
Chapter 5
2D Linear Second-Order Equations

In this chapter, we delve into the realm of linear partial differential equations in 2D domains.
Our focus lies on rectangular and disk-shaped domains, as they provide us with the opportu-
nity to employ the spatial variable separation technique. Within this framework, we explore
a range of partial differential equations, namely: 1) Laplace equations, 2) Poisson equations,
3) heat equations, and 4) wave equations.

Let 
 be an open bounded set inR2 with a smooth or piecewise smooth boundary bnd(
).
We begin by considering the Laplace equation, which takes the general form �u(x; y)=0 for
all (x; y)2
. This equation is defined for all smooth functions u that satisfy a prescribed
boundary condition, typically of the form �u+�

@u

@n
= on the boundary bnd(
). Here, �; �,

and  are constants.
The Laplace equation is a special case of the Poisson equation, which has the general form

¡�u=f , where f is a function that is independent of u and depends only on the spatial
variables (x; y). In this equation, we seek a solution u that satisfies the prescribed boundary
conditions.

Moving on, we explore the steady state of a heat equation, which has the form u_
t=k�u+f . Here, ut represents the partial derivative of u with respect to time, k is a constant
representing thermal diffusivity,�u is the Laplacian of u, and f represents an external source
of heat.

Finally, we consider the wave equation or damped wave equation, given by
utt +2�ut =c2�u+ f . In this equation, utt represents the second partial derivative of u
with respect to time, � is a non-negative constant known as the damping factor, c rep-
resents the wave speed, �u is the Laplacian of u, and f represents an external forcing term.

Throughout this chapter, we aim to study the properties of these equations, investigate
their solutions, and understand their physical interpretations in the context of 2D domains.

5.1 Overview of the eigenfunction expansion method

The eigenfunction expansion method for problems defined on bounded domains in the plane
R2 is an extension of the approach used for 1D problems on bounded domains in R. To
demonstrate this method, let's consider the heat problem:(

ut=k�u+h on
; t > 0

�u+ �
@u

@n
=0 on bnd(
); t > 0

;
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where 
 is a bounded domain in R2 with a piecewise smooth boundary bnd(
), and h is
a heat source term on 
. Here, @

@n
represents the directional derivative along the outward

normal vector n on the boundary of 
. To solve this problem, we first form the associated
eigenvalue problem: (

��=¡�� on


��+ �
@�

@n
=0 onbnd(
)

: (5.1)

In this problem, � is referred to as the eigenvalue, and � represents the corresponding
eigenfunction. The following theorem describes the properties of the eigenvalue problem:

Theorem 5.1. The eigenvalue problem possesses the following properties:

a) all eigenvalues are real, and they increases positively unbounded.

b) Eigenfunctions associated with different eigenvalues are orthogonal in the following
sense:

h�n;m; �n0;m0i :=
ZZ




�n;m�n0;m0 dS=0;

if (n;m)=/ (n0;m0), where dS is the differential area in 
.

c) The set of eigenfunctions f�n;mg is an orthogonal basis for smooth functions defined
in 
. In other words, a continuously differentiable function f defined on 
 can be
represented as:

f =
X
n;m

hf ; �n;mi
k�n;mk2

�n;m:

Problem 5.1. Prove that if �=/ 0 in the eigenvalue problem (5.1), the eigenvalues are greater than or
equal to �

�
. If �=0, then all eigenvalues are strictly positive.

Problem 5.2. Let �n;m and �n0;m0 be eigenfunctions associated with �n;m=/ �n0;m0. Show the following
orthogonality property

h�n;m; �n0;m0i :=
ZZ



�n;m�n0;m0 dS=0:
Hint:To prove, write down (

��n;m=¡�n;m�n;m
��n0;m0=¡�n0;m0 �n0;m0

:

Multiply the first equation and integrate over 
:ZZ



��n;m�n0;m0dS=¡�n;m
ZZ



�n;m�n0;m0dS

Show that � is symmetric over functions satisfying the given boundary condition, i.e.,ZZ



��n;m�n0;m0dS=
ZZ



��n0;m0 �n;m dS:

Since the set of eigenfunctions f�n;mg forms a basis for continuously differentiable func-
tions on 
, we can express the desired solution to the given heat problem as the series:

u=
X
n;m

Un;m(t) �n;m; (5.2)
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where Un;m(t) are undetermined coefficient functions that need to be determined to ensure
that the series is a valid solution to the given problem. Substituting this series into the heat
equation yields: X

n;m

Un;m
0 (t) �n;m(x; y)=

X
n;m

kUn;m(t)� [�n;m(x; y)] +h

Using the equality �[�n;m] =¡�n;m�n;m, we arrive at the following equation:X
n;m

[Un;m
0 (t)+ k�n;mUn;m(t)] �n;m(x; y)=h:

To proceed and determine Un;m, we express the source term h in terms of the eigenfunction
basis f�n;mg as well:

h=
X
n;m

Hn;m(t) �n;m;

where the coefficients Hn;m(t) are determined by the inner production as:

Hn;m=
hh; �n;mi
k�n;mk2

:

Substituting this into the series equation leads to the following ordinary differential equation
for Un;m(t):

Un;m
0 + k�n;mUn;m=Hn;m(t):

The solution to this equation determines Un;m(t) and consequently, the solution u(x; y; t)
in the series form (5.2). It is important to note that this method provides us with a series
solution to the problem, and in most cases, this will be an infinite series similar to the 1D
problems studied in the previous chapter.

In particular, if the heat equation is homogeneous (h is identically zero), the coefficient
functions Un;m will be exponential functions:

Un;m(t)=Cn;m e
¡k�n;mt;

which leads to the general series solution for the homogeneous heat equation:

u=
X
n;m

Cn;m e
¡k�n;mt�n;m(p);

where p 2 
, and Cn;m are constants that can be determined through the initial condition
u(p; 0)=f . The series solution must converge to the given initial condition as t! 0, which
results in:

f =
X
n;m

Cn;m�n;m(p):

Then, the constants Cn;m for the homogeneous equation (h=0) can be determined as:

Cn;m=
hf ; �n;mi
k�n;mk2

:
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The outlined method for solving the heat equation can be extended to homogeneous or
non-homogeneous general second-order partial differential equations. Consider the following
equation: (

a(t)utt+ b(t) ut= k�u+h on


�u+ �
@u

@n
=0 on bnd(
)

:

This equation is general enough to encompass heat, wave, damped wave, and Poisson equa-
tions. To find the solution, we represent the desired solution u as a series in terms of the
eigenfunctions f�n;mg:

u=
X
n;m

Un;m(t) �n;m;

where Un;m(t) are to be determined to satisfy the given partial differential equation. By
substituting the series into the equation, we obtain:X

n;m

[a(t)Un;m
00 (t)+ b(t)Un;m

0 (t)+�n;mUn;m(t)]�n;m=h:

Expanding the source term h in terms of the basis f�n;mg, we arrive at the following equation
for Un;m:

a(t)Un;m
00 (t)+ b(t)Un;m

0 (t)+�n;mUn;m(t)=Hn;m(t);

where Hn;m(t) represents the coefficients of the expansion of h in terms of f�n;mg:

h=
X
n;m

Hn;m(t) �n;m:

Solving this resulting second-order ordinary differential equation provides the general series
solution for the given partial differential equation.

5.2 Rectangular domains and Cartesian coordinate

5.2.1 Eigenfunctions of � in rectangles
We will now apply the outlined method to solve the eigenvalue problem in the Cartesian
coordinate system (x; y), where 
 is a rectangular domain defined as 
: (x₀; x₁)�(y₀; y₁).
The eigenvalue problem can be stated as follows:(

��(x; y)=¡��(x; y) on


��+ �
@�

@n
=0 on bnd(
)

:

The rectangular geometry of the domain allows us to use the method of separation of vari-
ables. We assume that the eigenfunction �(x; y) can be expressed as the product of two
separate functions, X(x) and Y (y), i.e., �(x; y)=X(x)Y (y). Substituting this into the
eigenvalue problem, we obtain the following equation:

X 00

X
+
Y 00

Y
=¡�:
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It is evident that this equation holds only if X 00(x)

X(x)
and Y 00(y)

Y (y)
are constants. Let us denote

X 00(x)

X(x)
=¡� and Y 00(y)

Y (y)
= ¡�. We proceed to determine the associated boundary conditions

for the functions X(x) and Y (y).
The general boundary condition��+� @�

@n
=0, where n is the unit normal vector on the

boundary of 
, leads to the following boundary conditions for X(x):�
�1X(x0)¡ �1X 0(x0)=0
�2X(x1)+ �2X 0(x1)=0

:

Similarly, for Y (y), the boundary conditions are given by:�
�3Y (y0)¡ �3Y 0(y0)= 0
�4Y (y1)+ �4Y 0(y1)=0

:

In these equations, the values of � and � depend on the specific problem and the boundary
conditions imposed on 
. Note that we also made use of the following relations:

@X
@n

������
x=x0

=¡X 0(x0);
@X
@n

��������
x=x1

=X 0(x1);

and similar ones for Y . The figure below depicts these relations:
y



@Y

@n
=¡Y 0

x

@Y

@n
=Y 0

@X

@n
=X 0@X

@n
=¡X 0

By applying the separation of variables technique, we can split the original eigenvalue
problem for the Laplacian operator � into two separate eigenvalue problems: For the X(x)
function: 8<: X 00=¡�X

�1X(x0)¡ �1X
0(x0)=0

�2X(x1)+ �2X
0(x1)= 0

;

and for the Y (y) function:

8<: Y 00=¡�Y
�3Y (y0)¡ �3Y 0(y0)= 0
�4Y (y1)+ �4Y 0(y1)=0

:

Consequently, the original eigenvalue � can be determined by the relation �=�+�, which
arises from the separation of variables approach.
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Example 5.1. Below are the eigenfunctions and eigenvalues of the Laplace operator � for
some well-known boundary conditions on the domain 
: (0; a)� (0; b):

a) Dirichlet boundary condition:

�(0; y)= �(a; y)= �(x; 0)= �(x; b)= 0

Eigenfunctions:

�n;m(x; y)= sin
�
n�
a
x
�
sin
�
m�
b
y
�
:

Eigenvalues:

�n;m=
n2

a2
�2+

m2

b2
�2

for n=1; 2; ���, m=1; 2; ���.
b) Neumann boundary condition:

�x(0; y)= �x(a; y)= �y(x; 0)= �y(x; b)=0:

Eigenfunctions:

�n;m(x; y)= cos
�
n�
a
x
�
cos
�
m�
b
y
�
:

Eigenvalues:

�n;m=
n2

a2
�2+

m2

b2
�2;

for n=0; 1; 2; ���, m=0; 1; 2; ���.
c) Dirichlet in x-direction, and Neumann in y-direction

�(0; y)= �(a; y)= �y(x; 0)= �y(x; b)=0:

Eigenfunctions:

�n;m(x; y)= sin
�
n�
a
x
�
cos
�
m�
b
y
�
:

Eigenvalues:

�n;m=
n2

a2
�2+

m2

b2
�2;

for n=1; 2; ���, m=0; 1; 2; ���.
d) Neumann in x-direction and Dirichlet in x-direction:

�x(0; y)= �x(a; y)= �(x; 0)= �(x; b)= 0:

Eigenfunctions:

�n;m(x; y)= cos
�
n�
a
x
�
sin
�
m�
b
y
�
:

Eigenvalues:

�n;m=
n2

a2
�2+

m2

b2
�2;

for n=0; 1; 2; ���, m=1; 2; ���.
e) Mixed in x and y-directions

�(0; y)= �x(a; y)= �(x; 0)= �y(x; b)= 0:

Eigenfunctions:

�n;m(x; y)= sin
�
(2n¡ 1)�

2a
x

�
sin
�
(2m¡ 1)�

2b
y

�
:
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Eigenvalues:

�n;m=
(2n¡ 1)2

4a2
�2+

(2m¡ 1)2
4b2

�2;

for n=1; 2; ���, m=1; 2; ���.
f) Mixed in x and y-directions:

�x(0; y)= �(a; y)= �y(x; 0)= �(x; b)= 0:

Eigenfunctions:

�n;m(x; y)= cos
�
(2n¡ 1)�

2a
x

�
cos
�
(2m¡ 1)�

2b
y

�
:

Eigenvalues:

�n;m=
(2n¡ 1)2

4a2
�2+

(2m¡ 1)2
4b2

�2;

for n=1; 2; ���, m=1; 2; ���.

Example 5.2. Consider a smooth function f(x; y) defined on (0; 1)� (0; 1). Let's fix y for
the function f(x; y) and consider f as a pure function of x. We can express this function
using the basis fsin(n�x)g for n=1; 2; ��� as:

f(x; y)=
X
n=1

1

Fn(y) sin(n�x);

where Fn(y) is given by:

Fn(y)=2

Z
0

1

f(x; y) sin(n�x) dx:

Each function Fn(y) can be represented in the basis fsin(m�y)g for m=1; 2; ��� as:

Fn(y)=
X
m=1

1

cn;m sin(m�y);

where cn;m is:

cn;m=2

Z
0

1

Fn(y) sin(m�y) dy:

Substituting the series for Fn(y) into the series for f(x; y), we obtain:

f(x; y)=
X
n=1

1 X
m=1

1

cn;m sin(m�y) sin(n�x):

It is important to note that the set fsin(n�x) sin(m�y)g for n=1;2; ��� and m=1;2; ��� forms
an orthogonal basis for functions defined on the rectangle 
=(0; 1)� (0; 1). Additionally,
the functions in this set satisfy the homogeneous Dirichlet boundary condition on bnd(
).

As a numerical example, let's consider f(x; y)=xy defined on the rectangle (0; 1)� (0;
1). The series representation of the function in the basis fsin(n�x) sin(m�y)g is:

xy=
X
n;m=1

1
4(¡1)n+m
nm�2

sin(m�y) sin(n�x):

To observe the convergence of the double series to f(x; y) for (x; y) in the open rectangle,
let's consider the point x= 1

2
; y=

1

2
. The figure below depicts the convergence of the series

in terms of the number of iterations:
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As we observe, the double series converges to the true value very slowly. The reason for
this becomes apparent. If we represent the function as a single series:

xy=
X
n=1

1 ¡2(¡1)n
n�

y sin(n�x);

then the convergence at y= 1

2
requires fewer summations. The single series converges with

an error of less than 0.0033 after 50 summations. Achieving the same accuracy for each
function F_n(y)=¡2(¡1)n

n�
y requires a similar number of iterations. Consequently, the double

summation needs a significantly larger number of iterations to provide the same level of
convergence accuracy.

Exercise 5.1. Let 
 be the square (¡�; �) �
¡
¡�

2
;
�

2

�
in the xy-plane. Find the eigenvalues and

eigenfunctions of the eigenvalue problem ��=¡�� subject to the following eigenvalue problem:8>>>>>>>><>>>>>>>>:
�(¡�; y)= �(�; y)
�x(¡�; y)= �x(�; y)
�
¡
x;¡�

2

�
= �
¡
x;

�

2

�
�y
¡
x;¡�

2

�
= �y

¡
x;

�

2

� :
Use these eigenfunctions to represent the function f(x; y)= y sin(2x) defined on 
. What is the geometry
of the domain with the given boundary conditions of the eigenfunctions �n;m?

Exercise 5.2. Let 
 be the unit square (¡1; 1)� (0; 1).
a) Find the eigenfunctions and eigenvalues of the eigenvalue problem �� = ¡�� on 
 with the

following boundary conditions 8<: u(¡1; y)=u(1; y)
ux(¡1; y)=ux(1; y)
u(x; 0)=u(x; 1)= 0

:

b) Show that these eigenfunctions are orthogonal with respect to the weight function � = 1. Use
these eigenfunctions to approximate the function f(x; y) = x sin(�y). How many terms do you
need to use to obtain an approximation with accuracy of 10¡3?

Exercise 5.3. Let 
 be the square (0; �) � (0; �). Find the eigenfunctions and eigenvalues of the
eigenvalue problem ��=¡�� satisfying the following boundary conditions�

u(0; y)=0; u(1; y)+ux(1; y)= 0
u(x; 0)=uy(x; 1)=0

:
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Here you may need to find the roots of the trigonometric function sin(z) + z cos(z). Use an online
application to determine a few roots of the function.

5.2.2 Heat, wave and Poisson equations on rectangles
In this section, we will utilize the eigenfunction expansion method to express the solution
of heat, wave, and Poisson equations as series expansions using the eigenfunctions of the
operator �, subject to specific boundary conditions on rectangular domains. To illustrate
this method, we will solve several examples and provide detailed explanations.

Poisson's equation
The solution to Poisson's equation ¡�u= f defined on the rectangle (x0; x1)� (y1; y2) in the
xy-plane can be expressed as a series in terms of the eigenfunction basis f�n;m(x; y)g as:

u(x; y)=
X
n;m

Un;m�n;m(x; y);

where Un;m are undetermined constants. Substituting this series into the Poisson equation
yields: X

n;m

�n;mUn;m�n;m(x; y)= f(x; y);

and then Un;m can be determined using the inner product as:

Un;m=
hf ; �n;mi

�n;m k�n;mk2
;

provided that �n;m=/ 0.

Example 5.3. As a numerical example, let 
 = (0; �) � (0; �), and consider the Poisson
equation: �

¡�u= f on

u=0 on bnd(
)

;

where f(x; y)=y sin(x). The eigenfunctions of � on 
 subject to the homogeneous Dirichlet
boundary condition are given by:

�n;m(x; y)2fsin(nx) sin(my)g:

Since hf ; �n;mi=0 for n=/ 1, we can seek a solution in the single series form:

u(x; y)=
X
m=1

1

Um sin(my) sin(x):

Substituting this series into the Poisson equation yields:X
m=1

1

�1;mUm sin(my)= y;

which determines Um as: Um =
2(¡1)m

�1;mm
. Therefore, the series solution to the equation is

obtained as:

u(x; y)= sin(x)
X
m=1

1 ¡2(¡1)m
m(1+m2)

sin(my):
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Exercise 5.4. The solution obtained above is a series solution to the given Poisson problem. In some
cases, it is possible to derive a closed-form solution. For the given problem, consider the solution as
u(x; y)=Y (y) sin(x). Substitute this into the equation and show that Y (y) must be equal to:

Y (y)= y¡ sinh(y)
sinh(1)

The series representation of Y (y) in terms of the functions fsin(m�y)g is as the derived in the solution
of the example. The figure below depicts the function Y (y) and its series truncated up to three terms:

0 /2
0

0.2

0.4

0.6

0.8

1

1.2

The surface solution is illustrated below:

Remark 5.1. Consider the Poisson equation�
¡�u= �i;j on

u=0 on bnd(
)

;

where �i;j is the (i; j)th eigenfunction of � on 
. This equation can be interpreted in the
system interpretation as shown in the following block-diagram:

�i;j u=
1

�i;j
�i;jPoisson system

¡�¡1
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Since �i;j is the eigenfunction of � with the given boundary condition, the response of
the system to this input is equal to u= 1

�i;j
�i;j. Since the set f�n;mg is a basis for functions

define don 
, we can use the superposition principle to determine the solution to the equation

¡�u= f :=
X
n;m

Fn;m�n;m:

The above equation is equivalent to the following system

u=
P

i;j

Fi;j

�i;j
�i;jf =

P
i;j
Fi;j�i;j Poisson system

¡�¡1

Exercise 5.5. Let 
 be the square (0; �) � (0; �). Solve the Poisson equation ¡�u = y sin
¡ x
2

�
on 


where u satisfies the following boundary conditions�
u(0; y)=ux(�; y)= 0
u(x; 0)=uy(x; �)=0

:

Exercise 5.6. Let 
 be the square (¡1; 1)� (¡1; 1). Solve the Poisson equation ¡�u=(1+x)sin(�y)
on 
 where u satisfies the following boundary conditions8<: u(0; y)=u(1; y)

ux(0; y)=ux(1; y)
u(x; 0)=u(x; 1)=0

:

Exercise 5.7. Let 
 be the unit square (0;1)� (0;1), and consider the Poisson equation ¡�u= f where
u satisfies the following boundary conditions�

ux(0; y)=ux(1; y)= 0
uy(x; 0)=uy(x; 1)=0

a) Find the solution to the problem if f = y cos(�x).

b) Show that there is not a solution to the problem if f = y sin(�x). Explain the reason for the non-
existence of the solution.

Heat problems on rectangles
Let's solve the following heat problem on 
: (0; 1)� (0; 1)8<: ut=�u+h on


u=0 onbnd(
)
u(x; y; 0)= 0

:

Since the set �n;m 2 fsin(n�x) sin(m�y)g forms a basis for the functions defined on 
, we
express the solution u(x; y; t) as

u=
X
n;m=1

1

Un;m(t)�n;m;

for undetermined coefficients Un;m(t). This series is a valid solution if it satisfies the equation:X
n;m=1

1

Un;m
0 (t) �n;m(x; y)=

X
n;m=1

1

¡�n;mUn;m(t) �n;m(x; y)+h(x; y; t);

5.2 Rectangular domains and Cartesian coordinate 11



where �n;m=(n2+m2)�2. Moving the second summation to the left side, we can write

X
n;m=1

1

[Un;m
0 (t)+�n;mUn;m(t)] �n;m(x; y)=h(x; y; t):

To proceed, we use the representation of h as a series in terms of eigenfunctions f�n;mg as:

h(x; y; t)=
X
n;m=1

1

Hn;m(t) �n;m(x; y);

where Hn;m(t) are determined by the inner product

Hn;m(t)= 4

Z
0

1Z
0

1

h(x; y; t) �n;m(x; y) dxdy:

For instance, let h= �1;1(x; y). In this case, we have:

Hn;m(t)=

�
1 (n;m)= (1; 1)
0 (n;m)=/ (1; 1)

:

According to the given initial condition, we can write the initial value problems for Un;m as:(
Un;m
0 (t)+�n;mUn;m(t)= 0

Un;m(0)=0
; (n;m)=/ (1; 1);

and (
Un;m
0 (t)+�n;mUn;m(t)= 1

Un;m(0)=0
; (n;m)= (1; 1):

Solving the above system yields: Un;m(t)=0 for (n;m)=/ (1; 1) and

U1;1(t)=
1
2�2

(1¡ e¡2�2t):

Finally, we arrive at:

u(x; y; t)=
1
2�2

(1¡ e¡2�2t) sin(�x) sin(�y):

System interpretation

Consider the equation 8>><>>:
ut= k�u+Hi;j(t) �i;j(x; y) on

u=0 on bnd(
)
u(x; y; 0)=0

;

where �i;j(x; y) is an eigenfunction of � with the given boundary condition. From a system
perspective, the heat system is triggered by the source terms Hi;j(t) �i;j(x; y). This can be
depicted in the following diagram:
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(@t¡ k�)¡1
u=Ui;j(t) �i;jHi;j(t)�i;j Heat system

In this diagram, the function Ui;j(t) is the solution to the ordinary differential equation

Ui;j
0 + k�i;jUj=Hi;j:

In the above example, the heat system is triggered by the source �1;1(x; y), resulting in the
response:

u1;1=
1¡ e¡�1;1t

�1;1
�1;1(x; y):

Now, if the heat system is triggered by the source term

h=
X
i;j

Hi;j(t) �i;j(x; y);

then by the superposition principle, the response can be written as the summation depicted
in the following diagram:

u=
P

i;j
Ui;j(t) �i;j

P
i;j
Hi;j(t)�i;j Heat system

(@t¡ k�)¡1

A heat system can be triggered by the initial condition itself. Consider the following
problem on 
= (0; 1)� (0; 1):8>><>>:

ut=�u on

u=0 onbnd(
)
u(x; y; 0)= �i;j

; (5.3)

where �ij= sin(i�x) sin(j�x). It can be shown that the response of the heat system to this
initial condition is given by:

uij= e¡�ijt�ij(x; y):

Now, let's consider a slightly different problem:8>><>>:
ut=�u+ �(t) �ij on

u=0 on bnd(
)
u(x; y; 0)= 0

;

where the initial condition appears as an external source multiplied by the Dirac delta
function �(t). In this case, we seek the solution in the form:

uij=U(t) �ij(x; y):

Substituting this into the equation yields:

U 0+�ijU = �(t):
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This ordinary differential equation can be solved using the Laplace transform method,
resulting in: U(t)= e¡�ijtu(t), where u(t) is the Heaviside function defined as:

u(t)=

�
1 t> 0
0 t< 0

:

Thus, the solution uij(x; y; t) for t>0 is the same as the solution to the problem (5.3), namely
e¡�ijt�ij(x; y).

Exercise 5.8. What is the difference between the solution to the problem8>><>>:
ut=�u+ �ij on

u=0 on bnd(
)
u(x; y; 0)= 0

;

and the solution to the following one8>><>>:
ut=�u+u(t)�ij on

u=0 on bnd(
)
u(x; y; 0)= 0

;

where u(t) is the Heaviside function.

Geometrical interpretation

From a geometric perspective, we can rephrase the argument in the above remark as follows:
each eigenfunction �i;j defines a direction in an infinite-dimensional vector space. Along
each direction (eigenfunction), the heat partial differential equation reduces to an ordinary
differential equation, as depicted in the following diagram:

Ui;j
0 + k�i;jUi;j=Hi;j

�1;2

�i;j

�1;1

Exercise 5.9. Write down the series solution of the following heat problem defined on 
: (0; �)� (0; �)8>>>>>><>>>>>>:
ut=�u
u(0; y; t)=u(�; y; t)= 0
u(x; 0; t)=uy(x; �; t)= 0
u(x; y; 0)=x sin

¡ y
2

� :

Exercise 5.10. Write down the series solution of the following heat problem defined on 
:(0; �)� (0; �)8>>>>>><>>>>>>:
ut=�u+ e¡t

ux(0; y; t)=ux(�; y; t)= 0
uy(x; 0; t)=uy(x; �; t)= 0
u(x; y; 0)=0

:
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Exercise 5.11. Consider the heat problem8<: ut=�u+ sin(�x) sin(�y)
u(0; y; t)=u(1; y; t)= 0
u(x; 0; t)=u(x; 1; t)= 0

:

a) The source terms is independent of time t. For this, we can consider the solution as

u(x; y; t)=V (x; y)+w(x; y; t):

Substituting u into the equation leads to a Poisson equation for V .

b) The equation for a w will be a homogeneous equation with the general solution

w(x; y; t)=
X
n;m

Cn;m e
¡�n;mt�n;m(x; y);

where �n;m= sin(n�x) sin(m�y). Find the solution of the problem if u(x; y; 0)=0. This solution
is the same the solution we obtained by employing the eigenfunction expansion method.

Exercise 5.12. Consider the heat problem8>>>>>><>>>>>>:
ut=�u¡ y sin(x)
u(0; y; t)=u(�; y; t)=0
u(x; 0; t)=u(x; �; t)= 0
u(x; y; 0)= 0

:

a) The source terms is independent of time t. For this, we can consider the solution as

u(x; y; t)=V (x; y)+w(x; y; t):

Substituting u into the equation leads to a Poisson equation for V . Find a closed form solution
for V (x; y).

b) The equation for a w will be a homogeneous equation. Choose a single series for w based on the
form of the source term. Use the initial condition for u and obtain the valued series solution of
the problem.

Wave problem

Let's solve the following wave equation defined on the unit square 
=(0; 1)� (0; 1):8>>>>>><>>>>>>:
utt= c2�u+h on

u=0 on bnd(
)
u(x; y; 0)=0
ut(x; y; 0)= 0

:

Representing the desired solution u in terms of the eigenfunctions f�n;mg, we reach the
following equation: X

n;m=1

1

[Un;m
00 (t)+ c2�n;mUn;m] �n;m(x; y)=h(x; y; t):

Using the representation of h as a series in terms of �n;m as

h=
X
n;m=1

1

Hn;m(t) �n;m(x; y);
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we arrive at the following equation for the coefficients Un;m:

Un;m
00 + c2�n;mUn;m=Hn;m(t):

For example, let h= sin(i�x) sin(j�y). Since Hij(t) = 1, and Hn;m(t) = 0 for (n;m) =/ (i; j),
we obtain the following system for Un;m:(

Uij
00+�ijc2Uij=1

Uij(0)=Uij
0 (0)= 0

;

(
Un;m
00 +�n;mc2Un;m=0

Un;m(0)=Un;m
0 (0)=0

; (n;m)=/ (i; j):

The solution to the second system is Un;m(t)= 0, and for the first one is

Uij(t)=
1

�ijc2
�
1¡ cos

¡
�ij

p
ct
��
;

Therefore, the solution to the given wave problem is:

uij(x; y; t)=
1

�ijc2
�
1¡ cos

¡
�ij

p
ct
��
�ij(x; y):

Remark 5.2. The logic behind the solution of the above example is clear. From a system
perspective, the response of the wave system (@tt ¡ c2�)¡1 to the input Hi;j(t) �i;j(x; y)
is given by Ui;j(t) �i;j(x; y), where Ui;j(t) satisfies the second-order ordinary differential
equation:

Ui;j
00 + c2�

i;j
Ui;j=Hi;j(t):

Thus, we can represent the solution as shown in the block-diagram below:

u=Ui;j(t) �i;jHi;j(t)�i;j Wave system

(@tt¡ c2�)¡1

For general source terms h=
P

i;j
Hi;j�i;j, the response of the system will be smmation

as depicted in the diagram below:

u=
P

i;j
Ui;j(t) �i;j

P
i;j
Hi;j(t)�i;j Wave system

(@tt¡ c2�)¡1

An equivalent interpretation, which is geometric, is that the wave partial differential
equation reduces to a second-order ordinary differential equation along each direction defined
by � ij in an infinite-dimensional vector space spanned by the set f�n;m(x; y)g for n=1;2; ���,
m=1; 2; ���.

Exercise 5.13. Solve the following problem8>>>>>><>>>>>>:
utt= c2�u+ sin(t) sin(�x) sin(�y) on

u=0 on bnd(
)
u(x; y; 0)=0
ut(x; y; 0)= 0

;
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where 
 is the unit square 
=(0; 1)� (0; 1).

Exercise 5.14. Solve the following wave problem defined on 
=(0; 1)� (0; 1)8>>>>>>>>>><>>>>>>>>>>:

utt=�u¡ sin(t)y sin
¡ �
2
x
�

u(0; y)=ux(1; y)= 0
u(x; 0)=uy(x; 1)= 0
u(x; y; 0)=0
ut(x; y; 0)= 0

Exercise 5.15. Consider the following wave equation8>>>>>>>>>><>>>>>>>>>>:

utt=�u¡ y sin
¡ �
2
x
�

u(0; y)=ux(1; y)= 0
u(x; 0)=uy(x; 1)= 0
u(x; y; 0)=0
ut(x; y; 0)= 0

:

a) Since the source term is independent of time, we can consider the solution u as follows

u(x; y; t)=V (x; y)+w(x; y; t):

Substituting u into the equation results to a Poisson equation for V . Find the closed form solution
for this equation.

b) Write a single summation series solution for w based on the form of the source term. Use the
initial condition and determine the solution u.

Exercise 5.16. Consider the following wave equation 
=(0; 1)� (0; 1)8>>>>>>>>>><>>>>>>>>>>:
utt=�u¡ sin(�x) sin(�y)
u(0; y)=u(1; y)= 0
u(x; 0)=u(x; 1)=0
u(x; y; 0)= sin(�x) sin(�y)
ut(x; y; 0)= 0

:

Exercise 5.17. Solve the following damped wave equation8>>>>>>>>>><>>>>>>>>>>:
utt+ 0.2ut=�u
u(0; y)=u(1; y)= 0
u(x; 0)=u(x; 1)=0
u(x; y; 0)= sin(�x) sin(�y)
ut(x; y; 0)= 0

:

5.2.3 Laplace equation
So far, we have solved partial differential equations with homogeneous boundary conditions.
To illustrate the solution to problems with non-homogeneous boundary conditions, let's
consider the following heat problem:8<: ut=�u on


u= f onbnd(
)
u(x; y; 0)= 0

:
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Since the source term in the heat equation is the time-independent boundary condition f ,
we can express the solution u as:

u(x; y; t)=V (x; y)+w(x; y; t):

By substituting u into the equation, we obtain the Laplace equation:�
�V =0 on

V = f on bnd(
)

:

In this section, our focus is on solving Laplace's equation.
Let 
 be the rectangle (0; a)� (0; b). Consider the Laplace equation �u= 0 subject to

the boundary condition shown below
y




a

x

�4u+ �4uy= g(x)

b

�3u+ �3uy= f(x)

�2u+ �2ux=0�1u+ �1ux=0

Using the separation u(x; y)=X(x)Y (y), we arrive at the equation:

X 00

X
+
Y 00

Y
=0:

Since u satisfies the homogeneous boundary condition in the x-direction as:�
�1u+ �1ux=0
�2u+ �2ux=0

;

we arrive at the following eigenvalue problem for X(x):8<: X 00=¡�X
�1X(0)+ �1X

0(0)= 0
�2X(a)+ �2X

0(a)=0
:

Problem 5.3. Prove that eigenvalue � of the problem are non-negative.

Let this eigenvalue problem to be solved for eigenfunctions �n(x) and eigenvalues �n for
n=1; 2; ���. The equation for Y satisfies the second-order ODE:

Y 00¡�nY =0:

If �0=0 is an eigenvalue, the is solved for Y0(y)=A0+B0 y. For n�1, the equation is solved
for the following functions:

Yn(y)=An cosh( �n
p

y)+Bn sinh( �n
p

y):
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The general solution of the Laplace equation is then obtained as:

u(x; y)= (A0+B0y) �1(x)+
X
n=1

1

[An cosh( �n
p

y)+Bn sinh( �n
p

y)] �n(x):

The parameters An; Bn are determined by applying the boundary conditions at y = 0 and
y= b.

Example 5.4. Let's solve the following Laplace's equation on the rectangular domain 
:(0;
1)� (0; 1): 8<: �u=0

u(0; y)= u(1; y)=0
u(x; 0)= sin(2�x); u(x; 1)=¡sin(2�x)

:

Since the boundary condition is Dirichlet homogeneous in the x-direction, the eigenfunctions
corresponding to this condition are given by �n(x)= sin(n�x), with associated eigenvalues
�n=n2�2. We can express the general series solution as:

u(x; y)=
X
n=1

1

[An cosh(n�y)+Bn sinh(n�y)] sin(n�x):

To determine the coefficients An and Bn, we apply the boundary conditions at y=0 and y=1.
From u(x;0)= sin(�x), we find that A2=1, and An=0 for all n=/ 2. From u(x;1)=¡sin(2�x),
we obtain: B2=¡1+ cosh(2�)

sinh(2�) , and Bn=0 for n=/ 1. Thus, we obtain

u(x; y)=
sinh(2�(1¡ y))¡ sinh(2�y)

sinh(2�)
sin(2�x):

The figure below illustrate the surface of u(x; y):

Example 5.5. Let's solve the Laplace equation �u=0 on the unit square (0;1)� (0;1) with
the following boundary conditions:�

u(0; y)=¡1; u(1; y)= 1
u(x; 0)+uy(x; 0)= 0; uy(x; 1)=0

:
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Since the problem is homogeneous in the y-direction, we first solve the following eigenvalue
problem for �(y): 8<: �00=¡��

�(0)+ �0(0)=0
�0(1)= 0

:

It can be shown that the eigenvalues of the problem are strictly positive and satisfy the
equation:

�
p

sin( �
p

)+ cos( �
p

)=0:

Accordingly, the eigenfunctions are obtained as:

�n(y)= sin( �n
p

y)¡ �n
p

cos( �n
p

y)

The general series solution to the problem is:

u(x; y)=
X
n=1

1

[An cosh( �n
p

x)+Bn sinh( �n
p

x)] �n(y):

To determine the coefficients An and Bn, we apply the boundary conditions. At x=0, we
obtain:

¡1=
X
n=1

1

An �n(y);

which gives

An=
¡1
k�nk2

Z
0

1

�n(y) dy=
¡1

�n
p

k�nk2

At x=1, we reach the equation

1=
X
n=1

1
"

¡1
�n

p
k�nk2

cosh( �n
p

)+Bn sinh( �n
p

)

#
�n(y);

and thus:

Bn=
1+ cosh( �n

p
)

�n
p

k�nk2 sinh( �n
p

)

The final series solution is obtained as:

u(x; y)=
X
n=1

1
"

¡1
�n

p
k�nk2

cosh( �n
p

x)+
1+ cosh( �n

p
)

�n
p

k�nk2
sinh( �n

p
x)

sinh( �n
p

)

#
�n(y):

Example 5.6. Consider the following Laplace equation on 
=(0; 1)� (0; 1)8<: �u=0
u(0; y)=0; u(1; y)= y
u(x; 0)=0; u(x; 1)=x

:
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Since the boundary conditions are non-homogeneous in both directions, we can split the
problem into two sub-problems, each homogeneous in one direction:

(1)

8<: �u=0
u(0; y)=u(1; y)= 0
u(x; 0)= 0; u(x; 1)= x

; (2)

8<: �u=0
u(0; y)= 0; u(1; y)= y
u(x; 0)= u(x; 1)=0

:

The solution to the first problem is given by:

u1(x; y)=
X
n=1

1 ¡2(¡1)n
n� sinh(n�)

sinh(n�y) sin(n�x):

And the solution to the second sub-problem is:

u2(x; y)=
X
n=1

1 ¡2(¡1)n
n� sinh(n�)

sinh(n�x) sin(n�y):

The superposition solution to the original equation is

u(x; y)=
X
n=1

1 ¡2(¡1)n
n� sinh(n�)

[sinh(n�y) sin(n�x)+ sinh(n�x) sin(n�y)]:

On the other hand, it can be verified that the function u=xy satisfies the given Laplace
equation. According to the uniqueness theorem, this closed-form solution and the series
solution must be equal, resulting in the equation:

xy=
X
n=1

1 ¡2(¡1)n
n� sinh(n�)

[sinh(n�y) sin(n�x)+ sinh(n�x) sin(n�y)]:

Exercise 5.18. Solve the Laplace equation �u=0 satisfying boundary conditions given below

a)

u(x; 0)=¡1; u(�; y)= 0; u(x; �)= 1; u(0; y)=0

b)

u(x; 0)= 1; u(1; y)= 1; u(x; �)= 0; u(0; y)=0

c)

u(x; 0)=¡1; u(2�; y)= 1; u(x; �)=¡1; u(�; y)= 1

d)

uy(x; 0)= 0; u(2�; y)= 1; uy(x; �)= 0; u(�; y)= 1

Exercise 5.19. Consider the Laplace equation �u= 0 for function u(x; y) defined on the domain 
:
(0; 1)� (0; 1) with the following boundary conditions

u(0; y)= 0; u(1; y)= sin
�
�y
2

�
; u(x; 0)=0; u(x; 1)= sin

�
�x
2

�
a) Find a series solution to the given equation.
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b) The solution derived in part a) is a series form of the closed form solution u(x; y)=sin
¡ �x
2

�
sin
¡ �y
2

�
.

verify that this function satisfies the Laplace equation and the given boundary conditions.

c) To make sure that these two solutions are the same, choose some arbitrary point or points inside

 and verify that the series and the closed form solution are the same.

Exercise 5.20. In the domain 
=(0; 1)� (0; 1):

a) Solve the Laplace equation 8<: �u=0
u(x; 0)= 0; u(0; y)= 0
ux(1; y)= y; u(x; 1)=x

:

b) Solve the Poisson equation �u= y with the boundary conditions given in part a).

5.2.4 Problems

Problem 5.4. Let 
 be the unit square (0; 1)� (0; 1). Consider the following Poisson equation on 
�
�u=xy on

u=0 on bnd(
)

:

a) Find the double series solution of the problem in terms of the eigenfunctions of � satisfying the
given boundary condition.

b) As we observed above, the convergence of double series is usually slower than single series. Let's
consider the solution to the problem as the following single series

u(x; y)=
X
n=1

1

Un(y) sin(n�x):

Substitute this series into the Poisson equation as obtain an ordinary differential equation of order
2 for Un(y).

c) Repeat the argument for the single series

u=
X
n=1

1

Un(x) sin(n�y):

Problem 5.5. Let 
 be the rectangle (0; 1)� (0; 1). Consider the Poisson equation

�u=x sin(�y)

on 
 where u satisfies the homogeneous Dirichlet boundary condition: u=0 on bnd(
).

a) To solve the equation and determine u=u(x; y), we express the solution u as the series in terms
of the eigenfunctions in the set fsin(n�x) sin(m�y)g. Note that these functions satisfy the given
boundary condition:

u(x; y)=
X
n=1

1 X
m=1

1

Cn;m sin(n�x) sin(m�y):

Substitute the series into the differential equation and determine the coefficients Cn;m. Hint: Note
that the solution could be expressed as

u= sin(�y)
X
n=1

1

Cn sin(n�x);
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according to the source terms of the equation: x sin(�y).

b) Try a closed form solution of the form u(x; y) = U(x) sin(�y). Substitute this into the equation
and show that U(x) is of the form

U(x)= 1
�2

�
sinh(�x)
sinh(�)

¡x
�
:

c) According to the uniqueness theorem of the problem, the series solution derived in part a) must be
equal to the closed form solution derived in part b). Chose an arbitrary point on 
 and compare
two solutions at the chosen point.

Problem 5.6. Consider the following Poisson equation on 
=(0; a)� (0; b)(
�u= f(x; y) on

@u

@n
=0 on bnd(
)

:

Show that the problem is solvable only ifZZ



f(x; y) dxdy=0:

Problem 5.7. Consider the following Poisson equation8>><>>:
�u= y sin

¡ 3
2
x
�

u(0; y)=ux(1; y)= 0
u(x; 0)=u(x; 1)=0

:

Find a series solution to the problem and then find a closed form solution to it.

Problem 5.8. Find a series or closed form solution to the following Poisson equation

�u= sin(x)

on the domain 
: (0; �)� (0; �) satisfying the following boundary conditions

u(0; y)= 0; u(�; y)= 0; uy(x; 0)= 0; uy(x; �)= 0:

Problem 5.9. Let 
 be the rectangle 
: (0; 1)� (0; 1). Solve the following heat equation on 
:8>>>><>>>>:
ut= k�u on

@u

@n
=0 on bnd(
)

u(x; y; 0)= cos(2�x) cos(�y)

:

Problem 5.10. Let 
 be the rectangle (0; �) � (0; �). Consider the following damped wave equation
on 
: 8>><>>:

utt+ 0.2ut= c2�u
ux(0; y; t)=ux(�; y; t)= 0
u(x; 0; t)=u(x; �; t)= 0

:

a) Write down the general series solution of the equation in terms of the appropriate eigenfunctions
of the operator �.

b) Determine the solution of the problem if the initial conditions are given by: u(x; y; 0) = 0, and
ut(x; y; 0)= cos(x) sin(2y).
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Problem 5.11. Let 
 be the rectangle (0; �)� (0; �). Consider the heat equation8>>>>>><>>>>>>:
ut=�u+ sin

¡ x
2

�
sin
¡ y
2

�
u(0; y; t)=ux(�; y; t)= 0
u(x; 0; t)=uy(x; �; t)= 0
u(x; y; 0)= 0

:

The initial condition of the system is zero, and the dynamic is driven by the source term h=sin
¡ x
2

�
sin
¡ y
2

�
.

This source term is independent of time t. To solve the equation and determine the solution u(x;
y; t), we first write u as

u(x; y; t)=V (x; y)+W (x; y; t):

a) Substitute u into equation. This leads to a Poisson equation for V (x; y). Determine V .

b) Write down the general series solution for W (x; y; t).

c) Apply the initial condition for u, and determine the solution to the given problem.

d) An alternative and more straightforward way to solve the given equation is as follows: the source
term is an eigenfunction of the operator � with the given boundary condition. The response of
the heat system to this input is

u(x; y; t)=U(t) sin
�
x

2

�
sin
�
y

2

�
:

Determine U(t) and verify that the result confirms the result of part (c).

Problem 5.12. Now, let us transfer the source term h to the initial condition and consider the following
equation on 
 := (0; �)� (0; �) 8>>>>>><>>>>>>:

ut=�u
u(0; y; t)=ux(�; y; t)=0
u(x; 0; t)=uy(x; �; t)= 0
u(x; y; 0)= sin

¡ x
2

�
sin
¡ y
2

�
a) Determine the solution to the given equation.

b) Show that the solution is equal to the solution to the following system8>>>>>><>>>>>>:
ut=�u+ �(t) sin

¡ x
2

�
sin
¡ y
2

�
u(0; y; t)=ux(�; y; t)=0
u(x; 0; t)=uy(x; �; t)= 0
u(x; y; 0)=0

;

where �(t) is the Dirac delta function.

Problem 5.13. Solve the following wave problem defined on 
=(0; �)� (0; �)8>>>>>><>>>>>>:
ut=�u
ux(0; y; t)=ux(�; y; t)= 0
uy(x; 0; t)=uy(x; �; t)= 0
u(x; y; 0)=3cos(2x)+ y

:

Problem 5.14. Use the superposition principle and solve the following heat problem on 
:=(0; �)� (0;
�) 8>>>>>>>><>>>>>>>>:

ut=�u+ sin
¡ x
2

�
sin
¡ y
2

�
u(0; y; t)=ux(�; y; t)= 0
u(x; 0; t)=uy(x; �; t)= 0

u(x; y; 0)= sin
¡ x
2

�
sin
¡ 3y
2

�
¡ sin

¡ 3x
2

�
sin
¡ y
2

�
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Problem 5.15. Consider the following heat equation on 
 := (0; 1)� (0; 1)8>>>>>><>>>>>>:
ut=�u
u(0; y; t)=u(1; y; t)= 0
u(x; 0; t)=u(x; 1; t)=0
u(x; y; 0)=x+y

:

a) Write the solution of the problem as the series

u(x; y; t)=
X

n;m=1

1

Un;m(t) �n;m(x; y);

where �n;m are the eigenfunctions of � with given boundary conditions. Derive an ordinary
differential equation for undetermined coefficients Un;m(t)

b) Solve the obtained differential equation and write the general series solution of the equation.

c) Apply the given initial condition and derive the particular series solution of the problem.

d) Verify that the solution is equivalent to the superposition of the solution of the following equations

(1)

8>>>>>><>>>>>>:
ut=�u
u(0; y; t)=u(1; y; t)= 0
u(x; 0; t)=u(x; 1; t)= 0
u(x; y; 0)=x

; (2)

8>>>>>><>>>>>>:
ut=�u
u(0; y; t)=u(1; y; t)=0
u(x; 0; t)=u(x; 1; t)= 0
u(x; y; 0)= y

:

Problem 5.16. Let 
 be the rectangle (0; 1)� (0; 1). Consider the following wave equation8>>>>>><>>>>>>:
utt=�u+x sin(�y) on

u=0 on

u(x; y; 0)=0
ut(x; y; 0)= 0

a) Since the external source term is independent of time t, we can express the solution u as

u(x; y; t)=V (x; y)+w(x; y; t);

where V satisfies the Poisson equation�
¡�V =x sin(�y) on

V =0 on bnd(
)

:

Find a closed form solution for V (x; y).

b) The function w satisfies the following equation8>>>>>><>>>>>>:
wtt=�w on

w=0 on bnd(
)
w(x; y; 0)=¡V (x; y)
wt(x; y; 0)= 0

:

Find the series solution for w(x; y; t).

Problem 5.17. Let 
 be the set 
=(0; �)� (0; �).

a) Solve the Poisson equation �
�u=xy on

u=0 on bnd(
)

:
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b) Use the result obtained in the above part and solve the following heat problem8<: ut=�u¡xy on

u=0 on bnd(
)
u(x; y; 0)=x

:

Problem 5.18. Solve the following problem on 
=(0; �)� (0; �)8<: ut=�u+ txy on

u=0 on bnd(
)
u(x; y; 0)=x:

Problem 5.19. Let 
 be the rectangle (0; 1) � (0; 1). Find a series solution for the following wave
equation 8>>>>>><>>>>>>:

utt= c2�u+ e¡tx sin(�y) on

u=0 on

u(x; y; 0)= 0
ut(x; y; 0)=0

Problem 5.20. We aim to solve the following heat problem on 
 := (0; 1)� (0; 1)8>><>>:
ut=L[u]
ujbnd(
)=0
u(x; y; 0)= e¡x sin(�x) sin(�y)

;

where L is the following operator

L[u] =uxx+2ux+uyy:

a) Determine the eigenvalues and eigenfunctions of the operator L satisfying the given boundary
conditions. In what sense are these eigenfunctions orthogonal?

b) Write the series solution of the given problem in terms of this eigenfunctions.

Problem 5.21. We aim to solve the following wave equation on 
=(0; 1)� (0; 1)8<: utt=�u
u(x; 0; t)=u(x; 1; t)=0
ux(0; y; t)=ux(1; y; t)= 0

:

a) Find the eigenvalues and eigenfunctions of the associated eigenvalue problem, that is8<: ��=¡��
�(x; 0)= �(x; 1)= 0
�x(0; y)= �x(1; y)= 0

:

b) Use the eigenfunctions expansion method and write the general series solution of the wave equa-
tion as follows:

u(t; x; y)=
X
n=0

1 X
m=1

1

Unm(t) �nm(x; y):

Find differential equations that Un;m satisfy, and then solve them.
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c) Assume that the initial conditions are given by u(x; y; 0) = 0, ut(x; y; 0)= y cos(�x). Show that
the solution looks like the following one

u(t; x; y)= cos(�x)
X
m=1

1

�m sin( �1m
p

t) sin(m�y);

for some constants �m. Determine these parameters.
If you are interested in making a video to visualize your solution, the following code can helps
%set time of running
T=5;
[x,y,t]=meshgrid(0:0.01:1,0:0.01:1,0:0.05:T);
u=zeros(size(x));
for m=1:10

u=u-2*(-1)^m*cos(pi*x).*sin(sqrt(1+m^2*pi^2)*t).*sin(m*pi*y)/
(m*pi*sqrt(1+m^2*pi^2));

end
% The file filename.avi is saved on your system. You can change the name if

you wish
obj=VideoWriter('filename.avi');
open(obj);
for i=1:20*T+1
surf(x(:,:,1),y(:,:,1),u(:,:,i),'edgecolor','none');
axis([0 1 0 1 -0.25 0.25]);
hold off;

f= getframe(gcf);
writeVideo(obj,f);
pause(0.1)

end
obj.close();

Problem 5.22. Consider the following heat problem on 
=(0; 1)� (0; 1)�
ut= 0.1(�u+2ux) on

u=0 on bnd(
)

:

a) Find the eigenfunctions and eigenvalues of the following eigenvalue problem�
��+2�x=¡�� on

�=0 on bnd


:

b) Write the solution of the given heat equation as follows:

u(t; x; y)=
X
n=1

1 X
m=1

1

Unm(t) �nm(x; y):

Find a differential equation for Unm(t). Solve it and write down the general solution of the
equation.

c) Assume u(x; y; 0)=xe¡x sin(2�y). Find the solution that satisfies the given initial condition.

d) Run the following code and observe the change of the temperature with respect to time:
%set time of running
T=1;
[x,y,t]=meshgrid(0:0.01:1,0:0.01:1,0:0.05:T);
u=zeros(size(x));
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for n=1:10
l=1+(4+n^2)*pi^2;
u=u-2*(-1)^n*sin(2*pi*y).*exp(-0.1*l*t).*sin(n*pi*x)/(n*pi);

end
% The file filename.avi is saved on your system. You can change the name if

you wish
obj=VideoWriter('filename.avi');
open(obj);
for i=1:20*T+1
surf(x(:,:,1),y(:,:,1),u(:,:,i),'edgecolor','none'); view(2);colormap(jet);

axis equal;
caxis([-0.2,0.2]); axis([0 1 0 1]);
hold off;

f= getframe(gcf);
writeVideo(obj,f);
pause(0.2)

end
obj.close();

Problem 5.23. In the domain 
=(1; e)� (0; 1):

a) Solve the eigenvalue problem(
x2 �xx+x�x+ �yy=¡�� on

�=0 on bnd(
)

:

b) Solve the wave equation 8>>>>>><>>>>>>:
utt=x2uxx+xux+uyy+ ty on

u=0 on bnd(
)
u(x; y; 0)=0
ut(x; y; t)= 0

:

Problem 5.24. Let 
 be the set 
=(¡�; �)� (¡�; �). Consider the following eigenvalue problem8>><>>:
��=¡��
�(¡�; y)= �(�; y); �x(¡�; y)= �x(�; y)
�(x;¡�)= �(x; �); �y(x;¡�)= �y(x; �)

:

a) Show the eigenvalues are non-negative: �� 0.

b) Show that eigenfunctions of the problem are

�nm(x; y)= fcos(nx+my); sin(nx+my)g;
for n;m=0; 1; ���.

c) Show that
1
�2

Z
¡�

� Z
¡�

�

�nm(x; y) �n0;m0(x; y) dxdy=
�
1 (n;m)= (n0;m0)
0 (n;m)=/ (n0;m0)

d) solve the following heat problem:8>>>>>><>>>>>>:
ut=�u
�(¡�; y; t)= �(�; y; t); �x(¡�; y; t)= �x(�; y; t)
�(x;¡�; t)= �(x; �; t); �y(x;¡�; t)= �y(x; �; t)
u(x; y; 0)=xy

:
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Problem 5.25. Let D be the domain shown below

`=1

`=1

y

x

Consider the following equation on D

ut=2�u¡ 2uxy;

with the homogeneous Dirichlet boundary condition. Use a transformation to transform the domain D
to an unit square. Derive the appropriate differential equation in the new coordinate. Solve the new
equation and then write down the solution of the given equation on D.

Problem 5.26. Let 
 be the unit square (0; 1)� (0; 1). Consider the following Laplace equation8>><>>:
�u=0
u(0; y)=¡1; u(1; y)=1
@yu(x; 0)= @yu(x; 1)=0

:

a) Find a series solution to the equation.

b) Verify that the the function u=2x¡1 solves the equation and thus it is equal to the series solution
obtained in part a).

c) Now consider the following Poisson equation8>><>>:
�u= y
u(0; y)=¡1; u(1; y)=1
@yu(x; 0)= @yu(x; 1)= 0

:

Consider the solution u as u= V +w, where V satisfies the Laplace equation given above. Find
a series solution for w, and determine u(x; y).

Problem 5.27. Solve the following Poisson equations

a) 8<: �u= sin(�y)
u(0; y)= 0; u(1; y)=0
u(x; 0)=¡1; u(x; 1)= 1

b) 8<: �u= sin(2x)+ sin(3y)
u(0; y)=¡1; u(�; y)= 1
u(x; 0)=¡1; u(x; �)=1

c) 8<: �u=xy
ux(0; y)= 0; ux(�; y)= 0
u(x; 0)= 0; u(x; �)= 1

Problem 5.28. We aim to solve the following equation

ut=�u+2ux+u+ y; (x; y)2 (0; 1)� (0; 1);
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with the boundary conditions

u(0; y; t)=u(1; y; t)=u(x; 1; t)= 0;u(x; 0; t)= 1;

and the initial condition u(x; y; 0)= 0.

a) Show that the steady state solution V (x; y) is

V (x; y)=
X
n=1

1 �
Bn sinh(n�y)+

2((¡1)n¡ 1)
n3�3

y

�
e¡x sin(n�x):

Determine the value of Bn.

b) Show that the transient solution has the form

w(x; y; t)=
X
m=1

1 X
n=1

1

Anme
¡(n2+m2)�2te¡xsin(n�x) sin(m�y)

Determine the value of An;m.

Problem 5.29. Let 
 be the rectangle (0; 1)� (0; 1)

u=0




1

1 u=0

u=0 u= sin(�y)

a) Find a closed form solution to the Laplace equation �u=0 with the boundary conditions given
in the figure.

b) Solve the following wave problem8>>>>>>>><>>>>>>>>:
ut=�u¡ sin(t) on

ujbnd(
): given in the figure

u(x; y; 0)= sinh(�x)
sinh� sin(�y)

ut(x; y; 0)= 0

:

Problem 5.30. In the domain 
=(0; 1)� (0; 1):

a) Solve the eigenvalue problem(
��+2�x¡ 2�y=¡�� on

�=0 on bnd(
)

;

b) Find �(x; y) such that the obtained eigenfunctions are orthogonal with respect to �.

c) Solve the heat equation 8>><>>:
ut=�u+2ux¡ 2uy on

u=3 on bnd(
)
u(x; y; 0)=xyey¡x+3

:

d) Find the steady state solution.
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Problem 5.31. Solve the following heat problem8>>>>>><>>>>>>:
ut=�u
ux(0; y; t)= 0; u(1; y; t)=1
u(x; 0; t)=x; uy(x; 1; t)= 0
u(x; y; 0)=xy

:

Problem 5.32. Let 
 be the square (0; 1)� (0; 1). Solve the following wave equation on 
8<: utt=4�u+4xy on

u=1 on bnd(
)
u(x; y; 0)= 1;ut(x; y; 0)= 0

Problem 5.33. Consider the equation @xxu+@yyu¡@xyu=0 in the domain shown in the following figure

u= y¡x
¡1

¡1

1

u=x¡ y

u=x+ y

u=¡x¡ y

1

Use an appropriate transformation to rewrite the equation in the normal form. Note that this
transformation will rotate the domain too. Find a solution to the new problem, and then obtain the
solution to the original problem.

5.3 Disk domain and polar coordinate

In this section, we focus on studying partial differential equations defined on a disk or a
semi-disk. Unlike the rectangular domain, the geometry of a disk does not lend itself easily
to the separation of variable technique when using Cartesian coordinates. However, we can
overcome this challenge by introducing polar coordinates, which involves a transformation
from the rectangular domain [¡�;�]� [0; a) to the (�; r)-plane. By employing the separation
of variable technique in polar coordinates, we can effectively solve the eigenvalue problems
associated with these domains.

5.3.1 Eigenfunctions of � in a disk
Let 
 be a disk of radius a. We consider the following eigenvalue problem for �(r; �) on 
:�

��=¡��
�(a; �)=0

:

Recall that in polar coordinates, the Laplacian operator � takes the form:

�(r;�)�= �rr+
1
r
�r+

1
r2
���:
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By using the separation of variables �(r; �)=R(r)�(�), the eigenvalue problem for � reduces
to:

r2R00+ rR0

R
+
�00

�
=¡�r2:

This equation holds true only if the ratio �00

�
is a constant, denoted as ¡�. Therefore, we

have the eigenvalue problem for �(�):

�00=¡��:

To determine suitable boundary conditions for �(�), we take into account the geometry of
the disk. We impose the following boundary conditions:�

�(¡�)=�(�)
�0(¡�)=�0(�)

:

These conditions ensure that the eigenfunctions of the eigenvalue problem �''=¡�� are
smoothly 2�-periodic, as required by the geometry of the disk.

The eigenpairs of the eigenvalue problem �00=¡�� for the disk are given by:

�n(�)2f1; cos(n�); sin(n�)g;

for n = 1; 2; ���. This set of eigenfunctions forms the Fourier orthogonal basis for functions
defined on the interval [¡�;�]. Let f(�) be a continuously differentiable function defined on
[¡�; �]. This function can be expressed in terms of the eigenfunctions as:

f(�)= a0+
X
n=1

1

an cos(n�)+
X
n=1

1

bn sin(n�);

where the coefficients are given by:

a0=
1
2�

Z
0

1

f(�) d�; an=
1
�

Z
0

1

f(�) cos(n�) d�; bn=
1
�

Z
0

1

f(�) sin(n�) d�:

These coefficients represent the contributions of the different eigenfunctions to the function
f(�).

Problem 5.34. Solve the eigenvalue problem for �(�) with the periodic boundary condition and show
that the eigenfunctions are 1; cos(n�); sin(n�) with associated eigenvalues n2N.

For �=n2 (n=0; 1; 2; ���), the equation for R(r) reduces to the following ordinary
eigenvalue problem:

r2R00+ rR 0¡n2R=¡�r2R:

The boundary condition that R(r) satisfies is R(a) = 0 in accordance with the condition
�(a; �)=0.

Since � > 0, we can use the substitution x= �
p

r to rewrite the above equation in the
following standard form known as a Bessel equation:

x2
d2R
dx2

+ x
dR
dx

+(x2¡n2)R=0: (5.4)
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In our book on ordinary differential equations, we have studied this equation in detail using
the power series method. If we represent the solution R(x) in the form:

R(x)= xn
X
k=0

1

ckxk;

substituting the series into the differential equation and performing some algebraic manip-
ulations, we arrive at the following series:

R(x)=
X
k=0

1
(¡1)k

k! (n+ k)!

�
x
2

�
2k+n

:

This series is known as the first-type Bessel function and is denoted by Jn(x). The figure
below depicts Jn(x) for n=0; 1; 2

5 10 15

−0. 4

0. 4

1. 0 J0(x)

J1(x)

J2(x)

For x= �
p

r, the solution to the equation for R(r) is:

Rn(r)= Jn( �
p

r):

The eigenvalues � are determined by the boundary condition R(a)=0. This condition leads
to the equation Jn( �

p
a)=0. This equation can not be solved in closed form, we have to use

numerical methods to draw the zeros of the equation Jn(x)=0. As we observe from the above
graph, there are infinitely many zeros for each fixed n. Let us denote these zeros as zn;p, i.e.,
Jn(zn;p)=0 for p=1; 2; ��� for each fixed n. The table below includes some of zeros of Jn(x):
p z0p z1p z2p z3p
1 2.4048 3.8317 5.1356 6.3802
2 5.5201 7.0156 8.4172 9.7610
3 8.6537 10.1735 11.6198 13.0152
4 11.7915 13.3237 14.7960 16.2235
5 14.9309 16.4706 17.9598 19.4094
6 18.0711 19.6159 21.1170 22.5827
7 21.2116 22.7601 24.2701 25.7482
8 24.3525 25.9037 27.4206 28.9083
9 27.4935 29.0468 30.5692 32.0648
10 30.6346 32.1897 33.7165 35.2187

The eigenvalues � are determined in terms of these zeros as:

�n;p=
zn;p
2

a2
:
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Therefore, the eigenfunctions for the eigenvalue problem for R(r) are obtained as: Jn
¡ zn;p

a
r
�
.

For sake of simplicity, we denote these functions by Jn;p(r).

Remark 5.3. For each fixed n, we obtain a set of infinite eigenfunctions fJn;p(r)g for p=1;
2; ���. For example, for n=0 we obtain

fJ0;1(r); J0;2(r); J0;3(r); ���g;
and for n=1:

fJ1;1(r); J1;2(r); J1;3(r); ���g:

For each fixed n, the set fJn;p(r)g forms a basis for piecewise continuously differentiable
functions f(r) defined on [0; a]. The figure below illustrate the set fJ1;ng for n=1; ���; 4.
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Problem 5.35. Prove that for each fixed n, the eigenfunction Jn;p(r) are orthogonal with respect to
the weight function �= r, i.e.,

hJn;p; Jn;p0ir :=
Z
0

a

Jn;p(r)Jn;p0(r) rdr=0;

for p=/ p0.

To understand how each set in the family of sets fJn;p(r)g is a basis, let's express the
function f(r)=r2 in terms of two bases: fJ0;1; J0;2; :::g and fJ1;1; J1;2); :::g. We will truncate
both approximations by summing up to ten terms. For the first basis fJ0;1; J0;2; :::g, the
approximation of f(r) is given by:

f(r)� c1 J0;1(r)+ c2 J0;2(r)+ ���+ c10J0;10(r);

where cj are coefficients which are determined by the relation

cj=
hf ; J0;pir
kJ0;pk2

=

Z
0

1

f(r) J0;p(r) rdrZ
0

1

J0;p
2 (r) rdr

:

Similarly, for the second basis fJ1;1; J1;2); :::g, the approximation of f(r) is given by:

f(r)� d1J1;1(r)+ d2J1;2(r)+ ���+ d10J1;10(r);
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where dj are coefficients which are determined by the relation

dj=
hf ; J1;pir
kJ1;pk2

=

Z
0

1

f(r)J1;p(r) rdrZ
0

1

J1;p
2 (r) rdr

:

The resulting approximations will give us an idea of how well the sets fJ0;1; J0;2; :::g and
fJ1;1; J1;2; :::g approximate the function f(r)=r2 when truncated to ten terms. The figure
below illustrate the result:
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Exercise 5.21. As we know, the set fsin(n�r)g is an orthogonal basis for functions defined on [0; 1].
The figure below show sin(n�r) for n=1; ���; 4.
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Approximate the function f(r) = r2 in terms of fsin(n�r)g for n = 1; ���; 10 and compare the error
with the approximation in terms of fJ1;p(r)g for p=1; ���; n. The error is defined as

err :=
�Z

0

1

jf(r)¡SN(r)j2 dr
�1
2
;

where SN(r) is the truncated series approximation up to N terms.

Exercise 5.22. Approximate function f (r)= sin(�r) for r2 [0;1] in terms of basis fJ0;p(r)g for p=1; ���;
10. Draw f(r) and its approximation in the same coordinate. If you wish, you can use the following
code in Matlab:

Z0=[2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346];
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f=@(r) sin(pi*r);
C=integral(@(r) r*f(r)*besselj(1,Z0(:)*r),0,1,'arrayvalued',true)./...
integral(@(r) r*besselj(1,Z0(:)*r).^2,0,1,'arrayvalued',true);
r=0:0.01:1;
S=besselj(1,Z0(:)*r);
fhat=C'*S;
plot(r,f(r),r,fhat)

Remark 5.4. The obtained solutions Jn(x) for the equation (5.4) correspond to the first-
type of Bessel functions. In the book on ordinary differential equations, we also encountered
the second solution to the Bessel equation, denoted by Yn(x). The series expansion of Yn(x)
is given by:

Yn(x)= cJn(x) log(x)+ x¡n
X
k=0

1

Ckx
k;

where c and Ck are constants. It can be observed that these solutions are singular at x=0,
which corresponds to the center of the disk (r=0). The figure below illustrates a few examples
of Yn(x):
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For partial differential equations defined on the interior of a disk, we typically ignore these
singular solutions (Yn) as they are non-physical. However, for equations defined on a annulus
shape or the exterior of a disk, we need to consider both Jn and Yn functions for the solution.

In our discussion of equations defined on the interior of a disk, we will focus on the first-
type Bessel functions (Jn) and disregard the singular solutions (Yn) for their non-physical
nature.

Having �n(�) and Jn;p(r), the eigenfunctions of the eigenvalue problem �(r;�)� = ¡��
are obtained as

�n;p(r; �)2fJn;p(r) cos(n�); Jn;p(r) sin(n�)g;

with the associated eigenvalues �n;p=
zn;p
2

a2
, where zn;p are zeros of the Bessel functions Jn,

i.e., Jn(zn;p)= 0 for n=0; 1; 2; ���, and p=1; 2; ���.

Theorem 5.2. The set of functions fJn;p(r) cos(n�); Jn;p(r) sin(n�)g for n=0; 1; ���, p=1;
2; ���, forms an orthogonal basis for continuously differentiable functions defined in the region
[¡�; �]� [0; a]. These functions are orthogonal with respect to the weight function �= r.
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This means that any continuously differentiable function f(r; �) defined in the region
[¡�; �]� [0; a] can be expressed as a linear combination of these eigenfunctions as follows:

f(r; �)=
X
p=1

1

A0;p J0;p(r)+
X
n;p=1

1

An;p Jn;p(r) cos(n�)+
X
n;p=1

1

Bn;p Jn;p(r) sin(n�):

The orthogonality property ensures that the expansion coefficients can be determined using
the inner product weighted by the weight function �=r as follows:

A0;p=
hf ; J0;pir
kJ0;pk2

=

Z
¡�

�Z
0

a

f(r; �)J0;p(r) rdrd�

2�

Z
0

a

J0;p
2 (r) rdr

;

An;p=
hf ; Jn;p cos(n�)ir
kJn;p cos(n�)k2

=

Z
¡�

�Z
0

a

f(r; �) Jn;p(r) cos(n�) rdrd�

�

Z
0

a

Jn;p
2 (r) rdr

;

Bn;p=
hf ; Jn;p sin(n�)ir
kJn;p sin(n�)k2

=

Z
¡�

�Z
0

a

f(r; �)Jn;p(r) sin(n�) rdrd�

�

Z
0

a

Jn;p
2 (r) rdr

:

These formulas allow us to determine the expansion coefficients A0;p; An;p, and Bn;p using
the given function f(r; �) and the properties of the Bessel functions Jn;p(r).

Example 5.7. Let us represent the function f(r; �)= r� defined on [¡�; �]� [0; 1] in terms
of f�n;p(r; �)g. Since � is an odd function in [¡�; �], the series representation of f contains
only sin(n�):

r�=
X
n=1

1 X
p=1

1

Bn;p J0;p(r) sin(n�);

where

Bn;p=
hf ; Jn;p sin(n�)ir
kJn;p sin(n�)k2

=

Z
¡�

�Z
0

1

r�Jn;p(r) sin(n�) rdrd�

�

Z
0

1

Jn;p
2 (r) rdr

:

The double integral at the top can be calculated asZ
¡�

�Z
0

a

r�Jn;p(r) sin(n�) rdrd�=
�Z

0

1

Jn;p(r) r2 dr

��Z
¡�

�

� sin(n�) d�
�
=

=
¡2�(¡1)n

n

Z
0

1

Jn;p(r) r2 dr:
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Therefore, Bn;p are simplified as

Bn;p=
¡2(¡1)n

n

Z
0

1

Jn;p(r) r2 drZ
0

1

Jn;p
2 (r) rdr

:

Exercise 5.23. Consider the function f(r; �)= sin(r�) inside the unit disk.

a) Represent this function in terms of basis fJn;p(r) cos(n�); Jn;p(r) sin(n�)g for n=0; 1; 2; ���. Note
the the representation holds only for points inside the disk and is not valid at the boundary r=1.

b) As a function of �, write the Fourier series of f in terms of the basis fcos(n�); sin(n�)g, for n=0;
1; 2; ��� as

f(r; �)=
X
n=0

1

an(r) cos(n�)+
X
n=0

1

bn(r) cos(n�):

c) As a function of r, write the series representation of f in terms of basis fJ1;p(r)g as

f(r; �)=
X
n=1

1

Cp(�)J1;p(r):

5.3.2 Heat, wave and Poisson equations on a disk

We utilize the eigenfunction expansion method to solve partial differential equations on a
disk. In order to demonstrate the method, we will solve a few examples.

Poisson equation on a disk

In this section, we will address the Poisson equation on a disk 
 of radius a> 0:�
¡�u= f(r; �)
u(a; �)=0

:

To solve this equation, we express the desired solution as a series in terms of the basis
fJn;p(r) cos(n�); Jn;p(r) sin(n�)g:

u(r; �)=
X

n=0;p=1

1

An;p Jn;p(r) cos(n�)+
X
n;p=1

1

Bn;p Jn;p(r) sin(n�);

where An;p and Bn;p are undetermined coefficients. To determine these coefficients, we sub-
stitute this series into the Poisson equation, yielding:X

n=0;p=1

1

�n;pAn;p Jn;p(r) cos(n�)+
X
n;p=1

1

�n;pBn;p Jn;p(r) sin(n�)= f(r; �)

Next, we find the coefficients An;p and Bn;p by taking the inner product of both sides of the
Poisson equation with Jn;p(r) cos(n�) and Jn;p(r) sin(n�), respectively.
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Example 5.8. Let's consider the Poisson equation on a disk of radius a=1:(
¡�u= r2 sin(3�)
u(1; �)= 0

We seek a series solution of the form:

u(r; �)=
X

n=0;p=1

1

An;p Jn;p(r) cos(n�)+
X
n;p=1

1

Bn;p Jn;p(r) sin(n�):

Substituting this series into the Poisson equation, we obtain:X
n=0;p=1

1

�n;pAn;p Jn;p(r) cos(n�)+
X
n;p=1

1

�n;pBn;p Jn;p(r) sin(n�)= r2 sin(3�):

The equality holds for An;p=0, for all n, and for Bn;p=0 for n=/ 3. For n=3, we haveX
p=1

1

�3;pB3;p J3;p(r) sin(3�)= r2 sin(3�);

This yields the expression for B3;p:

B3;p=¡
hr2; J3;pir
�0;3kJ3;pk2

:

Finally, the solution for u(r; �) is given as:

u(r; �)= sin(3�)
X
p=1

1 hr2; J3;pir
�0;3kJ3;pk2

J3;p(r):

In the example above, we obtained the solution in a series form. However, it is also
possible to find a closed-form solution for the equation as follows. If we interpret the problem
in the system form as:

u=¡�¡1[f(r; �)];

we can represent this mathematical equation in a block-diagram form as shown below:

U(r) sin(3�)
�¡1

r2 sin(3�)
.

Since the system �¡1 is triggered by the function sin(3�), and since sin(3�) is part of the
eigenfunctions of �, we can assume that the response of this system is of the form:

u(r; �)=R(r) sin(3�);

where R(r) is an undetermined function. We determine this function such that u(r; �)
satisfies the Poisson equation and the boundary condition R(1)=0. Substituting u(r; �) into
the Poisson equation yields:

R 00(r) sin(3�)+
1
r
R0(r) sin(3�)¡ 9R(r)

r2
sin(3�)=¡r2 sin(3�);
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leading to the following Cauchy-Euler equation:(
r2R00(r)+ rR0(r)¡ 9R(r)=¡r4
U(1)=0

:

The general solution to this Cauchy-Euler equation is:

U(r)=Ar3+Br¡3¡ 1
7
r4:

Assuming that the solution remains bounded at r=0, B must be equal to zero, and thus:

U(r)=Ar3¡ 1
7
r4:

By performing the boundary condition at r=1, we obtain the solution as:

U(r)=
1
7
r3(1¡ r);

and consequently:

u(r; �)=
1
7
r3(1¡ r) sin(3�):

This solution is known as the closed-form solution to the given problem. By the uniqueness
theorem, these two solutions must be the same, i.e.,

1
7
r3(1¡ r) sin(3�)= sin(3�)

X
p=1

1 hr2; J3;pir
�0;3kJ3;pk2

J3;p(r):

Exercise 5.24. Find a series solution to the Poisson equation �u = r on the unit disk satisfying the
homogeneous Dirichlet boundary conditions. Find a closed form solution for the equation. Draw the
functions and a truncated series in the same coordinate. You can use the following code to generate the
figure

Z0=[2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346];
f=@(r) r;
C=-integral(@(r) r*f(r)*besselj(0,Z0(:)*r),0,1,'arrayvalued',true)./...
integral(@(r) r*besselj(0,Z0(:)*r).^2,0,1,'arrayvalued',true)./(Z0(:).^2);
r=0:0.01:1;
S=besselj(0,Z0(:)*r);
fhat=C'*S;
plot(r,(r.^3-1)/9,r,fhat)

Exercise 5.25. Find a series and closed form solution for the Poisson equation �u=r sin(3�) satisfying
the boundary condition u(1; �)= 0.

Heat problems on a disk

Let's solve the following heat problem8<: ut=�u+h(r; �; t)
u(a; �; t)= 0
u(r; �; 0)= 0

:
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Since the set of eigenfunctions f�n;p(r; �)g is a basis for functions define don the unit disk,
we can express the desired solution u(r; �; t) as:

u(r; �; t)=
X

n=0;p=1

1

Un;p(t)Jn;p(r) cos(n�)+
X

n=1;p=1

1

Vn;p(t) Jn;p(r) sin(n�);

for undetermined coefficients functions Un;p(t) and Vn;p(t). Substituting these series into the
heat equation, we reach the following equation:X
n=0;p=1

1

[Un;p
0 (t)+�n;pUn;p] Jn;p(r) cos(n�)+

X
n=1;p=1

1

[Vn;p
0 (t)+�n;pVn;p]Jn;p(r) sin(n�)=h:

To proceed, we write the function h in terms of the basis f�n;pg as

h(r; �; t)=
X

n=0;p=1

1

�n;p(t)Jn;p(r) cos(n�)+
X

n=1;p=1

1

�n;p(t)Jn;p(r) sin(n�);

where �n;p and �n;p are respectively:

�n;p=
hh; Jn;p(r) cos(n�)i
kJn;p(r) cos(n�)k2

; �n;p=
hh; Jn;p(r) sin(n�)i
kJn;p(r) sin(n�)k2

:

From these representation, we arrive at the following equations for Un;p and Vn;p:(
Un;p
0 +�n;pUn;p=�n;p

Un;p(0)= 0
;

(
Vn;p
0 +�n;pVn;p= �n;p

Vn;p(0)=0
:

Note that the initial condition is in accordance with the initial condition u(r; �; 0)= 0.

Example 5.9. Let's consider the following heat problem on a unit disk8>><>>:
ut=�u+ e¡tJ3;1(r) sin(3�)
u(1; �; t)=0
u(r; �; 0)= 0

:

From a system point of view, the heat system is triggered by the source term:
h=e¡tJ3;1(r)sin(3�). Since the term J3;1(r)sin(3�) is an eigenfunction of the Laplacian oper-
ator, we seek a response of the system in the form:

u(r; �; t)=U(t)J3;1(r) sin(3�);

where U(t) is an undetermined function. The block-diagram below illustrates this approach:

(@t¡�)¡1
u=U(t)J3;1(r) sin(3�)e¡tJ3;1(r) sin(3�) .

Substituting u=U(t) J3;1(r) sin(3�) into the heat equation yields:

U 0+�3;1U = e¡t;
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which is solved for the general solution

U(t)=Ce¡�3;1t+
e¡t

�3;1¡ 1
:

The initial condition u(r; �; 0) = 0 implies U(0) = 0, that in turn determines C as: C =
¡ 1

�3;1¡ 1
. Finally, the given equation is solved for:

u(r; �; t)=
e¡t¡ e¡�3;1t
�3;1¡ 1

J3;1(r) sin(3�):

The figure below illustrates the change of disk in some instances of time:

Exercise 5.26. Consider the following heat problem:8>><>>:
ut=�u+ e¡t r2 sin(3�)
u(1; �; t)=0
u(r; �; 0)= 0

:

The only source terms that triggers the heat system is h= e¡t r2 sin(3�). This source can be represented
as the series

h=
X
p=1

1

�p e
¡tJ3;p(r) sin(3�):

The system block-diagram is illustrated below:

sin(3�)
P

p=1
1

Vp(t) J3;p(r)sin(3�)
P

p=1
1 �pJ3;p(r)

(@t¡�)¡1
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Take the solution u as follows:

u(r; �; t)=
X
p=1

1

Vp(t) J3;p(r) sin(3�):

Determine the coefficients functions Vp(t) and write down the series solution of the problem.

Exercise 5.27. Consider the following heat problem on the unit disk8<: ut=�u
u(1; �; t)=0
u(r; �; 0)= r cos(�)

:

The only source that triggers the system is the initial condition r cos(�) which can be represented as

r cos(�)= cos(�)
X
p=1

1

�pJ1;p(r):

Consider the solution of the equation as:

u(r; �; t)=
X
p=1

1

Up(t) J1;2(r) cos(�):

Determine Up(t) as write down the series solution of the problem.

Exercise 5.28. Consider the following heat equation8<: ut=�u¡ r sin(�)
u(1; �; t)= 0
u(r; �; 0)= 0

:

a) Take u as the summation
u(r; �; t)=V (r; �)+w(r; �; t):

Find a closed form solution for the Poisson equation for V .

b) What differential equation does w(r; �; t) satisfy? Find the series solution of this equation and
then write the solution for the original problem.

Wave problem

Let's solve the following wave equation on the unit disk:8>>>>>><>>>>>>:
utt= c2�u+h(r; �; t)
u(1; �; t)= 0
u(r; �; 0)= 0
ut(r; �; 0)=0

:

Employing the eigenfunction expansion method, the solution u can be expressed as:

u(r; �; t)=
X

n=0;p=1

1

Un;p(t)Jn;p(r) cos(n�)+
X

n=1;p=1

1

Vn;p(t)Jn;p(r) sin(n�):

The ordinary differential equations for Un;p and Vn;p are:8>><>>:
Un;p
00 + c2�n;pUn;p=�n;p

Un;p(0)=0

Un;p
0 (0)=0

;

8>><>>:
Vn;p
00 + c2�n;pVn;p= �n;p

Vn;p(0)=0

Vn;p
0 (0)=0

;
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where �n;p(t) and �n;p(t) are respectively the coefficients of the expansion of h in terms of
fJn;p(r) cos(n�)g and fJn;p(r) sin(n�)g.

Example 5.10. Let's consider the following wave problem8>>>>>><>>>>>>:
utt= c2�u+ sin(t) sin(�)
u(1; �; t)=0
u(r; �; 0)=0
ut(r; �; 0)=0

:

Since the expansion of h is:

h= sin(�)
X
p=1

1 h1; J1;pir
kJ1;pk2

sin(t)J1;p(r);

we seek for u as:

u(r; �; t)=
X
p=1

1

Up(t) sin(�)J1;p(r);

where Up satisfies the equation:8>>>><>>>>:
Up
00+ c2�1;pUp=

h1; J1;pir
kJ1;pk2

sin(t)

Up(0)=0

Up
0(0)=0

:

For c=/ 1

�1;p
p , the above ODE is solved for

Up(t)=
h1; J1;pir

kJ1;pk2(c2�1;p¡ 1)

 
sin(t)¡ 1

c �1;p
p sin

¡
c �1;p
p

t
�!
:

Finally, the solution can be expressed as:

u(r; �; t)= sin(�)
X
p=1

1 h1; J1;pir
kJ1;pk2(c2�1;p¡ 1)

 
sin(t)¡ 1

c �1;p
p sin

¡
c �1;p
p

t
�!

J1;p(r):

Exercise 5.29. Find a series solution to the following wave equation8>>>>>><>>>>>>:
utt=�u+ e¡t r
u(1; �; t)=0
u(r; �; 0)=0
ut(r; �; 0)=0

:

Exercise 5.30. Find a series solution to the following wave problem8>>>>>><>>>>>>:
utt=�u
u(1; �; t)=0
u(r; �; 0)=J1;2(r)sin(�)
ut(r; �; 0)= J1;3(r) sin(�)

:
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Exercise 5.31. Consider the following wave equation8>>>>>><>>>>>>:
utt=�u¡ r sin(�)
u(1; �; t)= 0
u(r; �; 0)= 0
ut(r; �; 0)= 0

:

Since the source term is independent of time t, we can take the solution u as

u(r; �; t)=V (r; �)+w(r; �; t);

where V satisfies a Poisson equation.

a) Solve the Poisson equation and determine its solution V (r; �).

b) Based on the solution V , determine the correct series solution to the wave equation for w(r; �; t).

Exercise 5.32. Find the series solution for the following wave problem8>>>>>><>>>>>>:
utt= c2�u
u(1; �; t)= 0
u(r; �; 0)= r sin(�)
ut(r; �; 0)= 0

:

5.3.3 Laplace equation
We consider the following problem on the domain 
: [¡�; �]� [0; a]:�

�u=0
u(a; �)= f(�)

:

To solve this problem, we employ the method of separation of variables and assume a solution
of the form u(r; �)=R(r)�(�). This leads to the equation:

r2R 00+ rR0

R
+
�00

�
=0:

Noting that the ratio �00

�
should be a dimensionless constant, we express it as �00

�
=¡�. As

mentioned before, the function �(�) must satisfy periodic boundary conditions:�
�(¡�)=�(�)
�0(¡�)=�0(�)

;

This gives rise to the following eigenvalue problem:8<: �00=¡��
�(¡�)=�(�)
�0(¡�)=�0(�)

:

Solving this eigenvalue problem yields the eigenfunctions fcos(n�); sin(n�)g for n=0;1;2; ���:
Considering the ratio �00

�
=¡n2, the equation for R(r) simplifies to the Cauchy-Euler equa-

tion:

r2R00+ rR 0¡n2R=0:
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For n=0, the equation is solved as

R0(r)=A0+B0 ln(r);

and for n� 1, the solution becomes

Rn(r)=An r
n+Bn r

¡n:

Additionally, the boundedness condition R(0) being bounded implies Bn=0 for n�0. Con-
sequently, the separated solution can be written as:

un(r; �)=Rn(r)�n(�)= frn cos(n�); rn sin(n�)g:

The general series solution of the Laplace equation is a linear combination of the separated
solutions:

u(r; �)=A0+
X
n=1

1

rn[An cos(n�)+Bn sin(n�)]

The coefficients are determined by the boundary conditions: u(a; �)= f(�):

f(�)=A0+
X
n=1

1

an[An cos(n�)+Bn sin(n�)]:

Using the inner product and orthogonality properties of the functions fcos(n�); sin(n�)g, we
can determine the coefficients as follows:

A0=
1
2�

Z
¡�

�

f(�); An=
1
�an

Z
¡�

�

f(�) cos (n�); Bn=
1
�an

Z
¡�

�

f(�) sin (n�):

Example 5.11. Let's solve the following equation on the disk r� 1:�
�u=0
u(1; �)= 1+3cos(2�)

:

The contribution of the boundary terms 1 to the solution is the constant function u=1. The
contribution of the second boundary term to the solution is: u=3r3 cos(3�). Consequently,
the solution to the given Laplace equation is given as:

u(r; �)=1+3r3 cos(3�):

The figure below depicts the surface solution of this Laplace equation:
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Example 5.12. Let's solve the following equation on the disk r� 1:�
�u=0
u(1; �)= �

:

Since � can be expressed by the series:

�=
X
n=1

1 ¡2
n
(¡1)n sin(n�);

the contribution of this term to the solution is

u(r; �)=
X
n=1

1 ¡2
n
(¡1)n rn sin(n�):

Exercise 5.33. Solve the Laplace equation �u=0 inside the unit disk with the boundary conditions
given below

a) u(1; �)= �2

b) u(1; �)= cos
�
�

2

�
c) u(1; �)= sin2�

Exercise 5.34. Solve the following Laplace equation on the unit disk�
�u=0
u(1; �)+ur(1; �)= sin(�)

:

Show that the Laplace equation does not have a solution if the boundary condition is changed to the
following one:

u(1; �)¡ur(1; �)= sin(�):

Exercise 5.35. We aim to prove that the following equation defined inside the unit disk has a unique
solution �

�u=0
u(1; �)+ur(1; �)= f(�)

:

a) Assume that u1(r; �), u2(r; �) are two solutions to the problem. The function u= u1¡ u2 solves
the following equation: �

�u=0
u(1; �)+ur(1; �)= 0

:

Since u(r; �), the solution to the equation, is smooth, we can express it as the following Fourier
series:

u(r; �)=U0(r)+
X
n=1

1

An(r) cos(n�)+Bn(r) sin(n�):

Substitute this into the equation �u=0 and conclude An(r)=Anrn, Bn(r)=Bnrn for n=0;1; ���.

b) Finally use the boundary condition and show u(r; �)=0 and conclude u1(r; �)=u2(r; �).

Exercise 5.36. Consider the following Laplace equation inside the unit ball�
�u=0
ur(1; �)= f(�)

;
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where f(�) is a smooth function in �.

a) Is there a unique solution to the problem?

b) Find a solution if f(�)= cos�.

c) Is there any solution if f(�)= 1 ?

d) Show that the necessary condition for the problem to have a solution isZ
¡�

�

f(�)d�=0:

Exercise 5.37. In the case of solving a Laplace equation in the exterior of a disk, that is, in the region

c := f(r; �); r > ag, we keep only the terms Rn(r) = r¡n and reject Rn(r) = rn and ln(r). The reason
is that only the bounded solutions of Laplace equation are meaningful physically. Solve the following
Laplace equation in the exterior of a disk of radius a=2�

�u=0
u(2; �)=1+2sin(2�)

Exercise 5.38. Let 
 be the region outside of the unit disk and interior of the disk of radius 2. SOlve
the following Laplace equation on 
 8<: �u=0

u(1; �)= sin(�)
u(2; �)= sin(2�)

5.3.4 Eigenvalue problem on an annulus

Let 
 be the region enclosed by two disks r < b and r <a, i.e.,


= f(r; �); a< r< bg:

Consider the following eigenvalue problem�
��=¡��
�(a; �)= �(b; �)=0

:

For the separated solution �n(r; �) = Rn(r) �n(�), the solution for Rn(r) reduces to the
following one:

Rn(r)=AnJn( �
p

r)+BnYn( �
p

r):

Note that in this case we should keep the second type of the Bessel functions Yn( �
p

r) as the
origin is excluded and thus Yn is bounded in the annulus domain 
. The boundary conditions
for Rn(r) results to the following equations:(

AnJn( �
p

a)+BnYn( �
p

a)=0

AnJn( �
p

b)+BnYn( �
p

b)= 0

A straightforward algebraic manipulation leads to the following equation:

Jn( �
p

a)Yn( �
p

b)¡Jn( �
p

b)Yn( �
p

a)=0:
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Taking x= �
p

a, the above equation reduces to the following one:

Jn(x)Yn

�
b
a
x

�
¡Jn

�
b
a
x

�
Yn(x)= 0:

If the zeroth of the above equation are denoted by x= snp, the eigenvalues are obtained as
�np=

snp
2

a2
. Substituting �np into the above system of equations gives8<: Anp Jn(snp)+BnpYn(snp)= 0

Anp Jn
�
snp b

a

�
+BnpYn

�
snp b

a

�
=0

:

Now, constants Anp, and Bnp are simply determined by the relation

Anp

Bnp
=¡Yn(snp)

Jn(snp)
:

Hence

Rnp(r)=Yn(snp)Jn
¡

�np
p

r
�
¡Jn(snp)Yn

¡
�np

p
r
�
:

Note that Rnp(r) satisfy the equation

r2
d 2Rnp

dr2
+ r

dRnp

dr
¡n2Rnp=¡�npRnp;

and therefore

hRnp; Rnqir=0; p=/ q:

The eigenfunctions of � in 
 are

�np(r; �)= fRnp(r) cos(n�); Rnp(r) sin(n�)g;

for n=0;1;2; ��� with associated eigenvalue �n;p=
sn;p
2

a2
. These eigenparis satisfy the following

relation:

��np=¡
snp
2

a2
�np:

The table below gives some values of snp for b=2a.

p s0p s1p s2p
1 3.1230 3.1966 3.4069
2 6.2734 6.3123 6.4278
3 9.4182 9.4445 9.5228
4 12.5614 12.5812 12.6404
5 15.7040 15.7198 15.7673

The figure below depicts a few of eigenfunctions R1;p(r) in the region 
:f(r; �);1<r<rg.
As we observed they satisfy the homogeneous boundary conditions at r=1 and r=2
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Example 5.13. Let's solve the following Poisson equation on 
 := f(r; �); 1<r< 2g�
�u= r sin(�)
u(1; �)= u(2; �)=0

:

The series solution of the problem is expressed as

u(r; �)= sin(�)
X
p=1

1

BpR1;p(r):

Substituting this into the equation gives Bp as

Bp=
¡1
s1;p
2

hr; R1;pir
kR1;pk2

:

Here, we calculate a few of coefficients Bp:

B1= 1.1314 B2=¡0.143; B3= 0.13416; B4=¡0.0362; B5= 0.0486

We also can find a closed form solution as follows. We take the solution of the form u(r;
�) = R(r) sin(�). Substituting this solution into the Poisson equation gives the following
equation for R(r):

r2R00+ rR0¡R= r3:

This equation is solved for

R(r)=Ar+Br¡1+
1
8
r3:

Applying the boundary conditions gives: A= ¡5
8

and B=
1

2
, and consequently:

u(r; �)=

�
¡5
8
r+

1
2
r¡1+

1
8
r3
�
sin(�):

by the uniqueness, we conclude the equality

¡5
8
r+

1
2
r¡1+

1
8
r3=

X
p=1

1

BpR1;p(r):
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The figure below depicts This function and its approximation up to only three terms in the
same coordinate:
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Exercise 5.39. Solve the following heat equation on the domain 
 := f(r; �); 1<r < 2g8>>>>>><>>>>>>:
ut=�u+ e¡t sin(�)
u(1; �; t)= 0
u(2; �; t)= 0
u(r; �; 0)=0

:

5.3.5 Problems
Problem 5.36. Let 
 denote a disk with radius a=1. Consider the following problem on 
�

�u= r cos�
u(1; �)=0

:

a) Find a double series solution to the problem in terms of the eigenfunctions fJn;p(r) cos(n�);
Jn;p(r)sin(n�)g.

b) Find a closed form solution to the problem and justify it is equal to the series solution.

Problem 5.37. Consider the Poisson equation �u= � defined on the unit disk satisfying the homoge-
neous Dirichlet boundary condition.

a) Find a series solution to the problem in terms of the basis fJn;p(r) cos(n�); Jn;p(r) sin(n�)g. This
is a double series solution to the problem.

b) Consider the solution u as follows

u(r; �)=
X
n=1

1

Un(r) sin(n�):

Note that � is an odd function on [¡�; �], and its Fourier series contains only sine terms. Obtain
a differential equation for Un(r) and solve it to determine the single series solution.

Problem 5.38. Let 
 denote a disk with radius a=1. Consider the following problem on 
�
�u= sin(�)
ur(1; �)= 0

:

Here the boundary condition is the homogeneous Neumann boundary condition.

a) Find a closed form solution to the problem by take u as: u=U(r) sin(�).
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b) To find a series solution to the problem, we need to solve the eigenvalue problem�
��=¡��
�r(1; �)= 0

:

Show that the eigenfunctions are

�n;p(r; �)2fJn(�n;pr) cos(n�); Jn(�n;pr) sin(n�)g;

for n=0; 1; 2; ��� where �n;p are the roots of Jn0 (x). Here are a few of them:

�1;1= 1.8412; �1;2= 5.3314; �1;3= 8.5363; �1;4= 11.7060; �1;5= 14.8636

Problem 5.39. Let 
 be the unit disk. Consider the Poisson problem �u= f(r; �) on 
 satisfying the
homogeneous Neumann boundary condition ur(1; �)= 0.

a) Show that the condition for solvability of the problem is:ZZ



f(r; �) rdrd�=0:

Hint: Use the Gauss theorem for the integralZZ



�udS:

b) Show that the eigenvalue problem �
��=¡��
�(1; �)=0

;

accepts the eigenvalue �= 0. What is the relationship of this result to the solvability condition
of the Poisson equation?

Problem 5.40. Find a single series solution to the following problem on the unit disk�
�u= �
u(1; �)= cos�

:

Problem 5.41. Let 
c denote the exterior domain of the unit disk in R2. Find a closed form solution
to the following problem on 
c (

�u= 1

r2
sin�

u(1; �)= 0
:

Problem 5.42. Consider the following differential equation(
�u+ 1

r
ur= r sin(�)

u(1; �)= 0
:

We do not have any information about the eigenfunctions of the operator
¡
�+ 1

r
@r
�
. However, we can

find a closed form solution to the problem. Take u as u(r; �) = R(r) sin(�). Obtain a Cauchy-Euler
equation for R(r), solve and and determine the solution u.

Problem 5.43. Consider the Poisson equation �u= sin(�) on the region 
: f(r; �); 1<r< 2g. Assume
that u satisfies the boundary conditions ur(1; �)=0 and u(2; �)= 0.

a) Find eigenvalues and eigenfunctions of the eigenvalue problem8<: ��=¡�� on

�r(1; �)=0
�(2; �)= 0

:

Use a numerical method to find first five eigenvalues. Use the results and write a series solution
for the given problem.
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b) Consider the closed form solution u as u=R(r) sin(�). Determine R(r).

c) With the result in part a), solve the following heat equation on 
8>>>>>><>>>>>>:
ut=�u¡ et sin(�) on

ur(1; �; t)= 0
u(2; �; t)= 0
u(r; �; 0)= 0

:

Problem 5.44. Solve the Poisson equation �u= cos(�) on the domain 
= f(r; �); 0� r < 1; 0� ���g
satisfying the boundary conditions

u(r; 0)=u(r; �)=0:

Problem 5.45. Let 
 be the unit disk. Consider the following heat equation on 
8<: ut=�u¡ r
u(t; 1; �)= 0
u(0; r; �)= cos�

:

Take the solution u as

u(r; �; t)=V (r; �)+w(r; �; t);

where V satisfies the following Poisson equation�
�u= r
u(1; �)= 0

:

a) Find a closed form solution to the equation for V .

b) Use the result in part a) and write downs the value series solution for w. Write down the solution
for u.

Problem 5.46. Let 
 be the unit disk. Consider the following heat problem on 
:8>><>>:
ut=�u¡ r2
u(1; �; t)= cos(�)

u(r; �; 0)= 1

16(r
4¡ 1)

:

Consider the solution u as

u(r; �; t)=V (r; �)+w(r; �; t);

where V satisfies the following Poisson equation(
�u= r2

u(1; �)= cos(�)

a) Find a closed form solution to the equation for V .

b) Use the result in part a) and write downs the value series solution for w. Write down the solution
for u.

Problem 5.47. Let 
 be the unit disk. Consider the following wave equation8>>>>>>>><>>>>>>>>:
utt=�u¡ cos �
u(1; �; t)=0

u(r; �; 0)= 1

3
r2 cos�

ut(r; �; 0)= 0

:

Take the solution u as

u(r; �; t)=V (r; �)+w(r; �; t);
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where V satisfies a Poisson equation.

a) Solve the Poisson equation for V

b) Use the result of part a) and write the series solution for w.

Problem 5.48. Let C denote the unit circle of radius 1. As it is known, the Laplacian � on C has the
form �u=u��. Solve the following problem on C(

ut=u��¡ e¡tsin�
u(�; 0)=0

:

Problem 5.49. Let C denote the unit circle of radius 1. Solve the following wave equation on C8<: utt=u��
u(�; 0)= f(�)
ut(�; 0)=0

;

where f(�) is the following function

f(�)=

(
�2¡ �2

64 ¡�

8
<�<

�

8

0 otherwise
:

Problem 5.50. Let 
 be the unit disk. Write a series solution to the following problem8>><>>:
ut=�u¡ e¡tcos�
u(1; �; t)= cos(2�)
u(r; �; 0)= cos(3�)

:

Problem 5.51. Let 
 be the unit disk. Write the series solution to the following problem on 
 in the
series form 8>>>>>><>>>>>>:

utt= c2�u+ sin(t)�
u(1; �; t)=0
u(r; �; 0)=0
ut(r; �; 0)= 0

:

Problem 5.52. Let 
 be the domain outside of the disk r = 1 and inside the disk r = 2. We aim to
solve the heat problem ut=�u on 
 subject to the boundary condition shown in the figure:

u=1

1

D

u=¡1

2

a) Solve the Laplace equation �V =0 subject to the boundary condition given in the figure. Hint:
the solution is a pure function of r and independent of �.

b) Solve the given heat problem if u(r; �; 0)= 0 by taking u as u=V (r)+w(r; �; t).

Problem 5.53. Solve the following wave equation on 
 := f(r; �); 1<r < 2g8>>>>>>>>>><>>>>>>>>>>:

utt=�u
ur(1; �; t)= 0
u(2; �; t)=0
u(r; �; 0)= cos

¡ �
2
(r¡ 1)

�
sin(�)

ut(r; �; 0)= 0

:
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Problem 5.54. Let 
 be the domain
�
(r; �); 0� r < 1; 0<�<

�

2

	
. We aim to solve the following wave

equation for the function u(r; �; t):

utt= c2�u+ r sin(3�) on


Subject to the following boundary conditions:8>><>>:
u(r; 0; t)= 0
u�
¡
r;

�

2
; t
�
=0

u(1; �; t)= 0
:

a) Find the eigenvalues and eigenfunctions of the associated eigenvalue problem.

b) Find a series solution to the problem if the initial conditions are given by: u(r; �; 0) = 0 and
ut(r; �; 0)= 0.

Problem 5.55. Let 
 denote the first quarter of a unit disk shown in the following figure

u=0

u=0

u=2 sin(4�)

1

1

a) Solve the Laplace equation �u=0 in 
 with the boundary conditions given in the figure.

b) Find a closed form solution to the Poisson equation�
�u= sin(2�) on

u=0 on bnd(
)

:

c) Find a series solution to the following heat problem8>>>>>>>><>>>>>>>>:
ut=�u¡ sin(2�)
u(r; 0)=u

¡
r;

�

2

�
=0

u(1; �)= 2 sin(4�)

u(r; �; t)=2r4 sin(4�)+ 7

6
r2 lnr sin(2�)

Problem 5.56. Consider the following figure

u=0

u=1

2

u=¡1

1 


u=0

a) Solve the Laplace equation �V =0 on the domain shown in the figure and associated boundary
condition.

b) Solve the Poisson equation �u= � on
. Hint: Use the single series for u as:

u(r; �)=
X
n=1

1

Un(r) sin(n�):
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Problem 5.57. We aim to solve the heat equation ut=�u inside the domain 
 := f(r; �); 0� r < 1;
0� ���g subject to the boundary conditions�

u(1; �; t)=1:
u(r; 0; t)=u(r; �; �)= 0

:

a) Determine the eigenfunctions and eigenvalues of the Laplacian operator � on 
 satisfying the
homogeneous boundary conditions:�

��=¡�� on

�=0 on bnd(
)

:

b) Solve the Laplace equation �V =0 on 
 adheres to the prescribed boundary conditions.

c) Solve the given heat problem utilizing the separation u=V (r; �)+w(r; �; t).

Problem 5.58. Let 
 be the semi-disk: 
=
�
(r; �); 0� r < 1; ¡�

2
� �� �

2

	
.

a) Determine the eigenfunctions and eigenvalues of the Laplacian operator � in 
 subject to toe
homogeneous Dirichlet boundary condition.

b) Consider the following heat problem on 
:8<: ut=�u¡ r sin(2�) on

u=0 on bnd(
)
u(r; �; 0)=0

:

Since the source term is independent of time, we can consider the solution u as:

u(r; �; t)=V (r; �)+w(r; �; t);

where the function V satisfies the Poisson equitation�
�V = r sin(2�) on

V =0 on bnd(
)

:

Take V of the form V =R(r) sin(2�) for an undetermined function R(r). Substitute V into the
Poisson equation and derive a Cauchy-Euler equation. Solve this equation and determine V . This
is a closed form solution for the Poisson equation.

c) Write down the equation for w, and determine the correct series solution to it based on the form
of the source term h= r sin(2�). Determine the solution u(r; �; t).

Problem 5.59. Consider the following domain:

45�




u=1

45�

u=¡11

2

u=0 u=0

a) Determine the eigenfunctions and eigenvalues of the Laplacian operator � on the domain 

subject to the homogeneous Dirichlet boundary condition.

b) Solve the Laplace equation �V = 0 on the above domain with the given boundary conditions
shown in the figure.

c) Solve the heat equation �
ut=�u
u(r; �; t)= 0

;

where u satisfies the given boundary conditions in the figure.
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