
Chapter 2

Linear First-Order PDEs

The general first-order partial differential equation (PDE) for a two-variable function, denoted as
u=u(x; y), can be expressed in the form:

F (x; y; u; ux; uy)= 0:

Here, ux and uy represent the partial derivatives of u with respect to x and y, respectively. The
function F establishes a functional relationship between the function u, its partial derivatives, and
the independent variables x and y. The general first-order partial differential equation for a function
u=u(x₁; : : : ; xₙ) of n independent variables, denoted as x₁; : : : ; xₙ, can be represented as:

F (x; u;ru)=0;

Here, ru is a vector denoted as ru= (@₁u; : : : ; @ₙu), which comprises the partial derivatives of u
with respect to each independent variable x₁; : : : ; xₙ.

Definition 2.1. A classical solution of the equation F (x;u;ru)=0, for x2Rⁿ, ru=(@₁u; :::; @ₙu),
is a smooth function u=u(x) defined on an open set 
�Rⁿ such that F (x; u(x);ru(x))=0, is an
identity for all x2
.

For example, it is possible to verify that functions of the form u=h(x2+ y2) for arbitrary smooth
functions h is the classical solution of the equation

yux¡xuy=0:

For example, the function u=x2+ y2 is a classical solution to the equation for all (x; y)2R2, while
u= x2+ y2

p
is a solution only on R2¡ f(0; 0)g. The graph of these two solution shown below.

Observe that the graph of a classical solution of a first-order PDE in two variable x; y is a smooth
surface:
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2.1 Classification of first-order PDEs
In this book, we will exclusively focus on the study of first-order PDEs falling within the categories
of linear, semi-linear, and quasi-linear. The subject of fully nonlinear equations will be introduced
in a separate book dedicated to that topic.

Linear equations. The general form of a linear first-order PDE for a function u=u(x), x=
(x1; : : : ; xn) is given by: X

j=1

n

vj(x) @ju(x)+ v0(x)u= r(x);

for some (usually) continuous functions vⱼ(x) and r(x).
Semi-linear equations. A semi-linear equation is characterized by the general form:X

j=1

n

vj(x) @ju(x)= r(x; u);

The difference between a linear and semi-linear equation is that a semi-linear equation can
be nonlinear with respect to u (and not with the partial derivatives ux and uy).

Quasi-linear equations. A quasi-linear equation assumes the general form:X
j=1

n

vj(x; u)@ju(x)= r(x; u);

The difference between a quasi-linear and semi-linear equation is that in the former case, the
coefficients of partial derivatives are function of u as well.

Fully-nonlinear equations. A fully nonlinear equation is an equation where one or all of the
partial derivatives are nonlinear. For example, the equation:

juxj²+ juy j²=1;

is a fully nonlinear first-order equation for u=u(x; y). We wont study this type of equation
in this book.

Exercise 2.1. Classify the following first-order equations

a) ux+uy= ex u

b) xux+ yuy= e
u

c) ux+(u2)x=1+u

d) uxuy+uuz=1

Exercise 2.2. Consider the linear equation
ux+uy=¡u:

Verify that every function of the forms u= f(y ¡ x) e¡x, u= f(y ¡ x) e¡y satisfies the equation, where f is a
smooth arbitrary function.

Exercise 2.3. Consider the following quasi-linear equation

ux+uuy=0:

a) Verify that every function of the implicit form u= f(y¡ux) solves the equation.

b) What is the explicit solution if we know u satisfies the condition u=2y+1 along the y-axis?

Exercise 2.4. Verify that the function u=1¡ x2+ y2
p

is a solution to the fully nonlinear equation

juxj2+ juy j2=1:

What is the domain of u if it considered as a classical solution? The solution satisfies the auxiliary condition
u=1 on the unit circle x2+ y2=1. Note that u= x2+ y2

p
¡ 1 solves the PDE and the auxiliary condition too.
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2.2 Characteristic method and ODEs along curves
The characteristic method is a powerful technique for solving first-order partial differential equa-
tions, and it is especially useful for semi-linear and quasi-linear equations. By using this method,
one can derive the general solution to such equations. Furthermore, the characteristic method has
a geometric interpretation that can be illustrated through the Cauchy problem.

2.2.1 Introductory remark: ODE along a curve
In our study of ordinary differential equations (ODEs), we explored equations of the form:

du
dx

= f(x; u):

Here, u=u(x) represents a single-variable function. Geometrically, we interpret the x-variable as the
x-axis in the standard direction. The solution to this equation consists of a one-parameter family of
functions u=u(x; c), where c2R, such that for any x within the domain of u, the following relation
holds:

d
dx
u(x; c)= f(x; u(x; c)):

Now, let's shift our focus to a parametric curve (t) in the xy-plane. An ordinary differential
equation (first-order) along (t) takes the form:

du� 
dt

= f(t; u � ):

Here, u�  is defined at any t as (u�)(t)=u((t)). If we denote w as u� , we arrive at the equation:

dw
dt

= f(t; w):

(t)= (x(t); y(t))

x

dw

dt
= f(t; w)

y

For instance, consider (t) given by  = (t; t2), a parabola in the xy-plane along which the
differential equation:

dw
dt

=w;

is defined. Suppose u at the point (1; 0) is 1, corresponding to (0). Then, we obtain w as:

w(t)=u((t))= et:
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Remark 2.2. Solving differential equations along curves can sometimes result in non-valid solu-
tions. For instance, let's consider the circle C represented by the parametric curve:

(t)= (cos(t); sin(t));

for t in the interval [0; 2�), along with the initial value problem:

dw
dt

=w;w(0)= 1;

defined for w(t) = u((t)). The solution to this equation is w(t) = et for t2 [0; 2�). However, the
function u is not continuous on the circle because:

u((0))=u(1; 0)= 1;

and

u
�
lim
t!2�

(t)
�
=u((0))=1=/ lim

t!2�
u((t))

Exercise 2.5. Consider the family of د fy=x2+ c; c2Rg for parameter c2R. Consider the ordinary differential
equation

du

dx
=0;

along all curves in this family. Show that u on the xy-plane can be described by u= h(y ¡ x2) where h is an
arbitrary smooth function.

2.2.2 A simple type of equations
Let's begin with the following simple equation:

ux+ v(x; y)uy=0; (2.1)

where u is a smooth two-variable function, u=u(x; y). We'll relate the independent variable y to
x through the equation:

dy
dx

= v(x; y);

and assume that the solution to this equation is expressed as y= Y (x; c), where c is a parameter
of the solution to this ordinary differential equation (ODE). This family of curves is known as the
characteristic curves of the given partial differential equation (PDE). The reason is that along each
curve y=Y (x; c), the PDE reads as an ODE:

d
dx
u(x; Y (x; c))= 0: (2.2)

Note that, by the chain rule, we have:

d

dx
u(x; Y (x; c))=ux(x; y)+

dy

dx
uy(x; y)=ux(x; y)+ v(x; y)uy(x; y):
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Equation (2.2) can be simply solved for the constant function:

u(x; Y (x; c))=C;

where C is constant along the characteristic curve y=Y (x;c) for a fixed c. Therefore, C is a function
of c, written as C =h(c), where h is an arbitrary function.

u=C3

y=Y (x; c2)
y=Y (x; c1)

y

x

u=C2

y=Y (x; c3)

u=C1

du

dx
(x; Y (x; c))= 0

Let's assume that the equation y = y(x; c) can be solved for c as c= g(x; y). Then, we can
express u(x; y) as

u(x; y)=h(g(x; y)); (2.3)

for an arbitrary smooth function h. Now, let's verify that the solution (2.3) satisfies equation (2.1):(
ux=h0(g(x; y)) gx
uy=h0(g(x; y)) gy

:

This implies:

ux+ v(x; y)uy=h0(g(x; y))(gx+ v(x; y) gy)

Utilizing the relation c= g(x; y), we have

0= gx dx+ gy dy;

which leads to:

gx+
dy
dx
gy=0:

Substituting this into our previous equation:

(h(g(x; y)))x+ v(x; y)(h(g(x; y)))y=0:

This confirms that the solution (2.3) satisfies equation (2.1).

Example 2.3. Consider the partial differential equation:

ux+uy=0:

To apply the characteristic method, we begin by finding the characteristic equation:

dy
dx

=1:

This equation has the solution y=x+c, where c is a parameter. Now, let's consider the characteristic
family, denoted as fc= y¡ x; c2Rg. Along each characteristic curve, u remains constant due to
the equation: du

dx
=0. Thus, we can express u as u=C along each line c= y¡x, where C depends

on c. Consequently, we have:

u(x; y)=h(y¡x):
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Here, h is an arbitrary smooth function. The characteristic curves in this case are straight lines
with a slope of 1.

x
c0

y

(x; y)

c1

c¡1

u=C1=h(c1)u=C0=h(c0)u=C¡1=h(c¡1)

x¡ y

Remark 2.4. In the example we solved earlier, we obtained the solution u in terms of an arbitrary
function h(y¡x). Consequently, any function of the form u=sin(y¡x), u=e¡(y¡x)2, u=(y¡x)3+
x¡ y, and so on, satisfies the given partial differential equation ux=uy=0. This type of solution
is known as a general solution.

The concept of a general solution here is akin to the concept of the general solution for a first-
order ordinary differential equation that typically contains a constant parameter rather than an
arbitrary function. In subsequent discussions, we will explore how to determine the specific form of
the arbitrary function h with the help of auxiliary conditions for the problem.

Exercise 2.6. Find the general solution of the equation

ux+xuy=u:

2.2.3 Characteristic method for semi-linear PDEs
Let's consider the following equation:

v1(x; y)ux+v2(x; y)uy=v3(x; y; u); (2.4)

where v1; v2, and v3 are smooth functions. The objective is to transform this partial differential
equation into a set of first-order ordinary differential equations along characteristic curves.

Recall the differential of a two-variable function u= u(x; y) as du= ux dx+ uy dy. Comparing
the expression of du with equation (2.4) implies the following system

du
v3(x; y; u)

= dx
v1(x; y)

= dy
v2(x; y)

: (2.5)

By relating x to y through the characteristic equation:

dy
dx

= v(x; y); (2.6)

where v = v2
v1
, we obtain a family of curves c: c= g(x; y), where c is an arbitrary constant. The

given PDE reduces to the following equation along each c:

du
dx

= v3
v2
: (2.7)

Suppose this equation is solved for u=U(x; c;C), where C depends on c and thus can be expressed
as C =h(c) for an arbitrary smooth function h. Hence, the general solution can be expressed as:

u=U(x; g(x; y); h(g(x; y))):
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Example 2.5. Let's solve the following partial differential equation:

xux+ yuy=xy:
The characteristic equation is given by:

dy
dx

= y
x
;

which we can solve to obtain y= cx. The ordinary differential equation for u becomes:

du
dx

= y:

Substituting y= cx into this equation, we have:

du
dx

= cx:

This ordinary differential equation can be solved to find:

u= 1
2
cx2+C:

Here, C can be expressed as an arbitrary smooth function in terms of c. Therefore, the general
solution can be written as:

u(x; y)= xy
2
+h

�
y
x

�
:

Theorem 2.6. The general solution of equation ( 2.4) is

u=U(x; g(x; y); h(g(x; y))); (2.8)

where h is an arbitrary smooth function, c= g(x; y) is the equation of characteristic curves solution
of the equation ( 2.6), and U is the solution of the equation ( 2.7).

Proof. We have (
ux=Ux+Uy gx+uzh0(g) gx
uy=Uy gy+uzh0(g) gy

:

Multiplying the first equation by v1 and the second one by v2, we obtain

v1ux+ v2uy= v1Ux+Uy(v1gx+ v2 gy)+uhh0(g) (v1gx+ v2 gy):

By the equation c= g(x; y), we have

0= gx dx+ gy dy;

and by the equality
dx
v1

= dy
v2
;

we obtain:

v1gx+ v2 gy=0:
Hence, we obtain the equality:

v1ux+ v2uy= v1Ux:

On the other hand, from the equation u=U(x; c;C), we have du=Ux dx. Utilizing the equation

du
dx

= v3
v1
;
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yields v1Ux= v3, that proves the equation v1ux+ v2uy= v3. �

Definition 2.7. Given a fixed value of c in the real numbers, the curve c, which is the solution
of equation ( 2.6), is referred to as a characteristic curve of the differential equation ( 2.4). Since
equation ( 2.4) reduces to an ordinary differential equation when evaluated along c for any fixed
c, we obtain an infinite system of ordinary differential equations for the family of characteristic
curves fc; c2Rg. The system ( 2.5) is known as the characteristic system of the associated partial
differential equation.

Example 2.8. The existence of a general solution, even for linear first-order PDEs, is not always
a trivial question. Consider the equation:

xux+ yuy=�u;

where � is a constant. We will examine three cases: �=0;¡1, and 1.
For �=0, the characteristic system is:

dx
x
= dy

y
= du

0
;

and the equation for the characteristic curves in the xy-plane is:

ydx+xdy=0:

The general solution of this simple ODE is y=cx, which is shown in the following figure:

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

Along the characteristic line c, we have du

dx
=0, and thus u is constant along c. Furthermore,

all characteristic lines intersect at the origin, so c carries the information of u at the origin. This
implies that u(x; y)=u(0;0)=C, a constant for all (x; y). There is no other solution of the equation
in this case.

Now, consider �=¡1. We will show that the only possible solution is u�0. In this case, the
solution u along c satisfies the ODE:

du
dx

=¡1
x
u;

and therefore, u= C

x
along c: y=cx with respect to x. On the other hand, the PDE implies u(0;

0)=0, and thus C=0, implying that u(x; y) is identically zero in this case.
For �=1, the solution u satisfies the ODE:

du
dx

= 1
x
u;

with the solution u=Cx, for a constant C. The general solution in this case is:

u(x; y)= f
�
y
x

�
x:
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The form of the solution imposes a restriction on the form of the function f if u is assumed to be
smooth inside the unit disk. For example, for f(z)=z2, the solution is not even continuous at the
origin.

Exercise 2.7. Consider the following equation

2 x
p

ux+uy=0:

a) Draw the characteristic curves of the equation.

b) Show that u(4; 3)=u(9; 4).

c) Write down the general solution of the equation. Note that the solution is not differentiable with respect
to x at x=0.

Exercise 2.8. Consider the following equation

ux+ y
p

uy=�u; y > 0

where � is a constant.

a) First assume �=0. Draw the characteristic curve in the xy-plane and use the relation du

dx
=0 to find u(1;1).

if u= 1

1+x2
on the x-axis.

b) Find the general solution of the equation for �=¡1. What is u(1; 1) if u= 1

1+x2
on the x-axis?

Exercise 2.9. Consider the equation

ux+uy=0:

Show that if u is the solution of the equation, then it is impossible that u=x on the unit circle x2+ y2=1.

Exercise 2.10. Consider the following function

yux+xuy=0:

a) What are the characteristic curves of the equation in the xy-plane?

b) Find the general solution of the equation and draw some integral surfaces of the equation.

Exercise 2.11. Find the general solution of the following equations

a) xux+ yuy=xyu:

b) ¡yux+xuy=2xyu:

c) ux+uy=x(y¡x)u

d) xux+ yuy=x(y+u)

Exercise 2.12. Consider the following equation

ux+3x2uy= y
1
3a(x)+ y

2
3 b(x);

where a; b are smooth functions. Show that the general solution of the equation is

u(x; y)= f(y¡x3)A(x)+ g(y ¡x3)B(x);

where A(x); B(x) are respectively anti-derivatives of xa(x) and x2 b(x).

Exercise 2.13. Find the general solution of the following equation

ux+uy=u+xu
2:

Exercise 2.14. Consider the following equation

xux+ yuy= f(u):

If f(0)=/ 0, show that the equation can not have a smooth solution inside a unit disk.

Exercise 2.15. Consider the following equation

¡yux+xuy=u:

If u(x; y) is a smooth solution in the closure of the unit ball in the xy-plane, show that u=0.
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Hint: Since u is smooth in the closure of the unit ball B, it has an absolute max and min in cl(B). If the
max and min occurs inside B, then u= 0. Let max and min occur on the boundary. Conclude the relation
¡yux+xuy=0 on the boundary. Use this relation and conclude u=0.

Exercise 2.16. Consider the following equation

yux+uy=u:

Take y as the independent variable for the characteristic curves x= x(y), and find the general solution of the
equation.

2.2.4 Semi-linear equation in general dimension
Now, we generalize the method for semi-linear PDEs in general dimension. Consider the following
equation: X

j=1

n

vj(x) @ju= r(x; u); x2Rn; (2.9)

where vj(x) are smooth functions of x= (x1; : : : ; xn). To solve this equation, we first consider the
characteristic system:

dx1
v1(x)

= � � �= dxn
vn(x)

= du
r(x)

:

The characteristic equation in the space (x1; : : : ; xn) is

dx1
v1(x)

= � � �= dxn
vn(x)

:

By taking x1 as the independent variable, we can write the system as:8>>>>>>>><>>>>>>>>:
dx2
dx1

= v2(x)

v1(x)

���
dxn
dx1

= vn(x)

v1(x)

: (2.10)

We can solve system (2.10) for a given parameter c=(c2; : : : ; cn) as the implicit system:

c2=g2(x); : : : ; cn=gn(x):

We assume that the above implicit solutions are solvable for x in terms of x1 and c, so we can write:

x2=x2(x1; c); : : : ; xn=xn(x1; c):
The intersection of surfaces

c2=g2(x); : : : ; cn=gn(x);

reduces to a smooth curve c, c=(c2; : : : ; cn), which is the same as the parametric curves:

c: fx2=x2(x1; c); : : : ; xn=xn(x1; c)g:

Next, we consider the derivative of u along the curve c, which is given by:

du
dx1

= r(x; u)
v1(x)

: (2.11)

By solving this equation, we obtain a function u=U(x1; c2; : : : ; cn; C). Therefore, taking C=h(c),
for an arbitrary smooth function f , the general solution to equation (2.9) can be expressed as:

u=U(x1; g2(x); : : : ; gn(x); h(g2(x); : : : ; gn(x))):
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Example 2.9. Let's solve the partial differential equation:

ux+uy+uz=0:

The characteristic equations in the space (x; y; z) is given by:

dy
dx

=1; dz
dx

=1;

which is solved for c2= y¡x, c3= z¡x. The characteristic curves parameterized by x is

c=(x; x+ c2; x+ c3)

for c= (c2; c3). The given PDE along c becomes: du

dx
= 0, which implies u=C. Replacing C by

h(c1; c2) for an arbitrary smooth function h, we obtain the general solution

u(x; y; z)=h(y¡x; z¡x):

Exercise 2.17. Consider the following equation

ux¡ zuy+ yuz=�u;

where � is a constant.

a) Show that the characteristic curves of the equation have the following equations

fc1;c2g(x)= (x; c1 cos(x)¡ c2 sin(x); c1 sin(x)+ c2 cos(x)):

What is the shape of the characteristic curves?

b) The characteristic curves passes through the plane x=0. Show that for �=0, we have

u(0; 1; 1)=u
�
�

2
;¡1; 1

�
:

c) Show that the solution of the given PDE along fc2;c2g(x) is of the form

u(x; c1; c2)=h(c1; c2) e
�x;

for arbitrary function h. Find the general solution.

Exercise 2.18. Consider the following equation

ux+2 y
p

uy+2 z
p

uz=0;

where y � 0 and z � 0. Find the general solution of the equation. Verify the equality u(2; 4; 4)=u(1; 1; 1).

Exercise 2.19. The singular equation

xux+ yuy+ zuz=0:

If u(x; y; z) is a smooth solution inside the unit ball in R3, show that u(x; y; z)=C a constant for all x; y; z.

2.2.5 Characteristic method for quasi-linear equations
The method of characteristics for quasi-linear partial differential equations may lead to the emer-
gence of new phenomena, such as shocks, which we will discuss later. Let's consider the following
equation

v1(x; y; u)ux+ v2(x; y; u)uy= v3(x; y; u): (2.12)

The coefficients of the quasi-linear equations depend on u. The characteristic system of the PDE is:

dx
v1

= dy
v2
= du
v3
: (2.13)
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Let c1= �(x; y; u) and c2=  (x; y; u) be implicit solutions of the characteristic system. We have
the following theorem:

Theorem 2.10. Let v1; v2, and v3 be smooth functions in equation ( 2.12), and let c1=�(x; y;u) and
c2= (x; y;u) be implicit solutions of its associated characteristic system. Then, the general solution
of the equation in implicit form is given by f(�;  )=0 for any smooth function f satisfying fu=/ 0.

Example 2.11. Let's consider the following equation called the Burger's equation:

ux+uuy=0:

The characteristic system is given by:
dx
1
= dy
u
= du

0
;

By taking x as the independent variable and setting y= y(x), we obtain:

dy
dx

=u; du
dx

=0:

This system is solved for c1= u and c2= y ¡ xu. The general implicit solution of the equation is
derived by f(c1; c2)=0, for arbitrary smooth function f , or equivalently f(u; y¡xu)=0. Alterna-
tively, we can write the solution as u= g(y¡xu) for arbitrary smooth function g. Note that u in
both cases is in the implicit form.

Example 2.12. Consider the equation

ux+ yuuy+ zuuz=0:

To solve this equation, we need to determine the characteristic system, which is given by:

dy
dx

= yu;
dz
dx

= zu; du
dx

=0:

Solving this system of differential equations, we obtain e¡xy= c1u, e¡xz=c2u, and u=c, where c;
c1 and c2 are arbitrary constants. Substituting these values into the equation, we get the general
implicit solution as

f(u; e¡x yu¡1; e¡x zu¡1)=0:

Alternatively, the solution can be expressed as u= g
�
ye¡x

u
;
ze¡x

u

�
.

Proof. (of the theorem) Since f(�(x; y; u(x; y));  (x; y; u(x; y))) is identically zero, taking
derivatives with respect to x and y gives:

(
f�(�x+ux�u)+ f ( x+ux u)=0
f�(�y+uy�y)+ f ( y+uy u)= 0

:

Note that fu=/ 0 implies that f� and f cannot both be identically zero. This in turn implies that
the following determinant is zero: �������� �x+ux�u  x+ux u

�y+uy�y  y+uy u

��������=0:

Expanding the determinant and simplifying, we get:

(�u y¡  u�y)ux+(�x u¡ �u x)uy= �y x¡ �x y: (2.14)
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On the other hand, we have: (
d�= v1 �x+ v2 �y+v3 �u=0
d = v1  x+ v2  y+ v3  u=0

;

that gives
v1

�u y¡  u�y
= v2
�x u¡ �u x

= v3
�y x¡ �x y

: (2.15)

Matching relations (2.14) and (2.15) gives v1ux+ v2uy= v3, which completes the proof. �

Exercise 2.20. Find the general solution of the following equations

a) uux+uy=u2

b) sinuux+uy=1 (hint: you can take y as the independent variable just for the simplicity)

c) xux+(1+u)uy=u

d) ux+uuy¡uuz=1

Exercise 2.21. Consider the following equation

ux+uuy=0:

a) Find the general solution in the implicit form. Then for the auxiliary condition u(0; y)= y, find an explicit
solution. Determine the domain (x; y) where the solution exists smoothly.

b) In general, the implicit solutions can not be transformed to an explicit form, although, the existence of
such explicit forms is guaranteed by the implicit function theorem . Let u(0; y) = ey. Obtain the implicit
solution of the equation and use the theorem to show the existence of the explicit solution.

Exercise 2.22. Consider the following equation(
ux+uuy+uuz=0

u(0; y; z)= f(y; z)
:

a) Find the solution of the equation in the implicit form.

b) Find the explicit solution if f(y; z)= y+ z.

Exercise 2.23. Consider the following quasi-linear equation

@1u+
X
j=2

n

vj(x; u)@ju= r(x; u); x2Rn

The characteristic systems is 8>>>>>><>>>>>>:
dxj
dx1

= vj; j=2; : : : ; n

du

dx1
= r

:

Let the system sis solved for

c=  (x; u); cj= �j(x; u); j=2; : : : ; n:

Show that the function f(�j(x; u);  (x; u))= 0 solves the given partial differential equation.

2.3 Theoretical aspects

2.3.1 The geometrical interpretation of a first-order PDE
Consider the partial differential equation:

v1(x; y; u)ux+ v2(x; y; u)uy= v3(x; y; u): (2.16)
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Here, v1; v2, and v3 are functions of x; y, and u. Let z=u(x; y) is a solution to this equation. This
function defines a surface on the space (x; y; z):

S: (x; y; u(x; y)):

Recall that the vector n~ : (¡ux;¡uy; 1) is perpendicular on S at any point (x; y; z) on S. Now,
assume that the vector field V~ : (x; y; z) 7! (v1; v2; v3) is given on the space. The partial differential
equation (2.16) then can be stated from the geometrical point of view as follow:

Geometrical interpretation of a first-order PDE: Given a vector field V~ : (x; y; z)!(v1;
v2; v3), the equation of a tangent surface z=u(x; y) to V~ is given by the partial differential equation

v1(x; y; u)ux+ v2(x; y; u)uy= v3(x; y; u):

Conversely, the solution of the above partial differential equation defines a surface z=u(x; y) that
is locally tangent to the vector field V~.

For example, consider the equation: ux+uy=0. The vector field is

V~ : (x; y; z)! (1; 1; 0)

The figure below shows two different surfaces that are tangent to this vector field at all point of the
surfaces

In fact, it can be seen that the all surface generated by the function u= f(y¡x) for arbitrary
smooth f has this tangent property as

V~ �n~ =(1; 1; 0) � (fx0;¡fy0 ; 1)= 0:

Problem 2.1. Let V =(v1(x; y; z); v2(x; y; z); v3(x; y; z)) be a given vector field in space.

a) Show that the existence of a surface �(x; y; z)=0 which is perpendicular to the vector fields at each point
on the surface satisfies the following equation

v1 dx+ v2 dy+ v3 dz=0:

b) The existence of the solution to the above ODE is not a trivial question. Show that if r�V =0, then there
is a surface �(x; y; z)=0 that satisfies the above ODE. Hint: Note that if r�V =0, then V is potential.

c) As an example, consider the vector field V =(y; x; z). Find a surface which is perpendicular to V at each
point on the surface. The figure below depicts one of such surfaces.
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Problem 2.2. Consider the vector field V = (¡y; x; 0). This field does not satisfy the condition r� V = 0,
however, a surface still exists which is perpendicular to V . Show that the surface expressed parametrically as
�(x; z)= (x; �x;¡xz) has such a property.

Problem 2.3. Show that there is no surface �(x; y; z)= 0 with the normal vectors (x; y; xy).

2.3.2 Parametric solution surfaces

Now, consider a curve (t) on the solution surface (yet unknown) S. This curve is tangent to the
vector field V~ at any point on the curve. Therefore, the equation of (t) is determined by the
following ordinary differential equation8>>>>>>>><>>>>>>>>:

dx

dt
= v1(x(t); y(t); z(t))

dy

dt
= v2(x(t); y(t); z(t))

dz

dt
= v3(x(t); y(t); z(t))

: (2.17)

This first-order system of ordinary differential equation has a unique solution if an initial condition
is set for the system. Let's assume that we know a point p0 on S. We can set the initial condition as:

(0)= p0:

8>><>>:
x(0)=x0
y(0)= y0
z(0)= z0

:

With this initial condition, a curve p0(t) is obtained on S. In this way, to determine S, we need
to a family of curves fp(t)g where p lies on a curve on S as shown below:

p(t)=�(t; s)

z=u(x; y)

x

p(s)
y

For example, assume the curve p(s) = (s; 0; s sin(s)) lies on S of the solution of the equation
ux+ uy=0. The solution surface is spanned by the curves determined by the following system of
ODEs 8>>>>>>>><>>>>>>>>:

dx

dt
=1

dy

dt
=1

dz

dt
=0

;

accompanied with the conditions x(0)= s; y(0)=0; z(0)= s sin(s). This system is solved as

x(t; s)= t+ s; y(t; s)= t; z(t; s)= s sin(s):
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In this way, we obtain a parametric surface

�(t; s)= (t+ s; t; s sin(s)):

It is simply seen that this parametric surface is algebraically represented as

u(x; y)= (y¡x) sin(y¡x):

The figure below depicts the �data line� p(s) in black and the space characteristic curves p(t) in red.

Remark. The advantage of using parametric form for representing solutions is that it can represent
very complicated surfaces, whereas explicit functions z=u(x; y) represent only restricted classes of
surfaces. The example below further clarifies this point.

Example 2.13. Consider the following problem(
0.2xux¡uuy= y

ujfx=y2g=y
:

Here u is given along the curve x= y2 in the xy-plane. This data can be parameterized in terms of
s as: p(s)=(s2; s; s). The system of characteristic equations is:8>>>>>>>><>>>>>>>>:

dx

dt
= 0.2x

dy

dt
=¡u

dz

dt
= y

;

with the initial conditions x0= s2; y0= s and z0= s. The parametric representation of the integral
surface is obtained as:

�(t; s)= (s2 e0.2t; s(cost¡ sint); s(sint+ cost)):

As shown in figure below, the solution of the equation represents a complicated surface which can
not be expressed by an explicit function z=u(x; y).
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Even though this surface is not associated with an explicit function, it is possible to define
an explicit function that locally coincides with this surface. Thus, classical solutions of partial
differential equations can only be defined locally in a neighborhood of the data curve.

Exercise 2.24. Use the parametrization and find the solution of the following Cauchy problems. Use Matlab
and draw the integral surface

a) uux+ yuy=x, u= sin(x) on y=1.

b) (y¡u)ux+(u¡x)uy=u, u=x2 on y=0.

The following code generates the integral surfaces of the given equation in part b).
s = linspace(0, 2, 100); % define the range of s
t = linspace(0, 10, 100); % define the range of t
[S, T] = meshgrid(s, t); % create a grid of s and t values
X = S .* cos(T); % compute the x-coordinates
Y = S .* sin(T); % compute the y-coordinates
Z = S .^ 2 .* exp(0.2 * T);% compute the z-coordinates
surf(X, Y, Z) % plot the surface
shading interp; camlight
xlabel('x');
ylabel('y');
zlabel('z');
title('Surface plot of x = s*cos(t), y = s*sin(t), z = s^2*exp(0.2*t)');

2.3.3 Cauchy problem
In this section, we demonstrate how to obtain the particular solution of a given first-order PDE
from the general solution, using an auxiliary condition or additional information about the solution.
This process is similar to deriving particular solutions from the general solutions of ODEs, using
initial conditions.

Definition 2.14. A problem of the form(
v1(x; y; u)ux+ v2(x; y; u)uy= v3(x; y; u)
ujC=g

(2.18)

where C is a curve in an open set 
�R2 in the xy-plane, is called a Cauchy problem.

Let's consider the following problem:8<: ux+uy=0

ujfy=0g=
1

1+2x2

:

The general solution to the equation is u=h(y¡ x) for an arbitrary smooth function h. Utilizing
the initial condition u(x; 0)= 1

1+2x2
is

1
1+ 2x2

=h(¡x);

and thus h(y ¡ x) = 1

1+2(y¡x)2 , and thus the particular solution to the given Cauchy problem is
given by:

u(x; y)= 1
1+2(y¡x)2 :
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Exercise 2.25. Find the particular solution of the following Cauchy problem(
ux+(x+ y)uy=u

ujx=0=sin(y)
:

Exercise 2.26. Find the particular solution of the following Cauchy problem(
ux+uy=2x(y¡x)u
ujx=0=ey

:

Exercise 2.27. The Cauchy problem can be generalized to higher dimensions. Find the solution of the following
equation for u=u(x; y; z): (

xux+ yuy+ zuz=0

ujfz=1g=xy

Examples below highlight some of the issues that can arise when attempting to extract a par-
ticular solution from a general solution.

Example 2.15. Consider the Cauchy problem:(
ux¡ 2xuy=0
ujfy=x2g=x

:

The general solution of the PDE is u= f(y+x2) for an arbitrary smooth function f . We can use the
auxiliary condition u=x on the line C: y=x2 to determine f , which gives us x= f(2x2). However,
this equation cannot be solved as f(2) can have two possible values, �1, leading to a contradiction.

-2 -1 1 2

-4

-2

2

4

This problem occurs because the characteristic curves of the PDE, y=¡x2+c, intersect the data
curve C: y=x2 at more than one point, resulting in multiple possible values of u. To resolve this
issue, we can consider only one branch of the data curve, such as y=x2; x� 0, to obtain a unique

solution u(x; y)= y+x2

2

q
for y �¡x2.

-2 -1 1 2

-4

-2

2

4

However, this solution is still not unique in the region y <¡x2, where the characteristic curves
do not intersect the data curve. The value of u along these curves can be chosen arbitrarily.
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-4

-2

2

4

If we change the data curve to y=¡x2, which is also a characteristic curve, there is no unique
solution in the region y >¡x2 and y <¡x2. In this case, x= f(0), which is not solvable from the
general solution u= f(y+x2) and the data curve y=¡x2.

-2 -1 1 2

-4

-2

2

4

Example 2.16. Let us consider the following equation:(
¡yux+xuy=u
ujC=x

;

where C is the x-axis for x� 0. To apply the method of characteristics, we first need to find the
equation of the characteristic curves. Using the characteristic equation

dx
¡y =

dy
x
;

we get x2+ y2= c; where c is a positive constant. Therefore, the characteristic curves are circles
centered at the origin. In one of previous exercise, we asked the read to show that this equation does
not have any smooth solution inside a disk. We can see this fact by trying to solve this equation
explicitly. Taking x as the independent variable, we can rewrite the PDE as

du
dx

= ¡1
y
u:

To solve this equation, we need to express y as a function of x. However, this cannot be done
through the obtained implicit function x2+ y2= c. One way to overcome this difficulty is to use
the parametric representation of the characteristic curves. Let t be a parameter and consider the
characteristic system: 8<:

dx

dt
=¡y

dy

dt
=x

:

The solution to this system is

p(t)= (s cos(t); s sin(t));
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where s is a non-negative parameter. Note that we used the data curve C to write the initial point
of the characteristic curve as s(0)= (s; 0). Now, we can express u in terms of t as follows:

du
dt

=u;
which is a separable ODE with solution

u(s(t))=u(s(0)) et=u(s) et= set:

To determine the domain of t, note that s(0)= s(2�), which implies

u(s(2�))=u(s(0))= s:
However, we also have

u(s(2�))= se2�;

so we conclude that the domain of t can not be [0;2�]. Note that for x=scost; y=s sint and u=set,
we obtain the integral surface

�(t; s)= (s cost; s sint; set):

This solution can be put in the algebraic form as

u(x; y)= x2+ y2
p

e
atan

¡ y
x

�
:

Exercise 2.28. Find the particular solution of the following Cauchy problem(
ux+(x+ y)uy=u

ujx=0=sin(y)
:

Exercise 2.29. Find the particular solution of the following Cauchy problem(
ux+uy=2x(y¡x)u
ujx=0=ey

:

Exercise 2.30. The Cauchy problem can be generalized to higher dimensions. Find the solution of the following
equation for u=u(x; y; z): (

xux+ yuy+ zuz=0

ujfz=1g=xy

Exercise 2.31. Consider the following Cauchy problem(
¡yux+!02uy=�u
ujC=x

;

where C is the line y=x for x�0, and !0 is a constant. Use parametric representation of characteristic curves in
terms of the parameter t and find the solution for �=0. If �=/ 0, find the domain of t and indicate the domain
of the solution in the xy-plane.

Exercise 2.32. Consider the following Cauchy problem(
(¡y¡�x)ux+(x¡�y)uy=u
ujC= f(x)

;

where C is the x-axis for x� 0, and �> 0. Show that the problem is solvable in classical sense only if f(x)= 0.

2.3.4 Well-posedness and existence of integral surfaces
As we observed in previous examples, if the data curve of a Cauchy problem is not a characteristic
curve, then there is a solution that can be extended locally. The following figure shows this situation
schematically.
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s0(t)

C(s)

m1

m2

x
C(s0)

y

Here, the data curve C is parametrized by s as C =C(s), and the planar characteristic curves
 are parameterized by t. Note that s(t) is a characteristic curve passing through C(s) at t=0.
Let s0 be a point on C(s) in its domain. If s0

0 (0) and C 0(s0) are non-parallel, then there is a t0> 0
such that s0(t) exists for 0� t < t0.

Theorem 2.17. Consider the Cauchy problem(
v1(x; y)ux+ v2(x; y)uy= v3(x; y; u)
ujC=f

where v₁; v₂, and v₃ are smooth functions, and C is a smooth curve in the xy-plane. Assume there
exists (x₀; y₀)2C such that

C 0(x0; y0) jj (v1(x0; y0); v2(x0; y0)): (2.19)

Then there exists an open neighborhood 
 of (x₀; y₀) and a smooth function u=u(x; y) on 
 that
solves the given Cauchy problem.

The proof of the theorem is based on a standard theorem on the existence and uniqueness of
the solution to ordinary differential equations. Note that if condition (2.19) holds, then due to the
continuity of v1; v2, and C 0 at (x0; y0), the condition holds for an open neighborhood of (x0; y0).
Then, the existence of a domain 
 for the solution u(x; y) is reduced to the existence and uniqueness
of the ordinary differential equation

du
dt

= v3(x(t); y(t); u):

However, it is important to note that the theorem only provides a sufficient condition for the
existence of a solution, and there may be cases where the condition is not satisfied but a solution
still exists. For instance, consider the problem:(

ux+ y
p

uy=0
u(x; 0)= f(x)

This problem has the solution u(x; y)= f(x¡2 y
p

) which is defined for y�0, even though it is not
generally differentiable on the x-axis.

The existence of a parametric surface for a quasi-linear first-order PDE is established in a similar
manner. We have the following theorem.

Theorem 2.18. Consider the Cauchy problem(
v1(x; y; u)ux+ v2(x; y; u)uy= v3(x; y; u)
ujC=f

;
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where v1; v2; v3 are smooth functions and C is a smooth and non-characteristic curve in xy-plane.
Let ¡(s) be the parametrized space data curve (C(s); f(s)). Fix s0 in the domain of ¡(s) and let
(x0; y0; u0)=¡(s0). If

¡0(s0)�V (x0; y0; u0)=/ 0;

where V = (v1; v2; v3), then there exist �; �>0 such that the given problem has an integral surface
�(t; s) for t2 (¡�; �) and s2 (s0¡�; s0+�).

2.4 Time dependent functions and fluid flow

Consider a fluid distributed along the x-axis at time t, with u(x; t) representing its density function.
Let x0 be a fixed point on the x-axis. The rate of change in u(x0; t) as time progresses is given
by the partial derivative ut(x0; t). Meanwhile, ux(x; t0) measures the rate of difference in density
between x and its neighboring points.

x

t

(x0; t0)

x

x

t

t (x0; t0)

ut(x0; t0)
ux(x0; t0)

Now, consider a fluid with density function u(x; t) flowing with velocity function V (x). This
velocity function can be thought of as a one-dimensional vector field: x!V (x). The properties of
this field affect the density function u. For example, suppose we have a control volume [¡1;1]moving
with velocity V (x)=x. The total mass within this volume at time t=0 is given by the integral

M =
Z
¡1

1

u(x; 0) dx:

What can be said about the mass of this packet at time t=1? Let x0 be a fixed point on the x-axis.
According to the velocity field, the position of x0 at time t can be determined by the differential
equation dx

dt
=V . For V (x)=x, we obtain x(t)=x0et. Therefore, the control volume [¡1;1] expands

to the volume [¡e; e] at time t= 1. Assuming there is no sink or source of mass production, the
total mass is conserved, and thus

M =
Z
¡e

e

u(x; 1) dx:

Since the volume of the control volume has increased, the density u(x; 1) must have decreased to
maintain the same mass. The main objective of this section is to address how the density function
u of a n-dimensional fluid flow changes over time.

Exercise 2.33. Consider the following density distribution

u(x; t)= e
¡(x¡t)2

2 :

It is simply seen that the total mass along the x-axis for any t is equal toZ
¡1

1
u(x; t) dx= 2�

p
;
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and thus we can write that

lim
t!1

Z
¡1

1
u(x; t) dx= 2�

p
:

Find the steady state distribution when t!1 and calculateZ
¡1

1
lim
t!1

u(x; t) dx:

This shows that the following equality does not hold always

lim
t!1

Z
¡1

1
u(x; t) dx=

Z
¡1

1
lim
t!1

u(x; t) dx:

2.4.1 Change of density along flow lines
Consider a velocity field V =(v1(x); : : : ; vn(x)) of a fluid flow, where x=(x1; : : : ; xn). Let x0 be a
fixed point in Rn, and let x0(t) be the flow line of x0, determined by the system of ODEs

dxj
dt

= vj(x); j=1; : : : ; n;

with initial condition x(0)=x0. Our goal is to find the rate of change of the density function u along
the flow line x0(t). This rate of change is given by the time derivative:

du
dt
(x0; t)=ut(x0; t)+ru(x0; t) �

dx0
dt

;

where ru(t; x) represents the gradient of u. This can be expressed in coordinate form as:

du
dt
(x; t)=ut(x; t)+

X
j=1

n

vj(x) @ju(x; t):

The derived formula provides us with the change of u along the flow lines. Therefore, the question
arises: can we determine u(x; t) if we know the initial density u(x; 0)?

Exercise 2.34. Verify that the above formula is a straightforward application of the chain rule.

Example 2.19. Consider a fluid flow in the xy-plane, where the density at t = 0 is given by
u(x; y; 0)= f(x; y)=x2 e¡x

2¡y2, and the velocity field V is

(x; y) 7! (¡�x¡ y; x¡�y);

with ��0 being a constant. The trajectories of the particles are determined by the following system
of differential equations: 8<:

dx

dt
=¡�x¡ y

dy

dt
=x¡�y

:

For the first case, let �=0, that leads to the trajectory

(x0;y0)(t)= (x0 cos(t)¡ y0 sin(t); x0 sin(t)+ y0 cos(t));

where (x0; y0) is the initial position at t=0. In matrix form, the flow line passing through (x0; y0)
is given by: �

x(t)
y(t)

�
=
�

cos(t) ¡sin(t)
sin(t) cos(t)

��
x0
y0

�
:
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Note that the coefficient matrix is the rotation matrix Rt. Consider a control volume D centered
at (0.5; 0.5). The following graph illustrates u(x(t); y(t); t) for t=0: �

4
: 2�. Observe how the control

volume centered at (0.5;0.5) rotates around the origin while also rotating around itself. The velocity
field is responsible for this rotation, as it is a rotational field with a non-zero curl, denoted as
r�V =2.

The following figure shows the density at different time slices, specifically for times t=0; �
2
, and

�. As shown in the figure, the density rotates in a circular pattern around the origin as it is clear
from the differential equations of the trajectory dx

dt
=¡y; dy

dt
=x. Furthermore, we observe that the

density along the trajectory of the fluid particles remains constant, which means the density remains
constant along the trajectory. This type of fluid flow, where the density remains constant along the
trajectory of the fluid particles, is called an incompressible flow.

Now, let �= 0.1. The trajectory of the control volume is an inward spiral towards the origin,
given by �

x(t)
y(t)

�
= e¡0.1t

�
cos(t) ¡sin(t)
sin(t) cos(t)

��
x0
y0

�
:

The following graph illustrates this scenario, showing how the control volume centered at (0.5; 0.5)
forms an inward spiral while also rotating around itself. Observe how the control volume gradually
becomes smaller and by the conservation law, the density in D increases to balance the decrease in
the volume.
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The above example illustrate how the velocity filed V (x) affects the density of particles along
the flow lines. The following theorem make a relationship between the divergence r�V (x) and the
change of density along the flow line.

Theorem 2.20. Consider a control volume D in a fluid flow that moves according to the velocity
field V. If the divergence of V, denoted by r�V (D(t)), is positive, then the volume of D increases
along the trajectory D(t). On the other hand, if r�V (D(t)) is negative, the volume of D decreases
along the trajectory, and if r �V (D(t)) is zero, the volume of D remains constant.

Corollary 2.21. If r � V =0, the density of a fluid-flow remains constant along its trajectory in
the absence of any material sink or source.

In the first scenario of the example, the velocity field V =(¡y; x) had a divergence of r�V =0,
which implies that the volume of the control volume remained constant along D(t). As a result,
the density u remained unchanged along the flow lines. In the second scenario, the velocity field
was V =(¡y¡�x; x¡�y), with a divergence of r�V =¡2�<0 for �>0. This indicates that the
volume of the control volume decreased with time, leading to an increase in the density u to balance
the volume decrease.

2.4.2 Continuity equation

Given a region 
 in a fluid flow, the total mass of the fluid in 
 at time t, denoted byM
(t), changes
due to two factors. The first factor is the net flow rate of fluid passing through the boundary bnd(
)
per unit time. This can be expressed mathematically as the surface integral

�(t) :=¡
ZZ

bnd(
)

u(x; t)V (x) � �dV :

where V is the velocity vector of the fluid and � is the unit outward normal vector to the boundary.
The second factor is the presence of a source or sink of material in the fluid, which can be represented
mathematically as the volume integral

Q(t)=
ZZZ



f(x; t) dV ;
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where f(x; t) is the rate of material added or removed per unit volume at point x at time t.
Therefore, we can write the rate of change of M
(t) as:

dM
(t)
dt

=¡
ZZ

bnd(
)

u(x; t)V (x) � �dV+
ZZZ



f(x; t) dV :

This equation is known as the mass conservation equation, or the continuity equation, and it plays
a fundamental role in fluid dynamics.

On the other hand, the left hand side of the above equation is

dM
(t)
dt

= d
dt

ZZZ


�(x; t) dV =

ZZZ


�t(x; t) dV ;

and by equating the two expressions for dM


dt
, we arrive at the continuity equation for the fluid flow

in 
: ZZZ


�t(x; t) dV =¡

ZZ

bnd(
)

u(x; t)V (x) � �dS+
ZZZ



f(x; t) dV :

The material flux J(x; t)=u(x; t)V (x) measures the rate at which fluid passes through a unit area
per unit time. When considering the flux at a particular point x on the boundary bnd(
) of the
bounded, open set 
 in R3, the unit normal vector �(x) is needed to determine the flux through the
surface. This is because the flux J(x; t) can be decomposed into two components: 1) a component in
the direction of the unit normal vector �(x), and 2) a tangential component that does not leave the
closure of 
, denoted by 
� . Only the component of J(x; t) that is perpendicular to the boundary,
i.e., J(x; t) � �(x), contributes to the flow leaving 
 through bnd(
). The figure below illustrates
this concept.

J~
unit area

J~

z

y

x




�

T̂

The differential form of the continuity equation can be derived by applying Gauss's theorem to
the divergence of the material flux density. Specifically, the theorem yields:ZZZ



ut(x; t) dV =¡

ZZZ


r� [u(x; t)V (x)]dV +

ZZZ


f(x; t) dV ;

which simplifies to: ZZZ


fut(x; t)+r� [u(x; t)V (x)]¡ f(x; t)g dV =0:

Since the integral holds for every arbitrary subdomain of 
, we conclude that the integrand must
be identically zero, yielding the continuity equation:

ut(x; t)+r � [u(x; t)V (x)]= f(x; t): (2.20)

This equation expresses the conservation of mass, where f(x; t) represents the source or sink of
material in the fluid.
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Exercise 2.35. Show the relation

div [u(x; t)V (x)]=ru � V (x)+u(x; t) div [V (x)];

and conclude that the conservation equation can be written as follows

ut+V �ru=¡u div [V ]:

Assuming f is identically zero in equation (2.20), we can rewrite the equation using the result
from the previous exercise as follows:

ut+V � ru=¡ur�V : (2.21)

Let z(t) be the trajectory of a particle at z which is determined by the equation dz

dt
=V (z). In this

case, the left hand side of the above equation reads du

dt
(t; x(t)), and then we have

du
dt
(z(t); t)=¡ur �V (z(t)):

If r �V (z(t))= 0, then du

dt
(z(t); t) and this implies that the density of x remains the same at its

trajectory, an therefore, equation (2.21) leads to the solution

u(z(t); t)=u(z(0); 0);
and by the fact z(0)= z, we obtain

u(z(t); t)=u(z; 0):

If we denote z(t) by x and then z= x(¡t), we derive the solution

u(x; t)=u(x(¡t); t):

Definition 2.22. A flow moving along the velocity filed V (x) is called incompressible if div (V ).

Exercise 2.36. We aim to show that the total mass within a moving control volume D, defined by the trajectory
D(t), remains constant when there are no external sources or sinks. To begin, we express the total mass MD(t)

as the integral of the fluid density u(x; t) over the volume D(t) at time t:

MD(t)=

ZZZ
D(t)

u(x; t) dx:

Taking the time derivative of the above equation, we get:

dMD(t)

dt
=
d
dt

ZZZ
D(t)

u(x; t) dx:

Using the Leibniz integral rule, we can write:

d

dt

ZZZ
D(t)

u(x; t) dx=

ZZZ
D(t)

ut(x; t) dx+

ZZ


bnd(D(t))
uV (x) � � dS:

Use the divergence theorem (Gauss theorem) and show

d

dt

ZZZ
D(t)

u(x; t) dx=0;

and conclude that MD(t) remains constant along D(t).

2.5 Linear and semi-linear transport equations
The general form of a semi-linear transport equation in Rn is given by

ut+V (x) � ru=f(x; t);
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where V (x) is the velocity field. However, in some cases, the velocity field may also depend on the
density u in addition to x, leading to the quasi-linear equation:

ut+V (x; u) � ru=f(x; t):

In general, the independent variable for transport equations is time t. For semi-linear equations,
the characteristic system is given by

dx
dt

=V (x);

while for quasi-linear equations, the characteristic system becomes:8<:
dx

dt
=V (x; u)

du

dt
= f(x; t)

:

Example 2.23. The simplest form of the transport equation is:�
ut+ c ux=0
u(x; 0)=u0(x)

:

This equation is also known as the unilateral wave equation due to the directionality of the wave
propagation. Since V (x)=c is constant, the flow is incompressible, and the trajectory x(t)=ct+x0
yields the ordinary differential equation du

dt
=0, which has the solution:

u(x(t); t)=u(x0; 0)=u0(x0)=u0(x¡ ct):

This solution corresponds to a traveling wave propagating to the right (if c>0) or to the left (if c<0).
The solution to the transport equation in higher dimensions is similar. Consider the equation:�

ut+C � ru=0
u(x; 0)=u0(x)

;

where C =(c1; :::; cn) and x=(x1; : : : ; xn). The flow lines are:

xj(t)= ci t+x0
j ;

where j=1; :::;n and x0
j=xj(0). Thus, we have u(t;x(t))= f(x0), and for x0=x¡Ct, the solution is:

u(x; t)=u0(x1¡ c1t; : : : ; xn¡ cnt):

Example 2.24. Consider the following equation8<: ut+ cxux=�u

u(x; 0)= 1

1+x2

;

Here, c is a constant. When �=¡c, the equation is conservative, and can be written as:

ut+r� [cxu]= 0:

Let's first solve the equation for �=¡c, where c> 0. We can derive the flow lines by solving:

dx
dt

= cx;
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which gives us x0:x(t)=x0 e
ct. The PDE along x0 can then be expressed as:

du
dt

=¡cu;

which can be solved to give:

u(x(t); t)=u(x0; 0) e¡ct=
e¡ct

1+x02
:

Replacing x0 by xe¡ct, we obtain

u(x; t)= e¡ct

1+x2 e¡2ct
:

As expected, the total mass at t=0 is conserved for t > 0. In fact, we have:Z
¡1

1
u(x; t) dx=

Z
¡1

1 e¡ct

1+x2 e¡2ct
dx=================================================================================== =

z=xe¡ct
Z
¡1

1 dz

1+ z2
= �:

This is the same as the total mass at t=0. Therefore, we can write:Z
¡1

1
u(x; t) dx=

Z
¡1

1
u(x; 0) dx:

Note that since V (x) = cx, the particles move with velocity proportional to x. Consequently, the
initial profile becomes fatter in time as the total mass remains the same.
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For negative constant c, c < 0, the solution has the same structure. However, u(x; t) becomes
more concentrated around x=0 in this case. It is seen that for t!1, u(x; t) approaches the Dirac
delta function.
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If �=0, the equation is no longer conservative, and the solution is:

u(x; t)= 1
1+x2 e¡2ct

:

This this case, we haveZ
¡1

1
u(x; t) dx=

Z
¡1

1 dx

1+x2 e¡2ct
=�ect>

Z
¡1

1
u(x; 0) dx:
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Exercise 2.37. Consider the following equation

ut+ e
xux=0;

for t� 0. Draw the characteristic curves and find the general solution of the equation.

Exercise 2.38. Consider the following equation8<: ut+xux¡ yuy=�u

u(x; y; 0)=
(
1 x2+ y2� 1
0 otherwise

:

a) For what value of � the equation is conservative?

b) For this �, find u(x; y; t).

c) Generalize the above results in Rn 8>>>><>>>>:
ut+

P
j=1

2n
(¡1)j @ju=�u

u(x; y; 0)=
(
1

P
j=1
2n xj

2� 1
0 otherwise

:

Problem 2.4. In the flow of a incompressible fluid in a long pipeline, the velocity depends to the area intersection;
see the following.

A1 A2

v1 v2

Use the conservation of mass principle, and show that

v1
v2
=
A2
A1
:

Problem 2.5. Suppose the density function of a fluid is given by u(t; x; y)= e¡t(x2+ y2). Find the total mass
in the unit ball B= f(x; y); x2+ y2< 1g. What is the rate of change of the total mass in B at time t=1?

Problem 2.6. Suppose the initial density function for a 1D flow is u0(x) = 1+ x. If the velocity field for the
flow is v= t+ x, we know that u(x; t) = e¡2t(1+ t+ x) for t > 0. Verify the conservation law for this flow in an
arbitrary segment [x1; x2].

Problem 2.7. For a 2D flow, suppose V = (x; y). If the initial density function is u0(x; y) = x2+ y2, then the
density function at t > 0 is u(t; x; y)= (x2+ y2) e¡4t. Verify directly the conservation law for this flow.

Problem 2.8. Assume that the initial density of a matter is given by u0(x; y) = e¡(x
2+y2) kg/m2. If the mass

moves with the constant speed V = 1m/s in the direction of x-axis, find the total mass in the unite disk
(x¡ 1)2+ y2< 1 the time t=1.

Problem 2.9. Verify that the function u(x; y; t)=xy is a solution to the problem(
ut+xux¡ yuy=0

u(x; y; 0)=xy
:

Verify the conservation law
d
dt

Z
B

u(x; y; t) dS=

Z
bnd(B)

J~ � �d`;

where B is the unit ball in R2.

Problem 2.10. Write down the continuity equation for function u for the velocities given below, and determine
if they are incompressible

a) V =¡x

b) V =u
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c) V =(y; x)

d) V =(1; 0; u)

Problem 2.11. Consider the velocity field V = (¡y; x) in R2. If the initial density is u0(x; y) =
1

1+x2+y2
, find

the density of the point (¡3; 0) at time t=� without solving the transport equation. Find the total mass in the
unit disk at time t=1.

Problem 2.12. Suppose the initial density function of a 2D fluid is given by u0(x; y)=e¡x
2¡y2. If the fluid moves

with the velocity V =(¡y;10x¡2y), find the parametric equations of a particle initially located at (x0; y0)=(0;3).
Find the density of the point (x; y)= (0; 3e¡�/3) at time t= �

3
.

Problem 2.13. Suppose the velocity filed of a 2D fluid is given by V = (1+ x2; 1). Find the flow line passing
through the origin and show that the density is decreasing along this line.

Problem 2.14. Write the continuity equation for a fluid moving with the velocity V = (xy; y ¡x). Is the flow
incompressible? Repeat the problem for the velocity filed V =(�x+ y; ex¡ y) and find � such that the flow is
incompressible.

Problem 2.15. Assume that the density function of a fluid (in absence of any source term) is u(x; y; t)=e¡t(x2+
y2). If we know the divergence of the velocity field V =(v1; v2) is equal to 1, show the relation xv1+ yv2=0.

Problem 2.16. Assume that the initial density of a matter is given by u0(x)=
2

�(1+ x2)
kg/m. If the mass moves

with constant velocity V =1m/s along x-axis, find the total mass in the segment [0; 2] at t=1.

Problem 2.17. Assume that the velocity of some fluid is given by V =x. Write down the continuity equation
for the flow and obtain the density at t=1 if the initial density is u0(x)=

e¡2

1+ x2
.

Problem 2.18. Determine the characteristic line along which the solution to the problem(
ut+xux=0

u(x; 0)= e¡jxj
;

is u= e¡1.

Problem 2.19. Draw the characteristic lines of the equation

ut¡xux=0:

If the initial data is u(x; 0)= tan¡1x+ �

2
, find u(x; t).

Problem 2.20. Consider the equation

ut+ v(x)ux=0;

where v(x) is the following function

v(x)=

8>><>>:
¡x+1 0<x� 1
¡x¡ 1 ¡1<x< 0
0 jxj � 1

:

If the initial data f is the function

f(x)=

�
jxj jxj � 1
1 jxj � 1 :

Problem 2.21. Solve the following linear problem(
ut+(1+x2)ux= t
u(x; 0)=x

:

Problem 2.22. Find the solution to the following�
ut+xux=u
u(x; 0)= sin(x)

:

Problem 2.23. Solve the following equation(
ut+xux=xe¡tu
u(x; 0)= sin(x)

:
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Problem 2.24. Consider the equation

3t2/3ut+ux=0;

for the function u=u(x; t).

a) Write the equation of the characteristic line passing through the point t=1; x=2.

b) Find the value u(1; 2)¡u(4; 3) (you should provide the reason for the value)

c) Find u(1; 2) if u(x; 0)= e¡x
2

Problem 2.25. Consider the following semi-linear problem(
ut+ux=2te¡u

u(x; 0)= ln(1+x2)
:

Find region in the plane (x; t) where u< 1.

Problem 2.26. Assume that the velocity field of a matter is give as V =(¡y; x). Find the density of the point
(1; 0) at time t=1 if the plan (x; y) is initially filled with a matter of density

i. u0= x2+ y2
p

,

ii. u0=xy

Problem 2.27. Solve the following problem(
ut+ux+ yuy=xy

u(x; y; 0)= sin(xy)
:

Problem 2.28. Solve the following problem(
ut+ux+uy=u

u(x; y; 0)=u0(x; y)
:

Problem 2.29. Consider the equation

ut+ yux¡xuy=0:

a) Show that the equations of characteristic curves are�
x=x0 cos(t)+ y0 sin(t)
y=¡x0 sin(t)+ y0 cos(t)

:

b) Find the solution if u(x; y; 0)=xy.

c) Now solve the following equation (
ut+ yux¡xuy=u
u(x; y; 0)=xy

:

2.6 Quasi-linear equations and shockwave

In general, V in the continuity equation ut+r � [uV ] = 0 can be a function of x and u, such that
V =V (x;u). One example of this is in modeling traffic flow on highways, where the velocity of cars
depends inversely on the density of cars using the highway, described by the function

V (u)=Vmax

�
1¡ u

u1

�
;

where u1 is the density of cars at maximum capacity, Vmax is the maximum speed of cars, and
0� u� u1 represents the density of traffic on the highway. In this case, the continuity equation
becomes

ut+Vmax

�
1¡ 2u

u1

�
ux=0: (2.22)
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Another important equation with V as a function of u is the Burgers' equation, where V = 1

2
u,

giving the PDE

ut+
�
1
2
u2

�
x

=0;

or equivalently, ut+uux=0.
More generally, we can consider problems of the form:�

ut+div [g(u)] = 0
u(x; 0)=u0(x)

;

which can be written equivalently as: �
ut+ g 0(u)ux=0
u(x; 0)=u0(x)

:

The characteristic system for this problem is given by:8<:
dx

dt
= g 0(u)

du

dt
=0

:

which leads to the following implicit solution: u=u0(x¡ g(u)t).

Example 2.25. Let's consider the continuity equation problem given by

ut+uux=0;

with the initial condition u(0;x)=x. Although the initial condition u(0; x) for x<0 is not physically
meaningful as it leads to negative density, we retain this example to highlight an important feature
of the continuity equation. By solving the characteristic system of equations

dx
dt

=u; du
dt

=0;

we obtain the solution x=ut+x0 and u(t; x(t))=u(0; x(0))=x0, where x0 is replaced by x¡ut.
This yields the solution

u(x; t)= x
1+ t

;

which has a domain of [0;1) for t>0.
Suppose we now modify the initial condition to ¡x. The resulting solution is

u(x; t)= x
t¡ 1 ;

which has a domain of [0; 1). As shown in the figure, the characteristic lines in this case collide at
t=1, leading to a shock in the solution.
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The value of u(1;0) can take any value in the range (¡1;1), as particles with different densities
converge at x=0 at t=1 and the density becomes discontinuous at this point. The figure below
shows this phenomena schematically. This concentration changes the initial density of x=0 to a
discontinuous value.

x=0

x

u(1; x)

t=1 u0(x0)

x0

t=1u0(¡x0)

¡x0

Exercise 2.39. Solve the following quasi-linear equation and determine the domain of the solution�
ut+uux=0
u(x; 0)= jxj :

Remark 2.26. What can we say about the solution u(x; t) for t>1? As we have seen, the solution
is discontinuous at t=1, which means that the differential equation fails to hold for t� 1 as well.
However, this does not mean that we cannot study the propagation of the shock beyond t=1 from
a physical point of view. In fact, the development of a shock is a physical phenomenon that can be
observed and studied experimentally.

One possible mathematical way to extend the discontinuous or shock solutions beyond the shock
time t= 1 is by using the concept of shockwave solutions. In this approach, we assume that the
discontinuous solution propagates like a wave in time. Shockwave solutions are a common way of
extending the solutions of partial differential equations beyond the point of discontinuity.

2.6.1 Riemann problem
In this section, we consider the initial value problem given by the scalar conservation law:8>>>><>>>>:

ut+uux=0

u(x; 0)=u0(x):=

8>><>>:
1 x< 0
1¡x 0<x< 1
0 x> 1

: (2.23)

To solve this problem, we first determine the characteristic system of equations:8<:
dx

dt
=u

du

dt
=0

;

which leads to the characteristic lines x(t)=ut+x0. Along each characteristic line, the solution u
remains constant. Thus, we can write:

u(t; x(t))=u0(x0);

where x0 is the initial position of the characteristic line. Using the initial condition u0(x), we can
find the value of u along each characteristic line.

34 Linear First-Order PDEs



Next, we express x0 in terms of x and t as x0=x¡ut. Substituting this into the expression for
u(t; x(t)), we obtain the solution u as a function of x; u and t:

u(x; t)=

8<: 1 x¡ut< 0
1¡ (x¡ut) 0<x¡ut< 1
0 x¡ut> 1

:

Simplifying the expression algebraically, we get:

u(x; t)=

8>>>><>>>>:
1 x< t
1¡x
1¡ t t <x< 1

0 x> 1

: (2.24)

The figure below shows the solution u(x; t) at several instances of time. Note how a shock (discon-
tinuity) is developed at t=1.

t=0
u

x

t= 0.5
u

x

x

u

1

x

t= 0.75

1

u

1 1

t=1
discontinuity at t=1

Let's analyze the Riemann problem again using equation (2.23). In this equation, the function u
has a dual role, serving both as the density function and the material velocity V , where V =dx

dt
=u.

Now, let's examine the initial condition shown below at t=0:
t=0

u

1

x

� Particles initially located at x0� 0 move to the right with velocity V =1, as their density
u=1 is conserved. For example, a particle initially located at x0=0 will reach x=1 at t=1,
as evident from the characteristic equation x(t)=ut+x0. When x0=0 and u=1, x(1)=1.

� Particles located initially at x2 (0;1) move with the velocity V =1¡x while they preserving
their densities. For example, a particle at x0=

1

2
has density u= 1

2
and moves with speed

V = 1

2
to the right, reaching x=0 at t=1.

� All particles initially located at x�1 have zero velocity and remain stationary on the x-axis
for t>0.
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The above observations imply that the density of point x=1 at time t=1 can take any value between
0 and 1, as particles with different densities between 0 and 1 reach this point at t=1. Therefore,
we can write the density u(x; 1) as

u(x; 1)=
�
1 x< 1
0 x> 1

;

while u(1; 1) is not uniquely defined.

u

1

x

t=1

2.6.2 Extension of the solution
We will delve into the details of this problem in the second volume of the book. However, in this
context, we aim to understand the elements of shock propagation through the conservation law. Our
primary concern is to determine the density function u(x; t) for t>1. It should be noted that the
partial differential equation is not valid at t=1, and hence, we cannot use the solution (2.24) for
t>1. In fact, using this solution for t>1 results in the existence of multiple non-physical solutions,
as shown in the figure below.
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u

x
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ut= 1.5

To understand the propagation of shocks better, let us first consider the following one-dimen-
sional wave equation: �

ut+ cux=0
u(x; 0)=u0(x)

;

where u0 is the following discontinuous function

u0(x)=
�
1 x< 0
0 x> 0

:

As expected, the wave equation carries the initial condition with speed c to the right or left depending
on the sign of c in the equation. Hence, the solution can be expressed as:

u(x; t)=u0(x¡ ct):

The following figure shows the solution of the wave equation for t= 1 and t= 2. Note that the
extension of the initial condition is plausible, and the solution is discontinuous only at one point
for each time instance.
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u
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Let's return to the Riemann problem:8<: ut+uux=0

u(x; 1)=
�
1 x< 1
0 x> 1

:

Since u can only take the values 0 or 1, except at the discontinuity point, it's reasonable to assume
that this equation behaves like a wave equation. If we make this assumption, then the question
becomes: at what speed will the initial condition propagate?

To answer this, we can use the conservation law and write the PDE as an integral equation:Z
x0

x1
�
ut+

�
1
2
u2

�
x

�
dx=0:

for any interval (x0; x1) containing the shock position x at time t. Integrating this equation over
the interval (x¡ "; x+ "), where " is a small positive constant, we obtainZ

x¡"

x+"

ut(x; t) dx+
1
2
ur
2¡ 1

2
ul
2=0; (2.25)

where ul and ur are the values of u to the left and right of the shock, respectively. On the other
hand, we can write the integral in the above equation asZ

x¡"

x+"

ut(x; t) dx= lim
�t!0

1
�t

�Z
x¡"

x+"

u(x; t+ �t) dx¡
Z
x¡"

x+"

u(x; t) dx
�
:

The first integral in the right-hand side of the above equation is equal toZ
x¡"

x+"

u(x; t+ �t) dx=ul("+ �x)+ur("¡ �x);

and the second one is Z
x¡"

x+"

u(x; t) dx=ul "+ur ":

The scenario is shown in the figure below.
t

x+ �xxx

x¡ " x+ " x+ "x¡ "

t+ �t

Hence, we can write Z
x¡"

x+"

ut(x; t) dx= v(ul+ur);

where v is the velocity of the shock point x. Substituting the result into equation (2.25) yields

v=
1

2
vl
2¡ 1

2
ur
2

ul+ur
= ul+ur

2
:

For our example with ul=1 and ur=0, we obtain the shock velocity v= 1

2
. The solution for t=1;

2 is illustrated in the following figure:
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t=1

u

t=2

u

1

x
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2

x

The solution u(x; t) can be obtained using the shockwave solution of the Riemann problem. The
formula for the solution is given as:

u(x; t)=
�
1 x< 1+ v(t¡ 1)
0 x> 1+ v(t¡ 1) ;

where v= 1

2
is the shock velocity for the given example.

This solution is called the shockwave solution because it has a sharp transition between the two
states, which moves with constant velocity v. The following figure illustrates the characteristic lines
with the shock line.

x�=1

u=1

x

t�=1

u=0

t t=2x¡ 1

Example 2.27. This example illustrate the fact that the graph of shockwave in xt-plane can be
a curve. This means that the velocity of shock propagation can vary with time. Let us solve the
following problem 8<: ut+uux=0

u(x; 0)=
�
1+x ¡1<x< 0
1¡x 0<x< 1

:

The equation of characteristic lines are x(t)=u0(x0) t+x0 where u0(x0)=
�
1+x0 ¡1<x0< 0
1¡x0 0<x0< 1

. Sub-
stituting u0(x0) into the equation of characteristic line yields

x(t)=x0+
�
(1+x0)t ¡1<x0< 0
(1¡x0)t 0<x0< 1

:

A simple algebraic calculation helps to solve x0 in terms of x; t as follows

x0=

8>><>>:
x¡ t
1+ t

¡1<x< t
x¡ t
1¡ t t <x< 1

:

Accordingly, the solution u(x; t) is obtained as

u(x; t)=

8>><>>:
1+x

1+ t
¡1<x< t

1¡x
1¡ t t <x< 1

:
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The solution for t= 1

2
;
3

4
and t=1 are shown below.
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t is observed that at t=1, a discontinuity is formed at x�=1. For t> 1, the solution extends as
a shockwave with speed v that needs to be determined. Similar to the argument above, it can be
justified that the shockwave propagates with speed v= 1

2
at t=1. However, what about v for t>1?

It is important to note that according to the conservation law, the total mass of the system
remains conserved. This can be expressed as:Z

¡1

1
u(x; t) dx=

Z
¡1

1
u(x; 0) dx=1:

If the shockwave were to move with a constant velocity v= 1

2
for all t > 1, then the area under the

curve u(x; t) would increase with time, which would violate the conservation of mass. In order to
maintain the constant mass equal to 1, the height of the triangle, h, must decrease with time. This
is depicted in the following figure.

1

u

¡1 1.45

x

2.74

t=2
t=1

t=6

h=2/ 14
p

h=1
h=2/ 6

p

It is important to note that the velocity of the shockwave is not constant in the case where the
initial data has a jump discontinuity. Since the left value of the solution is h and the right value is
0, we can derive the shock velocity as v= 1

2
h, which in turn gives v= 1

1+x
, where x is the distance

from the discontinuity at x=1. Therefore, the shock velocity varies with respect to x.
To find the shock velocity in terms of t, we can integrate the relation v= dx

dt
= 1

1+x
with respect

to t. This gives us x(t)= 2t+2
p

¡ 1, which implies that the shock velocity at time t is v= 1

2t+2
p

for t� 1. The characteristic lines in the (x; t)-plane can be plotted to visualize the behavior of the
solution.
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Exercise 2.40. An alternative method to find the shockwave velocity for the above problem is to use the following
formula

ul(x; t)=
x+1

t+1
;

and to solve the equation

v=
dx

dt
=

x+1

2(t+1)
:

Carry out the calculation and conclude v= 1

2t+2
p .

Exercise 2.41. Let us solve the following problem�
ut+uux=0
u(x; 0)=u0(x)

;

where u0 is as follows

u0(x)=

�
3 x< 0
1 x> 0

:

Draw the characteristic lines in the (x; t)-plane and find the shockwave solution.

Exercise 2.42. Consider the following problem�
ut+uux=0
u(x; 0)=u0(x)

;

where u0 is a continuously differentiable function.

a) Show that if u0< 0, the equation will develop a shock.

b) show that the first time of the appearance of the shock is derived by the following formula

t�=
¡1

min�u00(�)

Hint: The shock is formed if two characteristic lines collide

x0+u0(x0)t=x1+u0(x1)t:

This gives t= x0¡ x1

u0(x1)¡u0(x0)
. Minimize this and conclude the above relation.

Exercise 2.43. Consider the following equation�
ut+ g 0(u)ux=0
u(x; 0)=u0(x)

:

If the problem develops a shock, show that the velocity of the shockwave is

v=
g(ul)¡ g(ur)

ul+ur
;

where ul; ur are the left and right limit of u at the shock point x respectively.

Exercise 2.44. Consider the following problem8>>>><>>>>:
ut+uux=0

u(x; 0)=

8>><>>:
0 x� 0
x

"
0� x� "

1 x� "

;

for "> 0. The problem does not develop shock.

a) Draw the initial condition and obtain the solution u"(x; t).

b) Let "! 0 and find the solution of the following equation8>>>><>>>>:
ut+uux=0

u(x; 0)=

8>><>>:
0 x< 0

1 x> 0

:

The solution of this equation is called the rarefaction solution .
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Problem 2.30. Find an explicit solution of the following equation�
ut+uux=x
u(x; 0)= 0

:

Problem 2.31. Find the explicit solution to the following problem(
ut+ eu¡xux=0
u(x; 0)=x

:

Problem 2.32. Solve the following problem �
ut+uux=u
u(x; 0)= 1+x

:

Problem 2.33. Find an implicit solution to the following problem�
ut+xuux=0
u(x; 0)=x

:

Use the implicit function theorem to justify that the solution exists in some interval of t2 [0; T ).
Problem 2.34. Find an implicit solution to the following problem�

@tu+ sin(u) @xu=1
u(x; 0)=x

:

Use the implicit function theorem to justify that the solution exists in some interval of t.

Problem 2.35. Draw the solution to the following problems for t=0; 1; 2�
u+uux=0
u(x; 0)=u0(x)

;

where

u0(x)=

8>><>>:
0 x� 0
x 0�x� 1
1 x� 1

:

Problem 2.36. Consider the following problem8>>>><>>>>:
ut+uux=0

u(x; 0)=

8>><>>:
2 x� 0
2¡x 0�x� 1
1 x� 1

:

i. Draw the characteristic lines and determine t�.

ii. Find the shock wave speed.

iii. Draw the solution u(x; 0.5), u(x; 1), u(x; 2) and u(x; 4).

Problem 2.37. Draw the solution u(1; x) and u(2; x) to the following problem8<: u+uux=0

u(x; 0)=
�
2 x� 0
1 x� 0

:

Problem 2.38. Solve the following problem for t < t� and draw the solution for few values of t.8<: ut+uux=0

u(x; 0)=
(
1+x ¡1<x< 0

e¡x 0� x

:

Problem 2.39. For the following equation, draw the characteristics and find the shock wave speed. Draw the
solution u(1; x) and u(2; x): 8<: ut+uux=0

u(x; 0)=
�
2¡jxj ¡1<x� 1
0 otherwise

:
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Problem 2.40. The traffic flow in highways is usually modeled by the following equation

ut+(1¡u)ux=0;

where u is the density of cars (number of cars in a unit length). Assume that the initial profile is as follows

u(x; 0)=

8>><>>:
1 x� 0
x+1 0�x� 1
2 x� 1

:

a) Draw the characteristic lines of the equation and find the collision time t?.

b) Draw u(x; t) where T =2.

Problem 2.41. For the following equation, find the collision time t�. Use a software to fine u(x;0.5) and u(x; 1).(
ut+2uux=0

u(x; 0)= e¡jxj
:

Problem 2.42. Solve the following problem8<: ut+uux=0

u(x; 0)=
�
1 x< 0
2 x> 0

:

Problem 2.43. Solve the following problem8>>>><>>>>:
ut+uux=0

u(x; 0)=

8>><>>:
0 x< 0
1 0<x< 1
0 x> 1

:
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Appendix A

Curves and Surface

A.1 Curves and surfaces

The techniques outlined in this chapter for solving first-order PDEs are primarily based on the
concept of the derivative of a scalar function along a smooth curve. To apply these techniques, it is
necessary to have an understanding of how smooth curves and surfaces are represented in the plane
or in Rn for n> 2.

A.1.1 Curves and derivative along a curve
Curves in the plane R2 can be represented in several ways: through an explicit function as the graph
f(x; f(x));x2Dfg where f is a smooth function, an implicit function �(x; y)=c, or a parametric
form (t)=(x(t); y(t)), where t ranges over an open interval I�R. An implicit representation �(x;
y)=c of a curve can be transformed into an explicit one, y= f(x), under certain conditions using
the implicit function theorem; see the appendix of the book. Note that the graph of an explicit
function y= f(x) is a special case of a parameterized curve where the parameter is chosen to be x,
so that (x)=(x; f(x)).

While explicit and implicit representations of curves focus on the curves as a geometrical object,
or a set of points in the xy-plane, parametrized curves can be considered as the path or trajectory
of a moving particle in the plane. Accordingly, the parameter t represents time, and the function
(t) gives the position of the particle at each time t. This interpretation enables us to determine the
velocity and acceleration vectors of the particle along its path. Moreover, the concept of parame-
trization can be generalized to higher dimensions, allowing us to represent more complicated curves
and surfaces in Rn.

A curve in Rn parametrized by a parameter t is defined as a map : I�R!Rn given by
(t)=(x₁(t);x₂(t); :::;xₙ(t)). Here,x₁;x₂; :::;xₙ are scalar functions of t that describe the coordinates
of points on the curve, and t is a parameter that varies over an open interval I�R. The tangent
vector at a specific point (t) is defined as the derivative of (t) with respect to t, written as
 0(t)=(x10 (t); x20 (t); :::; xn0 (t)). The magnitude of this vector is denoted by j 0(t)j, and in the context
of physics, it represents the speed of a moving particle along (t).

The arc length s(t) of a curve is defined as the integral of the speed j 0(t)j over the interval [0; t],
that is,

s(t)=
Z
0

t

j 0(� )jd� :

By the fundamental theorem of calculus, the derivative of s(t) with respect to t is given by

ds
dt
= j 0(t)j;
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which is the speed of a moving particle along the curve (t).
The equation of a straight line  = (x1(t); : : : ; xn(t)) in Rn passing through c= (c1; : : : ; cn) is

simply derived by the differential equations
d
dt
= a;

where a= (a1; : : : ; an) is a constant. In the coordinate system, we have dxj
dt
= aj for j = 1; : : : ; n,

which is solve for xj= ajt+ cj, or in the algebraic form:

x1¡ c1
a1

= � � �= xn¡ cn
an

:

The vector a determines the direction of the line and is tangent to  as  0(t)= a.
For a general curve (t) whose direction changes continuously according to the vector function

V (x) = (v1(x); : : : ; vn(x)), where x=(x1; :::; xn), the equation is derived by solving the following
differential equation:

d
dt

=V ((t));

or in the coordinate system, dxj
dt
=V (x1(t); : : : ; xn(t)); for j=1; :::; n, where (t)=(x1(t); :::; xn(t)).

If (t) is considered as the trajectory of a particle in Rn, the vector V ((t)) is the velocity of the
particle at the point (t), and the vector function V =(v1;:::; vn) is said to be the velocity vector field.

Example A.1. Consider a particle moving in the xy-plane with the directional vector function V (x;
y)=(¡y; x). The trajectory (t) of the particle can be derived by solving the system of differential
equations:

dx
dt

=¡y; dy
dx

=x:

This system is equivalent to the exact equation xdx+ ydy=0 in the xy-plane, which has the implicit
solution x2+ y2= c. Alternatively, the system can be converted to a second-order equation for x(t)
as x00+x=0, with solution

x(t)=x0 cos(t)¡ y0 sin(t);

where x0 is the initial position of the particle (i.e., x(0)=x0), and y0=¡x0(0). Using x(t) and the
second differential equation, we can find

y(t)=x0 sin(t)+ y0 cos(t);

and thus the equation of the trajectory is obtained as

(t)= (x0 cos(t)¡ y0 sin(t); x0 sin(t)+ y0 cos(t)):

In particular, if x0=1 and y0=0, we obtain the trajectory

(1;0)(t)= (cos(t);¡sin(t)):

As we can see, the trajectory of the particle is the unit circle in the xy-plane. We can alternatively
solve the system by putting it in the matrix form

d
dt

�
x
y

�
=
�
0 ¡1
1 0

��
x
y

�
;
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with the fundamental matrix �(t) given by:

�(t)=
�
cos(t) ¡sin(t)
sin(t) cos(t)

�
:

Note that:

�(t)
�
1
0

�
= (1;0)(t):

The velocity vector of the particle with the trajectory (1;0)(t) is

(1;0)
0 (t)= (¡sin(t); cos(t));

and through the relation

(1;0)(t) � (1;0)0 (t)= 0;

we observe that (1;0)
0 (t) is perpendicular to the trajectory of the particle.

Let (t) be a parametric curve in Rn, and let u=u(x1; : : : ; xn) be a continuously differentiable
function. The derivative of u along (t) is defined as:

du
dt

:=
X
j=1

n

@ju((t))
dxj
dt

=ru((t)) �  0(t);

where ru denotes the gradient of u, given by the vector:

ru=

0BB@ @1u

���
@nu

1CCA:
The operator r is also known as nabla and plays an important role in the context of multivariable
functions. For example, if u represents the density function in Rn, and (t) is a smooth curve, then
du

dt
((t)) represents the rate of change of the density when a control volume of mass is moving along

.

Example A.2. The above explanation highlights the relationship between curves inRn and systems
of first-order ordinary differential equations. Specifically, a curve in Rn can be obtained by solving
a system of first-order ordinary differential equations, and conversely, the solution of a system of
ordinary differential equations corresponds to a curve. This connection between curves and differ-
ential equations is fundamental to many areas of mathematics and has wide-ranging applications
in physics, engineering, and other fields.

Consider the system 8<:
dx

dt
=¡y¡�x

dy

dt
=x¡�y

;

where � is a constant. The trajectory associated with �=0; 0.3;¡0.3, are shown below
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In the xy-plane, the equation the equation can be written as

(x¡�y) dx+(y+�x)dy=0;

which is not exact if �=/ 0, meaning that energy is not conserved along the paths of motion. The
equivalent second-order equation of the system is:

x00+2�x0+x=0;

which can which can be further transformed to:

d
dt

�
1
2
jx0j2+ 1

2
x2

�
=¡2� jx0j2:

Integrating this equation yields:

E(t)=E(0)¡ 2�
Z
0

t

jx0(s)j2 ds:

If �>0, the particles move down spirally to the origin along V (x; y), while if �<0, they gain energy
and move outward spirally.

Exercise A.1. Find the force field associated to the velocity filed given in the example above using the relation
F=m 00(t), and show that this force field is centrifugal. Consider the trajectory starting at (1; 0) for simplicity.
Additionally, demonstrate that the energy of the particle is conserved along its trajectory for the energy given by

E(t)=mj(t)j2+ 1

2
mj 0(t)j2:

Exercise A.2. Consider the vector field V =(¡y; x; 1) and suppose a particle located initially at (1; 0; 0) moves
according to this vector field. Find the trajectory of the particle and show the relation  0(t) �  00(t)= 0 for all t.

Thus, conclude that the frame
�

 0(t)

j 0(t)j ;
 00(t)

j 00(t)j ;
 0(t)�  00(t)

j 0(t)�  00(t)j

�
defines a local coordinate system for the particle.
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Exercise A.3. With a curve mapping, we can determine the length of a curve. For a given explicit curve y= f(x)
or (x; f(x)) for x2 (x0; x1) the differential length is

ds= 1+ jf 0j2
p

dx;

and thus the arc length is

s=

Z
x0

x1

1+ jf 0j2
p

dx:

Similarly, for a general parametrization (t), the differential length is

ds= j 0(t)j dt= jx0(t)j2+ jy 0(t)j2
p

dt;

and thus

s=

Z
t0

t1

jx0(t)j2+ jy 0(t)j2
p

dt:

The interesting point is that the arc length formula is independent of the parametrization. Let C �R2 be a
geometric curve and let 1: (a; b)!C and 2: (c; d)!C be two smooth parametrization of C. ShowZ

a

b

j10(t)j dt=
Z
c

d

j20(t)j dt:

Exercise A.4. Consider the temperature distribution in the xy-plane given by T (x; y)=10exp(x2¡y2). Suppose
a runner is moving along the curve (t)=(cos(t); sin(t)), and wearing a hand clock marked from 0 to 60. What is
the angular velocity of the hand of the runner's watch as they move along the curve? Find the angular velocity
of the hand clock if the runner runs given by the following function (t)= (cos(!0 t); sin(!0 t)) for some !0> 0.

A.1.2 Surfaces in space
There are several ways to represent a surface in three-dimensional space. One common approach
is to express the surface as the graph of an explicit function of the form z=f(x; y), where z is the
dependent variable and x; y are the independent variables. Alternatively, the surface can be defined
implicitly through an equation of the form �(x; y; z)=c.

The first approach is a convenient way to visualize and manipulate the surface. However, this
representation is only possible for surfaces that can be written as a function of x and y, such as
paraboloids or planes. The second approach is more general and can represent surfaces that cannot
be written explicitly as a function of x and y, such as spheres or tori. The implicit function theorem
provides conditions for the existence and differentiability of a smooth function z= f(x; y) that
satisfies the equation �(x; y; f(x; y)) = c. In particular, the theorem requires the existence of a
point (x0; y0; z0) such that �(x0; y0; z0)= c and the partial derivative @�

@z
(x0; y0; z0) is nonzero. This

condition guarantees that the equation �(x; y; z)=c defines the surface locally as a graph over the
xy-plane, and the function f(x; y) can be obtained by solving for z in terms of x and y.

Finally, a surface can be parameterized using a set of equations that describe how x; y, and z
vary with two independent variables, typically denoted by t and s. In particular, a parameterized
surface in three-dimensional space is given by the equation

�(t; s)=(x(t; s); y(t; s); z(t; s));

where x; y, and z are functions of the independent variables t and s, and (t; s) belongs to an open
set D in the plane. This method allows for the representation of surfaces with complex shapes
and topologies, such as the torus or the Mobius strip, and can also be used to represent higher-
dimensional surfaces. For instance, an m-dimensional hypersurface in Rn where m< n can be
represented by a vector function of the form

�(t1; : : : ; tm)= (x1(t1; : : : ; tm); : : : ; xn(t1; : : : ; tm)):
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Moreover, the parametric representation of a surface reveals the relationship between curves and
surfaces. For example, a surface �(t; s) in R3 contains the lines s0(t) = (x(t; s0); y(t; s0); z(t; s0)),
where t ranges over an interval for each s0, and the curves t0(s) = (x(t0; s); y(t0; s); z(t0; s)),
where s ranges over an interval for each t0. For instance, let D=[0; �]� [¡�; �], and consider the
parametrization given by:

�(t; s)=(sint coss; sint sins; cost);

for (t; s) in D. This parametrization maps the rectangle D onto the surface of the unit sphere. Each
line fs0g� [0; �], for s2[¡�;�], is mapped to the vertical curve �(t; s0), and each line [¡�;�]�ft0g
to the horizontal curves �(s; t0). In the spherical coordinate system, t is usually denoted by �, the
angle with the z-axis, and s by �, the angle with the x-axis.

It is worth noting that the graph of an explicit function z=f(x; y) is actually a special case of
a parameterized surface, where the surface is defined by the equation �(x; y)=(x; y; f(x; y)). The
tangent and normal vectors to a surface � can be found as follows. Let (t0; s0) be a fixed point on
�. The curve map s0(t)=(x(t; s0); y(t; s0); z(t; s0)) lies on �, and its tangent vector s0

0 (t0) is equal
to �t(t0; s0). Similarly, the curve map t0(s)=(x(t0; s); y(t0; s); z(t0; s)) lies on �, and its tangent
vector is �s(t0; s0). The space spanned by �t(t0; s0) and �s(t0; s0) is the tangent space to the surface
� at (t0; s0), which is just the tangent plane to � at that point. A surface � is said to be smooth if
�t(t; s) and �s(t; s) exist and are linearly independent for all (t; s) in the domain of �. The normal
vector to � is then given by the cross product

�= �t��s
j�t��sj

:

Note that if �t(t0; s0) and �s(t0; s0) are linearly independent, then �t(t0; s0)��s(t0; s0)=/ 0, and
the normal vector is well-defined. For example, the normal vector to the unit sphere at the point
�(�/2; 0)=(1; 0; 0) with the parametrization given above can be calculated as follows:�t(�/2;
0)=(0; 0;¡1) and �s(�/2; 0)=(0; 1; 0). Therefore, �t(�/2; 0)��s(�/2; 0)=(1; 0; 0) and j�t(�/2;
0)��s(�/2; 0)j=1, so the normal vector is �= �t��s

j�t��sj
=(1; 0; 0), which is clearly perpendicular to

the tangent plane of the sphere at the point �(�/2; 0).

Exercise A.5. The area differential dS is equal to j�t��sjdtds, and thus the area of the surface � is equal to

S=

ZZ
D

j�t��sj dtds:

In particular, dS = 1+ jruj2
p

dxdy is the differential area of an explicit surface z= u(x; y). For example, if �
represents a material surface of density �(x; y; z), then the total mass on � is equal to

M =

ZZ
D

�(�(t; s))j�t��sj dtds:
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Use the spherical coordinate and and calculate the area of the potion 0� � � �0 of the unit sphere for �0<
�

2
.

Calculate the total mass on the surface if �=(x2+ y2)z.

Exercise A.6. Write down the equation of the tangent plane to the smooth surface �(x; y; z)=0 at (x0; y0; z0)
on the surface.

Exercise A.7. Let �(x; y; z) = 0 denote a surface �. Show that r� is perpendicular to all tangent vectors on
the surface �. Hint: Let =(x(t); y(t); z(t)) be arbitrary smooth curve lying on �.

Let's now consider the equations of surfaces in R3. Suppose we have a plane passing through
a point p0= (x0; y0; z0) and perpendicular to a constant vector n~ = (a; b; c). Its equation can be
expressed as a

a(x¡x0)+b(y¡ y0)+c(z¡ z0)=0;

which is the expansion of the dot product (p¡ p0) �n~ =0, for p=(x; y; z) on the plane. Equivalently,
if we are given two linearly independent vectors V1= (a1; b1; c1) and V2= (a2; b2; c2), we can write
the parametric equation of the plane containing these two vectors as

�(t; s)=(ta1+sa2; tb1+sb2; tc1+sc2):

Note both vectors lie in the obtained plane. If we were provided with only one vector, the equation
of the plane could not be uniquely determined.
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