=
1

sinh(�)
sinh(z) cos(�)+

1
6
z(z2¡�2):

Remark 6.3. In the above example, we could solve the Poisson equation for w by eigen-
function series as follows

w(�; z)=
X
m=1

1

Wm sin(mz); (6.15)

that leads to

w(z)=
X
m=1

1
2 cos(m�)

m3
sin(mz):

It is simply verified that the above series is the series expansion of 1

6
z(z2¡�2).

Example 6.6. Let us solve the following wave problem on the side surface of a cylinder of
radius a=1 and height H =18<: @ttu=�u

u(t; �; 0)=u(t; �; 1)= 0
u(0; �; z)=0; @tu(0; �; z)= sin(�)

:
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According to the initial data, the solution can be written in the following form

u(t; �; z)=
X
m=1

1

Um(t) sin(m�z) sin(�):

Substituting this into the wave equation, we derive the following equation for Um(t)(
Um
00(t)=¡(m2�2+1)Um(t)

Um(0)=0; Um
0 (0)=

2(1¡ cos(m�))
m�

;

which is solved for

Um(t)=
2(1¡ cos(m�))

m� �m
p sin( �m

p
t);

where �m=(m2�2+1). Therefore we reach the solution as the following series

u(t; �; z)=

"X
m=1

1
2(1¡ cos(m�))

m� �m
p sin( �m

p
t) sin(m�z)

#
sin(�):

6.2.6 Linear problems on a solid cylinder

We solve a few examples to show the method how linear problems can be solve by the
eigenfunction expansion method.

Example 6.7. Consider the the following problem in the solid cylinder of radius a=1 and
height H =1 8<: �u= r sin(�z)

u(1; �; z)=0
u(r; �; 0)= u(r; �; 1)=0

:

Since the source term is independent of � (the eigenfunction associated to n= 0), we write
the solution as follows

u(r; �; z)= sin(�z)
X
p=1

1

Up J0p(r):

Substituting u into the equation and using �u=¡(z0p2 + �2)u, yieldsX
p=1

1

¡(z0p2 +�2)Up J0p(r)= r:

The above equation determines Up as follows

Up=
¡1

(z0p
2 + �2)kJ0pk2

Z
0

1

J0p(r) r2 dr;
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where

kJ0pk2=
Z
0

1

jJ0(z0p r)j2 rdr:

Example 6.8. Consider the the following problem in the solid cylinder D of radius a= 1
and height H =1 8>>>>>>>>>><>>>>>>>>>>:

@tu=�u
u(t; 1; �; z)= 0
u(t; r; �; 0)= 0
u(t; r; �; 1)= sin(�)
u(0; r; �; z)=0

:

First, we find the steady state solution of the problem through solving the following one8>>>>>><>>>>>>:
�v=0
v(1; �; z)= 0
v(r; �; 0)=0
v(r; �; 1)= sin(�)

:

Regarding the boundary data, the solution can be written in the following form

v(r; �; z)=
X
p=1

1

Ap sinh(z1p z)J1p(r) sin(�);

where Ap is

Ap=
1

kJ1pk2 sinh(z1p)

Z
0

1

J1p(r) rdr:

Now, we write u(t; r; �; z) = v(r; �; z) + w(t; r; �; z) where w satisfies the following
homogeneous equation (

@tw=�w
w jbnd(D)=0

:

It is simply seen that w has the series form

w(t; r; �; z)=
X
n;m;p

e¡�nmpt sin(m�z)Jnp(r) fAnmp cos(n�)+Bnmp sin(n�)g:

Applying the initial condition of the problem leads to the following equality

¡
X
p=1

1

Ap sinh(z1p z)J1p(r) sin(�)=
X
n;m;p

sin(m�z)Jnp(r)fAnmp cos(n�)+Bnmp sin(n�)g;

that implies in turn Anmp=0 and

¡Ap sinh(z1p z)=
X
m=1

1

B1mp sin(m�z) :
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We obtain

B1mp=¡2Ap

Z
0

1

sinh(z1p z) sin(m�z) dz;

and finally

u=
X
p=1

1

Ap sinh(z1p z)J1p(r) sin(�)+
X
m;p=1

1

A1mp e
¡�1mpt J1p(r) sin(m�z) sin(�):

Problems
Problem 6.6. Show that functions Inp(r) are orthogonal with respect to �(r)= r, that is,

hInp; Inqir=0; p=/ q:

Problem 6.7. Let 
 denote a solid cylinder with radius a=1 and height H =1. Find a series solution
to the following problem on 
 8>>>>>><>>>>>>:

�u=0
u(1; �; z)= 0
u(r; �; 0)= cos�
u(r; �; 1)= sin�

:

Problem 6.8. Let 
 denote a solid cylinder with radius a=1 and height H =1. Find a series solution
to the following problem on 
 8>>>>>><>>>>>>:

�u=0
u(1; �; z)= 0
u(r; �; 0)= r
u(r; �; 1)= sin�+ cos�

:

Problem 6.9. Let 
 denote a solid cylinder with radius a=1 and height H =1. Find a series solution
to the following equation on 
 8>>>>>><>>>>>>:

�u=0
u(1; �; z)=0
u(r; �; 0)= �
u(r; �; 1)= r

:

Problem 6.10. Let 
 denote a solid cylinder with radius a=1 and height H=1. Find a series solution
to the following equation on 
 8>>>>>><>>>>>>:

�u=0
u(1; �; z)= z cos�
u(r; �; 0)= 0
u(r; �; 1)= 0

:

Draw solution at �=�/4, z=1/2 with respect to r.

Problem 6.11. Let 
 denote a solid cylinder with radius a=1 and height H=1. Find a series solution
to the following equation on 
 8<: �u=0

u(1; �; z)= sin(2�z) sin�
u(r; �; 0)=u(r; �; 1)= 0

:

Draw solution at �=�/4, z=1/2 with respect to r.
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Problem 6.12. Let 
 denote a solid cylinder with radius a=1 and height H=1. Find a series solution
to the following equation on 
 8<: �u=0

u(1; �; z)= sin(2�z) �
u(r; �; 0)= cos�; u(r; �; 1)=0

:

Problem 6.13. Let D denote the side surface of a cylinder with radius a and height H. Note that the
cylinder does not include top and button caps. Solve the following equation on D for u=u(�; z)�

�u=0
u(�; 0)= f(�); u(�;H)= g(�)

:

Problem 6.14. Let D denote the side surface of a cylinder with radius a and height H. Note that the
cylinder does not include top and button caps. Solve the following equation on D for u=u(�; z)�

�u+2@zu=0
u(�; 0)= f(�); u(�;H)= g(�)

:

Problem 6.15. Let D denote the side surface of a cylinder with radius a= 1 and height H = 1. Note
that the cylinder does not include top and button caps. Find a closed form solution to the following
problem on D �

�u= z
u(�; 0)= cos�; u(�; 1)=0

Problem 6.16. Let D denote the side surface of a cylinder with radius a= 1 and height H = 1. Note
that the cylinder does not include top and button caps. Consider the following problem on D�

�u= z sin(2�)
u(�; 0)=u(�; 1)= 0

:

a) Find a series solution to the problem.

b) Find a closed form solution to the problem and verify it is equal to the series solution obtained
in (a).

Problem 6.17. LetD denote the side surface of a cylinder with radius a=1 and heightH=1. Note that
the cylinder does not include top and button caps. Find a series solution to the following problem on D�

�u= z�
u(�; 0)= sin�; u(�; 1)= cos�

:

Problem 6.18. Let D denote the side surface of a cylinder with radius a= 1 and height H = 1. Note
that the cylinder does not include top and button caps. Consider the following problem on D�

�u= sin(�z)�
u(�; 0)= sin(�); u(�; 1)=0

:

a) Find a series solution to the problem.

b) Find a closed form solution to the problem and verify it is equal to the series solution obtained
in (a).

Problem 6.19. Let 
 denote a solid cylinder with radius a= 1 and height H =1. Solve the following
Poisson equation on 
. 8<: �u= rz

u(1; �; z)= 0
u(r; �; 0)= 0; u(r; �; 1)= r
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Problem 6.20. Let D denote the side surface of a cylinder with radius a=1 and height H =1. Solve
the following heat problem on D 8<: @tu=�u

u(0; �; z)= cos(�) sin(�z)
u(t; �; 0)=u(t; �; 1)= 0

:

Problem 6.21. Let D denote the side surface of a cylinder with radius a=1 and height H =1. Solve
the following heat problem on D 8<: @tu=�u¡ t sin�

u(0; �; z)=0
u(t; �; 0)= cos�; u(t; �; 1)= sin�

:

Problem 6.22. Let D denote the side surface of a cylinder with radius a=1 and height H =1. Solve
the following heat problem on D8>><>>:

@ttu= c2�u
u(0; �; z)= sin� sin(�z); @tu(0; �; z)= 0
u(t; �; 0)=0; u(t; �; 1)=0

:

Problem 6.23. Let 
 denote a solid cylinder with radius a= 1 and height H =1. Solve the following
problem on 
. 8>>>>>><>>>>>>:

@tu=�u¡ e¡t
u(t; 1; �; z)=0
u(t; r; �; 0)=u(t; r; �; 1)=0
u(0; r; �; z)=0

:

Problem 6.24. Let 
 denote a solid cylinder with radius a= 1 and height H =1. Solve the following
problem on 
. 8>>>>>><>>>>>>:

@tu=�u
u(t; 1; �; z)= z sin�
u(t; r; �; 0)=u(t; r; �; 1)=0
u(0; r; �; z)=0

:

Problem 6.25. Let 
 denote a solid cylinder with radius a= 1 and height H =1. Solve the following
problem on 
. 8>>>>>><>>>>>>:

@ttu= c2�u
u(t; 1; �; z)= 0
u(t; r; �; 0)=u(t; r; �; 1)= 0
u(0; r; �; z)= 0; @tu(0; r; �; z)= (1¡ r)z

:

6.3 Problems on spheres

6.3.1 Spherical coordinate
A point p in the spherical coordinate is represented by the triple (r; �; �), where r� 0 is the
distance of p to the origin, �2 [0; �] is the angle it makes with z-axis, and �2 [¡�; �] is the
angle the projection of p on the (x; y)-plane makes with x-axis.
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If 
 denote a ball of radius a, then a closed solid ball is represented by the following set of
points


= f(r; �; �); 0� r� a; 0� ���;¡� � ���g:

The Laplacian operator � in the spherical coordinate has the following form

�u=
1
r2
@r(r

2@ru)+
1

r2 sin�
@�(sin�@�u)+

1
r2 sin2�

@��u: (6.16)

To distinguish between a solid ball and a sphere, we use word sphere for the shell and denote
it by S2, and word ball for a solid ball. The inner product between two function f(r; �; �)
and g(r; �; �) in the spherical coordinate is as follows

hf ; gi=
Z
¡�

�Z
0

�Z
0

a

f(r; �; �) g(r; �; �) r2 sin�drd�d�: (6.17)

Remember that dV = r2 sin�drd�d� is the volume element in the spherical coordinate.

Remark 6.4. The spherical coordinate is specified by the following transformation8<: x= r sin� cos�
y= r sin� sin�
z= r cos�

:

In the first chapter, we asked the reader to derive the form of nabla operator r by the aid
of unit vectors

r̂=
1

(@rx)2+(@ry)2+(@rz)2
p (@rx; @ry; @rz)= sin� cos� î + sin� sin� ĵ + cos� k̂;

and similarly for �̂ ; �̂ as

�̂=
1

(@�x)2+(@�y)2+(@�z)2
p (@�x; @�y; @�z)= cos� cos� î + cos� sin� ĵ ¡ sin� k̂

�̂=
1

(@�x)2+(@�y)2+(@�z)2
p (@�x; @�y; @�z)=¡sin� î + cos� ĵ:
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It is simply seen that

r= r̂ @r+
1

r sin �
�̂ @�+

1
r
�̂ @�;

and thus

�=r�r=

�
r̂ @r+

1
r sin �

�̂ @�+
1
r
�̂ @�

�
�
�
r̂ @r+

1
r sin �

�̂ @�+
1
r
�̂ @�

�
;

after after direct calculation gives the form of� in the spherical coordinate as given in (6.16).

Problem 6.26. Show with the aid of following relations that the differential volume in spherical coor-
dinate is dV = r2 sin�drd�d�

dx= sin� cos�dr+ r cos� cos�d�¡ r sin� sin�d�;

dy= sin� sin�dr+ r cos� sin�d�+ r sin� cos�d�;

dz= cos�dr¡ r sin�d�:

6.3.2 Laplace equation and Legendre polynomials
Let 
 denote a ball in R3 of radius a. Consider the following equation on 
�

�u=0
u(a; �; �)= f(�; �)

: (6.18)

First, assume that f is independent of �, that is, f = f(�). This leads to an important class
of special functions called the Legendre polynomials. Consider the equation�

�u=0
u(a; �; �)= f(�)

: (6.19)

Since the boundary data is independent of �, (that is, f is axially symmetric about the z-
axes), we can assume that the solution is axially symmetric in 
, that is, u= u(r; �). Due
to the form of � in the spherical coordinate, the separated solution u(r; �)=R(r)�(�) leads
to the following equation

r2R 00+2rR0

R
+

1
� sin�

d
d�
(sin��0)= 0: (6.20)

The equation for � leads to the following eigenvalue problem:

d
d�
(sin��0)=¡�� sin��; (6.21)

for some eigenvalue ��. It is observed that a singularity in � may happen at �=0; �, where
the coefficient of the highest derivative �00 become zero. To avoid the possible blow up at
these points, we impose the following condition for the solution �(�)

lim
�!0;�

j�(�)j<1: (6.22)

If we take x = cos(�), the eigenvalue problem (6.21) reduces to the following familiar form
which is called the Legendre's equation

d
dx
[(1¡x2)�0] =¡���(x); ¡ 1�x� 1: (6.23)
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The Legendre equation is discussed in our book on ordinary differential equations and
readers are referred to it. The solution of the Legendre equation can be derived by the
power series as follows

�(x)=
X
k=0

1

ckxk;

where ck satisfy the following recursive formula

ck+2=
k(k+1)¡��
(k+2)(k+1)

ck:

Note that if �� is an integer of the form n(n+1) for n=0;1;2; ���, then one solution to (6.23)
is a polynomial of order n. This polynomial is called the Legendre polynomial of order n
after the French mathematician A.M. Legendre, and is denoted by Pn(x). A closed form
representation of this polynomial is given by the O. Rodrigues formula

Pn(x)=
(¡1)n
2nn!

dn

dxn
(1¡x2)n: (6.24)

The following table shows Pn(x) for n=0; ���; 6.

n Pn(x)
0 1
1 x

2 1

2
(3x2¡ 1)

3 1

2
x(5x2¡ 3)

4 1

8
(35x4¡ 30x2+3)

5 1

8
x(63x4¡ 70x2+ 15)

6 1

16(231x
6¡ 315x4+ 105x2¡ 5)

Table 6.1.

It turns out that if ��=/ n(n+1), the infinite series solution blows up at x=�1. Therefore�
to keep the solutions bounded, we assume ��=n(n+1), where n is a non-negative integer.
Consequently, �n(�)=Pn(cos�) for n�0. Note that Pn(cos�) for n=0;1; :::, are solutions to
(6.21) for ��=n(n+1) and therefore they are orthogonal with respect to the weight function
�= sin� Z

0

�

Pn(cos �)Pm(cos �) sin(�) d�=0; n=/ m: (6.25)

In addition, the set fPn(cos �)gn=01 is a basis for smooth functions in � 2 [0; �]. At the end
of this chapter, we will prove the following proposition for Pn(cos �).

Proposition 6.1. The following relations hold for Legendre polynomials Pn(cos �)Z
0

�

Pn(cos �) sin(�) d�=0;

kPnk2=
Z
0

�

jPn(cos �)j2 sin(�) d�=
2

2n+1
:
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Now, we back to the equation for R. From (6.20), we reach

r2R00+2rR 0¡n(n+1)R=0;

which is a Cauchy-Euler equation. The solution set of the above equation is Rn(r) =
frn; r¡n¡1g where we ignore term r¡n¡1 for problems defined inside a ball. The reason is that
r¡n¡1 is unbounded at r=0. For the exterior Laplace equations (equations defined in the
exterior of a ball), we ignore the term rn and write Rn(r) = r¡n¡1. Therefore, for problems
inside a ball, the solution of (6.19) has the following form

u(r; �)=
X
n=0

1

Unr
nPn(cos �);

where Un are determined through the boundary condition and the following inner product

Un=
hf ; Pnisin�
ankPnk2

=
2n+1
2an

Z
0

�

f(�)Pn(cos �) sin(�) d�:

Example 6.9. Consider the following problem�
�u=0
u(1; �; �)=1

:

Let us write the series solution as follows

u(r; �; �)=
X
n=0

1

UnrnPn(cos �):

The boundary condition at r=1 gives

1=
X
n=0

1

UnPn(cos �);

and since P0=1, we derive Un=0 for n� 1 and U0=1 and thus u=1 is the solution to the
problem. This solution confirms the maximum principle for harmonic functions.

Example 6.10. We solve the following Laplace equation�
�u=0
u(1; �; �)= cos(�)

:

Since the boundary condition is independent of � then we take u= u(r; �) and write

u(r; �)=
X
n=0

1

Unr
nPn(cos �):

Applying the boundary condition results to

cos �=
X
n=0

1

UnPn(cos �))Un=

�
1 n=1
0 n=/ 1

;
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and finally u(r; �)= r cos(�).

6.3.3 Associated Legendre polynomials
Now we relax the restriction that f is axially symmetric. Let us write the separated solution
as u=R(r)Y (�; �) and substitute that into (6.18) to obtain

r2R 00+2rR 0

R
+
1
Y
�(�;�)Y =0; (6.26)

where �(�;�)Y stands for

�(�;�)Y =
1

sin�
@�(sin�@�Y )+

1
sin2�

@��Y : (6.27)

The above equation implies that 1

Y
�(�;�)Y is a constant. Let us denote this constant again

by ��. Therefore

�(�;�)Y =¡��Y : (6.28)

To solve the above problem, we write Y (�; �)=�(�)�(�) and obtain

sin�
�

d
d�

�
sin�

d�
d�

�
+
1
�
d2�
d�2

=¡�sin2�: (6.29)

This equation implies in turn that
1
�
d2�
d�2

is constant. Let us denote this constant by ��,

that is, �00=¡���. Notice that �(�) must satisfy the periodicity condition

�(¡�)=�(�);�0(¡�)=�0(�):

Regarding this periodicity condition, we derive the following list of solutions for �

�m(�)2f1; cos(m�); sin(m�)gm=1
1 ;

and ��=m2. Substituting this constants into (6.29) gives

d
d�
(sin(�)�0)¡ m2

sin(�)
�=¡�� sin(�)�:

Observe that the derived equation is similar to a Legendre equation except the extra term
m2

sin(�)�. Taking x= cos(�), will transforms the equation into the following one which is called
the associated Legendre equation:

d
dx
[(1¡x2)�0]¡ m2

1¡ x2�=¡���: (6.30)

The admissible values for �� are again �� = n(n+ 1), n � 0 to guarantee that the solution
remains bounded at x=¡1; 1.

Proposition 6.2. If ��=n(n+1), then the solution of (6:30) are

Pn;m(x)= (1¡x2)
m

2 Pn
(m)(x); m=0; :::; n;
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where Pn
(m)(x)=

dm

dxm
Pn(x).

Proof. Note that we have

(1¡x2)Pn00¡ 2xPn0=¡n(n+1)Pn:

Differentiating the above equation m-times leads to the following one

(1¡ x2)Pn
(m+2)¡ 2x(m+1)Pn

(m+1)= [¡n(n+1)+m(m+1)]Pn
(m): (6.31)

Now for the function Pn;m(x)= (1¡ x2)
m

2 Pn
(m)(x), one needs to show

d
dx

�
(1¡x2) d

dx
Pn;m

�
¡ m2

1¡x2Pn;m=¡n(n+1)Pn;m: (6.32)

A simple calculation shows

d
dx

�
(1¡x2) d

dx
Pn;m

�
=(1¡x2)

m

2 f(1¡x2)Pn
(m+2)¡ 2(m+1)xPn

(m+1)g+

+

�
m2

1¡x2 ¡m(m+1)

�
Pn;m:

Now, by the relation (6.31), we have

(1¡x2)m/2f(1¡x2)Pn
(m+2)¡ 2(m+1)xPn

(m+1)g= [¡n(n+1)+m(m+1)]Pn;m:

This implies in turn

d
dx

�
(1¡ x2) d

dx
Pn;m

�
=

�
¡n(n+1)+m(m+1)+

�
m2

1¡x2 ¡m(m+1)

��
Pn;m+

=

�
¡n(n+1)+

m2

1¡ x2

�
Pn;

that completes the proof. �

Since Pn(x) is a polynomial of order n, Pn;m(x) are zero for m>n. It is evident also that
Pn;m(1)=0 for all n> 0 and Pn;0(x)=Pn(x).

Proposition 6.3. The function Pn;m(cos �) are orthogonal in the following senseZ
0

�

Pn;m(cos �)Pn0;m(cos �) sin(�) d�=0; n=/ m;

and each list of the following class

fPn(cos �)gn=01 ; fPn;1(cos �)gn=11 ; fPn;2(cos �)gn=21 ; ���;

is a basis for smooth functions f(�) defined for � 2 [0; �].

The figure (6.1), shows the convergence of a series in terms of the functions in fPn;2(x)gn=2N

to the functions f(x)=x2, ¡1<x< 1 for N =4; 10.
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Figure 6.1.

The table (6.2) shows some associated Legendre functions Pn;m(x).

m n=0 n=1 n=2 n=3 n=4
0 1 P1(x) P2(x) P3(x) P4(x)

1 0 1¡x2
p

3x 1¡x2
p

3

2
1¡ x2

p
(5x2¡ 1) 5

2
x 1¡x2
p

(7x2¡ 3)
2 0 0 3(1¡x2) 15x(1¡x2) 15

2
(1¡x2)(7x2¡ 1)

3 0 0 0 15(1¡x2)3/2 105x(1¡x2)3/2
4 0 0 0 0 105(1¡x2)2

Table 6.2.

Now back to (6.26), the equation for R is

r2R 00+2rR 0

R
¡n(n+1)=0;

which is a Cauchy-Euler equation with the solution frn; r¡n¡1g. Solving an equation
inside a ball, we reject the solution r¡n¡1 and keep rn, that is, Rn(r) = rn. Finally, the
solution u in this case is written in the series form as

u(r; �; �)=
X
n=0

1 X
m=0

n

rnPn;m(cos�) (Anm cos(m�)+Bnm sin(m�)):

The constants Anm; Bnm are determined by the aid of the boundary condition.

Example 6.11. Let us solve the equation in the exterior of the unit ball�
�u=0
u(1; �; �)= sin(�)

:

According to the boundary condition, we write the solution in the series form as

u=
X
n=1

1

Unr¡n¡1Pn;1(cos�) sin�:

Applying the boundary condition, we obtain

sin�=
X
n=1

1

UnPn;1(cos�) sin�;
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and thus

1=
X
n=1

1

UnPn;1(cos�):

The above equation determines constants Un as

Un=
1

kPn;1k2
Z
0

�

Pn;1(cos�) sin(�) d�=
1

kPn;1k2
Z
¡1

1

Pn;1(x) dx:

6.3.4 Eigenvalue problem
In order to solve linear problems in a ball or on a sphere, one needs to solve the following
eigenvalue problem �

�u=¡�u
u(a; �; �)= 0

:

The separation of variable u(r; �; �)=R(r)Y (�; �) leads to the eigenvalue problem

1
R

d
dr
(r2R0)+

1
Y
�(�;�)Y =¡�r2: (6.33)

Thus 1

Y
�(�;�)Y is ��=n(n+1) (otherwise the solution goes unbounded), and hence

r2R00+2rR 0+(�r2¡n(n+1))R=0: (6.34)

The equation (6.34) is called the spherical Bessel equation (because of the term n(n+ 1)
instead of n2 and 2r instead of r). Since � > 0, and we take x= �

p
r to transform (6.34)

into the following standard form

x2y 00+2xy 0+(x2¡n(n+1))y=0: (6.35)

The bounded solution to the above equation is called j-spherical Bessel functions and is
denoted by jn(x).

Proposition 6.4. The function jn(x)=
�

2x

q
Jn+1

2

(x) is the bounded solution to the equation
(6:35).

The proof is left as an exercise to the reader. Applying the zero boundary condition,
determines � as

jn( �
p

a)=0)�np=
z�

n+
1

2

�
p

2

a2
:

We denote the zeroth of jn(x) by �np, that is , jn(�np)=0. It is simply seen (and it is left a
an exercise to the reader again) that the following orthogonality condition holds for spherical
Bessel functions Z

0

a

jnp(r) jnq(r) r2 dr=0; p=/ q;

where jnp(r) stands for the functions jn(�npr / a). The table (6.3) shows the zeros of the
function jn(x).
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p �0p �1p �2p �3p
1 3.1415 4.4934 6.7635 6.9880
2 6.2832 7.7252 9.0950 10.4171
3 9.4248 10.9041 12.3230 13.6980
4 12.5664 14.0662 15.5146 16.9236
5 15.7080 17.2208 18.6890 20.1218
6 18.8496 20.3713 21.8539 23.3042
7 21.9911 23.5195 25.0129 26.4768
8 25.1327 26.6661 28.1678 29.6426
9 28.2743 29.8116 31.3204 32.8037
10 31.4159 32.9564 34.4705 35.9614

Table 6.3.

The above discussion implies that the eigenfunctions of � on a ball are:

'nmp(r; �; �)2fjnp(r)Pn;m(cos�)cos(m�); jnp(r)Pn;m(cos�)sin(m�)g: (6.36)

In addition, we have h'nmp; 'n0m0p0i=0 if at least one of indices are not equal. Note also that

�'nmp=¡
�np
a2

2

'nmp;

and in particular for m=0 we have

�fjnp(r)Pn(cos �)g=¡
�np
2

a2
jnp(r)Pn(cos �):

Remark 6.5. The above discussion gives also the eigenvalues and eigenfunctions of �(�;�)

on S2. In fact, the solution to the problem

�(�;�)Y =¡�Y ;
are

Yn;m(�; �)2fPn;m(cos �) cos(m�); Pn;m(cos�) sin(m�)g: (6.37)

Notice that S2 has no boundary, and thus �(�;�) is symmetric operator on C1(S2). Further-
more, if f(�; �) is a smooth function defined on S2, one can represent it as a series in terms
of functions in Ynm(�; �). The appropriate inner product between two functions f(�; �) and
g(�; �) is

hf ; gi=
Z
¡�

�Z
0

�

f(r; �) g(r; �) sin�d�d�:

6.3.5 Linear problems on the shell
Let us solve the Poisson equation �u = f(�; �) on the shell of a ball. Since the solution
should be 2�-periodic with respect to �, the solution should satisfied the following conditions

u(�;¡�)=u(�; �); @�(�;¡�)= @�(�; �):
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But, according to the divergence theorem, we haveZZ
S

�u=

I
bnd(S)

ru � n̂ dA=0;

(since bnd(S)= ;) and thus the equation �u= f(�; �) has a solution only ifZZ
S

f(�; �) dA=0:

Example 6.12. Let us solve the equation �u= � on the unit sphere. Since the function �
is odd in (¡�; �), we write the solution as

u(�; �)=
X
n=1

1 X
m=1

n

UnmPn;m(cos�) sin(m�):

Substituting this into the equation and using the relation

�(�;�)fPn;m(cos�) sin(m�)g=¡n(n+1)Pn;m(cos �) sin(m�);

we obtain X
n=1

1 X
m=1

n

¡n(n+1)UnmPn;m(cos �) sin(m�)= �:

The above equation determines Unm as

Unm=
¡1

�n(n+1)kPn;mk2
Z
¡�

�Z
0

�

�Pn;m(cos �) sin(m�) sin(�)d�d�=

¡1
�n(n+1)kPn;mk2

�Z
¡1

1

Pn;m(x)dx

��Z
¡�

�

� sin(m�) d�
�
=

=
2(¡1)m

mn(n+1)kPn;mk2

�Z
¡1

1

Pn;m(x)dx

�
:

Example 6.13. Let us solve the following heat problem on the unit sphere(
@tu=�(�;�)u¡ cos(�)
u(0; �; �)= sin(�)

:

We first solve the Poisson equation �u= cos� on the sphere. The solution is independent
of � and thus we write

u(�; �)=
X
n=0

1

UnPn(cos�):

Substitution into the Poisson equation gives

�(�;�)u=
X
n=0

¡n(n+1)UnPn(cos�)= cos(�):
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Hence n=1 and Un=
¡1
2

and consequently u(�; �)=¡1

2
cos(�). Now, we write the solution

to the original equation as

u(t; �; �)=¡1
2
cos(�)+w(t; �; �);

where w satisfies the homogeneous heat problem(
@tw=�(�;�)w

w(0; �; �)= sin(�)+ 1

2
cos(�)

:

We represent the solution as the series

w(t; �; �)=
X
n=1

1

Wn(t)Pn(cos�):

The equation for Wn(t) is Wn
0=¡n(n+1)Wn and therefore

u(t; �; �)=
X
n=1

1

Wne
¡n(n+1)tPn(cos �):

Applying the initial condition gives

sin(�)+
1
2
cos(�)=

X
n=1

1

WnPn(cos �):

This implies W1=
1

2
, Wn=0 for n=2k+1, k=0; 1; 2; ���. For n even, we have

Wn=
1

kPnk2
Z
¡1

1

Pn(x) 1¡x2
p

dx:

Finally, we write the solution as

u(t; r; �)=¡1
2
cos(�)+

1
2
cos(�) e¡2t+

X
n:even

Wne
¡n(n+1)tPn(cos �):

Example 6.14. We solve the following wave problem on a unit sphere8>><>>:
@ttu= c2�(�;�)u

u(0; �; �)=0
@tu(0; �; �)= cos(�) sin(2�)

:

According to the initial condition, we write the solution as

u(t; �; �)=
X
n=2

1

Un(t)Pn;2(cos�) sin(2�):

Substituting the series into the equation givesX
n=2

1

Un
00(t)Pn;2(cos �) sin(2�)=

X
n=2

1

¡c2n(n+1)Un(t)Pn;2(cos �) sin(2�):
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Hence the following equation holds for Un(t)

Un
00(t)=¡c2n(n+1)Un(t):

Thus u has the series form

u(t; �; �)=
X
n=2

1

[An cos(c �n
p

t)+Bn sin(c �n
p

t)]Pn;2(cos �) sin(2�):

To determine An; Bn, we use the initial data. It is simply seen that An=0 and

cos(�)=
X
n=2

1

c �n
p

BnPn;2(cos �);

that gives

Bn=
1

kPn;2k2
Z
¡1

1

xPn;2(x) dx:

6.3.6 Linear Problems on a solid ball

Example 6.15. Let us solve the following Poisson equation on a unit ball�
�u= cos(�)
u(1; �; �)=0

:

Note that the forcing term is independent of �. Since Pn(cos�)=cos(�), we write the solution
as the series

u(r; �; �)=
X
p=1

1

Up j1p(r) cos(�):

Regarding the relation

�( j1p(r) cos �)=¡�1p2 j1p(r) cos(�);
we obtain

cos(�)
X
p=1

1

¡�1pUp j1p(r)=cos(�):

Constants Up are determined by the formula

Up=
¡1

�1p
2 kj1pk2

Z
0

1

j1p(r) r2 dr:

An alternative method is to write the solution as u(r; �; �)=U(r) cos(�) and substitute that
into the equation to obtain

r2U 00+2rU 0¡2U = r2 :

The above Cauchy-Euler equation is solved for U(r)=Ar+ 1

4
r2. The boundary condition

u(1; �; �)=0 implies A=¡1

4
and finally

u(r; �; �)=
1
4
r(r¡ 1) cos(�):
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The series solution of the equation is just the series form of the later closed form solution.

Example 6.16. Let us solve the following heat problem8>><>>:
@tu=�u¡ e¡t
u(t; 1; �; �)= cos(�)
u(0; r; �; �)=0

:

Since the boundary condition is nonzero, we write the solution as

u(t; r; �; �)= v(r; �; �)+w(t; r; �; �):

The equation for v is the following Laplace equation�
�v=0
v(1; �; �)= cos(�)

;

with the solution v= r cos(�). The equation for w is8>><>>:
@tw=�w¡ e¡t
w(t; 1; �; �)=0
w(0; r; �; �)=¡r cos(�)

:

Note that the initial condition for w is independent of � and also the forcing term is inde-
pendent of � and �. According to this information, we write the solution as the series in
terms of fj1p(r)P1(cos �)g as

w(t; r; �; �)=
X
p=1

1

Wp(t)j1p(r) cos(�):

Remember that P1(cos�)= cos(�). Substituting w into the equation givesX
p=1

1

Wp
0(t)j1p(r) cos(�)=

X
p=1

1

¡�1p2 Wp(t)j1p(r) cos(�)¡ e¡t:

In order to merge summations and find the desired equation for Wp
0, we have to expand the

source term e¡t in terms of eigenfunctions fj1p(r)P1(cos�)g. But this is impossible because
the source term is independent of �. For this, we split the equation of w into two sub-
problems

(a)

8>><>>:
@tw=�w¡ e¡t
w(t; 1; �; �)= 0
w(0; r; �; �)=0

+ (b)

8<: @tw=�w
w(t; 1; �; �)= 0
w(0; r; �; �)=¡r cos(�)

:

The solution to the sub-problem (b) is derived as

wb(t; r; �; �)=
X
p=1

1

Wp e
¡�1p2 t j1p(r)cos(�);
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where Wp are determined as

Wp=
¡1
kj1pk2

Z
0

1

j1p(r) r
3 dr:

To solve the sub-problem (a), we expand the source terms as

e¡t= e¡t
X
p=1

1

Rp j0p(r);

where

Rp=
1

kj0pk2
Z
0

1

j0p(r) r2 dr:

We write the solution to (a) as

wa(t; r; �; �)=
X
p=1

1
Rp

�0p
2 ¡ 1

¡
e¡t¡ e¡�0p

2 t
�
j0p(r):

Finally, the solution is

u(t; r; �; �)= r cos(�)+
X
p=1

1
Rp

�0p
2 ¡ 1

¡
e¡t¡ e¡�0p

2 t
�
j0p(r)+

X
p=1

1

Wp e
¡�1p2 t j1p(r)cos(�):

Example 6.17. Let us solve the following wave equation in a unit solid ball8>><>>:
@ttu=�u¡ 10rcos(�)
u(1; �; �)= 0

u(0; r; �; �)= r(r2¡ 1)cos(�); @tu(0; r; �; �)= sin(�)sin(�)
:

Write the solution as

u(t; r; �; �)= v(r; �; �)+w(t; r; �; �);

where v satisfies the Poisson equation�
�v= 10r cos(�)
v(1; �; �)=0

:

If we write v=V (r) cos�, then V (r) satisfies the ordinary equation(
r2V 00+2rV 0¡ 2V = 10r3

V (1)=0; V (0):bounded
:

This is a Cauchy-Euler equation and is solved for V (r)= 1

c2
r(r2¡1). Therefore, we obtain

u(t; r; �; �)= r(r2¡ 1)cos(�)+w(t; r; �; �);

where w satisfies the equation8<:
@ttw=�w
w(1; �; �)=0
w(0; r; �; �)= 0; @tw(0; r; �; �)= sin(�)sin(�)

:
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Note that P11(cos�)= sin� and thus the solution of the above equation is written in the series
form as

w(t; r; �; �)=
X
p=1

1

Wp(t)j1p(r)P1;1(cos�) sin(�);

where Wp(t) satisfies the equation Wp
00=¡�1p2 Wp. Since Wp(0)= 0, the solution W (t) is

Wp(t)=Bp sin(�1p t):

Therefore, w is

w(t; r; �; �)=
X
p=1

1

Bp sin(�1p t)j1p(r)P1;1(cos�) sin(�);

where constants Bp satisfy the relation

1=
X
p=1

1

�1pBp j1p(r);

and

Bp=
1

�1pkj1pk2
Z
0

1

j1p(r) r2 dr:

Finally, the series solution to the problem is the series

u(t; r; �; �)= r(r2¡ 1)cos(�)+
X
p=1

1

Bp sin(�1p t)j1p(r) sin(�) sin(�):

Problems
Problem 6.27. Show that Pnm(x) are orthogonal in the following sense

a) Z
¡1

1

Pn;m(x)Pn0;m(x) dx=0; n=/ n0:

b) Z
¡1

1 1
1¡x2Pn;m(x)Pn;m

0(x) dx=0; m=/ m0:

Problem 6.28. Find series of the following functions in terms of Legendre polynomials fPn(x)g for
x2 [¡1; 1] and draw the first 5 terms of each series.

a) f(x)= 1¡x2
p

b) f(x)= sin(�x)

Problem 6.29. Write the series representation of the following functions in terms of functions in the
list fPn1(x)g for ¡1�x� 1. Draw each series for first 5 terms.

a) f(x)= 1¡x2

b) f(x)=x3

Problem 6.30. Repeat the above problem in terms of fPn;2(x)g.
Problem 6.31. Solve the Laplace equation �u= 0 inside the unit ball with the following boundary
conditions

a) u(1; �; �)= 3 cos2�¡ 1
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b) u(1; �; �)= �+1

c) u(1; �; �)= sin(3�)+ cos(2�)

Problem 6.32. Solve the Laplace equation �u=0 in the exterior of the unit ball with the following
boundary conditions

a) u(1; �; �)=Pn(cos�)

b) u(1; �; �)= �

Problem 6.33. Solve the Laplace equation �u= 0 defined on the space 1< r < 2 in R3 (the space
between two sphere r=1, r=2) with the following boundary condition:

a) u(1; �; �)=¡1; u(2; �; �)= 1.

b) u(1; �; �)= sin(�); u(2; �; �)= sin (�).

Problem 6.34. Solve the following Laplace equation inside the unit ball�
�u=0
u(1; �; �)= sin(�)

:

Use a calculator to find the coefficients of first 4 terms.

Problem 6.35. Verify that the spherical Bessel functions jn(x)=
�

2x

q
Jn+1/2(x) satisfies the spherical

Bessel equation

x2y 00+2xy 0+(x2¡n(n+1))y=0;

where Jn(x) is the solution to the Bessel equation

x2 y 00+xy 0+(x2¡n2)y=0:

Problem 6.36. Write the series representation of the following functions in terms of fj0p(r)g in 0�r�1
and plot each

a) f(r)= 1

b) f(r)= r

c) f(r)= r2.

Problem 6.37. Repeat the above problem for functions in the list {j1p(r)}.

Problem 6.38. Solve the Poisson equation �(�;�)u=� on the surface of the unit ball. Use a calculator
to determine the coefficients of the first 4 terms.

Problem 6.39. Solve the Poisson equation �(�;�)u= sin2� on the surface of the unit ball.

Problem 6.40. Explain why the eigenfunction expansion method does not work for the Poisson
equation �(�;�)u=1 defined on the surface of the unit ball. Is there a unique solution to the problem?

Problem 6.41. Solve the following heat problem on the surface of the unit ball(
@tu=�(�;�)u¡Pk(cos�)
u(0; �; �)=0

;

where k � 1 is a fixed integer. Draw the temperature of the circle (1; �/4; �) in time for n=2.

Problem 6.42. Solve the following heat problem on the surface of the unit ball(
@tu=�(�;�)u

u(0; �; �)=Pn(cos�)
;

where n� 0.
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Problem 6.43. Solve the following wave problem on the surface of the unit sphere(
@ttu=�(�;�)u

u(0; �; �)=0; @tu(0; �; �)= f(�; �)
:

Plot the solution at �=�/4, if f(�; �)= 0.1 cos� in terms of time t.

Problem 6.44. Even though the Dirac delta �(x) is not a function in usual sense, let us write a
symbolic series of �(x) in terms of Pn(x) as

�(x)=
X
n=0

1

DnPn(x):

The coefficients Dn are determined by the aid of inner product as

Dn=
Pn(0)
kPnk2

= 2n+1
2

Pn(0):

a) Plot the series of �(x) for 30 terms in the interval (¡1; 1).
b) Solve the following equation on the surface of the unit ball(

@ttu=�(�;�)u¡ �(t¡ 1) �(�¡�/2)
u(0; �; �)=@tu(0; �; �)=0

:

Problem 6.45. Consider the following Poisson equation inside the unit ball�
�u=1
u(1; �; �)=0

:

a) Find a series solution to the problem.

b) Find the solution in closed form.

Problem 6.46. Consider the following Poisson equation inside the unit ball�
�u=Pn(cos �)
u(1; �; �)=0

:

a) Find a series solution to the problem.

b) Find the solution in closed form.

Problem 6.47. Solve the following Poisson equation inside the unit ball�
�u= �
u(1; �; �)=1+ cos(�)

:

Problem 6.48. Solve the following heat equation inside the unit ball8>>>>>><>>>>>>:
@tu=�u¡ cos(�)

u(t; 1; �; �)= 5

4
cos(�)

u(0; r; �; �)= r2

4
cos(�)

:

and find first 3 terms of the transient solution.

Problem 6.49. Solve the following heat problem inside the unit ball8>><>>:
@tu= k�u¡Pk1(cos �) sin(�)
u(t; 1; �; �)= 0
u(0; r; �; �)= 0

;
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and draw few terms of the series solution at the point r = 0.5; � = �/2,�= �/2 with respect to time t
for k= 0.001.

Problem 6.50. (10 points) Let 
 denote the space between the spheres r=1 and r=2.

a) Solve the Laplace equation �u=0 in 
 with the boundary conditions

u(1; �; �)=1+ cos(�); u(2; �; �)=2+2cos(�)

b) Use P22(cos�) and find a closed form solution to the following Poisson equation8>><>>:
�u= 18r sin2� sin(2�)
u(1; �; �)= 1+ cos(�)
u(2; �; �)= 2+2 cos(�)

:

Problem 6.51. Solve the following heat problem inside the unit ball8>><>>:
@tu= 0.001�u¡ �(t¡ 1)Pk1(cos �) sin(�)
u(t; 1; �; �)=0
u(0; r; �; �)= 0

;

and draw few terms of the series solution at the point r= 0.5; �=�/2,�=�/2 with respect to time t.

Problem 6.52. Solve the following damped wave equation inside the unit ball8>><>>:
@ttu+2�@tu= c2�u
u(t; 1; �; �)= 0
u(0; r; �; �)= 0; @tu(0; r; �; �)= �

:

Assume that � > 0 is small enough and the system is in the under-damped mode.

Problem 6.53. Solve the following wave problem inside the unit ball8>><>>:
@ttu= c2�u¡ e¡t
u(t; 1; �; �)= 0
u(0; r; �; �)= r

Problem 6.54. Let D be the following section of the unit ball:

D=
n
(r; �; �); 0<r < 1; 0� ���; 0� �� �

2

o
:

Solve the following heat equation on D:8>>>>>><>>>>>>:
@tu=�u
u(t; r; �; 0)=u(t; r; �; �/2)=0
u(t; 1; �; �)= cos(�) sin(2�)
u(0; r; �; �)=0

:

6.4 Legendre polynomials

The force field generated by a mass m in R3 is

f~ =¡mGjr j2 er;

6.4 Legendre polynomials 33



where er is the unit vector in the direction of r, the line connecting a point (x; y; z) to the
location of m. P. S. Laplace observed that the above force field is the gradient of a scalar
function which is equal to

V (r)=
mG
jr j ;

and moreover, V satisfies the equation �V = 0 if r =/ 0. The British Mathematician G.
Green was the first person who called V a potential function for f~. For this reason, the
Laplace equation is sometimes called a potential equation. The French mathematician, J.
Legendre gave a series representation of the potential generated by a mass which is located
at the point (0; 0; R); see Fig.6.2.

p

R

m

r

s

�

Figure 6.2.

The potential (assuming m=1 and omitting the constant G) is equal to

V =
1
jr j =

1

R2+ s2¡ 2sRcos(�)
p :

Substituting �= s

R
and x= cos(�), we reach

V =
1
R

1

1+ �2¡ 2�x
p :

Let us write the series of the right hand side of V (�) in terms of � as follows (omitting 1

R
)

1

1+ �2¡ 2�x
p =

X
n=0

1

Pn(x) �n; (6.38)

for some functions Pn(x). From (6.38) it is immediately obtained that Pn is of the following
form

Pn(x)=
1
n!

@n

@�n
(1+ �2¡ 2�x)¡1/2j�=0:
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On the other hand, it turns out that Pn(x) satisfies a differential equation called the
Legendre equation. In fact, since V is a potential, we have �V = 0 or equivalently
�(Pn(cos�)�n)=0. We have

�(Pn(cos�) �n)=
n(n+1)
Rn

sn¡2Pn(cos �)+
sn¡2

Rn sin(�)
d
d�
(sin�Pn(cos �))= 0:

Simplifying the above relation gives the following equation:

n(n+1)Pn+
1

sin(�)
d
d�
(sin�Pn)= 0:

For x= cos�, the above equation reads

d
dx

�
(1¡x2) dPn

dx

�
+n(n+1)Pn=0: (6.39)

From (6.38) we have

1
1+ �2¡ 2�x =

X
n=0

1

Pn
2(x) �2n+

X
n=/m

Pn(x)Pm(x) �
n+m;

and then Z
¡1

1 dx
1+ �2¡ 2�x =

X
n=1

1

�2n
Z
¡1

1

Pn
2(x) dx:

But Z
¡1

1 dx
1+ �2¡ 2�x =

1
�
log
���������+1
�¡ 1

��������=X
n=0

1
2

2n+1
�2n:

and we obtain Z
¡1

1

Pn
2(x) dx=

2
2n+1

:

Again, from (6.38) we obtain for x=1

1

1+ �2¡ 2�
p =

1
1¡ � =

X
n=0

1

�n;

and thus Pn(1)=1 for all n� 0. For x=¡1 we have

1

1+ �2+2�
p =

1
1+ �

=
X
n=0

1

(¡1)n�n

and therefore Pn(¡1)= (¡1)n. Also changing � to ¡� givesX
n=0

1

Pn(x) (¡�)n=
1

1+ �2+2�x
p =

1

1+ �2¡ 2� (¡x)
p =

X
n=0

1

Pn(¡x) �n

Therefore Pn(¡x) = (¡1)n Pn(x). The list fPn(x)gn=01 is an orthogonal basis for smooth
functions in [¡1;1]. Therefore if f(x), x2 [¡1;1] is a smooth function, it can be represented
by the series

f(x)�
X
n=0

1

fnPn(x);
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where the coefficients fn are calculated by the aid of inner product as

fn=
2n+1
2

Z
¡1

1

f(x)Pn(x) dx: (6.40)

It is simply seen that the above series can be written in an integral form. In fact, we have

f(x)�
X
n=0

1 �
2n+1
2

Z
¡1

1

f(y)Pn(y) dy

�
Pn(x)=

Z
¡1

1

f(y)

 X
n=0

1
2n+1
2

Pn(x)Pn(y)

!
dy

and if we denote the kernel K(x; y) as

K(x; y)=
X
n=0

1
2n+1
2

Pn(x)Pn(y); (6.41)

then the function f(x) can be represented as the integral

f(x)�
Z
¡1

1

K(x; y)f(y) dy: (6.42)
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