
Appendix

1 Linear Algebra

1.1 Rn as a vector space
As a set,Rn is the collection of all n-tuple (x1; :::;xn), xk2R. Equivalently,Rn can be defined
as the Cartesian product of n copies of R as Rn=R� ��� �R. A tuple u= (x1; :::; xn) has
a double life, as a point in the Cartesian space with coordinates xk, and as a vector u~ with
the tail at the origin and head at u. For this reason, Rn can be considered as a set of points
or a set of vectors.

u

x1

xn

x2 x2

xn

u~

x1

We need two more structures on Rn to make it a vector space, i.e., the scalar multipli-
cation, and the vector addition. Let c2R be a scalar, and u~ =(x1; :::xn); v~ =(y1; :::; yn) two
arbitrary vectors. We define

c u~ =(cx1; :::; cxn); u~ + v~ =(x1+ y1; :::; xn+ yn):

The geometry of these two operations are shown in Fig.1.
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Figure 1.
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It is seen that Rn is closed under the defined operations, that is, for any two vectors u~ ;
v~ in Rn, and c1; c22R, vector c1u~ + c2v~ is in Rn. Moreover, the following properties hold for
any vectors u~ ; v~ ;w~ 2Rn and constant c2R:

i. u~ + v~ = v~ +u~

ii. c (u~ + v~)= c u~ + c v~

iii. (c1+ c2)u~ = c1u~ + c2u~

iv. (u~ + v~)+w~ =u~ +(v~ +w~ )

Rn has n standard unit vectors ê1; :::; ên defined below

ê1=

0BBBBBB@
1
0
���
0

1CCCCCCA; ê2=
0BBBBBB@

0
1
���
0

1CCCCCCA; :::; ên=
0BBBBBB@

0
0
���
1

1CCCCCCA:
The set fêkgk=1n is a basis for Rn in the sense that any vector u~ =(x1; :::; xn) can be uniquely
represented as

u~ =x1 ê1+ ���+xn ên:

Remark. The magnitude or norm of a vector u~ =(x1; :::; xn) is defined as follows

ku~ k=
X
k=1

n

xk
2

s
:

A vector is called unit or a direction vector if its norm is equal 1. We usually denote unit
vector by notation ^.

1.2 Dot and Cross products
The dot product of two arbitrary vectors u~ =(x1; :::; xn); v~ =(y1; :::; yn) is defined as

u~ � v~ =
X
k=1

n

xi yi:

In particular, êi � êj= �i;j where �i;j=
�
1 i= j
0 i=/ j

.

Problem 1. Show that the dot product enjoys the following properties for any vectors u~ ; v~ ; w~ and for
arbitrary constant c

i. (u~ + v~) �w~ =u~ �w~ + v~ �w~ ,
ii. u~ � v~ = v~ �u~ ,
iii. (c u~ ) � v~ = c (u~ � v~)

Problem 2. Show the following relations

a) ku~ k2=u~ �u~
b) ku~ + v~k�ku~ k+ kv~ k
c) ku~ + v~k2¡ku~ ¡ v~k2=4 u~ � v~

Problem 3. The Cauchy inequality is as follows

u~ � v~ �ku~ k kv~k:

2 Appendix



Try to prove the inequality by the following method: ku~ + t v~k2� 0 for all t 2R. Expand ku~ + t v~k2 in
terms of t and conclude the inequality. By this inequality, one can define the angle between two nonzero
vectors u~ ; v~ as follows

cos(�)= u~ � v~
ku~ k kv~k :

By the above equality, one can write (u~ ; v~) = ku~ k kv~k cos(�). Note that if u~ � v~ =0 for non-zero vectors
u~ ; v~ , then cos(�)= 0.

Problem 4. Show that if u~ 1; :::; u~m are mutually orthogonal, that is, if u~ i �u~ j=0 for i=/ j then

ku~ 1+ ���+u~mk2= ku~ 1k+ ���+ ku~mk2:

There is a standard product in R3 called cross or external product . For u~ = (x1; y1; z1);
v~ =(x2; y2; z2), the cross product is defined as follows

u~ � v~ =

������������
ê1 ê2 ê3
x1 y1 z1
x2 y2 z2

������������=(y1z2¡ z1y2)ê1+(z1x2¡x1z2)ê2+(x1y2¡ y1x2)ê3:

Note that u~ � v~ is a vector, while their dot product is a scalar.
Problem 5. Show the relation u~ � v~ =¡v~ �u~ .
Problem 6. Show that u~ � v~ is perpendicular to u~ and v~ , that is,

(u~ � v~) �u~ =(u~ � v~) � v~ =0:
Problem 7. Show the identity

ku~ � v~k2= ku~ k2ku~ k2¡ ju~ � v~ j2;
and conclude the relation

ku~ � v~k= ku~ k kv~k sin(�);

where � is the angle between u~ ; v~ in [0; �].

By the above problem, we can write

u~ � v~ = ku~ k kv~k sin(�) n̂;

where n̂ is the unit vector perpendicular to the plane containing u~ ; v~ , that is, n̂= u~ � v~
ku~ � v~k .

A= jju~ � v~ jj

�

u~ � v~

u~ v~
A

v~ �u~

Problem 8. Show the following relation for any three vectors u~ ; v~ ; w~

u~ � (v~ �w~ )= v~ � (w~ �u~ ):

Problem 9. If v~ ; w~ are orthogonal, show the following relation

u~ � (v~ �w~ )= (u~ �w~ )v~ ¡ (u~ � v~)w~ :

Use this result and relax the condition v~ ; w~ to be orthogonal. Use the formula and determine the
conditions the following relation holds

u~ � (v~ �w~ )= (u~ � v~)�w~ :
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1.3 Subspaces and direct sum

Definition 1. Tow vectors u~ ; v~ in Rn are called linearly dependent if there is a scalar c
such that u~ = c v~ or v~ = c u~ . A vector u~ is linearly dependent on vectors v~1; :::; v~m if there are
scalars c1; :::; cm such that

u~ = c1v1~ + ���+ cmv~m:

Vectors v~1; :::; v~m in Rn are linearly independent if the linear combination

c1 v~1+ ���+ cm v~m=0;

implies c1= ���= cm=0.

Problem 10. Vectors ê1; :::; ên are linearly independent in Rn. Show that any n+1 vectors of Rn are
linearly dependent.

Let fv~1; :::; v~dg for d � n be a set of linearly independent vectors in Rn. The span of
vectors in the given set is the set of all possible linear combinations of v~1; :::; v~d, i.e.,

spanfv~1; :::; v~dg= fc1v~1+ ���+ cd v~d; ck2Rg:

Note that Rn is itself equal to spanfê1; :::; êng.

Proposition 1. Vd := spanfv~1; :::; v~dg is closed under the vector addition and scalar multi-
plication of Rn. For this reason, Vd is called a linear subspace of Rn.

Definition 2. Let V be a linear subspace of Rn. The dimension of V is the maximum
number of linearly independent vectors in V.

Example 1. Technically speaking, Rm is not a subspace of Rn for m < n, however, if we
interpret Rm as spanfê1; :::; êmg where each êj is a vector in Rn, then Rm is a linear subspace
of Rn.

If V is a linear subspaces of Rn, then its orthogonal subspace V? is defined as follows

V?= fw~ 2Rn;w~ � v~ =0; v~ 2Vg:

Obviously, V? is a linear subspace of Rn equipped with the vector addition and scalar
multiplication operations.

Problem 11. Show that ifV= spanf(1;1;0); (0;1;1)g, thenV? is the one dimensional subspace spanned
by (1;¡1; 1).

Problem 12. Find the orthogonal subspace of V= f(1; 0; 1)g in R3.

Suppose U;V are two subspaces of Rn and U\V=f0g. The direct sum U�V is defined
as follows

U�V= fc1u~ + c2v~ ; u~ 2U; v~ 2Vg:

Problem 13. If V is a subspace of Rn, show that Rn=V�V?.

Problem 14. Let V be an arbitrary subspace of Rn. Show that every vector u~ in Rn can be represented
uniquely as u~ = c1v~ + c2w~ for v~ 2V and w~ 2V?.
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1.4 Matrices and linear mappings

Definition 3. A mapping f :Rn!Rm is called linear if for any constants c1; c2 and any
vectors u~ ; v~ 2Rn, the following relation holds

f(c1u~ + c2 v~)= c1f(u~ )+ c2f(v~):

Problem 15. If f :Rn!Rm is linear then f(0)= 0.

Proposition 2. A linear mapping f :Rn!Rm can be represented by a m�n matrix.

Proof. Remember that a matrix A=[aij]m�n is a structure of n-columns of vectors belonging
Rm, i.e., A = [A1j���jAn], where Ak 2 Rm. The action of A to êk is defined by the relation
A (êk)=Ak. Now define Af as

Af = [f(ê1)jf(ê2)j���jf(ên)]:

It is simply seen that for arbitrary vector u~ 2Rn, the following relation holds f(u~ )=Af(u~ ). �

Problem 16. Let T :R2!R2 has the matrix representation A2�2=
�
1 1
0 1

�
in the standard basis. Find

the matrix representation of T in the basis v~1=
�
1
1

�
; v~2=

�
1
¡1

�
.

Problem 17. Prove that a matrix 2� 2 maps any parallelogram to a parallelogram.

Problem 18. Verify that the the matrix R�=
�

cos(�) ¡sin(�)
sin(�) cos(�)

�
rotates vectors in the plane by � degree

counter-clockwise. Verify that R�1R�2=R�1+�2 and conclude that R�R¡� is the identity matrix
�
1 0
0 1

�
.

Definition 4. Let f :Rn!Rm be a linear mapping. The kernel (or null space) of f, denoted
by ker(f) (or just Nf) is a set of all vectors n~ of Rn such that f(n~ ) = 02Rm. The image
of f denoted by Im(f) is the set of all vectors w~ 2Rm such that w~ = f(v~) for some v~ 2Rn.

Proposition 3. The kernel of a linear mapping f : Rn! Rm is a vector subspace of Rn.
The image of f is a vector subspace of Rm.

Problem 19. Prove the proposition.

Theorem 1. Assume that f :Rn!Rm is a linear mapping. The following relation holds

n=dimker(f)+dim Im(f): (1)

Problem 20. Let S denote the orthogonal subspace of ker(f). Show that dim S = dim Im(f) and
conclude f(S)= Im(f).

1.5 Linear mappings from Rn to Rn

1.5.1 Determinant

Let f :Rn!Rn be a linear mapping, and let C be a unit cube constructed on êk; k=1; :::;
n. The image of C under f , that is f(C), is a parallelogram. In fact, every vector u~ 2C is
represented by the linear combination

u~ = c1ê1+ ���+ cn ên;
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for 0� ck� 1, and thus

f(u~ )= c1f1~ + ���+ cn fn~ ;

where fk= f(êk). The set fc1f1~ + ���+ cn fn~ g for 0� ck� 1 is a parallelogram constructed on
f1~ ; :::; f~n; see Fig. 2 .

ê1

f~1= f(ê1)
f~2= f(ê2)

ê2

Figure 2.

Definition 5. Let f :Rn!Rn be a linear mapping, and let C be the unit cube constructed
on fek̂gk=1n . The determinant of f denoted by det(f) is the algebraic volume of parallelogram
f(C). The algebraic volume is the signed volume with positive or negative signs.

Example 2. In R2, the determinant of A=
�
a11 a12
a21 a22

�
is defined by the following formula

det
�
a11 a12
a21 a22

�
= a11a22¡ a12a21: (2)

It is simply verified that jdet(A)j= jjA(ê1)jj jjA(ê2)jj sin(�), where � is the angel between two
columns of A.

If det(f) = 0, then the volume degenerates, that means vectors f~1; :::; f~n are linearly
dependent. If det(f) < 0, then f changes the standard orientation of the basis fêkgk=1n

(remember the standard rotations inR2 andR3), for example f(x; y)=(y;x) with the matrix
representation

A= [f(ê1)jf(ê2)] =
�
0 1
1 0

�
;

changes the standard rotation. Let Af = [f~1j���jf~n] be the representation of f :Rn!Rn in
the standard basis fêkgk=1n . The determinant det(Af) satisfies the following properties:

i. If f1~ ; ���; f~n are linearly dependent then det[A] = 0

ii. det[f~2jf~1j���jfn~ ] = ¡det[Af]. In general any switch between column i and j multiple
the determinant by the factor (¡1)i+j.

iii. det[c f~1jf2~ j���jfn~ ] = cdet(Af)

iv. det[c1f~1+ c2f~kjf~2j���jf~n] = c1 det[Af] for any k=2; :::; n.

By the above properties, it is seen that if f ; g:Rn!Rn are two linear mappings then

det(AB)= det(A) det(B)
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Problem 21. Verify directly the above claim for 2� 2 matrices.

1.5.2 Injective and surjective mappings

Definition 6. A linear mapping f : Rn! Rm is called one-to-one or injective if equality
f(u~ ) = f(v~) implies u~ = v~. A linear mapping f : Rn! Rm is called onto or surjective, if
Rm= f(Rn).

Problem 22. A linear mapping f :Rn!Rn is one to one if and only if ker(f) = ;, and if and only if
it is onto.

Problem 23. Let f :Rn!Rm be a linear mapping. Show that if m > n, then f can not be onto, if
m<n then f can not be one-to-one.

If f :Rn!Rn is one-to-one (and then onto), the mapping f¡1: Rn!Rn is called the
inverse mapping of f if the following relation holds

ff¡1= f¡1f = Id;

where Id is the identity mapping on Rn. The identity mapping has the matrix representation
diag(1; :::;1), where diag(1; :::; 1) has 1 on the main diagonal and zero everywhere else. Note
that Id(u~ )= u~ for any vector u~ .

Problem 24. If f :Rn!Rn is a one to one linear map, show that f¡1 is also a one to one linear map.

1.5.3 Eigenvalues and Eigenvectors

A vector v~ 2Rn ¡ f0g is called an eigenvector of a linear mapping f :Rn!Rn if there is
a scalar � such that f(v~) = �v~. It is seen that if v~ is an eigenvector, then vector w~ = tv~ for
arbitrary scalar t is also an eigenvector. Accordingly, one can define an eigendirection of f
that is spanfv~ g := ft v~ ; t2Rg; see Fig. 3.

v~

�v~ = f(v~)

f

Figure 3.

Example 3. The vector v~ = (1; 1) is an eigenvector of the matrix A =
�

1 1
¡1 3

�
with the

eigenvalue �=2, because
�

1 1
¡1 3

��
1
1

�
=2

�
1
1

�
. Matrix A=

�
1 1
¡1 3

�
has only one eigenvector

and matrix A=
�

2 3
¡4 ¡5

�
has two eigenvectors v~1=(1;¡1) and v2~ =(3;¡4) with eigenvalues

�1 = ¡1 and �2 = ¡2 respectively. The rotation matrix R� =
�

cos(�) ¡sin(�)
sin(�) cos(�)

�
has no (real)

eigenvector for � =/ 0; 2�. Recall that R� rotates vectors counterclockwise by �-angle. The
identity matrix I2�2=

�
1 0
0 1

�
has infinitely many eigenvectors. In fact, every vector in R2 is

an eigenvector of Id2�2 with eigenvalue �=1.
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Proposition 4. If f : Rn! Rn has n distinct eigenvalues �1; :::; �n, then their associated
eigenvectors v~1; :::; v~n are linearly independent.

Problem 25. Prove the proposition.

If v~ is an eigenvector of a linear mapping f with eigenvalue �, then (f ¡�Id)v~ =0, and
since v~ is nonzero, v~ must belong to the kernel of f ¡�Id. Let Af is a matrix representation
of f , then the following relation holds

det(Af ¡�Id)= 0:

The above equation, which is an algebraic equation of �, is called the characteristic equation
of f . If A=

�
a11 a12
a21 a22

�
, the characteristic equation is as follows

�2¡ tr(A)�+ det(A)=0; (3)

where tr(A) (read trace A) is equal to a11+ a22.

Problem 26. Show that if A2�2 has a repeated eigenvalue � with two linearly independent eigenvectors
then all vectors of R2 is an eigenvector of A.

Problem 27. Let A be a 2� 2 matrix. Prove that the following statements are equivalent

i. A is invertible.

ii. Two columns of A are linearly independent.

iii. The determinant of A is non-zero.

iv. No eigenvalue of A is zero.

Problem 28. If �1; �2 are two eigenvalues of A2�2, show that det(A)=�1�2 and tr(A)=�1+�2.

Problem 29. If Q2�2 is an invertible matrix, show the following relations

tr(Q¡1AQ)= tr(A), det(Q¡1AQ)= det(A):

1.5.4 Symmetric mappings and Jordan forms

Definition 7. A linear mapping f : Rn! Rn is called symmetric if the following equality
holds for arbitrary vectors u~ ; v~ 2Rn:

f(u~ ) � v~ =u~ � f (v~):

Theorem 2. If the linear mapping f : Rn! Rn is symmetric, then there are n mutually
orthogonal eigenvectors v~1; :::; v~n for f. Moreover, all eigenvalues of f are real.

Problem 30. Assume v~1; v~2 are two eigenvectors of a symmetric mapping f . Show that hv~1; v~2i=0.

If f : Rn ! Rn has n linearly independent eigenvectors v~1; :::; v~n, then Rn can be
decomposed by the direct sum Rn=V1�����Vn where Vk= spanfv~kg. The restriction of f
to each Vk is a linear mapping fk:Vk!Vk, and thus we can decompose f as the direct sum
f = f1� ��� � fn. With this interpretation, every vector v~ 2Rn has a unique representation
v~ = c1 v~1+ ���+ cn v~n, and thus f(v~) is

f(v~)= f1(c1 v~1)+ ���+ fn(cn v~n)= c1�1 v~1+ ���+ cn�n v~n
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Definition 8. A linear mapping f : Rn! Rn is called positive definite if for any nonzero
vector v~, the following inequality holds

f(v~) � v~ > 0:

A negative definite linear mapping is defined similarly.

It is simply seen that if Af = [aij] is the matrix representation of the positive definite
mapping f in the standard basis, then aii> 0 for i=1; :::; n. Moreover, all real eigenvalues
of Af must be positive.

Problem 31. Let f :Rn!Rn be a symmetric mapping. A necessary and sufficient condition that f be
positive definite is that its all eigenvalues are positive.

If Qn�n is an invertible matrix, then two matrices B=Q¡1AQ and A are called similar .
It is seen that A;B have same characteristic polynomial as the following argument justifies it:

det(Q¡1AQ¡ �Id)=detQ¡1(A¡�Id)Q=det(Q¡1)det(A¡�Id)detQ= det(A¡�Id):

Proposition 5. Suppose An�n has n linearly independent eigenvectors v~1; :::; v~n. Then the
following relation holds

Q¡1AQ=diag(�1; :::; �n);

where for Q= [v~1j���j v~n], and �1; :::; �n are associated eigenvalues (not necessarily distinct).
Matrix diag(�1; :::; �n) is called the Jordan form of A.

Problem 32. Prove the above proposition.

Fig. 4 shows the relation between eigenvectors of A and Q¡1AQ .

Eigenvectors ofEigenvectors of A

v~1v~2

Q¡1AQ

e2~

e1~

Figure 4.

Problem 33. Let A=
�
¡4 ¡3
3 2

�
. Find the matrix Q¡1AQ.

If a matrix An�n has n repeated eigenvalues � with only one eigenvector, then the
Jordan form of An�n is a diagonal matrix with � on the main diagonal and 1 on the upper
diagonal. For example, for a 3 � 3 matrix with repeated eigenvalue �, the Jordan form

is

0BB@ � 1 0
0 � 1
0 0 �

1CCA. If a matrix 2� 2 has two complex eigenvalues � = � � i!, its Jordan form is
�
� ¡!
! �

�
.

Problem 34. For a n�n matrix A show det(A)=
Q

k=1
n

�k, and conclude that A is one-to-one if and
only if A does not have a zero eigenvalue.
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1.6 Linear equations

Let f : Rn! Rm be a linear mapping, and let b~ 2 Rm be an arbitrary vector. The linear
equation f(u~ ) = b~ is solvable if and only if b~ 2 Im(f). If f :Rn!Rn is a linear one-to-one
mapping, then equation f(u~ )= b~ is simply solved for u~ = f¡1(b~). If dimker(f)> 0 and u~ is a
solution to the equation, then for any vector n~ 2 ker(f), v~ =n~ +u~ is also a solution. In this
context, vectors in ker(f) are called the homogeneous solutions of f(u~ )=0.

Problem 35. Suppose n�m and f :Rn!Rm is a linear mapping. Show that if dim ker(f) = n¡m,
then the linear equation f(u~ )= b~ is solvable for any b~ 2Rm. What if dimker(f)>n¡m? If n>m and
dimker(f)=n¡m, show that the equation f(u~ )= b~ has infinitely many solutions.

Problem 36. Let A=
�
2 6
1 3

�
. For what values of b~ 2R2, the equation Au~ = b~ is solvable? Verify that

the solutions of the equation Au~ =
�
4
2

�
has the form u~ = t

�
¡3
1

�
+

�
2
0

�
for t2 (¡1;1).

Problem 37. Let f :Rn!Rn be a linear mapping and let u1~ ;u~ 2 be two solutions to equation f(u~ )= b~.
Show that u~ 1 ¡ u~ 2 2 ker(f), and conclude every solution to the equation can be represented by n~ + u~
where n~ 2 ker(f).

Problem 38. Let f :Rn!Rn be a linear mapping and suppose u~ 1 is a solution to f(u~ )= b~1 and u~ 2 is
a solution to f(u~ )= b~2. Show that u~ 1+u~ 2 is a solution to f(u~ )= b~1+ b~2.

As we saw above, equation f(u~ )=b~ is solvable if b~2 Im(f). The following problem answer
the solvability of a linear equation f(u~ )= b~ by the aid of the transpose of f . Remember that
f t:Rm!Rn is the transpose of f :Rn!Rm if the following equality holds for any u~ 2Rn,
and v~ 2Rm

f(u~ ) � v~ =u~ � f t(v~):

Problem 39. Let f :Rn!Rm be a linear mapping. Show ker(f t)= [Im(f)]?. Conclude that the linear
equation f(u~ )= b~ is solvable if hb~; n~ i=0 for all n~ 2 ker(f t). Also show

dimker(f t)¡dimker(f)=m¡n:

Problem 40. Find ker(f t) of the matrix A=
�
2 6
1 3

�
and verify that b~=

�
4
2

�
is orthogonal to ker(f t).

2 Functions of several variables

2.1 Topology of Rn

For p=(x1; ���; xn)2Rn, the Euclidean norm kpk is defined as

kpk= x1
2+ ���+ xn

2
p

;

and if q=(y1; :::; yn), the Euclidean distance is defined as follows

kp¡ qk= (x1¡ y1)
2+ ���+(xn¡ yn)

2
p

:

An immediate result of the above definitions is the convergence of sequences in Rn.
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Definition 9. A sequence (pm)m=1
1 is called convergent to a if

lim
m!1

kpm¡ ak=0:

Proposition 6. A sequence pm converges to a if and only if each coordinate of pm converges
to its associate coordinate of a.

An open ball of radius r centered at a2Rn is defined as

Br(a)= fp2Rn; kp¡ ak<rg:

a

r

Problem 41. If pn! a then any ball Br(a) contains infinitely many points of the sequence.

A set D�Rn is called open if for any point a 2D, there is r > 0 such that Br(a)�D.
A set D�Rn is called bounded if there is r > 0 such that D�Br. If D is an open set then
its complement Dc is closed. The complement set Dc is defined as

Dc= fp2Rn; p2Dg:

If D is a set, its closure, cl(D) is the smallest closed set containing D, and bnd(D) denotes
the boundary set of D. A point a is called a boundary point of a set D if for any r > 0, the
following relation holds

Br(a)\D=/ ;; Br(a)\Dc=/ ;:

The above statements means that any ball centered at a crosses both D and Dc. We have
bnd(Br)= fp; kpk= rg, and cl(Br)= fp; kpk� rg, and Br

c= fq; kqk>rg.

Problem 42. A set D�Rn is closed if and only if any convergent sequence (pn); pn2D converges in D.

Problem 43. Consider the set A=
� 1
n
; n=1; 2; 3; ���

	
. Determine if A is open or closed.

Problem 44. Let D�Rn be any set, show that bnd(D) is closed.

Problem 45. Show that the set A=
�
y; 0< y<

1

x
; x > 0

	
is open. Find bnd(A).

Problem 46. If D1; D2 are open sets show that D1[D2 and D1\D2 are open. Repeat the argument
if D1; D2 are closed.
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2.2 Straight lines and planes in R3

The parametric equation of a straight line passing through a point p0 = (x0; y0; z0) and
parallel to a vector r~ =(a; b; c) is p0~ + t r~ , or equivalently

x(t)=x0+ at; y(t)= y0+ bt; z(t)= z0+ ct:

If a=/ 0; b=/ 0; c=/ 0, then we can rewrite the equation as follows

x¡x0
a

=
y¡ y0
b

=
z¡ z0
c

:

(p~ ¡ p0~ )jj r~

r~

p~ ¡ p0~

p0

p

Similarly, the equation of a straight plane in R3 passing through a given point p0=(x0;
y0; z0), and perpendicular to a given vector n~ =(a; b; c) is n~ � (p~ ¡ p0~ )=0, or equivalently

a(x¡x0)+ b(y¡ y0)+ c(z¡ z0)= 0;

or equivalently ax+ by+ cz= d, for some constant d.

p0

p

p~ ¡ p~0

(p~ ¡ p0~ )?r~n~

The intersection of two planes in R3 can be empty or a line depending on their position
to each other. For example, two planes P1: a1x+ b1y + c1z = d1 and P2: a2x+ b2y + c2z = d2
intersect if their normal vectors n~ 1= (a1; b1; c1) and n~ 2= (a2; b2; c2) are not parallel to each
other. In this case, the intersection line will be parallel to n~ 1�n~ 2

n~ 1�n~ 2=

��������������
î ĵ k̂
a1 b1 c1
a2 b2 c2

��������������=(b1c2¡ c1b2; c1a2¡ a1c2; a1b2¡ b1a2);
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Hence, the equation of the intersection line is

x¡x0
b1c2¡ c1b2

=
y¡ y0

c1a2¡ a1c2
=

z ¡ z0
a1b2¡ b1a2

;

where (x0; y0; z0) is a point on the intersection of P1; P2.

Example 4. Find the intersection of two plane P1: 2x+ y=1, P2: y¡ z=¡1.

Solution. The associated normal vectors of two plains are n~ 1= (2; 1; 0), n~ 2= (0; 1;¡1), and they are
not parallel. The intersection line of two plains are in the direction of

n~ 1�n~ 2=(¡1; 2; 2):

Obviously, the point p0=(0; 1; 2) lies on both plains, and thus the intersection line equation is

x
¡1 =

y¡ 1
2

= z¡ 2
2

:

2.3 Scalar functions

A function f with the domain Df �Rn is called a scalar function if Imf �R. For example,
a mapping that measures the temperature of each point of a room is a scalar function.
The graph of a scalar function y = f(x1; :::xn) is the setf(x1; :::xn; y)g � Rn+1 where
(x1; :::; xn) 2 Df, the domain of f . The graph of a function z = f(x; y) is the surface
f(x; y; f(x; y))g. For example, function z=x2+ y2 is a paraboloid in the (x; y; z)-space

The set ff(x; y)= cg for a fixed c is called the level set of f with value c. For example,
the level sets of f(x; y)=x2+ y2, is the set of circles of radius c

p
centered at the origin. A

level set is also called an implicit function, for example x2+ y2+ z2= c2, that is a sphere of
radius c in R3.

2 Functions of several variables 13



Definition 10. A scalar function f :D!R has a limit L at a2D if for any sequence pm2D,

pm=/ a, the convergence pm!!!!!!!!!!!!!!!!!!!!
Rn

a implies f(pm)!!!!!!!!!!!!
R
L, that is, for any "> 0, there is � > 0

such that if 0< kp¡ ak<� then jf(p)¡Lj<".

It is simply seen that function f(x; y)=
xy

x2+ y2
, does not have a limit at (0;0). In fact, for

sequence (xm; ym)=
¡ 1

m
; 0
�
, the limit is 0. For sequence (xm; ym)=

¡
0;

1

m

�
, the limit is again

0, but the limit is 1

2
for sequence

¡ 1

m
;
1

m

�
.

Problem 47. Determine if the following functions have a limit at (0; 0)

a) f = x2y

x2+ y2

b) f = sin(x) + sin(y)
x+ y

Definition 11. A scalar function f :D!R is called continuous at a2D if for any sequence
(pm), pm ! a, the sequence f(pm) converges to f(a). The statement is equivalent to the
following: for any "> 0, there is � > 0 such that jf(p)¡ f(a)j<" for all p2B�(a).

Problem 48. Suppose f :Rn!R is continuous. Show that for any open interval J , the set f¡1(J)=fp;
f(p)2J g is open.

Problem 49. Show that the following function is not continuous at (0; 0).

f(x; y)=

8<: x2y

x4+ y2
(x; y)=/ (0; 0)

0 (x; y)= (0; 0)
:

2.4 Vector functions

Let I �R be an interval. A mapping f : I!Rn is called a vector valued function. A vector
valued function f is usually denoted by f(t)= (f1(t); :::; fn(t)) for parameter t in I.
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Example 5. The image of mapping f(t)= (cos(t); sin(t)) is a unit circle in the plane (x; y)
as it satisfies the relation [x(t)]2+ [y(t)]2=1. The image of mapping f(t)= (cos t; sin t; t) is
a helix in R3 as shown below.

A vector function f(t) has a limit at t0 if and only if all coordinate functions fk(t) has a
limit at t0. Similarly, f is continuous if its all coordinate functions are continuous. We write
lim
t!t0

f(t) =L~ , if lim
t!t0

fk(t) = lk for all k=1; :::; n, and L= (l1; :::; ln). A vector function is also

called a one dimensional parametric function.

The derivative of vector function is defined coordinate-wise, i.e.,

f 0(t)= (f1
0(t); :::; fn

0(t)):

For a fixed t02 I, f 0(t0) is the tangent vector on the curve f(I) at t0 as long as f 0(t0) exists.

If f 0(t0) does not exist, we say f is singular at t0. For example, function f(t) =
�
t
2

3; t
�
is

singular at t=0.
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If f(t) denotes the trajectory of a particle in Rn, f 0(t0) is called the velocity vector of
that particle, and kf(t0)k is equal to its speed. The parametric representation of a curve
provides us with more information than its image. For example, the image of mapping
f(t)= (cos(!t); sin(!t)) is a unit circle for all values of !=/ 0, however, if f(t) represents the
trajectory of a particle, the speed of the particle would be a function of !, as the relation
kf 0(t)k = ! justifies it. The following figure shows the velocity vectors for ! = 0.5; 1; 2
respectively from left to right.

2.5 Parametric mappings
A mapping f :Df �Rn!Rm is called a parametric mapping if m> 1. For example if n=2
and m=3, mapping f(t; s)= (f1(t; s); f2(t; s); f3(t; s)) defines a parametric surface in R3.

s

x

z

yt
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Parametric mappings are very common for representing complex surfaces. For example,
a torus is represented by the following parametric mapping

f(�; �)= ((c+ a cos(�))cos(�); (c+ a cos(�)) sin(�); a sin(�))

where c> a are some constants. The shape is shown below.

Figure 5.

The restriction of f(t; s) to a curve in the (t; s) plane is mapped to a curve in the surface
f(t; s). For example, : �= �/6 is a straight line in (�; �) plane, and it is mapped under f
to the following space curve

¡(�)= ((c+ a cos(�))cos(�/6); (c+ a cos(�)) sin(�/6); a sin(�)):

The following parametric mappings are respectively representations of a sphere and a cylinder

S: (sin(�) cos(�); sin(�) sin(�); cos(�)); C: (cos(�); sin(�); z)

The concept of limit and continuity is coordinate-wise as well, that is, f has a limit at p2Df

if each coordinate function has a limit at p2Df.

3 Derivatives

3.1 Derivatives of scalar functions

3.1.1 Partial derivatives.
Let Df be an open set in Rn. For a scalar function f :Df!R, the partial derivative @kf at
p2Df is defined by the following limit

@kf(p)= lim
t!0

f(p+ têk)¡ f(p)
t

; (4)

as long as the limit exists. For a two variable function f(x; y), the partial derivatives @xf ;
@yf at p=(a; b) are defined respectively as follows

@xf(a; b)= lim
t!0

f(a+ t; b)¡ f(a; b)
t

;

@yf(a; b)= lim
t!0

f(a; b+ t)¡ f(a; b)
t

;
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as long as the limits exist.

Remark 1. For the sake of simplicity, we use the flat notations @x; @y in this book instead
of the standard ones @

@x
;
@

@y
. Another notation for the partial derivative is fx; fy for

@f

@x
;
@f

@y
.

Remark 2. Similarly, we can define partial derivative functions @xf ; @yf in the open set
Df, the domain of f as

@xf(x; y)= lim
t!0

f(x+ t; y)¡ f(x; y)
t

;

@yf(x; y)= lim
t!0

f(x; y+ t)¡ f(x; y)
t

;

for (x; y)2Df.

Remark 3. The existence of partial derivatives of a function at a point does not guarantees
the continuity of the function at that point. Consider the following function

f(x; y)=

(
xy

x2+ y2
(x; y)=/ (0; 0)

0 (x; y)= (0; 0)
:

Even though, @xf(0; 0); @yf(0; 0) exist and are equal zero, the function is not continuous at
the origin. However, f(x; y) must be continuous and differentiable with respect to x at (a; b)
in order that @xf(a; b) exists. Similarly, f(x; y) must be continuous and differentiable with
respect to y at (a; b) in order that @yf(a; b) exists.

3.1.2 Interpretations of partial derivatives

Like a single variable function, there are two related interpretations of partial derivatives.
Consider a two variable function f(x; y) defined on an open set Df. Fix a point (a; b) 2
Df, and consider the horizontal line parallel to x-axis passing through (a; b). The partial
derivative @xf(a; b) measures the rate of change of f at (a; b) along the horizontal line, and
similarly, @yf(a; b) measures the rate of change of f at (a; b) along the vertical line passing
through (a; b). For example, the rate of change of function f(x; y)= x2+ y2

p
at (1;1) along

x-axis is

@xf(1; 1)=
x

x2+ y2
p ����������

(1;1)

=
1

2
p :

The slope of tangent lines to the surface of f(x; y) are expressed in terms of partial deriva-
tives. The projection of line (a+ t; b), for t2 (¡c; c) for some c>0 on the graph of z= f(x; y)
is a curve of the following form

¡1(t)= (a+ t; b; f(a+ t; b)):

This space curve passes through (a; b; f(a; b)) at t = 0. It is simply seen that @xf(a; b) is
equal to the slope of tangent line to ¡1(t) in the (x; z)-plane at t=0:

d¡1
dt

������
t=0

=(1; 0; @xf(a; b))
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Similarly, @yf(a; b) is equal to the slope of tangent line to the curve ¡2(t) = (a; b + t;
f(a; b + t)) at t = 0 in the (y; z)-plane. The following figure shows the graph of function
f(x; y)= x2+ y2

p
, and the projection of 1(t)= (1+ t; 1) on it:

¡1(t)=
¡
1+ t; 1; 2+ t2+2t

p �
:

The black line is the tangent to the space curve ¡1 at t=0. The slope of the tangent line, is
the tangent of the angle the line makes with the horizontal line 1, that is,

m=
d
dt

2+ t2+2t
p

jt=0=
1

2
p :

Note that d¡1
dt
(0) is the tangent vector to the curve ¡1 at time 0

d¡1
dt

(0)=

�
1; 0;

1

2
p
�
:

A similar argument holds for @yf , that is, if ¡2 is the projection of 2(t) = (1; 1 + t) on the
graph of f , then

d¡2
dt

(0)=

�
0; 1;

1

2
p
�
:

Vectors d¡1
dt
(0);

d¡2
dt
(0) are both tangent to the graph of f at (1; 1; 2

p
) and thus the plane

span
�d¡1

dt
(0);

d¡2
dt
(0)
	

is the tangent plane to the surface of f at (1; 1; 2
p

). The algebraic
equation of the tangent plane is derived by the air of n~

n~ = v~1� v~2=
�
¡ 1

2
p ;¡ 1

2
p ; 1

�
;
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and thus the algebraic of the tangent plane is derived as

¡ 1

2
p (x¡ 1)¡ 1

2
p (y¡ 1)+ z ¡ 2

p
=0:

Remark 4. For a general function z= f(x; y), two principal tangent lines at p=(a; b) are

v~1=(1; 0; @xf(a; b)); v~2=(0; 1; @yf(a; b));

and thus n~ , the normal vector to the graph of f at p is

n~ =(¡@xf(p);¡@yf(p); 1):

Accordingly, the algebraic equation on the tangent plane at p is

¡@xf(a; b) (x¡ a)¡ @yf(a; b) (y¡ b)+ z¡ f(a; b)=0:

3.1.3 Chain rule
Let f be a scalar function on Df�R2, and assume that x; y are functions of another variable,
say t, i.e., x = x(t); y = y(t). In the final analysis, f(x; y) is a function of t and thus the
ordinary derivative df

dt
can exist.

df
dt
(t)= lim

h!0

f(x(t+h); y(t+h))¡ f(x(t); y(t))
h

:

Proposition 7. Assume that f is differentiable with respect to x and y, and moreover the
partial derivatives are continuous. If x(t); y(t) are differentiable functions of t, then the
following equality that is called chain rule holds

df
dt

= @xf(x(t); y(t))
dx
dt

+ @yf(x(t); y(t))
dy
dt
: (5)

There is an important interpretation for the above formula. First, note that : (x(t); y(t))
defines a parametric curve in the (x; y)-plane, and thus f(x(t); y(t)) can be considered as the
restriction of f to . Also, we can consider  as the path of a particle moving in the (x; y)-
plane. Therefore, relation (5) states the rate of change of the value of that particle along .
For example, if f is the density distribution function in the plane, then relation (5) states
how fast or slow the density of a particle changes when it moves along path .

f((0))

f((t1))
(t)

f((t2))

x

y
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On the other hand, since the graph of f is a surface in R3, f((t)) is the projection of
(t) in the surface as shown in the following figure. With this interpretation, relation (5)
defines the slope of tangent to the curve at any instance of time.

Let us consider again equality (5) and rewrite it as follows

@xf
dx
dt

+ @yf
dy
dt

=

�
@xf
@yf

�
�

0@ dx

dt

dy

dt

1A:
Note that

0BB@ dx

dt

dy

dt

1CCA is just the tangent vector of the curve  = (x(t); y(t)), i.e.,  0(t). Vector 
@xf
@yf

!
is called the gradient of f and is denoted by grad(f) or rf . Therefore, equality (5)

can be rewritten as
df
dt

=rf �  0(t);

and for this reason, df((t))

dt
is called also the derivative of f along (t). The chain rule can

be extended to higher dimensions. For example, if f(x; y) is a differentiable function with
respect to x; y and x=(x(t; s)); y= y(t; s) are differentiable functions then

@tf = @xf@tx+ @yf@ty;

@sf = @xf@sx+ @yf@sy:

Problem 50. If u=u(t; x), and x=x(t), find du

dt
.

Problem 51. If u= f(x¡ 2t) find @tu and @xu.

3.1.4 Directional derivative
Partial derivatives are just special cases of a more general derivative called the directional
derivative. Assume that a direction vector v̂ = (v1; v2) is given (a direction vector is a unit
vector), and f : Df ! R is a given continuous function. The directional derivative of f at
(a; b)2Df along v̂ is defined by the following limit

@v̂f(a; b)= lim
t!0

f(a+ tv1; b+ tv2)¡ f(a; b)
t

;
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as long as the limit exists. If so, then @v̂f(a; b) measures the rate of change of f at (a; b)
along v̂. Obviously if v̂=(1; 0) then @v̂f(a; b)= @xf(a; b) and if v̂=(0; 1), it would be equal
to @yf(a; b).

Proposition 8. If @xf ; @yf are continuous at (a; b), that is,

lim
(x;y)!(a;b)

@xf(x; y)= @xf(a; b); lim
(x;y)!(a;b)

@yf(x; y)= @yf(a; b);

then

@v̂f(a; b)=rf(a; b) � v̂

The continuity in the above proposition is crucial, for example, consider the following
function

f(x; y)=

8<: x2 y

x2+ y2
(x; y)=/ (0; 0)

0 (x; y)= (0; 0)
:

If v̂=
�

1

2
p ;

1

2
p
�
, then

@v̂(0; 0)= lim
t!0

t3

2 2
p

t2

t
=

1

2 2
p ;

however, rf(0; 0) =
�
0
0

�
, and thus rf(0; 0) � v̂ = 0. The reason is that @xf ; @yf are not

continuous at (0; 0). To see this, let us find @yf for (x; y)=/ 0 as

@yf(x; y)=
x2(x2¡ y2)
(x2+ y2)2

;

and observe that @yf does not have even a limit at (0; 0). Note also that the directional
derivative of a function f is a special case of the chain rule rf �  0(t).

Problem 52. For the following function

f(x; y)=

8<: x2y

x4+ y2
(x; y)=/ (0; 0)

0 (x; y)= (0; 0)

show that @r̂f(0; 0) exists for any direction r̂ but partial derivatives are not continuous at (0; 0).

3.1.5 Gradient

Consider the level curve defined by : f(x; y)= c. If (t)= (x(t); y(t)) is a parametrization
of this curve then rf �  0(t)=0 for any t as long as rf is a continuous vector function. This
relation means that rf((t)) is always perpendicular to (t). For example, the level curve

x4+2x2y+x2+ y2=1;
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has the gradient

rf =

 
4x3+4xy+2x

2x2+2y

!
:

The following figure shows a few of gradient vectors �f on the level curve

As it is observed, gradient vectors are perpendicular to level curves. On the other hand, if
n̂=(n1; n2) is the direction vector at a point on the level curve, the the directional derivative
@n~f of f is rf � n̂, and since n̂= rf

krf k (as long as the rf =/ 0), we obtain

@n̂f = krf k:

Therefore, the magnitude of �f at a point measures the rate of change of f along the normal
direction on the level curve. This result is extremely useful to maximize (or minimize) a
scalar function. The procedure is as follows. To maximize f(x; y), we fix an initial point
p0=(x0; y0). The next point p1 is obtained by the following relation

p1= p0+�
rf(p0)
krf(p0)k

;

where �> 0 is a small value. Geometrically, that mean we take a step of length � along the
direction rf(p0). Iterating this procedure, that is,

pn+1= pn+�
rf(pn)
krf(pn)k

;

converges the maximum point of f as long such a local or global maximum exists, and if f
satisfies some other verifiable conditions.

In above, we used frequently the operator nabla r=

0BB@ @1
���
@n

1CCA. It is applied to differentiable

function as rf =
0BB@ @1f

���
@nf

1CCA. We study this operator in more detail later in this appendix.

3 Derivatives 23



Problem 53. Show the following relations

a) r(f + g)=rf +rg.

b) r(kf)= krf , k 2R.

c) r(fg)= frg+ grf .

3.1.6 Derivative and differential

Let f :Df �Rn!R be a scalar function defined on an open set Df. The derivative of f at
p0 is the linear mapping Dp0f :R

n!R such that the following relation holds for any h~ 2R
n

lim
h~!0

f(p0+h~ )¡ f(p0)¡Dp0f(h~ )

kh~ k
=0 (6)

Obviously if f is differentiable at p0 then it is continuous at that point. Moreover, such
a linear mapping must be unique. Note that if a function f is differentiable at a point a
then directional derivatives along any direction at a exist. The reverse holds only if partial
derivatives are continuous at a.

Problem 54. Verify that the above definition is compatible with the usual definition for single variable
functions.

Problem 55. Show that if f is differentiable at p0 it must be continuous at that point. Show also that
its derivative (the linear mapping) is unique.

Proposition 9. Assume that f has continuous partial derivatives at p0, that is,

lim
p!p0

@kf(p)= @kf(p0);

for k=1; :::; n, then Dp0f exists and has the matrix representation

Dp0f = [@1f(p0); ���; @nf(p0)]:

According to the above proposition, if f has continuous partial derivatives at p0 then for
any h~ 2Rn, the following relation holds.

Dp0f(h
~ )=rf(p0) �h~ :

For this reason, some texts write Dp0f =rf(p0) that we should keep in mind that Dp0f is
a 1�n matrix, while rf(p0) is a n� 1 vector.
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Example 6. For example, function

f(x; y)=

8<: x2y

x4+ y2
(x; y)=/ (0; 0)

0 (x; y)= (0; 0)

has directional derivatives in all directions at the origin, however, the function is not dif-
ferentiable at this point since it is not even continuous at the origin (why?). On the other
hand, functionf(x; y)=x2+ y2 has continuous partial derivatives @xf =2x; @yf =2y and for
any p0=(x0; y0), we have

Dp0f =2[x0; y0]:

Let us verify definition (6) for f at p0=(1;¡1). For arbitrary h~ =(h1; h2), we have

lim
h~!0

(1+h1)2+(¡1+h2)2¡ 2¡ 2(h1¡h2)
h1
2+h2

2
p = lim

h~!0

h1
2+h2

2

h1
2+h2

2
p = lim

h~!0
kh~ k=0:

An immediate result of definition (6) is the linear approximation formula. If f :Df!R
is continuously differentiable at p02Df, that is

lim
p!p0

Dpf =Dp0f ;

then

f(p)� f(p0)+Dp0f(p~ ¡ p~0);

or equivalently

f(p)� f(p0)+rf(p0) � (p~ ¡ p~0):

For functions of two variables, the above formula reads

f(x; y)= f(x0; y0)+ @xf (x¡x0)+ @yf (y¡ y0):

Note that the right hand side is the equation of tangent plane at (x0; y0; f(x0; y0)):

T (x; y)= (x0; y0)+ @xf (x¡x0)+ @yf (y¡ y0):

Theorem 3. (Mean Value Theorem) Assume that f : Df ! R is continuously dif-
ferentiable everywhere in Df. Fix a point p0 2 Df. Then for any point p 2 Df, there is
� 2 tp+(1¡ t)p0, t2 (0; 1) such that

f(p)= f(p)+rf(�) � (p~ ¡ p~0):

Problem 56. Prove the theorem. Hint: define g(t)= f(tp+(1¡ t)p0) and apply the mean value theorem
for the single variable function g(t); t2 [0; 1].
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Definition 12. The total differential of f :Df!R at p0 is defined by the following formula

df(p0)= @1f(p0) dx1+ ���+ @nf(p0) dxn:

Remember that for a single variable function y = y(t), the differential dy is defined by
the relation dy(t0)= y 0(t0) dt. Fig.(6) below shows this relation geometrically.

dt

dy(t0)

t0

y= y(t)

y(t0)

t0

dt

dy= y 0(t0) dt

y

t

T (x)

Figure 6.

Similarly for a 2-variable function z= f(x; y), dz is defined by the following relation and
its geometry is represented in Fig. 7.

dz= @xfdx+ @yfdy:

(x0; y0)

dz= @xfdx+ @yfdy

dy

dx

x

y

f(x0; y0)

z

Figure 7.

3.1.7 Critical points and local max and min

Let Df �Rn be an open set. A point a2Df is called a local min (or max) of f :Df!R if
there is a ball B�(a) such that f(p)� f(a) (alternatively f(p)� f(a)) for all p 2B�(a). If
f is differentiable at a, and if a is a local min or max, then Daf is a zero mapping. To see
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this, suppose a is a local min, choose an arbitrary direction vector h~ , and write

0= lim
t!0

f(a+ th~ )¡ f(a)¡Daf(th~ )

kth~ k
= lim

t!0

f(a+ th~ )¡ f(a)¡ tDaf(h~ )
jtj :

For t> 0, we have

Daf(h~ )= lim
t!0

f(a+ t h~ )¡ f(a)
t

� 0

For t< 0, we have

Daf(h~ )= lim
t!0

f(a+ t h~ )¡ f(a)
t

� 0;

and thus Daf(h~ ) = 0 for arbitrary h~ , and thus Daf is a zero mapping (meaning rf(a) is a
zero vector).

Definition 13. (Critical point) A point a is called a critical point of a function f if either
Daf does not exist or Daf is a zero mapping. If Daf is a zero mapping, a can be a local min,
local max, a saddle point or non of them.

In order to determine the type of a critical point in terms of min, max or saddle, we
need the notion of second derivatives. Second order partial derivatives @ijf are defined as
@ijf = @i(@jf). We have the following theorem.

Theorem 4. Let Df�Rn be an open set, and f :Df!R . Furthermore assume that @ijf is
continuous, then @ijf = @jif.

Theorem 5. Assume that f :Df!R is continuously differentiable of order 2 on open set Df.
Fix a2Df, then there is � 2 tp+(1¡ t)a for some t2 (0; 1) such that the following relation
holds for any for any p2Df

f(p)= f(a)+rf(a) � (p~ ¡ a~)+ (Hf(�)(p~ ¡ a~)) � (p~ ¡ a~);

where Hf is the Hessian matrix of f defined as Hf = [@ijf ]i;j.

Corollary 1. Assume that f is second order continuously differentiable function and rf(a)=
0, then a is a local min if Hf(a) is a positive definite matrix, a is a local max if Hf(a)
is a negative definite matrix, and a saddle point if Hf(a) has eigenvalues with opposite signs.

The standard example of above three cases is f = x2+ y2; f =¡x2¡ y2, and f = x2¡ y2

as shown below
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Note that Hf(a) is a symmetric matrix, and thus it has n orthogonal eigenvectors, and
the Jordan form diag(�1; :::; �n). Therefore if all eigenvalues of Hf(a) is positive then a is a
local min, if its all eigenvalues are negative then a is local max, and if there are some positive
and some negative eigenvalues, it is a saddle point. If there is at least one zero eigenvalue,
or equivalently det(Hf(a))=0, then a may not be any of these types.

Problem 57. Find all critical points of the function f(x; y)=x3+ y3+ 9

2
x2¡ 3

2
y2+6x and classify them.

3.2 Derivative of non-scalar mappings

3.2.1 Jacobi matrix
Let Df�Rn be an open set and f :Df!Rm a continuous map. f is differentiable at a2Df

if there is a linear mapping Daf :Rn!Rm that satisfies the following relation

lim
h~!0

kf(a+h~ )¡ f(a)¡Daf(h~ )k
kh~ k

=0:

Equivalently, f =(f1; :::; fm) is differentiable at a if and only if each coordinate function fk
is differentiable at a. On the other hand, the derivative of fk at a is

Dafk= [@1fk(a); :::; @nfk(a)];

and since each fk is defined on Rn, we obtain

Daf =

0BBBBBB@
@1f1(a) @2f1(a) ��� @nf1(a)
@1f2(a) @2f2(a) ��� @nf2(a)
��� ��� ��� ���

@1fm(a) @2fm(a) ::: @nfm(a)

1CCCCCCA:
The above matrix is called the Jacobi matrix of f at a, denoted also by Jf(a). Let (t) be
a smooth curve passing through a at t=0. This curve is mapped into Rm by f as f((t)).
In the final analysis, f((t)) is a vector valued function and therefore, we have

df((0))
dt

=D(0)f(~ 0(0)):
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Since  0(0) is the tangent vector on (t) at t = 0, D(0)f(~ 0(0)) is the tangent vector on
f((t)) at t=0. For example, for f(x; y)= (x2¡ y2; x2+ y2) we have

D(1;1)f =

�
2 ¡2
2 2

�
:

If (t) = (e¡t; et) (passing through (0; 0) at t= 0), we have  0(0) =
�
¡1
1

�
and accordingly,

D(0)f( 0(0))=
�
¡4
0

�
. Note that

d
dt
f((t))jt=0=

d
dt
(e¡2t¡ e2t; e¡2t+ e¡2t)jt=0=

�
¡4
0

�
:
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Theorem 6. Assume that the Jacobi matrix of a mapping f :Df �Rn!Rn is invertible at
a. Then there is a neighborhood B�(a) such that f is one to one on B�(a).

Note that det(Jf(a)) measures the volume of a parallelogram constructed on columns of
Jf(a). In other word, if C is a unit cube made at a, then det(Jf(a)) is equal to the volume
of parallelogram Jf(a)(C). Hence, if det(Jf(a))=/ 0, there is a neighborhood B�(a) such that
f is one to one on B�(a).

3.2.2 Smooth surfaces

Remember that a smooth space curve is represented by a curve map (t) such that  0(t) is
nonzero. Geometrically, this condition means that (t) always admits a tangent vector that
varies continuously along .

Definition 14. A surface S in R3 is called smooth if S has a nonzero normal (perpendicular)
vector at all points on S.

Let f(t; s) 2 R3 be parametric surface. Consider an arbitrary point f(t0; s0) on S.
Coordinate line 1(t)= (t+ t0; s0) is mapped on S as ¡1(t)= f(t+ t0; s0). The tangent vector
to this space curve is just ¡10(t0)=@tf(t0; s0). Similarly, the coordinate line 2(s)=(t0; s+s0)
is mapped as ¡2(s)= f(t0; s+s0) and the tangent vector is ¡20(s)=@sf(t0; s0). Notice that both
¡1
0;¡2

0 are tangent to S and therefore n~ :=¡10�¡20 is perpendicular to S as long as it is nonzero

n~ =

��������������
î ĵ k̂

@tx (t0; s0) @ty(t0; s0) @tz(t0; s0)
@sx (t0; s0) @sy(t0; s0) @sz(t0; s0)

��������������=/ 0:
Let us see the result for a smooth function z= f(x; y). The graph of function is

�(x; y)= (x; y; f(x; y));

and thus @x�=(1; 0; @xf) and @y�=(0; 1; @yf). The normal vector n~ is

n~ = @x�� @y�=(¡@xf ;¡@yf ; 1):

Example 7. For p0= (0; 1; 1) on the surface of f(x; y)= x2+ y2, consider coordinate lines
1(x) = (x; 1); 2(y) = (0; y). We have f(1)= (x; 1; 1+ x2), f(2)= (0; y; y2), see the figure
shown below. Respectively, the tangent vectors are as T1=(1;0;0), T2=(0;1;2). The normal
vector n~ to the surface at p0 is

n~ =T1�T2=(0;¡2; 1);

and therefore the equation of tangent plane is ¡2(y¡ 1)+ z ¡ 1=0.
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For a surface represented by the implicit function S: f(x; y; z) = 0, the normal vector n~
is derived by the following procedure. Consider an arbitrary space curve =(x(t); y(t); z(t))
on S, that is, f(x(t); y(t); z(t))=0. The chain rule states

df
dt
()=rf((t)) �  0(t)=0:

Since  0(t) is tangent to S, then rf is perpendicular to (t) if rf is nonzero. On the
other hand, since  is arbitrary, then  0 belongs to the tangent plane on S, and thus rf is
perpendicular to S. Therefore, we obtain n~ as

n~ =(@xf ; @yf ; @zf):

Problem 58. Write the equation of curve formed by the intersection of the unit sphere x2+ y2+ z2=4
and the plane x+ y+ z=1.

3.3 Implicit function theorem
An implicit function f(x; y) = 0 defines generally a planar curve in the (x; y) plane. If
y= y(x), then by the chain rule, we can write

dy
dx

=¡@xf
@yf

:

However, there is no guarantee in general that y could be solved in terms of x or x could
be solved in terms of y. Question is this: is there any function y= g(x) defined on an open
interval I such that f(x; g(x))=0 for all x2 I. The following theorem answers the question.

Theorem 7. (implicit function theorem) Suppose implicit function f(x; y)=0 satisfies
the following conditions

i. there is a point p0=(x0; y0) such that f(x0; y0)=0,

ii. there is an open ball B"(p0) such that f has continuous partial derivatives on it,
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iii. and that @yf(x0; y0)=/ 0,

then there is an open interval I=(x0¡�;x0+�), and a function y= g(x) such that y0= g(x0),
and f(x; g(x))=0 for all x2 I.

Example 8. Consider the following function

exy+ x+ sin(y)= 1:

The function defines a planar curve which is shown below in Fig.8.

-2 0 2
-4

-2

0

2

4

x= − 0. 49

x=1. 96

Figure 8.

The slopes at x=¡0.49 and x= 1.96 are infinity, which implies @yf =0 at those points
according to the formula y 0=¡@xf

@yf
. Now fix the point p0=(0; 0) on the curve. As it is seen

from the figure, there is an explicit function y= g(x) for x2 (¡0.49; 1.96) such that

exg(x)+x+ sin(g(x))=1: (7)

The result can be generalized for functions f :Rn!R as follows.

Theorem 8. Assume that implicit function f(x1; x2; :::; xn) = 0 satisfies the following
conditions

i. there is a point a=(a1; a2; :::; an) such that f(a1; ���; an)= 0,

ii. There is an open ball B"(a) such that f has continuous partial derivatives on it,

iii. and that @nf(a)=/ 0,

then there exists a ball B� at a0 = (a1; ���; an¡1) and a function g: B�(a0) ! R such that
an= g(a1; ���; an¡1) and f(x1; x2; :::; g(x1; :::; xn¡1))=0 for all (x1; :::; xn¡1)2B�(a0).
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4 Integrals of mutivariable functions

4.1 Line integrals
Let : (a; b)!Rn be a smooth curve map, that is  0(t)=/ 0. The length of (a; b) is defined
by the following integral

L=

Z
a

b

j 0(t)j dt:

This definition coincides the intuitive notion of the length. For example, if the image of
(t) is a curved metal wire, and if we straightened the wired, we get the same length if we
calculate the length by the above integration. In the above definition,  0(t) is the tangent
vector on  at t. The quantity dl= j 0(t)j dt is called the differential arc length.

Now let D�Rn be an open set and let  be a smooth curve in D. Assume that f :D!R
is a continuous function. The integral of f along  is defined by the following integral

I =

Z
a

b

f((t))dl=

Z
a

b

f((t)) j 0(t)j dt:

Geometrically this integral is equal to the surface area constructed on the base (t) an the
height f((t)). In particular if f =1, the above integral gives the arc length of . If f denote
the density function of a metal wire represented by , the integral denote the total mass of
the wire.
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Problem 59. Consider the metal wire in the shape of the semi-circle x2+ y2=1, y� 0. If the density
of the wire is given by �= k(1¡ y) for a constant k, find the center of mass of the wire.

4.2 Integrals over a bounded domain of R2

Now, let R: [a; b]� [c; d] be a rectangle and f :R�R2!R be a continuous function. Similar
to the integrals of single variable function, we can define the following double integral

I =

Z Z
R

f(x; y )dA;

by the aid of an infinite sum called the Riemann sum as

I = lim
n;m!1

X
j=1

m X
i=1

n

f(xi; yj) j�ij j:

Here �ij is a partition of R, j�ij j is the area of the rectangle ij and (xi; yj) is an arbitrary
point in �ij. We have the following theorem. Geometrically, I denote the volume constructed
on the base R, and height f .

Theorem 9. (Fubini) Assume that the f is continuous (or piecewise continuous) in R=[a;
b]� [c; d]. Then we haveZ

R

f(x; y) dA=

Z
a

b
�Z

c

d

f(x; y) dy

�
dx=

Z
c

d
�Z

a

b

f(x; y) dx

�
dy:

Now, assume that D � R2 is a closed bounded domain and assume that f : D! R is
continuous. We can inscribe D inside a rectangle R and extend f on R as follows

f~(x; y)=

�
f(x; y) (x; y)2D
0 (x; y)2D :

Even though f~ may be discontinuous, we have the following factZ Z
D

f(x; y) dA=

Z Z
R

f~(x; y) dA:

Problem 60. Let I = [a; b] and assume that f(s; x) and @f

@x
(s; x) are continuous in I � I. Use the

fundamental theorem of calculus and prove the following formula

d
dx

Z
x0

x

f(s; x) ds= f(x; x)+
Z
x0

x @
@x
f(s; x) ds:

In the proof you may need to pass the limit inside the integral.

4.3 Change of variables in multiple integrals
Of most important techniques to calculate a double integral (and also triple integrals) is the
change of variable technique. Let D�R2 be a bounded domain, and assume f :D!R is a
continuous function. The goal is to calculate the integral

I =

Z Z
D

f(x; y) dA:
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Now assume that there is a one to one mapping ': R �R2!D, where R is rectangle [a;
b]� [c; d]. If so, then we can calculate I in terms of an integral over R. The advantage is that
the integration over rectangular domains are much more simpler than general domains. The
procedure is as follows. Let '(u; v)= (x; y), where (u; v)2R. See the following figure. The
differential area dA in (x; y)-plane in terms of the differential area dS in the (u; v)-plane is

dA= jdet(J')j dS;

where J' is the Jacobi matrix of the one to one transformation '.

u

v y

x

R

D'

dS

dA

Accordingly, we have the following formula called the change of variable techniqueZ Z
D

f(x; y) dA=

Z Z
R

f('(u; v)) jJ'(u; v)j du dv:

Problem 61. Find the domain D formed by the transforming rectangle [1; 2] � [1; 2] under the
transformation �

x=u/v
y=uv

:

Calculate the following integral Z Z
D

e y/x
p

e xy
p

dA:

4.4 Surface integrals over a surface in R3

Let S be a smooth surface in R3 with the representation

'(u; v)= (x(u; v); y(u; v); z(u; v));

where (u; v)2D�R2, and assume that f is a continuous functions defined on S: f :S!R.
We want to calculate the following integral

I =

Z Z
S

f(x; y; z) dA;

where dA is the differential area of the surface S. Here we again transform the integral over
S as an integral over D as follows. Note that

dA= jj@u'� @v'jj dS;
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where dS is a differential area in D. Remember that @u' and @v' are tangent vectors on
S and k@u '� @v 'k is equal to the area of parallelogram constructed on vectors @u'; @v'.
Therefore, we can writeZ Z

S

f(x; y; z)dA=

Z Z
D

f('(u; v)) jj@u'� @v'jjdS:

Problem 62. If f = f(x; y) is a smooth function defined on the bounded set D �R2, show that the
area of the surface associated to u is

A=
Z
D

1+ j@xf j2+ j@yf j2
q

dx dy:

Problem 63. We show that the change of variable formula is independent of the transformation.

a) Assume ':D! S and  :D1! S are two one to one transformations with image S. Define the
map '~ := '¡1 �  :D1!D. Verify

jj@t � @s jj= jj@u'� @v'jj jj@t'~� @s'~ jj:

b) Now show Z
D

f('(u; v)) jj@u'�@v'jjdu dv=
Z
D1

f( (s; t))j@t � @s j dsdt:

We frequently use the polar and spherical coordinates for integrals. In polar coordinate,
the transformation is defined by the relations '(r; �)= (r cos�; r sin�). The area differential
dS in this case is

dS=

�������� cos� sin�
¡r sin� r cos�

�������� drd�= rdrd�:

If f(x; y) is a function defined in disk Ba, a disk of radius a centered at the origin, its double
integral in the polar coordinate isZ

Ba

f(x; y)dA=

Z
0

2�Z
0

a

f(r cos�; r sin�) rdrd�:

Problem 64. Show the following inequality

�
4
(1¡ e¡a2)�

Z
0

aZ
0

a

e¡x
2¡y2ddxdy � �

4
(1¡ e¡2a2);

and conclude

lim
a!1

Z
0

aZ
0

a

e¡x
2¡y2dA= �

4
:

Use the above result and find

I =
Z
0

1
e¡x

2
dx:

In the spherical coordinate, the transformation is

'(�; �; �)= (� cos� sin�; � sin� sin�; � cos�):

The volume differential in this coordinate is

dV =

������������
sin� cos� sin� sin� cos�
� cos� cos� � cos� sin� ¡� sin�
¡� sin� sin� � sin� cos� 0

������������ d�d�d�= �2sin�d�d�d�:
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If f(x; y; z) is defined, for example, in a sphere of radius a, its integral on this sphere is equal
to Z

Sa

f(x; y; z)dS= a2
Z
0

2�Z
0

�

f(a sin� cos�; a sin� sin�; a cos�) sin�d�d�:

5 Calculus of vector fields

5.1 Vector field
Let D�Rn be an open set. A vector field is a mapping f :D!Rn. For each p2D, f(p) is
a vector in Rn, and thus we can interpret this mapping as an assignment a vector f(p) to
every point p2D, that is, p 7! f(p). This assignment is called a vector field .

A vector field p 7! f(p) is continuous if the association varies continuously with respect to
p, that is, the any change from p to an adjacent point q, the vector f(p) continuously varies
to f(q). Mathematically speaking, this is equivalent to the continuity of f as a mapping
on D. Remember that f = (f1; :::; fn) is a continuous mapping if and only if each scalar
function fk is a continuous function. Similarly, a vector field p 7! f(p) is called continuously
differentiable if and only if all its coordinate functions are continuously differentiable.

A vector fields models many physical phenomena. For example, an electrical charge q
located at the origin, generates an electrical field in the space as

E(r)=
q

4�"0

r~
kr~ k3 ;

where "0 is the permittivity constant of the space. This field is a force field an is completely
similar to the gravitational field generated by a mass M :

g(r)=GM
r~
kr~ k3 ;

where G is the universal constant.

5.2 Vector fields and differential equations
The theory of ordinary differential equations can be formulated in terms of vector fields. In
fact, the system 8>>>><>>>>:

dx1
dt
= f1(x1; :::; xn)

���
dxn
dt
= fn(x1; :::; xn)

:

defines a vector field f = (f1; :::; fn) on some domain D, and a parametric curve (t) =
(x1(t); :::; xn(t)) such that the tangent vector on  at each instant of time t0 that is  0(t0)
coincides with the vector assigned to point (t0). In other word, f((t)) =  0(t) for all t in
an open interval. For example, the following system�

x0=¡y
y 0=x

;
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defines vector field f =(¡y; x). As we know, the trajectory of a point p0: (x0; y0) according
to the above system is the line

(t)= (x0 cost¡ y0 sint; x0 sint+ y0 cost):

It is simply seen that

 0(t)= (¡x0 sint¡ y0 cost; x0 cost¡ y0 sint);

that is equal to f((t)). Notice that (t) is just the rotation mapping applied to po

(t)=

�
cost ¡sint
sint cost

��
x0
y0

�
;

that coincides with the geometry of vector field f3.

5.3 Gradient field
A vector fiend p 7! f(p) is called a potential, conservative or just gradient field if there is
a scalar function � such that f = ¡r�. The negative sign is just for historic reason. For
example, the electric field E(r) or the gravitational field g(r) are potential. It is simply seen
that E(r)=¡r�, where � is the following scalar function:

�(r)=
q

4�"0

1
kr~ k :

Potential fields satisfies very nice properties that we study in sequel. In the following figure,
three vector fields are shown: f1=(x; y), f2=(¡x;¡y), and f3=(¡y; x).
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It is seen that f1; f2 are potential field with potentials �1=¡1

2
x2¡ 1

2
y2, �2=

1

2
x2

1

2
y2. The

filed f3 is not potential, i.e., there is no potential function � such that f3=r�.
Problem 65. Prove the above claim, that is, show there is no scalar function � such that f3=r�.

The force field generated by a potential is also called conservative. To see the reason, let
us write the second Newton's law for a unit mass as8<:

d2x

dt2
= p(x; y)

d2 y

dt2
= q(x; y)

;
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where the field f =(p; q) is potential generated by a potential function �(x; y). Let (t) be
the trajectory of a particle initially located at (x0; y0). Then we have

 00(t)= f((t))=¡r�((t)):

Let us define the energy along (t) as follows

E(t)=
1
2
k 0(t)k2+ �((t)):

The derivative of E along (t) is then

dE
dt

=  00(t) �  0(t)+ d
dt
�((t)):

We have
d
dt
�((t))=r�((t)) �  0(t);

and thus
dE
dt

=  00(t) �  0(t)+r� �  0(t)= ( 00+r�) �  0=0:

Therefore, the derivative of the energy function along a trajectory (t) is zero, in other world,
the energy is conserved along the trajectory of the particle.

5.4 Divergence, curl and Laplacian
Two important operations on smooth vector fields are divergence and curl. The divergence
of a field f =(f1; :::; fn) at a point p is defined by the following relation

div f(p)=@1f1(p)+ ���+ @nfn(p)

It is simply seen that the divergence of a vector field f is equal to the dot product of
nabla r and field f as div f =r:f . It is also equal to the trace of matrix Dpf . Intuitively
speaking, div f(p) measure the flow of net flux passing through p. If div f(p)> 0, point p
acts like a source that emits or generate flow. All points in filed f1=(x; y) are source points
since div f(p) = 2. If div f(p)< 0, point p acts like a sink that absorbs or attracts flow to
itself. All points in field f2=(¡x;¡y) are sink since div f(p)=¡2. If div f(p)=0, then the
net flow passing through p is zero, that the net amount of incoming flow is equal to outgoing
flow. All points in field f3=(¡y; x) are of this type.

Problem 66. If � is a smooth scalar function and let f be a smooth vector field, show the following
formula

div (�f)= �div f + f �r� (8)

Another important operation regarding a vector field in R3 is the curl of the field at a
point. The curl of a vector field f =(f1; f2; f3) at p is defined by the following relation

cur(f)(p)=

0BB@ î ĵ k̂
@x @y @z
f1 f2 f3

1CCA(p)= (@2f3¡ @3f2; @3f1¡ @1f3; @1f2¡ @2f1)(p):
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Symbolically, we can write the curl in terms of r as r� f . Since curl(f) is a vector at every
point, it also defines a new vector field in its domain. At each point p, curl(f)(p)measures the
rotation of vector field f in three directions: 1) component @2f3(p)¡ @3f2(p) that measures
the rotation of f at p around x-axis, 2) component @3f1(p) ¡ @1f3(p) that measures the
rotation of f at p around y-axis, 3) and @1f2(p)¡@2f1(p) that measure the rotation around
z-axis . For example, curl (¡y; x)= 2 k̂ at all points, that means the filed rotates around z-
axis with constant speed at all points. This rotation is evident from the figure of the field.

Assume that � is a smooth scalar function defined on an open subset D of Rn. The
Laplacian of � is defined by the following relation

��= @11�+ ���++@nn�:

It is simply seen that ��=div (grad �).

Problem 67. Consider field f =(x2¡ y2; y2¡ z2; z2¡x2).

a) Find r� f at the point (1; 2; 3).

b) Verify that (r� f): î is equal to r� (0; y2¡ z2; z2¡ 1).

Problem 68. Assume that � is a smooth scalar function defined in R3. Show r�r�=0.

Problem 69. Show the following relations for smooth fields f ; g in R3 and smooth function �

a) r� (�f)= �r� f ¡ f � (r�).

b) r:(f � g)= g:(r� f)¡ f(r� g).

Problem 70. If f is a smooth vector field, what is r: (r� f)?

Problem 71. Show the following relation

r� (r� f)=r(r:f)¡�f ;

where �f =(�f1;�f2;�f3) for a smooth vector field f =(f1; f2; f3).

5.5 Line integrals in vector fields
Assume that the f :D�Rn!Rn is a continuous field, and C is a smooth curve in D. We
define a method for the integral of f along curve C. For this, we take a parametrization of
C as : (a; b)!D, where (a; b)=C. The desired integral is defined as followsZ

C

fdc=

Z
a

b

f((t)) �  0(t) dt: (9)

It is seen that the integral is independent of parametrization, that is, if 1: (c; d)! D is
another parametrization of C, then

I =

Z
c

d

f(1(t)) � 10(t) dt:

Problem 72. Assume that : (a; b)!D, 1: (c; d)!D are two smooth parametrizations of C. Show
the relation Z

a

b

f((t)) �  0(t)dt=
Z
c

d

f(1(t)) � 10(t) dt:
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If f is a force field, then the integral of f along a curve is called the work done by f . For
example, let (a)= p0, (b)= p1, then I measure the total work done by f to move a particle
from point p0 to point p1 along path . It is is interesting to note that if f is gradient, i.e.,
f =r� for some potential �, then the integral is independent of path along a particle moves
from p0 to p1. This important fact is shown belowZ

a

b

r�((t)) �  0(t) dt=
Z
a

b

d�((t))= �((b))¡ �((a))= �(p1)¡ �(p0):

The path independence property of a field implies that the integral of field over any closed
curve is zero, that is, if  is a closed curve thenI



f((t)) �  0(t) dt=0: (10)

We have the following theorem.

Theorem 10. Assume f :D�Rn!Rn is a smooth vector field. If the integral of f over all
closed curves in D is zero, then f is a conservative field on D.

Problem 73. Let the condition of the above theorem holds. Fix p02D. For any p2D define � as

�(p)=
Z
0

t

f((t)) �  0(t) dt;

where (t) is an arbitrary smooth curve in D such that (0)= p0, and (t)= p.

a) Verify that � is independent of path 

b) Show that � is a potential for f . For example, for two dimensional field f = (p(x; y); q(x; y)),
verify the relation

lim
h!0

�(x+h; y)¡ �(x; y)
h

= p(x; y); lim
h!0

�(x; y+h)¡ �(x; y)
h

= q(x; y):

Problem 74. A smooth field f =(p; q) in R2 is called exact if for all (x; y)2R2 the following relation
holds

@yf(x; y)= @xq(x; y):

a) Show that f is conservative.

b) Consider field f=
�

¡y
x2+ y2

;
x

x2+ y2

�
defined everywhere inR2 except the origin. Show the following

relation

@y

�
¡y

x2+ y2

�
=@x

�
x

x2+ y2

�
:

Now, consider closed curve (t)= (cos t; sin t), t2 [0; 2�], calculate the line integral of f along .
The result is nonzero. Does it contradict the fact claimed in (a)?

5.6 Surface integrals in vector fields
Let S be a surface in R3 parameterized by a smooth map ¡(t; s) where (t; s)2D for some
open domain D. Note that ¡ is smooth if @t¡�@s¡ is nonzero for all points in D. Let smooth
field f =(f1; f2; f3) given in R3. The integral of f on the surface S is defined by the following
integral

I =

ZZ
S

f � n̂ dA ;
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where n̂ is the unit normal vector on S. This integral measures the total flux passing outward
through surface S. As it is shown in the following figure, the tangential component of f
never leaves the surface (due to the fact f � n̂ = 0), and only the normal component of f
contributes in the total flux. For example, the flow of water through a window measured in
m3

sec is a physical model for the flux.

n̂

f

ds
normal component

of f

tangent component
of f

Remark 5. In some branches of mathematics, the term flux is considered as a vector and
not scalar. We will see this notion in the book for the mathematical modeling of heat flow
through a conductive media.

For the parametrization ¡(t; s), we have

n̂ dA=(@t¡� @s¡) dt ds;

and therefore, the total flux is expressed in terms of double integral

I =

ZZ
D

f(¡(t; s)) � (@t¡� @s¡) dt ds:

Theorem 11. (divergence) Assume D � R3 is an open set with smooth (piecewise)
boundary. If f is a smooth vector field in cl(D), the following relation holdsZZZ

D

div f dv=
ZZ


bnd(D)
f � n̂ dA: (11)

Note that If div f = 0 inside D, then the net amount of flow passing through bnd(D)
is zero. Accordingly, the divergence of a field f in R3 at a point p can be defined by the
following formula

div (f)(p)= lim
r!0

1
Vol(Br(p))

ZZ


bnd(Br(p))
f � n̂ dA: (12)

The above formula coincides with our previous statement about the physical interpretation
of divergence operator at a point, that div (f)(p) measures the net flux of f passing through
point p.

Problem 75. Let f =(x; y; z). Verify the formula (12) at the origin.

Example 9. Consider the identity field f(x; y; z) = (x; y; z), and let B be the closed unit
ball in R3 centered at the origin. The left hand side of formula (11) readsZZZ

B

div fdV =3

ZZZ
B

dV =4�: (13)
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The unit normal to bnd(B) is n̂=(x; y; z), and then the right hand side of formula (11) readsZZ


bnd(B)
(x2+ y2+ z2) dA=

ZZ


bnd(B)
dA=4�: (14)

Problem 76. Assume f :D�R3!R3 a smooth field. Use the divergence theorem and showZZZ
D

�f dV =
ZZ


bnd(D)
@n̂f ds; (15)

where @n̂f is the directional derivative of f in direction n̂.

Problem 77. If D is a ball of radius R in Rn, use the divergence theorem and show

Vol(D)= R
n
A(D);

where Vol(D) is the volume of D and A(D) is the surface area of D. (Hint: consider the function
�=

P
kxk

2).

Problem 78. Let f be a smooth field in Rn such that

jf(r)j � 1
(1+ jjr jj)n+1 :

Show that Z
Rn

div (f)=0:

Proposition 10. (Integration by parts) Let D�R3 be an open set and f ; g:D!R are
smooth functions. We haveZZZ

D

(@xf) g dV =

ZZ


bnd(D)
fgn1 dA¡

Z
D

f (@xg) dV ; (16)

where n1 is the first component of n̂=(n1; n2; n3i at bnd(D). Similar relations hold for the
derivatives with respect to other components y; z.

The following proposition generalizes the above result.

Proposition 11. Let D be a domain in R3 and bnd(D) is smooth. If f is a smooth vector
field in D and g is a smooth function on D thenZZZ

D

g div (f) dV =

ZZ


bnd(D)
g (f � n̂) dA¡

ZZZ
D

f �rg dV : (17)

Problem 79. Prove the above proposition by the aid of divergence theorem.

Problem 80. By the above proposition showZZZ
D

g�fdV =
ZZ


bnd(D)
g @n̂ fdA¡

ZZZ
D

rf �rg dV ;

and conclude the following relation called the Green's formula:ZZZ
D

(g�f ¡ f�g) dV =
ZZ


bnd(D)
[g @n̂f ¡ f@n̂ g] dA:
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Let S be a smooth surface in R3 with smooth boundary bnd(S). If f is a smooth field
in R3, the following relation is called the Stoke's theorem:ZZ

S

(r� f) � n̂ dA=
I
bnd(S)

f � T̂ dl;

where T̂ is the unit tangent vector on curve bnd(S) and d` is the differential length of that
curve.

Problem 81. Use the Stoke's theorem and show

(r� f(p)) � î = lim
r!0

1
�r

Z
0

2�

f((t)) �  0(t) dt;

where (t) = p + (r cost; r sint; 0). Derive similar formula for the second and third components, i.e.,
(r� f(p)) � ĵ , and (r� f(p)) � k̂. Notice that f � T̂ measures the rotation of f along curve bnd(S).

Problem 82. Let f=(¡y+x;¡x+z;¡z+ y). Verify the relations of the previous problem at the origin.

Problem 83. Show the following relations

a) ZZ
S

� curl(f) � n̂ dA=
ZZ

S

(f �r�) � n̂ dA+
I
bnd(S)

�f � T̂ dl:

b) ZZZ
D

� div (f) dV =
ZZ

S

�f � n̂ dA¡
ZZZ

D

f �r�dV
c) ZZZ

D

g � curl(f) dV =
ZZ

S

(f � g) � n̂ dA+
ZZZ

D

f � curl(g) dV

We have the following theorem

Theorem 12. If r� f =0 everywhere, then f is gradient, i.e., there is a potential function
� such that f = ¡r�. If div (f) = 0 everywhere, then there is a vector field g such that
f = curl(g).

6 Orthogonal curvilinear coordinates
In many applications, it is convenient to use an orthogonal coordinate rather than the Carte-
sian one. The form of differential operators in a general orthogonal curvilinear coordinate is
discussed below.

6.1 Unit vectors
Let (q1; q2; q3) be a curvilinear coordinate system, and assume (q1; q2; q3)!!!!!!!!

T
(x; y; z) is a one

to one transformation to the Cartesian space. We first define the unit vectors q̂1; q2̂ and q3̂
in the directions of q1; q2 and q3, and by the aid of that define the orthogonality notion. If
we consider the restriction of T to q1 as a one parameter map (q1), then the unit vector q̂1
can defined as

q̂1: =
 0(q1)
k 0(q1)k

=
@q1T
k@q1T k

;
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and since
T (q1; q2; q3)= (x(q1; q2; q3); y(q1; q2; q3); z(q1; q2; q3));

we have
@q1T =(@q1x; @q1y; @q1z)

Similarly, we can define q̂2; q̂3 as

q̂2=
@q2T
k@q2T k

; q̂3=
@q3T
k@q3T k

:

A coordinate system (q1; q2; q3) is called orthogonal if q̂1; q̂2 and q̂3 are mutually orthogonal,
i.e., h q̂i; q̂ji= �ij.

6.1.1 Polar, cylindrical and spherical coordinates
The polar coordinate (r; �) is defined by the transformation T (r; �) = (r cos�; r sin�) for
r=[0;1) and �2 [0;2�). The transformation is one to one everywhere in the domain except
at the origin. Since @rT = cos� î + sin � ĵ , we obtain

r̂= cos� î + sin � ĵ :

Similarly, @�T =¡r sin � î + r cos � ĵ , and thus

�̂=¡sin � î + cos � ĵ :

�̂ r̂

The cylindrical transformation is defined by transformation

T (r; �; z)= (r cos�:r sin�; z)
The unit vectors are derived as

r̂= cos � î + sin � ĵ ; �̂=¡sin � î + cos � ĵ ; ẑ= k̂:

The spherical coordinate is defined by the transformations

T (�; �; �)= (� cos� sin�; � sin� sin�; � cos�);

for �2 [0;1); �2 [0;2�); �=[0; �]. The mapping is not one to one at �=0; �=0; �. The unit
vectors are

�̂= sin� cos� î + sin� sin� ĵ + cos� k̂; (18)

�̂=¡sin� î + cos� ĵ ; (19)

�̂= cos� cos� î + cos � sin� ĵ ¡ sin � k̂: (20)
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6.2 Nabla r in an orthogonal coordinate
Let f be a smooth scalar function given in an orthogonal coordinate system (q1; q2; q3). We
can write the gradient of f in this system as

rf = f1 q̂1+ f2 q̂2+ f3 q̂3;

that implies f1= hrf ; q̂1i, f2= hrf ; q̂2i, and f3= hrf ; q̂3i. Let us calculate f1 for example.
rf is coordinate free, and thus we can replace its form in the Cartesian coordinate, i.e.,
rf = @xf î + @yf ĵ + @zf k̂ in the associated dot product and derive

hrf ; q̂1i=
1

k@q1T k
h@xf î + @yf ĵ + @zf k̂; @q1x î + @q1y ĵ + @q1z k̂i:

By the orthogonality, we obtain

hrf ; q̂1i=
1

k@q1T k
(@xf@q1x+ @yf@q1y+ @zf@q1z)=

1
k@q1T k

@q1f:

We obtain similar forms for f2; f3, that are,

hrf ; q̂2i=
1

k@q2T k
@q2f ; hrf ; q̂3i=

1
k@q3T k

@q3f

and therefore the operator r in (q1; q2; q3) is

r=
q̂1

k@q1T k
@q1+

q̂2
k@q2T k

@q2+
q̂3

k@q3T k
@q3:

6.2.1 Polar, cylindrical and spherical coordinate

Applying the formula obtained above for polar, cylindrical and spherical systems gives respec-
tively

Polar: r= r̂ @r+
1
r
�̂ @�:

Cylindrical: r= r̂ @r+
1
r
�̂ @�+ k̂ @z:

Spherical: r= �̂ @�+
1

� sin �
�̂ @�+

1
�
�̂ @�:

To calculate the Laplacian operator � :=r:r in (q1; q2; q3) system, we do as follows:

�:=r:r=

�
q̂1

k@q1T k
@q1+

q̂2
k@q2T k

@q2+
q̂3

k@q3T k
@q3;

q̂1
k@q1T k

@q1+
q̂2

k@q2T k
@q2+

q̂3
k@q3T k

@q3

�
:

Here we need @i( q̂j) for i; j=1; 2; 3. It turns out that the derivatives of q̂k always lies in the
normal plane to it, for example,

@q2( q̂1)=� q̂2+ � q̂3:

The reason is for the relation h q̂i; q̂ii=1 and thus h@qj( q̂i); q̂ii=0.
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Problem 84. In polar coordinate, show the following relations

@� r̂= �̂ ; and @� �̂=¡r̂ ; (21)

and conclude

�f = @rrf +
1
r
@rf +

1
r2
@��f: (22)

Problem 85. In cylindrical coordinate show the relation

�f = @rrf +
1
r
@rf +

1
r2
@��f + @zzf:

Problem 86. In spherical coordinate show the following relations

@� �̂= sin(�) �̂ and @� �̂= �̂ ; (23)

@� �̂=¡sin(�) �̂¡ cos(�) �̂ and @� �̂=0; (24)

@� �̂= cos(�) �̂ and @� �̂=¡�̂: (25)

and conclude

�f = 1
�2
@�(�2 @�f)+

1
�2 sin2�

@��f +
1

� 2sin �
@�(sin�@�f):

7 Function Series

Working in a function vector space where functions play the role of well-known vectors in
Rn, requires to study sequences whose elements are functions. These type of sequences are
a natural generalization of numeric sequences that we suppose the reader is familiar with.

7.1 The different notions of convergence
We assume that the reader is familiar with numeric sequences. Here we consider sequences
and series whose elements are functions. Let fn: [a; b]!R for n= 1; 2; ::: be a sequence of
continuous functions. We say fn converges pointwise in [a; b] to f , and write fn! f if

lim
n!1

jfn(x)¡ f(x)j=0;

for all a2 [a; b]. In other word, if an= fn(x) for a fixed x, then (an) as a numeric sequence
converges to value b = f(x). This notion of convergence is equivalent to the following: for
every x2 [a; b] and every "> 0, there is an integer N0=N0(x; ")> 0 such that

8n�N0)jfn(x)¡ f(x)j<":

A function sequence fn converges uniformly to f in [a; b] if for for any " > 0, there is and
integer N =N(") such that

8n�N0) max
x2[a;b]

jfn(x)¡ f(x)j<":

The norm of a continuous function in a closed interval [a; b] is defined as

kf k= max
x2[a;b]

jf(x)j:
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For this reason, the uniform convergence is usually written as

lim
n!1

kfn¡ f k=0:

Remark 6. The pointwise and uniform convergence are two different types of convergence
and they may should not be considered as equivalent. In fact, if fn ! f uniformly, then
fn! f pointwise, while the converse is not generally true. For example, consider the sequence
of functions fn(x) = xn in [0; 1]. The sequence converges pointwise to f(x) =

�
1 x=1
0 otherwise

.
However, it is seen

max
x2[0;1]

jxn¡ f(x)j> 1
2
;

and thus fn does not converges uniformly to f . In fact, fn does not converge uniformly to
any function.

Problem 87. If a function sequence (fn) converges pointwise or uniformly, then its limit function is
unique.

Problem 88. If a function sequence (fn) converges uniformly to f in [a; b] then it converges pointwise
to f as well.

Problem 89. Assume that fn: [a; b]!R is a sequence of continuous functions converges uniformly to
f(x). Show that f(x) is continuous.

There are other notions of convergence that we study in the book, for example, the
convergence in norm as

lim
n!1

Z
a

b

jfn(x)¡ f(x)jdx=0:

For example, fn(x) = xn in [0; 1] converges to f(x) =
�
1 x=1
0 otherwise

or f(x) � 0 or f(x) =(
1 x=

1

2

0 otherwise
. As we see, the limit function is not unique in the usual sense, and we have to

do something to remedy this situation.

Problem 90. If (fn) converges uniformly to f in [a; b], it converges to f in the following senseZ
a

b

jfn(x)¡ f(x)jdx! 0:

Problem 91. Assume that a function sequence (fn) of continuous functions on [a; b] converges in norm
to f as Z

a

b

jfn(x)¡ f(x)jdx! 0
Show that

lim
n!1

Z
a

b

fn(x) dx=
Z
a

b

f(x) dx:

7.2 �-sequence
A function sequence fn(x) is called a Dirac �-sequence function at x=0 if for any continuous
bounded function g(x) at x=0, we have

lim
n!1

Z
g(x) fn(x) dx= g(0):
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For example, the sequence

fn(x)=

(
n

2
¡ 1

n
<x<

1

n

0 otherwise
;

is a �-sequence. If g(x) is any bounded continuous function at x=0, then

min
x2
�
¡ 1

n
;
1

n

� g(x)�
Z
¡ 1

n

1

n

g(x)
n
2
dx� max

x2
�
¡ 1

n
;
1

n

� g(x);
and thus

lim
n!1

Z
¡ 1

n

1

n

g(x)
n
2
dx= g(0):

7.3 Differentiation and integration of function sequences
Let (fn) be a function sequence in (a; b) or [a; b]. If fn! f pointwise or uniformly, can we
claim Z

a

b

fn(x)dx!
Z
a

b

f(x)dx

when n!1? Let us see an important example:

fn(x)=

8>>>><>>>>:
22nx x2

�
0;

1

2n

�
2n(2¡ 2nx) x2

� 1

2n
;

1

2n¡1

�
0 otherwise

:

The graph for some n are shown in Fig.9. Each function fn is a triangle with the base
�
0;

1

2n¡1

�
and the height 2n such that the area under each triangle is equal 1 independent of n.

4

2

11

2

8

1

4

1

8

Figure 9.

Therefore, we have for all n: Z
0

1

fn(x)dx=1:
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On the other hand, it is seen fn converges to f � 0 on [0; 1] (why?) and thusZ
0

1

fn(x)dx9
Z
0

1

f(x)dx:

In other word,

lim
n!1

Z
fn(x) dx=/

Z
lim
n!1

fn(x)|||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
f(x)

dx:

Problem 92. Assume that (fn), fn: I!R is a sequence of continuous functions converging uniformly
to f . Show

lim
n!1

Z
a

b

fn(x) dx=
Z
a

b

f(x) dx:

The following theorem gives a sufficient condition for passing the limit inside an integral.

Theorem 13. (dominant convergence) Assume that (fn) is a sequence of continuous
functions converging pointwise to a function f in (a; b)(the interval may be finite or infinite).
If there is a function g(x) such that

jfn(x)j � g(x); 8x2 (a; b);
and Z

a

b

g(x) dx<1;

then

lim
n!1

Z
a

b

fn(x) dx=

Z
a

b

f(x) dx:

We also need the following form of the above theorem.

Corollary 2. Assume that f(t; x) is a continuous function defined on (c; d)� (a; b), and
furthermore

f(t; x)� g(x); 8t2 (c; d)
such that Z

a

b

g(x) dx<1
Then function

F (t)=

Z
a

b

f(t; x) dx;

is continuous in (c; d).

Problem 93. Prove the corollary by the aid of Theorem (13).

The same story of differentiation is the same. If a sequence of differentiable functions
(fn) converges pointwise or even uniformly to f , then there is no guarantee that fn0! f 0. As
a simple example, sequence fn(x) =

1

n
sin(nx) defined on (0; �) converges uniformly to the

constant function f(x)=0. However, fn0(x)= cos(nx) which is not a convergent sequence.
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