
Chapter 1

Introduction

Partial differential equations, or PDEs for short, are an important type of differential equation that
arise as natural mathematical models in many physical problems. They allow us to describe the
behavior of a system in terms of functions that depend on multiple variables, such as time and space.

For example, consider the classical heat equation, which describes the distribution of heat in a
conducting material over time. This equation can be derived from Fourier's law of heat conduction,
which states that the rate of heat transfer through a material is proportional to the temperature
gradient. By applying this law to an infinitesimal volume element in the material, one obtains a
PDE for the temperature distribution.

Similarly, the wave equation can be derived from Newton's second law of motion, which relates
the force acting on a body to its acceleration. By applying this law to a small element of a string
or other vibrating object, one obtains a PDE for the displacement of the element as a function of
time and position.

In both of these examples, the PDEs are derived from fundamental physical laws and provide a
mathematical description of the underlying physical phenomenon. By solving these equations, we
can make predictions about how the system will behave under different conditions, such as changes
in temperature or initial conditions.

Our main focus is to introduce four important types of PDEs at an entry-level technicality,

1



without delving into their theoretical aspects. These include:

1. The transport equation, which describes how the density of a fluid flow moving in the plane or
space changes according to a given velocity. This PDE is of first-order. The following figure
illustrates the variation of mass density of a fluid flow in the xy-plane with the velocity field
V =(¡y; x).

2. The heat problem, which involves determining how the temperature of a conductive medium
changes in time, given an initial heat distribution along a conductive rod or continuum. This
problem leads to a second-order PDE. The figure below shows the evolution of temperature
over time in a unit disk.

3. The wave equation, which describes how an elastic string or a 2D membrane responds to an
initial disturbance, leading to oscillations and the propagation of the disturbance. This PDE
is also of second-order. The figure below illustrates how an initial disturbance propagates as
a bilateral wave, splitting into two branches moving with a given velocity to the left and right.
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4. The Poisson equation, which arises in the context of electrostatics and involves finding the
potential function generated in space by an electric charge distributed in a domain 
 in the
plane or space. This problem is reduced to a second-order PDE.

1.1 From ODEs to PDEs

In the following discussion, we will explore the natural extension of well-known ordinary differential
equations to partial differential equations. We will focus on the derivation of some simple PDEs
and highlight how they arise from the ODE versions of the same problems. This will illustrate the
process of extending mathematical models of physical phenomena from one dimension to multiple
dimensions.

1.1.1 From mass-spring system to vibrating string

Remember that the dynamics of a single or finite set of quantities that depends on a single indepen-
dent variable leads to a single or set of differential equations called ordinary differential equations
(ODEs). An important example of this type of equation is the harmonic oscillator: consider a set
of n point masses m₁; :::; mₙ that are connected in series to n springs with stiffnesses k₁; :::; kₙ, as
shown in the figure below.

m3

k2

m1

k1

m2

k3

x1 x2 x3

The equation that describes the dynamics of m1 is derived by Newton's second law f =ma as

m1
d2x1
dt2

=¡k1x1+ k2(x2¡x1);

where ¡k₁x₁ is the Hook's force exerted by the spring k₁, and k₂(x₂¡x₁) is the force exerted by k₂
on m₁. Similarly, the equation that describes the dynamics of m₂ is:

m2
d2x2
dt2

=¡k2(x2¡x1)+ k3(x3¡x2):

1.1 From ODEs to PDEs 3



The equation for m3; :::;mn are derived in a similar manner. In this way, we obtain a system of n
second-order ODEs 8>>>>>><>>>>>>:

m1x�1=¡k1x1+ k2(x2¡x1)
m2x�2=¡k2(x2¡x1)+ k3(x3¡x2)
���
mnx�n=¡kn(xn¡xn¡1)

:

Now, consider a vibrating string along the x-axis, which can be modeled as an infinite mass-spring
system connected in series. For a control length �x with density �, the control mass is ��x. Let
u(x; t) denote the position of this control length. This piece is under the forces of masses �(x¡�x)�x,
which is posited at u(x+ �x; t), and �(x+ �x)�x at the position u(x+ �x; t).

u(x+ �x; t)u(x; t)u(x¡ �x; t)
The force on the mass at x is

F =¡ k
�x
[u(x; t)¡u(x¡ �x; t)] + k

�x
[u(x+ �x; t)¡u(x; t)];

where k is the stiffness of the string, and according to the control length �x, the ratio k

�x
reflects

the impact of this length on the motion of mass in �x. Therefore, we can write

��x utt(x; t)=¡k
u(x; t)¡u(x¡ �x; t)

�x
+ k

u(x+ �x; t)¡u(x; t)
�x

;

where utt(x; t) :=
@2u

@t2
is the acceleration of the control length �x. By using the relations

u(x; t)¡u(x¡ �x; t)
�x

�ux(x¡ �x; t);
u(x+ �x; t)¡u(x; t)

�x
�ux(x; t);

we obtain
� �xutt(x; t)�¡kux(x¡ �x; t)+ kux(x; t);

and by dividing by �x, we obtain

�utt(x; t)� k
ux(x; t)¡ux(x¡ �x; t)

�x
;

where the right-hand side approaches kuxx when �x!0. Finally, we derive the following differential
equation for the oscillation of the vibrating string:

utt(x; t)=
k
�
uxx(x; t):

Exercise 1.1. For a mass-spring system consists of n masses m1; :::;mn connected to n springs k1; :::; kn in series,
the total energy is defined as

E(t)=
X
j=1

n
1

2
mj jx_j(t)j2+

1

2
k1jx1(t)j2+

X
j=2

n
1

2
kj jxj(t)¡xj¡1(t)j2:

Verify that the system conserves the energy, that is, dE
dt
=0, and conclude E(t)=E(0).

Exercise 1.2. The conservation of energy also applies to the wave equation of a string. Let us consider a string
of length L, fixed at two endpoints x=0 and x=L. We denote the position of the point x at time t by u(x; t).
The string forms a dynamic system if either its initial kinetic or potential energy is nonzero. The initial kinetic
energy of the string can be defined as follows:

K(t): =
1

2
mv2=

1

2

Z
0

L

� jut(x; t)j2 dx:
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The Hook's stretch potential energy is

U(t)=
k

2

Z
0

L

jux(x; t)j2 dx;

Verify that the total energy E(t)=K(t)+U(t) of the string is constant, i.e., dE
dt
=0, and conclude that E(t)=E(0).

Thus, in order to solve a wave equation, we require the initial disturbance u(x; 0) and initial velocity ut(x; 0).

1.1.2 General remarks

As we saw from the above example, ODEs and PDEs differ in some significant aspects. We can
summarize the differences as follows.

� The solution to an ODE is a function or a set of functions of only one independent variable,
whereas for a PDE, the solution depends on two or more independent variables. For the wave
equation, the solution u depends on two variables, x and t, and represents the position of
point x at time t. For this reason, the derivatives in a partial differential equation are partial
derivatives instead of ordinary ones.

� While ODEs are related to pointwise quantities, PDEs are mathematical models of distrib-
uted systems or continua. For this reason, PDEs are sometimes considered as an infinite set
of ODEs.

� The general solution of an ODE depends on one or more constant parameters. For example,
the solution of the harmonic oscillator x�+ k

m
x=0 can be expressed as a linear combination

of two fundamental solutions fcos(!0 t); sin(!0 t)g, where !0= k

m

q
is the natural frequency

of the single mass-spring system. The solution is given by

x(t)=c1 cos(!0 t)+c2 sin(!0 t);

where c1 and c2 are arbitrary constant parameters. In contrast, the solution of PDEs usually
depends on arbitrary functions. For example, the solution of the wave equation utt=

k

�
uxx

for constant k and � can be of the form u(x; t)=f(x¡ct)+g(x+ct), where c= K

�

q
, and f

and g are arbitrary smooth functions.

� The geometry of the solution to an ODE is a curve, while for a PDE it is a surface in space
or generally a hypersurface. For example, the graph of the solution u(x; t) of a wave equation
in the space (x; t; u) is a surface and not a curve.

� The solution of the wave equation can be interpreted from a physical perspective as a trav-
eling wave moving to the right as f(x¡ct) and left as g(x+ct) with velocity c = k

�

q
.

In contrast, the ordinary differential equations for a coupled mass-spring system do not
reflect such a traveling speed. For example, consider a system of three masses connected to
three springs in series, where the initial displacement of the first mass is x1(0)=1 and the
other two are at rest without stretch. Assuming zero initial velocity for all three masses
(x_1(0)=x_2(0)=x_3(0)), the initial kinetic energy of the system is zero, and the system evolves
its dynamics based on its initial potential energy U(0)= 1

2
jx1(0)j2.

The following figure shows the motion of all three masses. As we observe, the motion of m1

affectsm3 immediately, i.e., the propagation speed of the disturbance in the system is infinite.

1.1 From ODEs to PDEs 5
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Exercise 1.3. For each of the following partial differential equation, verify that the given solution satisfies the
equation

a) y@xu¡x@yu=0, u= f(x2+ y2)

b) x@xu¡ y@yu=0, u= f(x; y)

c) @xu¡ @yu=¡u, u= f(x+ y) e¡x

Exercise 1.4. For a multivariable function u=u(x; y), equations that involve only the partial derivatives of one
variable are generally referred to as defective equations. One example is the equation ux+u=0, where u=u(x;
y). This equation can be solved by the methods outlined in ODEs, resulting in the solution u(x; y)=f(y)e¡x,
where f is an arbitrary function. The function f serves as a constant parameter for integrating the ODE

du
dx

+u=0:

The following figure show the geometry of the above argument

x

u= f(c3) e
¡x

u= f(c1) e
¡x

y

u= f(c2) e
¡x

y= c3
du

dx
+u=0

y= c2
du

dx
+u=0

y= c1
du

dx
+u=0

Using the appropriate method, solve the following equations, where u is a two-variable function u=u(x; y):

a) uxx+ c2u=0, c> 0 a constant.

b) ux+u= y

c) @yu+u=u2

d) uxy+ux=0

e) x2uxx+xux+u= y.

1.1.3 From Newton cooling law to heat equation
Remember from ODEs that the temperature of a quantity located in an ambient space of temper-
ature Te follows the Newton's cooling rule:

dT
dt

=�(Te¡T );
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where �>0 is a proportionality factor that depends on the conductivity of the material, and T=T (t)
is the temperature function of the material as a function of time t. The function Te ¡ T is the
temperature gradient of the material compared to the temperature of the ambient space, Te. The
solution of the above ODE is an exponential function:

T (t)=Te+(T0¡Te) e¡�t;

where T0=T (0) is the initial temperature of the material.
Now, consider a conductive rod that is insulated from the surrounding environment, with an

initial temperature profile given by the function f(x). The temperature at any point x of the rod
at time t is denoted by u(x; t). Consider the interval between points a and b on this rod. If q(x; t)
is the density of the thermal energy, then the total thermal energy in this interval is:

Q[a;b](t)=
Z
a

b

c�q(x; t) dx;

where � is the mass density and c is the specific heat capacity of the material. The change in energy
from t to t+ �t is:

Q[a;b](t+ �t)¡Q[a;b](t)=
Z
a

b

c� [q(x; t+ �t)¡ q(x; t)] dx;

and by thermodynamics:

q(x; t+ �t)¡ q(x; t)�u(x; t+ �t)¡u(x; t):

In the limiting case as �t!0, we obtain:

dQ[a;b]

dt
(t)=

Z
a

b

c�ut(x; t) dx:

On the other hand, if no thermal energy is produced or lost in the interval, the only factor that
contributes to the change of thermal energy in this interval is the energy escaping through the
endpoints x=a and x=b. The Fourier law states that the heat gradient is proportional to ux, that is:

dQ[a;b]

dt
(t)=�ux(b; t)¡�ux(a; t);

where � is the conductivity factor of the material. Assuming � is a constant, the above relation can
be written as:

�ux(b; t)¡�ux(a; t)=
Z
a

b

�uxx(x; t) dx;

and finally: Z
a

b

[c�ut(x; t)+�uxx(x; t)] dx=0:

This integral equation holds for arbitrary interval [a; b], and if the integrand is continuous, we
conclude the following partial for u(x; t):

ut(x; t)= kuxx(x; t);

for k= �

�c
. This is the one-dimensional heat equation, which governs the evolution of temperature in

a homogeneous material. The equation states that the time rate of change of the thermal energy in
any interval is proportional to the rate of change of temperature and to the second spatial derivative
of temperature.

1.1 From ODEs to PDEs 7



The heat equation has important applications in various fields such as physics, engineering,
and finance. In physics, it is used to model the diffusion of heat in a medium, the propagation of
electromagnetic waves, and the behavior of quantum systems. In engineering, it is used to design
and analyze heat transfer systems, and to model the behavior of materials subjected to thermal
stress. In finance, it is used to model the pricing of financial derivatives, such as options and futures,
where the underlying asset price follows a random diffusion process.

Exercise 1.5. Consider the heat equation ut= kuxx where k > 0 is a constant.

a) Verify that the following function called the fundamental solution satisfies the equation for t > 0

�(x; t)=
1

4�kt
p e¡

x2

4kt:

b) Assume that f(x) is a smooth function. Verify the following relation

lim
t!0

Z
¡1

1
�(x; t) f(x) dx= f(0):

as long as the integral exists. The above relation implies that �(x; t) behaves like a Dirac delta function
when t! 0.

Exercise 1.6. By Newton's cooling law, the heat flows from hot spots to cold spot.

a) Explain how this fact is embedded in the derivation of the heat equation. In particular, explain why k
must be a positive constant.

b) If k<0, the equation is called a reverse heat equation. Explain why in this case heat flows from cold spots
to hot spots.

Exercise 1.7. Consider a conductive rod of length L which is insulated along its length and are insulated at
the end points x=0 and x=L. The insulation can be expressed mathematically as ux(0; t)= 0 and ux(L; t)= 0,
where ux denotes the temperature gradient. If so, show that the thermal energy in the system is conserved, that
is, dQ

dt
=0, where Q is

Q[0;L](t)=

Z
0

L

u(x; t) dt:

1.1.4 From population dynamics to migration

The exponential equation, formulated in the eighteenth century, was the first mathematical model
for population dynamics. It describes the growth of a living species in a certain region through the
equation dP

dt
=�P , whereP=P (t) denotes the population and � is the growth rate. However, this

model has proven to be inaccurate, and more sophisticated models, such as the logistic model, have
been suggested.

In this context, we consider a possible extension of population dynamics for a living species that
migrates along a long strip. Specifically, we examine a living zone in the shape of a strip populated
with animals that have a fertility rate of �. We assume that these animals migrate along the strip
with a constant velocity of c. Our objective is to determine the population in an arbitrary segment
of the strip at any given time.

To achieve this, we need to define the population density function �(x;t) such that the population
in a segment [a; b] at time t is equal to

P[a;b](t)=
Z
a

b

�(x; t) dx:

Here, we present the derivation through the following exercise.
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Exercise 1.8. Based on the above settings

a) Suppose the offspring rate is zero, �=0. The rate of change of P[a;b] in time is

dP[a;b]
dt

=
d
dt

Z
a

b

�(x; t) dx=

Z
a

b

�t(x; t) dx:

By conservation of population, this rate of change is equal to the rate of moving in this segment minus
the rate of animals leaving this segment. Show that

dP[a;b]
dt

= c�(a; t)¡ c�(b; t);
and conclude Z

a

b

[�t(x; t)+ c�x(x; t)] dx=0:

The above relation holds for any segment [a; b], and thus we conclude the following differential equation

�t(x; t)+ c�x(x; t)= 0:

b) Verify that the function �= f(x ¡ ct) solves the above PDE for arbitrary smooth function f . Conclude
that if �(x; 0)= �0 e¡x

2
, then �(x; t)= �0 e

¡(x¡ct)2. If c=1, find the population in the segment [¡1; 1] at
time t=3.

c) Now, let us assume that �> 0 and d�

dt
=��. Verify that the PDE in this case is

�t+ c�x=��:

Verify that the function � = f(x ¡ ct) e�t solves the equation. For �(x; 0) = 100e¡x
2
, c= 1 and �= 0.3,

draw the solution �(x; t) at t=0; 1; 2; 3.

1.2 Differential operators in higher dimensions

In order to extend the study of partial differential equations to higher dimensional spaces, we require
the use of appropriate differential operators. Among the most crucial of these operators are the
gradient, divergence, and Laplacian. These operators enable us to express and manipulate partial
derivatives in these spaces, which is essential for solving many important problems in fields such as
physics, engineering, and mathematics.

Before we begin, let's establish some general notation used in this book. The set of real numbers
is denoted by R, and the set of n-tuples by Rn. In R2, a point is written as (x; y); in R3, as (x; y; z);
and in Rn, as x=(x1; :::; xn). The standard unit vectors in Rn are denoted by

ê1; :::; ên;

where êj is a vector with zeros in all coordinates except the j-th coordinate, which is 1. Thus, a
point x can be considered as a vector x= x1 ê1+ ���+ xn ên. The set of all vectors in Rn forms a
vector space with scalar multiplication given by

� (x1; :::; xn)= (�x1; :::; �xn); �2R

and vector addition defined as

(x1; :::; xn)+ (y1; :::; yn)= (x1+ y1; :::; xn+ yn):

The magnitude of a vector x=(x1; :::; xn) is denoted as jxj and defined as

jxj=

0@X
j=1

n

xj
2

1A1

2

1.2 Differential operators in higher dimensions 9



The standard dot product between two vectors x and y is denoted as x � y and defined as:

x � y=
X
j=1

n

xj yj:

Alternatively, we may use the more general notation h;i for the dot product, i.e., hx; yi=x � y. The
distance between two points x and y in Rn is defined as

jx¡y j= hx¡y; x¡yi
p

= (x₁¡y₁)²+ ���+(xₙ¡yₙ)²
p

:

For a point a2Rⁿ and r>0, Bᵣ(a) denotes the r-ball centered at a. The unit ball with the center
at the origin is denoted by B. A set 
�Rⁿ is open if for any a2
, there exists an r>0 such
that Br(a) � 
. Equivalently, a set is open if that every point in the set has a neighborhood
that is contained entirely within the set. The boundary of a set 
 is denoted by bnd(
), and
its closure by 
� . For example, the set 
 = f(x; y); r1 < jx ¡ y j < r2g is open, with the closure

� = f(x; y); r1� jx¡ y j � r2g. The set 
1= f(x; y); r1< jx¡ y j � r2g is neither open nor closed.

We use the notationux; uy for the partial derivatives of a two-variable function u=u(x; y):

ux: =
@u
@x

; uy :=
@u
@x

:

On occasion, we also use the notation @xu and @yu for the partial derivatives. For a function u of
n variables, u=u(x₁; :::; xₙ), the partial derivatives are denoted by @ⱼu for @u

@xj
. The second-order

partial derivatives are similarly denoted by @iju=
@2u

@xi @xj
.

1.2.1 Differential operators in Cartesian coordinate

The differential operator r, called nabla, in Rn is defined as:

r := ê1 @1+ ���+ ên @n

Letu=u(x1; :::; xn) be a smooth scalar function defined on an open set 
�Rn. The gradient of u,
denoted by ru, is defined as:

ru= @1u ê1+ ���+ @nu ên:

For a fixed point x0 2 
, ru(x0) is a vector, and ru(x) for x 2 
 defines a vector field over 

which assigns a vector to each point in 
. This vector field is called the gradient vector field. The
gradient of u, is a vector field that points in the direction of maximum increase of u at each point in

. The following figures illustrate the graph of the function u=xy exp(¡x2¡ y2) and the gradient
trajectories which are the solutions of the following system:

d

dt

�
x
y

�
=ru(x; y);

or equivalently 8<:
dx

dt
=(1¡ 2x2)ye¡x2¡y2

dy

dt
=(1¡ 2y2)xe¡x2¡y2

:

10 Introduction



The direction of the gradient flow lines in heat flow or fluid dynamics is opposite to that of heat
or fluid flow. This is because heat and fluid tend to move from regions with higher temperatures or
pressures to those with lower temperatures or pressures, whereas the gradient vector field points in
the direction of maximum increase of the scalar function at each point.

In the context of a two-dimensional elastic membrane, the function u(x; y) represents the
vertical displacement of the membrane at point (x; y). The tension T (x; y) on the boundary of the
membrane, bnd(
), is defined as the product of a constant � and the gradient of u(x; y), ru(x; y).
This means that the tension at a point on the boundary is proportional to the rate of change of the
displacement at that point.

The vertical Hook's force exerted at a point (x; y) in the interior of the membrane is defined as
the limit of the average tension along the boundary of a shrinking region 
 around the point, as the
size of 
 approaches zero. The force is given by the line integral of the tension over the boundary
bnd(
), with respect to the outward unit normal vector �, divided by the area of 


F (x; y)= lim
j
j!0

1
A(
)

I
bnd(
)

�ru � �dS:

In other words, the Hook's force measures the rate of change of the tension with respect to the area
of the membrane. This force is important in studying the behavior of elastic membranes, such as
in the design of structures that use membranes as a supporting element.

Another important fact that we will use extensively in the next chapter of this book is the time
or mass derivative of a scalar function along a smooth curve. For a smooth parametrized curve
(t)=(x(t); y(t)), the derivative of u(x; y) along  is defined as:

du
dt
((t))=ru((t)) �  0(t);

where  0(t) is the tangent vector to  at time t. This expression represents the instantaneous rate of
change of u(x; y)at the point (t) along the curve (t), and it takes into account both the direction
and magnitude of the tangent vector  0(t). In other words, it tells us how quickly u(x; y) is changing
as we move along the curve (t).

In the context of fluid mechanics, if (t) denotes the trajectory of a fluid particle in the xy-
plane, then  0(t) represents its velocity vector, and du

dt
represents the instantaneous rate of change

of u(x; y) at each point on the trajectory of the particle as it moves through the fluid.

1.1. It appears that the natural world operates more justly than our modern economic system. In the context of money,
wealth tends to flow from poor individuals to those who already possess more, following the gradient of wealth inequality.
However, the laws of physics dictate the opposite behavior: heat, pressure, mass, and other quantities flow from regions of high
density to those of lower density.

1.2 Differential operators in higher dimensions 11



Exercise 1.9. Consider the temperature distribution in the xy-plane given by T (x; y)=10 exp(x2¡y2). Suppose
a runner is moving along the curve (t)=(cos(t); sin(t)), and wearing a hand clock marked from 0 to 60. What is
the angular velocity of the hand of the runner's watch as they move along the curve? Find the angular velocity
of the hand clock if the runner runs given by the following function (t)= (cos(!0 t); sin(!0 t)) for some !0> 0.

The divergence of a vector field F=(f ₁; :::; f ₙ) on a domain 
�Rⁿ is a scalar function denoted
by r�F , defined by

r �F =
X
j=1

n
@fj
@xj

:

Geometrically, the divergence of a vector field measures the extent to which the field �flows out�
from a given point in space. If r�F (x0)>0, then the point x0 behaves like a source for the field; that
is, the field flows outward from x0. If r�F (x0)> 0, then x0 behaves like a sink, and the field flows
inward toward x0. If r�F (x0)=0, then x0 is a neutral point for the field. The concept of divergence
is fundamental in fluid dynamics, where it is used to study the behavior of fluids in motion.

For example, the vector field F =ru, for u=xy exp(¡x2¡ y2), is equal to

r �F (x; y)=4xy(x2+ y2¡ 3) exp(¡x2¡ y2):

For a vector field x 7! F (x) = (f1(x); :::; fn(x)) for x 2
�Rn, the divergence denoted by r �F is
defined as the scalar function

r �F =
X
j=1

n

@j fj:

The divergence of a vector field measures how much the vector field �flows out� from a given point
in space. If r � F (x0) is positive, then x0 behaves like a source for the given field. If r � F (x0) is
negative, it behaves like a sink and if r�F (x0) is zero, the point is a neutral point for the field.

The following figure depicts the vector field F = ru, where u = xy exp(¡x2 ¡ y2), and the
corresponding contours of r �F .
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One of the important results related to the divergence of a vector field is the Gauss or divergence
theorem. The theorem relates the integral of the divergence of a vector field over a volume to the
flux of the vector field through the surface enclosing the volume. It is a fundamental theorem in
vector calculus and has many applications in physics and engineering.

Theorem 1.1. (Gauss) Assume that F is a smooth vector field in an open bounded set 
�Rn.
The following equality holds: Z



r �FdV =

I
bnd(
)

F ��dS;
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where dV is the volume element, dS is the surface element, � is the unit normal vector to the surface,
and the dot product F � � is the flux of the vector field through the surface.

Exercise 1.10. Let BRn denote the ball of radius R in Rn and SR
n¡1 the surface of the ball. Use divergence

theorem to show that

V (BR
n)=

A(SR
n¡1)

n
R;

where V (BRn) and A(SR
n¡1) are the volume and surface area of BRn and SR

n¡1 respectively. Verify your formula
for n=2; 3. (Hint: consider the function u=x12+ ���+xn2).

Remark 1.1. The divergence of a vector field at a point x can be defined using the divergence
theorem. Specifically, let F be a smooth vector field in an open set containing x, and let 
 be a
small, open, three-dimensional ball centered at x. Then, the divergence of F at x is given by:

r� f(x)= lim
j
j!0

1
vol(
)

I
bnd(
)

F ��dS;

where vol(
) is the volume of 
, and the limit is taken as the size of 
 approaches zero. In other
words, the divergence of F at x is equal to the flux of F across the boundary of a small ball centered
at x, divided by the volume of the ball.

Consider a homogeneous fluid with a constant density distributed in the regionx2+ y2<1, which
is shown in the figure below:

Suppose the fluid moves according to the velocity vector field V1=(¡x;¡y). As expected from
the shape of the vector field, the fluid will concentrate at the origin at later times, and the density
of the fluid will increase around the origin. In fact, the flow lines of this vector field are the solutions
of the following system of ODEs 8<:

dx

dt
=¡x

dy

dt
=¡y

;

which is solved for (t)=(x0e¡t; y0e¡t). The top figure in the following image depicts this scenario.
If the velocity field changes to V2=(x; y), the fluid will spread out, according to the system8<:

dx

dt
=x

dy

dt
= y

;

and the density will decrease around the origin, as shown in the bottom figure.
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Note that the behavior of the fluid is determined by the divergence of the velocity field. In the
first scenario, the divergence of V1 is negative, indicating that the fluid is flowing inward toward
the origin, while in the second scenario, the divergence of V2 is positive, indicating that the fluid
is flowing outward from the origin. This observation is consistent with the divergence theorem
presented earlier, which shows the relationship between the flow of a vector field and its divergence.

Exercise 1.11. Let the initial density of a fluid flow is given by the function

f(x; y)=

(
xy exp(¡x2¡ y2) x2+ y2< 1
0 otherwise

:

Find the flow lines of the fluid if the velocity vector field is given by V = (¡y; x). Round the following code in
Matlab and explain the change of density function in time.

[thet,r]=meshgrid(-pi:pi/1000:pi,0:0.005:1);

[x,y]=pol2cart(thet,r);

xt=@(t) x*cos(t)+y*sin(t);

yt=@(t) -x*sin(t)+y*cos(t);

zt=@(t) (xt(t).*yt(t).*exp(-x.^2-y.^2)).*(x.^2+y.^2<1)+0.*(x.^2+y.^2>=1);

for i=0:1:2

subplot(2,2,i+1)

surf(x,y,zt(i*pi/4)); shading interp; view(2); axis equal tight; grid off; colormap jet

clim([-0.25,0.25]); colorbar;

title(sprintf('density at $t=%.2f$',i*pi/4),'interpreter','latex','fontsize',10);

end

Exercise 1.12. A gradient vector field of the form F =¡ru for a scalar filed is also called conservative fields.
The reason is due to the following fact. Consider mass particle m moving along an arbitrary path (t) in this
field. The total energy of the mass is

E=
1
2
m jv j2+u(x):

Use the Newton's second law and show that the derivative of E along (t) is zero. Therefore, a conservative
force field conserves the total energy of a mass particle.
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Exercise 1.13. The line integral of a vector field F along an arbitrary smooth path (t) for t2 (a; b) is defined
as follows Z



F :=

Z
a

b

F ((t)) �  0(t) dt:

Show that if F = ¡ru, then the integral is independent of  and is equal to u((b)) ¡ u((a)). This integral
shows the amount of work or kinetic energy spend to move a particle from point (a) to (b) and as it is seen,
this amount is equal to the difference between the potential at these two points.

Exercise 1.14. Show that the line integral of a vector field is independent of the parametrization, that is, if 1:
(c; d)!C then Z



F ((t)) �  0(t) dt=
Z
1

F (1(t)) � 10(t) dt:

Exercise 1.15. The divergence of a two dimensional smooth vector filed F =(f ; g) is

r�F = fx+ gy:

Let R be the rectangle R := [¡a; a]� [¡b; b]. We prove the relation

r�F (0; 0)= lim
a;b!0

lim
a;b!0

1
A(R)

I
bnd(R)

F � � dl

a) Show that the net flux passing through the boundary of R isZ
¡b

b

ff(a; y)¡ f(¡a; y)gdy+
Z
¡a

a

fg(x; b)¡ g(x;¡b)gdx:

b) Use the relations

f(a; y)¡ f(¡a; y)=
Z
¡a

a

fx(x; y)dx; g(x; b)¡ g(x;¡b)=
Z
¡b

b

gy(x; y)dy;

and show the relationZ
¡b

b

ff(a; y)¡ f(¡a; y)gdy+
Z
¡a

a

fg(x; b)¡ g(x;¡b)gdx=4abffx(�1; �1)+ gy(�2; �2)g

for some ¡a< �1; �2<a, ¡b < �1; �2<b and conclude

lim
a;b!0

1

A(R)

I
bnd(R)

F � �dl= fx(0; 0)+ gy(0; 0)=r�F (0; 0):

c) Use the same argument and show that for the cube C := [¡a; a]� [¡b; b]� [¡c; c] and the smooth field
F =(f ; g; h), the following relation holds

lim
a;b;c!0

1

vol(C)

ZZ


bnd(C)
F � �dS= fx+ gy+hz

��������
(0;0;0)

:

Exercise 1.16. Let Ba�Rn be a ball of radius a in n-dimensional space. Consider the vector field F (x) = x,
and use the divergence theorem to conclude that the volume of Ba to its surface area is equal to a

n
.

Exercise 1.17. Let 
 � R3 be a domain with smooth boundary surface bnd(
). Use the divergence theorem
and show the following relations

a) Let F be a smooth vector field u a smooth scalar function, then

div (uF )=u div (F )+F �ru;
where div stands for r� .

b) Use the above result and show the following relationZZZ



u div (F ) dV =

ZZ


bnd(
)
uF � � dS ¡

ZZZ



F � ru dV :

c) If �;  are smooth functions defined on 
, thenZZZ



 ��dV =

ZZ


bnd(
)
 @n�dS ¡

ZZZ



r� �r dV ;
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where @n� stands for r� � �.

d) Use the above result and show the following relation called the Green's formula:ZZZ



(�� ¡  ��) dV =

ZZ


bnd(
)
[� @n ¡  @n�] dS:

The Laplacian operator � :=r � r is a differential operator that is commonly used in mathe-
matics and physics. As it is evident from its definition, the Laplacian of a scalar function u is equal
to the divergence of the gradient of u, and in the coordinate form is equal to

�u=
X
j=1

n

@jju;

for a smooth function u=u(x1; :::; xn).
The Laplacian operator has important applications in physics, such as in the study of the diffu-

sion equation, wave equation, and Schrödinger equation. In these contexts, the Laplacian operator
describes the behavior of physical quantities such as temperature, pressure, electric potential, and
wave functions. In the following discussion, we present an example of how the Laplacian operator
is applied in the field of electrostatics.

Let's consider an electric charge Q located at the origin of a three-dimensional space. The
potential field generated by this charge at any point r=(x; y; z)=/ (0; 0; 0) is given by

�(r)= Q

4�"0 jr j
;

where "0 is the permittivity of the air and jr j is the distance of x to the origin

jr j= x2+ y2+ z2
p

:

This potential field generates an electric field

E(r) :=¡r�(r)= Qr
4�"0 jr j3

;

with a magnitude of jE(r)j = Q

4�"0 jr j2
and direction of r̂ = r

jr j . Let BR be the ball with radius

R centered at the origin. We can calculate the net amount of electric field passing through the
boundary of this ball, denoted by SR, as follows:ZZ


SR

E(r) � �(r) dS;

where �= r̂ for r=/ 0. Hence,ZZ

SR

E(r) � �(r) dS=
ZZ

SR

Q
4�"0 r2

dS= Q
4�"0R2

ZZ

SR

dS= Q
"0
:

As observed, the net amount of electric field passing through SR is independent of R and is equal
to Q

"0
.

Now, let's consider the divergence of the electric field E(r) for r=/ 0. By direct calculation, we
have

��=r �E(r)= @
@x

�
Qx

4�"0jr j3

�
+ @
@y

�
Qy

4�"0jr j3

�
+ @
@z

�
Qz

4�"0jr j3

�
= Q
4�"0

�
jr j3¡ 3x2jr j

jr j5 + jr j
3¡ 3y2jr j
jr j5 + jr j

3¡ 3z2jr j
jr j5

�
=0

:
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Therefore, ��=0 everywhere except at r=0.
Note that we can apply the divergence theorem to the integral of �� over the region between

two concentric balls BR1 and BR2, which givesZZZ
BR2

�� dV =
ZZZ

BR1

�� dV +
ZZZ

BR2¡BR1
�� dV :

R1

R2

��=0

y

z

x

By the result ��=0 for r=/ 0, we concludeZZZ
BR2

��dV =
ZZZ

BR1

��dV ;

and by the Gauss theorem, we obtainZZ

SR2

E � �dS=
ZZ

SR1

E � �dS:

One can use the above results and solve the following problems.

Exercise 1.18. Let 
 be any open bounded domain with the smooth boundary bnd(
), and let and � be the
potential field of a pointwise Q-charge. Show that if Q is located inside 
, thenZZZ




��dV =
Q
"
;

and if Q is located outside 
� , then ZZZ



��dV =0:

Exercise 1.19. Let two electric charges Q;¡Q are located inside an open bounded domain 
. ShowZZZ



��dV =0:

Exercise 1.20. Suppose there is an open bounded set 
 in R3, and it contains an electric charge density q. The
total electric charge inside 
 can be expressed as

Q=

ZZZ



q(r) dV :

Show the following relation ZZZ



��dV =
Q

"0
:

Hint: consider a differential element qdV and let Eq(r) be the electric field generated by qdV at point r.

1.2.2 Differential operators in polar and spherical coordinates
Remember that the polar coordinate is defined through the transformation

T (r; �)= (x; y)= (r cos(�); r sin(�));
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where r2 [0;1) and �2 [¡�;�]. In order to find the form of the operator nabla r in this coordinate,
wen need first to determine the vectors r̂ ; �̂, the unit vector along r and � directions. For fixed �=�0
The transformation T (r; �0) is a parameterized curve and then Tr(r; � 0) is tangent to this curve.
The unit vector r̂ is then obtained as

r̂= Tr(r; �0)
jTr(r; �)j

=(cos(�0); sin(�0)):

As it is observed, the unit vector r̂ depends on the chosen angle �0, and then

r̂= r̂(�)= (cos(�); sin(�)):

Now, fix r= r0, and determine �̂ by the relation

�̂= T�(r0; �)
jT�(r0; �)j

=(¡sin(�); cos(�)):

As it is seen again, �̂= �̂(�), is a function of � and independent of r.
By the above calculations, it is evident that r̂ � �̂ = 0, and thus they are orthogonal. Transfor-

mations for which this property holds are said orthogonal transformations. Moreover, we have

@ r̂
@�

= �̂ ;
@ �̂
@�

=¡r̂ ;

and @ r̂

@r
= @ �̂

@r
= 0. Note that @ �̂

@�
=¡r̂ contributes to the centrifugal force experienced by a particle

moving in a circular path around the origin in the polar coordinate system. The vector @ r̂

@�
= �̂, on

the other hand, points in the tangential direction to the curve traced out by a particle moving in a
circular path around the origin in the polar coordinate system.

Now, let u(r; �) be a given scalar function in polar coordinates. We can write ru in polar
coordinates as:

ru=�(r; �) r̂+ �(r; �) �̂ ;

where we need to determine the appropriate functions � and �. To find �, we use the orthogonality
condition, which yields:

�(r; �)=ru � r̂=(ux; uy) � (cos(�); sin(�))=ux cos(�)+uy sin(�):

Using the chain rule, we can also write:

@u
@r

=ux
@x
@r

+uy
@y
@r

=ux cos(�)+uy sin(�);

and so we see that �(r; �)=ur. Similarly, we can find � as:

�(r; �)=ru � �̂=¡ux sin(�)+uy cos(�)=
1
r
u�:

Therefore, we obtain:

r(r;�)u(r; �)=ur r̂+
1
r
u� �̂ ;

and we can express the differential operator r(r;�) as:

r(r;�)= r̂ @r+
1
r
�̂ @�;

where @r; @� denote partial derivatives with respect to r and �, respectively.
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With the nabla operator in polar coordinates, we can determine the Laplacian �:=r�r, which
is crucial for our discussion of second-order partial differential equations. By using the Laplacian in
polar coordinates, we can solve a variety of problems involving circular or cylindrical domains. For
example, we can model the behavior of electric or magnetic fields inside a cylindrical conductor, or
the flow of fluids inside a circular pipe. The Laplacian also plays an important role in the study of
harmonic functions, which are solutions to the Laplace equation �u=0.

Based on the relation �:=r�r and the derived r(r;�), we can obtain the Laplacian in polar
coordinates as follows:

�=r�r=
�
r̂ @r+

1
r
�̂ @�

�
�
�
r̂ @r+

1
r
�̂ @�

�
:

Using the orthogonality relation r̂ � �̂=0, and the partial derivative relations:8>>>><>>>>:
@rr̂= @r�̂=0

@�r̂= �̂

@��̂=¡r̂
;

we can simplify the Laplacian to the following form in polar coordinates:

�(r;�)= @rr+
1
r
@r+

1
r2
@��:

Exercise 1.21. Find the form of nabla r in the cylindrical coordinate and then find the Laplacian in this
coordinate system.

Let's now turn to the spherical coordinate system. In this system, the transformation is defined
through the following relations:

T (�; �; �)= (x; y; z)= (r sin(�) cos(�); r sin(�) sin(�); r cos(�)):

Here, r2 [0;1) is the distance from the origin, �2[0; �] is the angle with respect to the z-axis, and
�2 [¡�; �] is the angle with respect to the x-axis.

p

r

�

�

x

y

z

The unit vector r̂ is defined as

r̂= Tr(r; �; �)
jTr(r; �; �)j

=(sin(�) cos(�); sin(�) sin(�); cos(�)):

Similarly, we have the following expressions for �̂ and �̂:

�̂= T�(r; �; �)
jT�(r; �; �)j

=(cos(�) cos(�); cos(�) sin(�);¡sin(�));

�̂=
T�(r; �; �)
jT�(r; �; �)j

=(¡sin(�); cos(�); 0):
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It can be easily verified that r̂ ; �̂, and �̂ are mutually orthogonal, and thus the transformation T
defines an orthogonal transformation.

Given a scalar function u = u(r; �; �), we can determine its gradient using the following
expression:

ru=�(r; �; �) r̂+ �(r; �; �) �̂+ (r; �; �) �̂;

where functions �; �, and  need to be determined. To find these functions, we can use the
orthogonality conditions:

�=ru � r̂=ux sin(�) cos(�)+uy sin(�) sin(�)+uz cos(�)=ur;

�=ru � �̂=ux cos(�) cos(�)+uy cos(�) sin(�)¡uz sin(�)=
1
r
u�;

=ru � �̂=¡ux sin(�)+uy cos(�)=
1

r sin(�)
u�:

Using these expressions, we can derive the form of r(r;�;�):

r(r;�;�)= r̂ @r+
1
r
�̂ @�+

1
r sin(�)

�̂ @�:

This can be used to determine the Laplacian in this coordinate system.

Exercise 1.22. To derive the Laplacian in the spherical coordinate:

a) Show the following relations for the spherical transformation

@rr̂=0; @�r̂= �̂ ; @�r̂= sin(�) �̂

@r�̂=0; @��̂=¡r̂ ; @��̂= cos(�)�̂

@r�̂=0; @��̂=0; @��̂=¡sin(�) r̂ ¡ cos(�) �̂:

b) Find the divergence of a vector filed F =�(r; �; �)r̂+ �(r; �; �) �̂+ (r; �; �)�̂ in this coordinate system.

c) Use r(r;�;�) and the result of the above problem, and derive �(r;�;�) which is

�(r;�;�) :=
1

r2
@r(r2 @r)+

1

r2 sin (�)
@�(sin(�) @�)+

1

r2 sin2(�)
@��:

Exercise 1.23. In this exercise, we will derive the form of the Laplacian for a general orthogonal curvilinear
coordinate system defined by the transformation:

T (q1; q2; q3)= (x(q1; q2; q3); y(q1; q2; q3); z(q1; q2; q3));

where q1; q2, and q3 are the coordinates of a point in the curvilinear system, and x; y, and z are their Cartesian
counterparts.

a) Find the unit vectors q̂1; q̂2, and q̂3 of the coordinate system.

b) Use the orthogonality condition and show the following relation for the nabla operator r(q1;q2;q3)

r=
1

jT1j
q̂1 @1+

1

jT2j
q̂2 @2+

1

jT3j
q̂3 @3;

where @j=
@

@qj
, and Tj=

@T

@xj
.

c) We use symbols i;jk for the coordinates of the partial derivatives of @ q̂i
@qj

as follows

@ q̂i
@qj

= ij
1 q1̂+ ij

2 q2̂+ ij
3 q3̂:

Show that iji =0.

d) Use the above notation and conclude

�:=r�r=
X
i=1

3
1
jTij2

@ii+
X
i=1

3
1
jTij

@i

�
1
jTij

�
@i+

X
i;j=1

3
1

jTij jTj j
i;j
j @i

e) For a given vector field F =P q̂1+Q q̂2+R q̂3, find div (F ).
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