
Chapter 6
Systems of Differential Equations

6.1 Introduction

6.1.1 Modeling with the system of equations
We start with a motivational example. Let x(t); y(t) be respectively the population of
some kinds of prey and predator at time t. We would like to model the dynamic of the
populations in terms of differential equations. Our model would be based on some
assumptions. For example, in the absence of any predator, we assume that the population
of prey increases according to the formula

dx
dt

= r1x;

where r > 0 is the offspring rate of the prey. The hunting rate that we assume of the form
k1xy causes the decrease in x(t) and thus we can write

dx
dt

= r1x¡ k1xy;

for some constant k1 > 0. Similarly, in the absence of any prey, the population of preda-
tors decreases according to the formula

dy
dt
=¡r2 y;

for some death rate r2 > 0. The hunting rate k2 xy contributes to the increasing of y(t)
and then

dy
dt
=¡r2 y+ k2xy;

for some k2> 0. Finally, we can write the mathematical model of prey-predator as follows8<:
dx

dt
= r1x¡ k1xy

dy

dt
=¡r2y+ k2xy

: (6.1)

Note that the above equations constitute a system in the following sense: to solve the first
equation for x, one needs y(t) which is derived by solving the second equation for y(t),
while solving the second equation for y(t) needs x(t) which needs the first equation to be
solved for x(t). Therefore, the above system must be solve simultaneously for x(t); y(t).
The above system can not be solved by standard methods we have learned in previous sec-
tions for scalar equations. However, the numerical methods can be employed to solve the
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equation. The following figure shows the solution for r1= 4; k1= 0.4 and r2= 2; k2= 0.2 in
0 � t � 10 and initial condition (x(0); y(0)) = (4; 3). Observe how the population of
predator follows the population of prey with a specific delay time.
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It may seem that if the death rate r2 increases then y(t) will decrease. The following
figure show the solution for r2= 2.5 instead of r2= 2 for the above figure. While the max-
imum of y(t) in the previous case was about 27, the increase of the death rate r2 increases
y(t) to more than 29. The reason is clear. The decreasing of y(t) will increase x(t) that
means more food and thus the increase in y(t). This mutual affection is a characteristic of
systems .
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6.1.2 Phase plane
In the prey-predator example, the plane (x; y) is called the phase plane. Note that in the
final analysis, the solution of the system is (x(t); y(t)) that can be considered as a para-
metric curve 
(t) := (x(t); y(t)) in the phase plane. This curve is called a trajectory of the
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system. On the other hand, the right hand side of the system (6.1) can be considered as a
vector field in the phase plane, that is,

F (x; y)=

�
r1x¡ k1xy
¡r2y+ k2xy

�
:

The following figure show the vector field for parameters r1 = 4; k1 = 0.4; r2 = 2; k2 = 0.2
and a few of trajectories.
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It is observed that the trajectories are tangent to the vector field in the phase plane.
This fact is evident from the system (6.1) as well. If 
(t) is the solution of the system,
then

d
dt

(t)=F (
(t)):

Remember that d

dt

(t) is the tangent vector to 
(t) at any time t and thus F (
(t)) is tan-

gent to the trajectories 
(t).
Observe also that the trajectories are closed curves. A closed curve is called an orbit of

the system and shows that the solutions of the system is periodic with respect to time t.
In other word, if 
(t) is closed, then there is some ! > 0 such that 
(t + !) = 
(t) and
thus x(t); y(t) are periodic functions with the period !. In addition, it seems that the tra-
jectories orbits around a specific point. This point is called an equilibrium of the system.
Let us find the equilibrium of (6.1). Since the time derivative at the equilibrium is zero,
we have �

r1x¡ k1xy
¡r2y+ k2xy

�
=

�
0
0

�
;

that gives p1= (0; 0), and p2=
�
r2
k2
;
r1
k1

�
. For the chosen parameters of the figure, the non-

trivial equilibrium is (10; 10) which is clear from the figure as well.
Problem 6.1. The prey-predator system in the phase plane reduces to a scalar differential equation
as

dy

dx
=
¡y(r2¡ k2 x)
x(r1¡ k1 y)

:
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Solve the above equation for y= y(x).

6.1.3 Linearization of nonlinear systems
As we saw above, the prey-predator model is a nonlinear system due to the multiplicative
term xy. Despite linear systems, nonlinear ones sometimes show very complicated behav-
iors, and thus the linearized version of a nonlinear system is sometimes used instead of the
original one. With the linearization model of single variable functions as follows

f(x)� f(x0)+ f 0(x0)(x¡x0);

we can write the linearization of a smooth function
�
f
g

�
: D � R2 ! R2 at a given point

(x0; y0) as follows �
f(x; y)
g(x; y)

�
�
�
f(x0; y0)
g(x0; y0)

�
+Jf(x0; y0)

�
x¡x0
y¡ y0

�
;

where Jf is the Jacobi matrix

Jf =

2664 @f

@x

@f

@y

@g

@x

@g

@y

3775:
The most common point of a dynamical system for the linearization is the equilibrium
point. For the prey-predator system (6.1) with the equilibrium

�
r2
k2
;
r1
k1

�
, we have

d
dt

�
x
y

�
�F

�
r2
k2
;
r1
k1

�
+

24 0 ¡k1 r2
k2

k2 r1
k1

0

350@ x¡ r2
k2

y¡ r1
k1

1A;
and since F

�
r2
k2
;
r1
k1

�
=0, we derive the linearized system as follows

d
dt

�
x
y

�
�

24 0 ¡k1 r2
k2

k2 r1
k1

0

350@ x¡ r2
k2

y¡ r1
k1

1A:
Furthermore, if we take X = x ¡ r2

k2
, Y = y ¡ r1

k1
, we obtain the following simple linear

system

d
dt

�
X
Y

�
�

24 0 ¡k1 r2
k2

k2 r1
k1

0

35� X
Y

�
;

or equivalently 8<:
dX

dt
=¡k1 r2

k2
Y

dY

dt
=

k2 r1
k1
X

:

Note that the above system yields the following equation for X(t) by taking derivative of
the first equation and substituting d

dt
Y from the second equation

d2X
dt

+ r1 r2X =0;
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which is solved for

X(t)=C1 cos( r1r2
p

t)+C2 sin( r1r2
p

t):

A similar solution is derived simply for Y (t). The following figure shows y(t) for the orig-
inal system and the linearized system with the same parameters r1; k1; r2; k2 as before and
the initial condition x0 = 12; y0 = 6. The population of prey shows similar behavior. Note
that (x0; y0) is not very far from the equilibrium point (10; 10).
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Remark 6.1. Nonlinear systems sometimes show sometimes extremely complicated or
eve chaotic dynamics. Therefore, the linearization of such system does not show the
intrinsic dynamics of them completely. Of the most well-known such system is the
Lorenz system studied by E. Lorenz in 1963 in his work in atmospheric convection of
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the following form 8<: x0=�(y¡x)
y 0= rx¡ y¡xz
z 0= xy¡ �z

;

for some constants �; r; �. The following figure shows the solution in the phase space (x;

y; z) for specific value �= 10; r= 28; �= 8
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It is simply seen that the system has a non-trivial equilibrium at ( 72
p

; 72
p

; 27), and
thus the linearized system around this equilibrium is0@ x0

y 0

z 0

1A=
2664 ¡10 10 0

1 ¡1 ¡ 72
p

72
p

72
p

¡8

3

3775
0@ x

y
z

1A:
The solution of the above linear system is spiral and never chaotic.
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6.2 General first-order systems

6.2.1 Linear and nonlinear systems
The general form of a first-order system is

d
dt
y= f(t; y); (6.2)

where y =

0BB@ y1(t)
���

yn(t)

1CCA and f =

0BB@ f1
���
fn

1CCA. If f is independent of t, the system is called

autonomous. The general form of a first-order autonomous system is

d
dt
y= f(y): (6.3)

A value y� is called an equilibrium for the above autonomous system if f(y�) = 0. In this
case, y(t) is constant and y(t) = y� for all t. If all fi is linear with respect to y1; :::; yn,
then the system is linear . The general form of a linear system is of the following form

d
dt
y= [aij(t)]y+ b(t);

where b =

0BB@ b1(t)
���

bn(t)

1CCA. If b is identically zero then the linear system is called linear homoge-

neous. If the coefficient matrix A = [aij(t)] is independent of t, the system is called the
linear system with constant coefficients.

It is interesting to note that every second and higher-order scalar differential equations
can be rewritten as a system of first-order equations. The standard method to convert a
higher order equation to a system is as follows. For example, consider the following second
order equation

y 00= f(t; y; y 0):

Let us rename y by y1 and write �
y1
0 = y2
y2
0 = f(t; y1; y2)

:

The process for higher order equation is completely similar. For example, the equation

y 000= f(t; y; y 0; y 00);

can be written as 8>><>>:
y1
0 = y2
y2
0 = y3
y3
0 = f(t; y1; y2; y3)

:

Example 6.1. Let us rewrite the following equation into a system

y 000+ y 0 y 00+ yy 0=1+x:
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We take y1= y, and write 8>><>>:
y1
0 = y2
y2
0 = y3
y3
0 =¡y2 y3¡ y1y2+1+ x

:

The following linear equation

y 00+3y 0+2y= et;

can be written in the following first-order system

d
dt

�
y1
y2

�
=

�
0 1
¡2 ¡3

��
y1
y2

�
+

�
0

et

�

Definition 6.1. A vector function y = �(t) 2 Rn is called a solution to the system ( 6.2)
is there is an open interval I such that

�0(t)= f(t; �(t));8t2 I:

Theorem 6.1. (existence & uniqueness) Consider the following initial value problem(
d

dt
y= f(t; y)

y(t0)= y0
:

If there is a cube D centered at (t0; y0) 2R�Rn such that f is continuous on D, then the
above initial value problem has at least one solution. In addition, if @fi

@yj
is continuous on

D for all fi2 f and yj 2 y, then the problem has a unique solution.

Corollary 6.1. A linear homogeneous system with constant coefficient matrix has exactly
n linearly independent solution vector.

Proof. Consider the following system

d
dt
y= [aij] y;

and the associated initial value problem(
d

dt
y= [aij] y

y(0)= êi
;

where êi is the ith unit vector in the direction of yi. By the existence and uniqueness the-
orem, there is a unique solution �i(t) for each i= 1; :::; n. In fact, f(t; y) = [aij] is contin-
uous and @fi

@yj
= aij are continuous as well. Simply, the set f�i(t)gi=1n is a set of linearly

independent vector because

det[�1(0)j�2(0)j���j�n(0)]= det[ê1jê2j���jên] = 1=/ 0

We leave the last part of the proof to the reader, that is, to prove that f�igi=1n spans the
solution set of the system; see the problem set. �
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6.2.2 Vector fields and the geometry of trajectories
Consider a particle moving in the the plane (y1; y2) following the rule�

y1
0 = f(y1; y2)
y2
0 = g(y1; y2)

: (6.4)

The location function of the particle in the plane at time t is 
(t) = (y1(t); y2(t)). The
path or trace of the particle in this plane is called the trajectory of the particle; see
Fig.6.1. From the physics point of view, 
 0(t) is the velocity vector v~ of the trajectory
which is the tangent vector to the trajectory at the point 
(t):


 0(t)=F (
(t));

for F =
�
f
g

�
.

y1

ba




y2

v~

v~


(a; b)v~

v~

Figure 6.1.

From the geometry point of view, F =
�
f
g

�
defines a vector field on the phase plane

(y1; y2). The following figure shows how the particle moves in a velocity vector field. The
geometry of this vector field provides us with some information about the trajectories of
the particle in the plane.
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For example, let us consider the following velocity vector field

F =

 
y1
2+ y2

2+2y1
y1
2+ y2

2¡ 2y2

!
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Obviously points (0; 0) and (¡1; 1) are critical points or equilibria of the filed. The trajec-
tory of the particle that moves in this field depends on the initial position. The following
figure shows a few trajectories of the system based on the initial location of the particle.
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Example 6.2. Consider the following system

�
y1
0 =¡y2
y2
0 = y1

:

The vector field is rotational as it is seen from the curl of the filed r �
0BB@ ¡y2

y1
0

1CCA= 2k̂. The

two trajectories are shown in the following figure.
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Let V = jy1(t)j2+ jy2(t)j2 be the scalar function of the magnitude of the solution. Then
it is simply seen that

d
dt
V =2y1(t)

dy1
dt

+2y2
dy2
dt

=¡2y1(t) y20(t)+ 2y2(t) y1(t)= 0;
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and thus V (y1; y2) = const:, that is, the shape of the curve are circle. Now consider the fol-
lowing system �

y1
0 =¡y2¡ "y1
y2
0 = y1

;

for "> 0, and let V (y1; y2) be the same function as previous. We have

d
dt
V =¡2"y12(t);

and thus V (y1(t); y2(t)) decreases with respect to time. It turns out that

lim
t!1

V (y1(t); y2(t))= 0;

and y1(t); y2(t) approach zero in long term as the following figure shows.
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It is simply seen that the trajectory of the following system is outward spiral�
y1
0 =¡y2+ "y1
y2
0 = y1

;

for "> 0.

Problems

Problem 6.2. We would like to model the water pollution diffusion of two connected ponds. Con-
sider two ponds P1 and P2 connected by two channels as shown in the following figure:
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Q1; c1

Q; c1

Q1; c0

c2c1

Q; c2

P1 P2

We make the following assumptions: i) channels carry constant streams Qm3

s
between two ponds,

ii) the pond P1 contains V1m3 and the pond P2 contains V2m3 of pure water at time t=0, iii) a pollu-
tant stream Q1

m3

s
of the concentration c0

gr
m3 runs into P1 and simultaneously same amount is dis-

charged out of the pond. Ponds are gradually contaminated by the polluted streams. We would like
to determine functions c1(t)

gr
m3 and c2(t)

gr
m3 , the pollution of ponds P1; P2 respectively.

a) Write down the conservation law for the quantity c1 V1, and c2 V2. Justify that the relations are
as follows 8<:

d(c1V1)

dt
= c0Q1+ c2Q¡ c1(Q1+Q)

d(c2V2)

dt
= c1Q¡ c2Q

:

b) Verify that V1; V2 are constants, and write the system of differential equations for c1; c2 with
given initial conditions.

Problem 6.3. Consider the connected ponds shown below.
Q1; c0

Q1; c1

P1 P2

Q2; c1

Q3; 0

Q2; c2

Q3; c2

A constant flow Q1m
3/s of polluted water c0 gr/m3 runs into the pond P1 and a constant flow Q3

of pure water runs into P2. Write down a system of differential equations describing the concentration
c1(t), c2(t), the pollution concentration of P1 and P2. Suppose P1 and P2 contain respectively V1 m

3

and V2m3 water initially.

Problem 6.4. Consider the connected ponds shown below.
Q1; c0

P1 P2

Q2; c1

Q2; c2

A constant flow Q1m3/s of polluted water c0 gr/m3 runs into the pond P1. Write down a system
of differential equations describing the concentration c1(t), c2(t), the pollution concentration of P1 and
P2. Suppose P1 and P2 contain respectively V1m3 and V2m3 water initially.
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Problem 6.5. Consider the circuit shown below.

We would like to obtain an equation for the Vc(t), the voltage across the capacitance C, and i(t),
the electrical current in the inductor L.

a) Let i1(t) and i2(t) denote respectively the electrical current in the resistors R1 and R2. Use
Kirschoff's law and conclude

L
di
dt
=¡R1 i1; (6.5)

R1 i1+R2 i2+Vc=0: (6.6)

b) Substitute i1= i2+ i into (6.6) and conclude

i2=¡
1

R1+R2
Vc¡

R1
R1+R2

i: (6.7)

c) Use the relation i2=C
dVc
dt

, and rewrite (6.7) as

dVc
dt

=¡ 1
(R1+R2)C

Vc¡
R1

(R1+R2)C
i: (6.8)

d) Use the relation Ldi

dt
=¡R1i2¡R1i and substitute i2 from (6.7) and conclude

di
dt
=

R1
(R1+R2)L

Vc¡
R1R2

(R1+R2)L
i: (6.9)

e) Rewrite the system for the vector
�
Vc
i

�
. It should has the form

�
Vc
i

�0
=

0BB@ ¡ 1

(R1+R2)C
¡ R1
R1+R2

R1
(R1+R2)L

¡ R1R2
(R1+R2)L

1CCA� Vc
i

�
:

Problem 6.6. For the circuit shown below write down a system of first order equations for i(t) the
electric current in the inductor and Vc the voltage across the capacitance.

Problem 6.7. Verify that vector functions �~1(x) =
�

cos(x)
¡sin(x)

�
and �~2(x) =

�
sin(x)
cos(x)

�
are two core solu-

tions to the system (
y1
0 = y2
y2
0 =¡y1

:
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Find the fundamental matrix of the system and then find the solution to the following problem8>><>>:
y1
0 = y2
y2
0 =¡y1
y1(0)= 1; y2(0)=¡1

:

Problem 6.8. Verify that vector functions �~1(x) = ex
�

cos(x)
sin(x)

�
and �~2(x) = ex

�
¡sin(x)
cos(x)

�
are two core

solutions to the system (
y1
0 = y1¡ y2
y2
0 = y1+ y2

:

Find the fundamental matrix of the system and then find the solution to the following problem8>><>>:
y1
0 = y1¡ y2
y2
0 = y1+ y2
y1(0)= 1; y2(0)=0

:

Problem 6.9. Write down the following higher order equations in the form of a system of first order
equations. If an equation is linear, write it in the matrix form.

i. y 00+ yy 0+ y= e¡x

ii. y 00+!2y= sin(!x)
iii. y 000+xy 00+2y=0

iv. y 000+ sin(y)= y 0¡ 1
Problem 6.10. Consider the following system 

y1
0

y2
0

!
=

�
a b
c d

��
y1
y2

�
:

Find an equivalent second order equation for the above system and show that its characteristic is
equal to det(A¡�I) =0 where A is the coefficient matrix of the system.
Problem 6.11. Systems which are not fully coupled are sometimes easy to solve. For the following
semi-coupled system, try to find the solution.

i. (
y1
0 =2y1+ y2
y2
0 =¡y2

ii. (
y1
0 =3y1
y2
0 = y1(1+ y2

2)
iii. 8>><>>:

y1
0 =¡y1+x+1

y2
0 = y2/y1+ y2

2/y1
2

y1(1)=1; y2(1)=¡1
;

Problem 6.12. For each of the following vector fields, use a computer software to draw the trajec-
tory passing through the given point. Use the method described in this section to construct approxi-
mate trajectory passing through the point (you can take the step size h= 0.1).

i. V =(¡2y; x); p0=(1; 0)

ii. V =(¡y+x; x); p0=(1; 0)

iii. V =(y+x;¡3y); p0=(1; 0)

Problem 6.13. Verify that for each the following vector fields, the given parametric curve is a trajec-
tory

i. V =(¡y; x), 
(t)= (cos(t); sin(t))
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ii. V =(¡y; 2x¡ 2y), 
(t)= e¡t( cos(t); cos(t)+ sin(t))

iii. V =(y; 2x+ y), 
(t) = (e2t¡ e¡t; 2e2t+ e¡t)

iv. V =(¡2y; 13x¡ 2y), 
(t)= e¡t(5 cos(5t)+ sin(5t); 13 sin(5t));

Problem 6.14. Assume that 
1(t) and 
2(t) are trajectories of the following direction fields respec-
tively

W1=(cos(y); sin(x)¡ sin(y));

W2=(sin(y)¡ sin(x); cos(y)):

Prove that if 
1(t) and 
2(t) intersect at a point, then they intersect orthogonal.

Problem 6.15. For the matrix A =
�
a b
c d

�
, assume jAj =/ 0. Show that for arbitrary �=/ 0, the inte-

gral curves of two systems y1~ =Ay1~ and y2~ =�A y2~ are parallel.

Problem 6.16. Let R� be the rotation matrix

R�=

�
cos(�) ¡sin(�)
sin(�) cos(�)

�
:

Prove that the integral curves of systems y1~ =R� y1~ and y2~ =R(�+�/2) y1~ are orthogonal at their inter-
sections.

Problem 6.17. Consider the following coupled mass spring system

k1 k2
m1 m2

x1 x2

The goal is to write equations describing x1(t), x2(t), the positions of the mass m1 and m2 respec-
tively.

a) Use the Newton's second law for the mass m1 and conclude

m1x1
00=¡(k1+ k2)x1+ k2x2: (6.10)

b) Use the Newton's second law for the mass m2 and conclude

m2x2
00= k2x1¡ k2x2: (6.11)

c) By taking v1 = x1
0 , v2 = x2

0 , write down a first order system for the given mass-spring system.
The answer should has the form

s~ 0=

0BBBBBBBBBB@
0 1 0 0

¡ (k1+ k2)

m1
0

k2
m1

0

0 0 0 1
k2
m2

0 ¡ k2
m2

0

1CCCCCCCCCCAs~ ; (6.12)

for the state vector s~ =(x1; v1; x2; v2).

Problem 6.18. Write a system of differential equation describing the system shown below.

k1 k2
m1 m2

x1 x2

k3

Problem 6.19. For the coupled damped mass-spring system shown below, write down the equation
of motion as a linear system of first order equations.
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x1

m1

x2

m2

k1 (spring) k2 (spring)

d2 (damp)d1 (damp)

Problem 6.20. Write down the following higher order equations in the form of a system of first
order equations. If an equation is linear, write it in the matrix form.

i. y 000+xy 00+2y=0

ii. y 000+ sin(y)= y 0¡ 1
Problem 6.21. Assume that F (y) is a smooth vector field for y 2 Rn. Prove that it is impossible
that two trajectories of the system y 0=F (y) intersect each other.

Problem 6.22. We observed that vector fields are tangent to the associated trajectories. From the
physics point of view, the vector field of a first-order system is the velocity field of particle moving in
the phase plane. This property can be used to construct the trajectories numerically as well. Assume
a particle is located at (x0; y0) in the phase plane at time t=0 following the equation

d
dt

�
x
y

�
=F (x; y):

The velocity vector at (x0; y0) is v~ = F (x0; y0). Therefore, one can use the linear approximation for-
mula at t=h� 1 and write �

x(h)
y(h)

�
�
�
x0
y0

�
+hF (x0; y0):

Accordingly, we obtain the following recursive formula�
xn+1
yn+1

�
�
�
xn
yn

�
+hF (xn; yn);

where xn :=x(nh), yn := y(nh) for small step size h.

a) Follow the above algorithm and draw the solution x(t); y(t) of the system (6.1) for t 2 [0; 2]
using the step size h = 0.1, and the initial condition x0 = 8; y0 = 5. Take parameters as r1 = 4;
k1= 0.4; r2=2; k2= 0.2.

b) Draw the obtained solution in the phase plane (x; y).

6.3 Linear homogeneous systems
We present a method to solve 2D systems with constant coefficient matrices, y 0 = Ay,
Y 2R2. There is no general method to solve linear systems with variable coefficients.

6.3.1 Outline of the method
Assume that a particle is moving in the phase plane (y1; y2) subject to the law y 0 = Ay,
and assume that v~ is an eigenvector of A with eigenvalue �. Consider the following initial
value problem (

d

dt
y=Ay

y(0)= v~
:

Note that
dy
dt
(0)=Ay(0)=Av~ =� v~ ;
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and thus the velocity vector of the particle at t= 0 lies along the eigenvector v~. It implies
that the particle remains along v~ for all t, and therefore, we can write the system as the
scalar one along v~, that is,

dz
dt

=�z;

where z is a variable along v~ . The solution of the above scalar equation is z = e�t, or
equivalently

y(t)= e�t v~:

The following figure shows the above argument schematically.

y(t)

velocity=�y(t)

y(0)

Eigenvector

velocity=�y(0)

Proposition 6.1. Consider the following initial value problem(
d

dt
y=Ay

y(0)= c v~
;

where v~ is an eigenvector of A with eigenvalue �. Then the unique solution of the problem
is

�(t)= ce�t v~:

Proof. The existence and uniqueness is verified by the existence and uniqueness theorem
for the given initial value problem. We need only to verify that the given vector function
solves the given problem. It satisfies the given initial condition, and furthermore, we have

d
dt
�(t)= c�e�tv~ ;

and
A�(t)= ce�tAv~ = c�e�t v~ ;

and thus y= �(t) satisfies the given problem. �

6.3.2 Two real distinct eigenvalues
Consider the following initial value problem(

d

dt
y=Ay

y(0)= y0
;

6.3 Linear homogeneous systems 17



and assume A has two real distinct eigenvalues �1; �2. It is simply seen that their associ-
ated eigenvectors v~1; v~2 are linearly independent. Therefore, we can write the initial condi-
tion y0 as the linear combination

y0= c1 v~1+ c2 v2~ ;

and thus the given initial value problem reads(
d

dt
y=Ay

y(0)= c1 v~1+ c2 v2~
:

The superposition principle allows us to write the above problem as the summation of the
following two sub-problems

(1)

(
d

dt
y=Ay

y(0)= c1 v~1
; (2)

(
d

dt
y=Ay

y(0)= c2 v2~
:

Obviously, the first problem is solved for �1 = c1 e
�1t v~1, and the second one for �2 =

c2 e�2t v~2.

Example 6.3. Consider the following initial value problem8>><>>:
d

dt
y=

�
1 1
0 2

�
y

y(0)=
�

1
¡1

� :

The coefficient matrix has eigenvalues �1=1; �2=2 with associated eigenvectors v~1=
�
1
0

�
,

v~2=
�
1
1

�
. Note that we can write y0 as�

1
¡1

�
=2

�
1
0

�
¡
�
1
1

�
;

and thus

�(t)= 2et
�
1
0

�
¡ e2t

�
1
1

�
=

 
2et¡ e2t
¡e¡2t

!
:

Example 6.4. Consider the following system8>><>>:
y1
0 =3y1¡ 4y2
y2
0 = y1¡ 2y2
y1(0)=1; y2(0)=¡1:

; (6.13)

The coefficient matrix A is

A=

�
3 ¡4
1 ¡2

�
; (6.14)

with the eigenvalues �1 = ¡1 and �2 = 2. The associated eigenvectors are v~1 =
�
1
1

�
and

v~2=
�
4
1

�
. Since

y(0)=¡5
3
v~1+

2
3
v~2; (6.15)
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we obtain

y(t)=¡5
3
e¡t
�
1
1

�
+
2
3
e2t
�
4
1

�
=
1
3

 
8e2t¡ 5e¡t
2e2t¡ 5e¡t

!
: (6.16)

6.3.3 Geometry of the trajectories
The following figure shows schematically the phase plane of a matrix A with two eigenvec-
tors v1~ ; v~2 associated to eigenvalues �1 < 0 and �2 > 0. Consider a particle p moving in
accordance with the system

d
dt

�
y1
y2

�
=A

�
y1
y2

�
:

If particle p lies initially at the direction of v~1, it gradually approaches the origin as shown
in the figure. On the other hand, it is it located at v~2, it moves along the same direction
away from the origin. Now, assume that it is located at y0. The vector y0 can be uniquely
decomposed on the direction of v~1 as p1, and on the direction of v~2 as p2. After �t, the
point p1 reaches p1(�t), and p2 to p2(�t). As it is shown in the figure, the initial point y0
moves to y(�t) at t= �t.

y(�t)v~2
y0

p1
p2

p2(�t)

�2> 0

�1< 0

v~1

p1(�t)
y1

y2

Figure 6.2.

There are three possible cases for a matrix of two distinct eigenvalues �1; �2.

�2<�1< 0. In this case, both terms e�1t and e�2t goes zero when t!1 and then

lim
t!1

y(t)= 0:

The equilibrium point in this case is stable and is called a nodal sink . For example,
consider the following system

d
dt

�
y1
y2

�
=

�
¡2 1
1 ¡2

��
y1
y2

�
The eigenvalues are �1 = ¡1; �2 = ¡3 and eigenvectors v~1 =

�
1
1

�
; v~2 =

�
¡1
1

�
. The

following figure shows a few of trajectories in the phase plane. Note that �2 < �1
and thus e�2t on the direction of v~2 vanishes sooner than e�1t on the direction of v~1.
Therefore, trajectories approaches the origin tangent to v~1.
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�2< 0<�1. In this case, the direction of v~1 is unstable and the direction of v~2 is
stable. For example, consider the following system

d
dt

�
y1
y2

�
=

�
2 4
1 ¡1

��
y1
y2

�
:

The coefficient matrix has eigenvalues �1 = 3; �2 = ¡2 and eigenvectors v~1 =
�
4
1

�
;

v~2 =
�
¡1
1

�
. The following figures show some trajectories in the phase plane. The

origin in this case is called a saddle point .
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0<�1<�2. For example, consider the following system

d
dt

�
y1
y2

�
=

�
2 1
1 2

��
y1
y2

�
:
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The eigenvalues ate �1 = 1; �2 = 3 with eigenvectors v~1 =
�
¡1
1

�
; v~2 =

�
1
1

�
. The fol-

lowing figure shows a few trajectories in the phase plane. In this case, the origin is
called a nodal source. Note that how trajectories ten toward the dominant direc-
tion v~2 with bigger eigenvalues.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Example 6.5. Let us draw the phase portrait of a system with a zero eigenvalue. Con-
sider the following system

d
dt

�
y1
y2

�
=

�
1 2
2 4

��
y1
y2

�
:

The coefficient matrix has eigenvalues-eigenvectors �1 = 0, v~1 =
�
¡2
1

�
, �2 = 5, v~2 =

�
1
2

�
.

Since point son v~1 do not move with respect to time, trajectories are straight lines perpen-
dicular to the direction of v~1 as shown in the following figure.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
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6.3.4 Repeated eigenvalues

If matrix A2�2 has a repeated eigenvalue � then there are two possibilities for the set of
eigenvectors:

1. that any vector of R2 is an eigenvector, and

2. there is only one eigenvector.

In fact, if A has two linearly independent eigenvectors v~1; v~2 with the same eigenvalues �,
then for arbitrary vector w~ , there are constants c1; c2 such that

w~ = c1v~1+ c2 v~2;

and thus

Aw~ = c1Av~1+ c2Av~2=� (c1v~1+ c2 v~2)=�w~ :

If so, two linearly independent solutions are

�1(t)= e�t
�
1
0

�
; �2(t)= e�t

�
0
1

�
;

and thus the initial value problem (
d

dt
y=Ay

y(0)= y0
;

has the solution

�(t)= e�ty0:

The difficult part is the case when A has only one eigenvector. Assume that �; v~ is the
eigenvalue-eigenvector of a matrix A. Then the system

d
dt
y=Ay ;

has one solution

�1(t)= e�t v~:

For the second solution we use a fact from linear algebra. Remember that if a matrix A2�2
has only one eigenvector v~ , then there is a generalized eigenvector w~ such that

(A¡ �I)w~ = v~: (6.17)
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We claim that the second solution is as follows

�2(t)= e�t(w~ + t v~):

The verification is straightforward as given below. We have

d
dt
�2(t)=�e�t(w~ + t v~)+ e�t v~:

On the other hand, we have

A�2(t)= e�tA(w~ + t v~);

and by the relation Aw~ =�w~ + v~ , we obtain

A�2(t)= e�t (�w~ + v~ + t� v~);

and hence

d
dt
�2(t)=A�2(t):

Example 6.6. Consider the system8>><>>:
y 0=

�
3 ¡1
1 1

�
y

y(0)=
�

1
¡1

� : (6.18)

The coefficient matrix has eigenvalue-eigenvector �=2, v~ =
�
1
1

�
and the generalized eigen-

vector is w~ =
�
1
0

�
. Therefore, two linearly independent solutions are

�1(t)= e2t
�
1
1

�
; �2(t)= e2t

�
t+1
t

�
;

and thus the general solution is

y(t)= c1e
2t

�
1
1

�
+ c2 e

2t

�
t+1
t

�
:

Applying the initial condition determined c1 = ¡1, c2 = 2 and hence the solution to the
given initial value problem is

�(t)= e2t
�
2t+1
2t¡ 1

�
:
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6.3.5 Trajectories in the phase plane

If A has only one eigenvector, the origin is called improper or defective point.

�< 0. In this case, all trajectories approaches the origin in long term

lim
t!1

y(t)= 0:

Furthermore, trajectories are tangent to the unique eigenvector as shown in the fol-
lowing figure for the matrix A=

�
¡3 ¡1
1 ¡1

�
. In this case, the origin is called a defec-

tive sink .
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If we replace the matrix A with the matrix B =
�
¡1 1
¡1 ¡3

�
, the eigenvalue and eigen-

vector are the same, however, the form of trajectories are as follows
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In order to determine the rotation of trajectories, we can do as follows. For the

24 Systems of Differential Equations



first matrix, let y(0)=
�
1
0

�
, and thus

y 0(0)=

�
¡3 ¡1
1 ¡1

�
y0=

�
¡3
1

�
;

as shown below

y2

y1

�
3
¡1

�

�
¡3
1

�

For the matrix B we have

y(0)=

�
¡1 1
¡1 ¡3

�
y(0)=

�
¡1
¡1

�
;

that is shown below

y2

y1

�
1
1

�

�
¡1
¡1

�

�> 0. In this case all trajectories goes unbounded when t! 1 as shown in the fol-
lowing figure The origin is called a defective source.
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6.3.6 Complex eigenvectors

Complex eigenvalues are characteristic of rotational matrices. If a matrix A2�2 has a com-
plex eigenpair (�; v~), then it posses the complex conjugate pair (��; v~�). Consider the fol-
lowing system

d
dt
y=Ay ;

where A has complex eigenpair (�; v~). Then, the system has two solutions

�1(t)=Refe�t v~ g; �2(t)= Im(e�t v~):

Example 6.7. Consider the system8>><>>:
d

dt
y=

�
3 ¡2
4 ¡1

�
y

y(0)=
�
0
1

� : (6.19)

The eigenvalue of the coefficient matrix is � = 1 + 2i with the complex eigenvector v~ =�
1

1¡ i

�
. Therefore, two independent solutions are

�1(t)= etRe
�
ei2t
�

1
1¡ i

��
= et

�
cos(2t)

cos(2t)+ sin(2t)

�
;

�2(t)= et Im
�
ei2t
�

1
1¡ i

��
= et

�
sin(2t)

sin(2t)¡ cos(2t)

�
:
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Therefore, the general solution is

y(t)= c1 et
�

cos(2t)
cos(2t)+ sin(2t)

�
+ c2et

�
sin(2t)

sin(2t)¡ cos(2t)

�
;

and applying the given initial condition yields c1=0, c2=¡1 and finally

�(t)= et
�

¡ sin(2t)
cos(2t)¡ sin(2t)

�
:

6.3.7 Trajectories in the phase plane

In this case, the trajectories form closed curves or spiral around the origin depending on
the sign of �.

�=0. When the real part of the eigenvalue is zero, the exponential function e�x= ei!x

is just a trigonometric functions and the trajectories form ellipses around the
origin. The origin in this case is called a center . The following figure shows a few
trajectories of a system with coefficient matrix A=

�
1 ¡3
1 ¡1

�

� < 0. In this case, the rotation is multiplied by the factor e�x and thus the trajecto-
ries goes to the origin when t!1. The origin is called a spiral sink in this case.
The following figures trajectories of a system with the coefficient matrix A =�
¡0.5 ¡3
1 ¡0.5

�
. Note that in this case, the value of � is 1

2
.
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� > 0. Similar behavior to � < 0 but only the spirals are outward. The origin is called
a spiral source in this case.

Remark 6.2. The direction of the rotation is simply determined by the aid of the coeffi-
cient matrix. For example, for a system with the coefficient matrix

�
3 ¡2
4 ¡1

�
, we have

y 0(0)=

�
3 ¡2
4 ¡1

��
0
1

�
=

�
¡2
¡1

�
and thus trajectories form a spiral source rotating counter-clockwise direction. This argu-
ment implies that if c > 0 in the coefficient matrix A=

�
a b
c d

�
then the rotation is counter-

clockwise and if c< 0, the rotation is clockwise.
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�
¡2
¡1

�
(0; 1)

y1

y2

Problems

Problem 6.23. Consider the following system

d

dt
y=A(t)y;

where A(t) = [aij(t)]n�n, and all aij(t) are continuous. Prove that the system has exactly n-linearly
independent solution vectors.

Problem 6.24. Rewrite each of the following initial value problem as a scalar equation along the
appropriate eigenvector and then write the solution

i. 8>><>>:
y1
0 =2y1+ y2
y2
0 =3y1+4y2
y1(0)=1; y2(0)= 3

ii. 8>><>>:
y1
0 = y1¡ y2
y2
0 =¡4y1+ y2

315pty1(0)= 2; y2(0)=¡4
iii. 8>><>>:

y1
0 = y1+2y2
y2
0 =2y1+4y2
y1(0)=¡2; y2(0)= 1

iv. 8>><>>:
y1
0 =¡y1+8y2
y2
0 = y1+ y2
y1(0)= 1; y2(0)=¡1

Problem 6.25. Find two linearly independent solution vectors for each of the following systems

i. (
y1
0 =2y1+ y2
y2
0 =3y1+4y2
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ii. (
y1
0 =¡3y1+2y2
y2
0 =¡2y1+ y2

iii. (
y1
0 =2y1¡ 5y2
y2
0 =4y1¡ 2y2

iv. (
y1
0 = y1+ y2
y2
0 =¡2y1¡ 2y2

Problem 6.26. For the following 2-dimensional systems, find the equilibrium point(s), determine the
type of points, and draw the phase portrait of the system

a) (
y1
0 =2y1+ y2
y2
0 =3y1+4y2

;

b) (
y1
0 = y1¡ y2
y2
0 =¡4y1+ y2

;

c) (
y1
0 =¡y1+8y2
y2
0 = y1+ y2

;

d) (
y1
0 =¡y1¡ 5y2
y2
0 = y1+ y2

;

e) (
y1
0 =¡3y1+2y2
y2
0 =¡2y1+ y2

;

f) (
y1
0 =5y1+3y2
y2
0 =¡3y1¡ y2

;

g) (
y1
0 =¡6y1
y2
0 =2y1+ y2

h) (
y1
0 =¡y1¡ 2y2
y2
0 =2y1+3y2

i) (
y1
0 =2y1+2y2
y2
0 =¡5y1¡ 4y2

j) (
y1
0 =2y1¡ 5y2
y2
0 =4y1¡ 2y2

k) (
y1
0 =4y1¡ y2
y2
0 =6y1¡ 2y2
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Problem 6.27. Consider the system
d
dt
y=

�
2 ¡1
4 ¡2

�
y:

a) Show that the system has two linearly independent solution vectors �~1 =
�
1
2

�
and �~2 = 

t+
1

2

2t

!
.

b) Deduce that the trajectories in the phase plane satisfies the equation y2=2y1+ c for some con-
stant c.

Problem 6.28. Let A2�2 has a complex eigenvalue �=�+ i!.

i. For the matrix Q=
1

2
[Re(v~)jIm(v~) ] show that Q¡1AQ=

�
� ¡!
! �

�
.

ii. Conclude that A=QBQ¡1 for the matrix B= j�j
�

cos(�) ¡sin(�)
sin(�) cos(�)

�
for some suitable angle �.

6.4 Non-homogeneous systems

Consider the following system
d
dt
y=Ay+ r(t): (6.20)

As we expect, the general solution should has the following form

y(t)= yh(t)+ yp(t); (6.21)

where yh is the homogeneous solution when r is identically zero, and yp is a particular
solution of the system. We present three different methods to find yp.

6.4.1 Eigenvector decomposition method
Consider the following system (

d

dt
y=A2�2y+ r(t)

y(0)= y0
:

If A has two linearly independent eigenvectors v~1; v~2, then we can decompose r(t) in a
unique way as

r(t)= r1(t) v~1+ r2(t) v~2;

and thus the given non-homogeneous system can be solved separately as(
d

dt
y=A2�2y+ r1(t) v1~

y(0)= c1 v~1
;

(
d

dt
y=A2�2y+ r2(t) v2~

y(0)= c2 v~2
;

where y0= c1 v~1+ c2 v~2 for some c1; c2. The first system reduces to a scalar equation along
v~1, that is, (

dz

dt
=�1 z+ r1(t)

z(0)= c1
;
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and the second system reads (
dz

dt
=�1 z+ r2(t)

z(0)= c2
:

Note that, the solution of the first equation is a vector solution along v~1, and of the second
one is a solution along v~2, that is,

�1(t)=

�
c1e

¡�1t+ e¡�1t
Z
0

t

e�1�r1(� )d�

�
v~1;

�2(t)=

�
c2e¡�2t+ e¡�2t

Z
0

t

e�2�r2(� )d�

�
v~2:

Example 6.8. Let A =
�
3 ¡2
2 ¡2

�
, y(0) = 0, and r =

 
et

t

!
. Since v~1 =

�
1
2

�
, v~2 =

�
2
1

�
, we

have

r=

�
¡1
3
et+

2
3
t

�
v~1+

�
2
3
et¡ 1

3
t

�
v~2: (6.22)

Since �1 = ¡1 and �2 = 2, the associated sub-systems along their associated eigenvectors
are (

z 0=¡z ¡ 1

3
et+

2

3
t

z(0)=0
;

(
z 0=2z+

2

3
et¡ 1

3
t

z(0)= 0
:

These two scalar equations are simply solved for

�1(t)=

�
5
6
e¡t¡ 1

6
e¡t+

2
3
t¡ 2

3

�
v~1; �2(t)=

�
¡11
36
e¡2t+

2
9
et¡ 1

6
t+

1
12

�
v~2;

and thus the final solution is �(t)= �1(t)+ �2(t).

As it is seen, this method works very well if A2�2 has two real distinct eigenvalues.
However, the application is limited if A has a repeated or complex eigenvalues.

6.4.2 Variation of parameters

Let �1(t); �2(t) be two linearly independent of the homogeneous system

d
dt
y=Ay:

Then we write the particular solution of the non-homogeneous system

d
dt
y=Ay+ r(t)
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as follows for some undetermined functions c1(t); c2(t)

yp(t)= c1(t)�1+ c2(t)�2;

Substituting yp(t) into the system, gives

c1
0(t)�1+ c1(t)�1

0 + c2
0(t)�2+ c2(t)�2

0 = c1(t)A�1+ c2(t)A�2+ r(t):

Note that �10 =A�1 and �2
0 =A�2, and thus

c1
0(t)�1+ c2

0(t)�2= r(t): (6.23)

In the matrix form, we can write the above system as follows

�(t)

�
c1
0(t)
c2
0(t)

�
= r(t);

where �(t)= [�1j�2]. Therefore,�
c1(t)
c2(t)

�
=

Z
�¡1(t) r(t) dt:

Example 6.9. Let us find a particular solution to the system y 0 = Ay +
�
0
t

�
where A =�

3 ¡2
2 ¡2

�
. It is simply seen that the homogeneous system has two vector solution �1(t) =

e¡t
�
1
2

�
, and �2(t)= e2t

 
2
1

!
. We write the particular solution as

yp(t)= c1(t)e¡t
�

1
2

�
+ c2(t)e2t

�
2
1

�
;

where c1; c2 satisfy the following equation

c1
0(t) e¡t

�
1
2

�
+ c2

0(t) e2t
�
2
1

�
=

�
0
t

�
;

and thus (
e¡tc1

0(t)+2e2tc2
0(t)= 0

2e¡tc1
0(t)+ e2tc2

0(t)= t
:

By eliminating c20, we obtain 3e¡tc10 =2t and hence

c1(t)=
2
3

Z
tet=

2
3
(t¡ 1)et:

Similarly, we obtain

c2(t)=¡
1
3

Z
te¡2t=¡1

3

�
¡1
2
te¡2t¡ 1

4
e¡2t

�
= e¡2t

�
1
6
t+

1
12

�
;

and finally

yp(t)=

0@ t¡ 1

2
3

2
t¡ 5

4

1A:
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Theorem 6.2. Let �= [�1(t)j�2(t)] be a solution matrix of the homogeneous system

d
dt
y=Ay:

Then, the solution of the non-homogeneous system(
d

dt
y=Ay+ r(t)

y(0)= y0
; (6.24)

is

y(t)=�(t)�¡1(0)y0+�(t)

Z
0

t

�¡1(� ) r(� ) d� : (6.25)

Proof. The verification process is straightforward as follows. Fist, the given solution sat-
isfies the initial condition at t=0. Furthermore, we have

d
dt
y(t)=�0(t)�¡1(0)y0+�0(t)

Z
0

t

�¡1(�) r(� ) d� + r(t):

For the last term, we used the fundamental theorem of calculus. On the other hand, �(t)
is the homogeneous matrix solution of the homogeneous system, that is,

d
dt
�(t)=A�(t);

and thus

d
dt
y(t)=A

�
�(t)�¡1(0)y0+�(t)

Z
0

t

�¡1(�) r(�) d

�
� + r(t)=Ay(t)+ r(t);

and this completes the proof. �

6.4.3 Undetermined coefficient method
This method is applied if the forcing terms is of the following forms

� polynomials,

� exponential,

� trigonometric sine and cosine functions.

polynomials. If r(t) has the form a~nt
n+ ���+ a~0 and �= 0 is not an eigenvalue of the

coefficient matrix A, then the particular solution is yp = c~ntn + ��� + c~0 for some
undetermined vectors c~n. If � = 0 is a simple eigenvalue of A then yp = c~n+1tn+1 +
c~ntn+ ���+ c~0.

Exponential. If r(t) is an exponential function r(t) = a~ ebt and �= b is not an eigen-
value of A, then yp = c~ebt for an undetermined vector c~. If � = b is a simple eigen-
value of A, then yp= c~1te

bt+ c~0 e
bt. If �= b is a repeated eigenvalue then

yp= c~2 t2ebt+ c1~ tebt+ c~0 et:
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Trigonometric. If r(t) has the form a~ sin(!t) or a~ cos(!t) and �= i! is not an eigen-
value of A, then yp= c~1 sin(!t)+ c~2 cos(!t). If �= i! is an eigenvalue of A, then

yp=(c~1 t+ d1~ ) sin(!t)+ (c~2 t+ d~2) cos(!t):

Example 6.10. Let us solve the system given in the previous example, that is, A =�
3 ¡2
2 ¡2

�
and r =

 
et

t

!
. It is better to rewrite r as r =

�
1
0

�
et+ t

�
0
1

�
. The particular solu-

tion associated to the first term is yp= et c~1 where c~1 satisfies the following relation

et c~1= etAc~1+ et
�
1
0

�
;

and thus (A¡ Id)c~1=¡
�
1
0

�
. This gives

c~1=¡(A¡ Id)¡1
�
1
0

�
=

 
¡3
2

¡1

!
:

A particular solution associated to the second term is yp= c~2t+ c~3 where c~2; c~3 satisfy the
relation c~2 = tAc~2 + Ac~3 + t

�
0
1

�
. Thus, we obtain Ac~2 = ¡

�
0
1

�
and Ac~3 = c~2. These rela-

tions determine c~2=
 

1
3

2

!
, and c~3=

0@ ¡1
2

¡5
4

1A. Hence, the particular solution is

yp= et

 
¡3
2

¡1

!
+t

 
1
3

2

!
¡

0@ 1

2
5

4

1A:

Problems

Problem 6.29. Find the general solution of the following systems by the eigenvector decomposition
method

a)

y 0=

�
3 ¡4
1 ¡2

�
y+

�
1
¡3

�
:

b)

y 0=

�
¡1 3
1 1

�
y+

 
t+1

e¡t

!
:

c)

y 0=

�
4 ¡3
2 ¡1

�
y+

 
e¡t

et

!
:

d)

y 0=

�
2 5
1 ¡2

�
y+

�
sint
cost

�
:

6.4 Non-homogeneous systems 35



e)

y 0=

�
2 ¡3
1 ¡2

�
y+

0BB@ et

1+ e2t

et

1+ e2t

1CCA
Problem 6.30. Find the general solution of the following systems by the variation of parameters
method

a)

y 0=

�
0 ¡1
1 0

�
y+

 
et

e¡t

!
:

b)

y 0=

�
0 1
2 ¡1

�
y+

0BB@ e2t

1+ et

e2t

1+ e

1CCA:
c)

y 0=

�
1 1
¡1 1

�
y+

0BB@ et

cost
et

sint

1CCA:
d)

y 0=

�
2 ¡5
1 ¡2

�
y+

�
sint
cost

�
:

e)

y 0=

�
2 ¡3
1 ¡2

�
y+

0BB@ et

1+ e2t

et

1+ e2t

1CCA
Problem 6.31. Find the general solution of the following systems by the eigenvector decomposition
method

a)

y 0=

�
3 ¡4
1 ¡1

�
y+

�
1
¡3

�
:

b)

y 0=

�
¡1 3
1 1

�
y+

 
t+1

e¡t

!
:

c)

y 0=

�
4 ¡3
2 ¡1

�
y+

 
e¡t

et

!
:

d)

y 0=

�
2 5
1 ¡2

�
y+

�
sint
cost

�
:

e)

y 0=

�
2 ¡3
1 ¡2

�
y+

�
t

t+ e

�
:

f)

y 0=

�
3 ¡4
1 ¡2

�
y+

�
¡1
t

�
:

g)

y 0=

�
3 ¡6
3 ¡3

�
y+

�
sin t
0

�
:
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Problem 6.32. Solve the following initial value problems

i. 8>><>>:
y1
0 =2y1+3y2
y2
0 = y1+2y2+1
y1(0)= y2(0)= 0

ii. 8>><>>:
y1
0 =¡2y1+3y2+1

y2
0 =¡y1+2y2
y1(0)= y2(0)= 0

iii. 8>><>>:
y1
0 =2y2+ t

y2
0 =¡y1¡ 2y2
y1(0)=0; y2(0)= 1

iv. 8>><>>:
y1
0 = y2+1

y2
0 =¡y1
y1(0)= y2(0)= 0

v. 8>><>>:
y1
0 =5y1+2y2+1

y2
0 =¡2y1+ y2+1
y1(0)= y2(0)= 0

vi. 8>><>>:
y1
0 =6y1+4y2+3

y2
0 =¡y1+2y2¡ 2
y1(0)=1; y2(0)= 0

vii. 8>><>>:
y1
0 =¡3y1+2y2+ t

y2
0 =¡y1¡ y2
y1(0)= y2(0)= 0

Problem 6.33. Consider the system y 0=Ay + r(t), where A=
�
1 1
2 2

�
. Note that �= 0 is an eigen-

value of A.

i. Find two linearly independent solution vectors to the homogeneous system.

ii. Use undetermined coefficient method to find a particular solution to the given system if r(t) =�
1
¡1

�
.

iii. Repeat the problem when r(t)=
�
1
2

�
.

iv. Now an arbitrary constant matrix r =
�
r1
r2

�
can be uniquely decomposed in directions

�
1
¡1

�
and

�
1
2

�
and thus we expect the particular solution to be of the form c~1x+ c~0. Find a partic-

ular solution when r=
�
3
1

�
.

Problem 6.34. Consider the system y 0=Ay+ r(t), where A=
�
3 ¡2
2 ¡2

�
.

i. Find two linearly independent solutions to the homogeneous system.

ii. Use undetermined coefficient method to find a particular solution to the given system if r =�
1
2

�
e¡t.

iii. Repeat the problem if r=
�
2
1

�
e¡t.

iv. Now find a particular solution if r=
�
0
1

�
e¡t.
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6.5 Nonlinear systems

Despite linear systems, there is no general method to solve nonlinear ones. In this section,
we discuss the properties of nonlinear systems without attempting to solve them.

6.5.1 Linearization
In the first section of this chapter, we studied the method of linearization for nonlinear
systems around an equilibrium point. By linearization, we gain some information about
the behavior of the nonlinear system. Consider the following system(

x0= y

y 0=¡2y¡x2+4
:

The system has two equilibrium points p1 = (2; 0); p2 = (¡2; 0). The linearzed version of
the system around p1 is

d
dt

�
x
y

�
=

�
0 1
¡4 ¡2

��
x¡ 2
y

�
:

The eigenvalues of the coefficient matrix are � =¡1� i 3
p

and thus p1 is a spiral sink for
the linearized system. The linear system around p2 is

d
dt

�
x
y

�
=

�
0 1
4 ¡2

��
x+2
y

�
;

with eigenvalues �1;2=¡1� 5
p

and thus p2 is a saddle point for the linear system. There-
fore, the behavior of the original system around the equilibrium points is very similar to
one of the linearized versions. Note that the behavior may be different at points far from
the equilibrium. The following figure shows the trajectories of the nonlinear system in the
phase plane.
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p
1p

2
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6.5.2 Integrable systems
Consider the following autonomous system8<:

dx

dt
= f(x; y)

dy

dt
= g(x; y)

: (6.26)

If there is a scalar function H(x; y2) such that f = ¡@H

@y
, and g =

@H

@x
, then the above

system is called integrable. Consider the following system8<:
dx

dt
=¡@H

@y

dy

dt
=

@H

@x

:

The equation in the phase plane (x; y) is

dy
dx

=¡
@H

@x
@H

@y

;

or equivalently
@H
@x

dx+
@H
@y

dy=0;

which is solved as H(x; y) = const. The condition that the system (6.26) is integrable in
an open domain D�R2, the following condition must be satisfied

@f
@x

=¡@g
@y
;

in addition to the continuity of f ; g; and @f

@x
;
@g

@y
on D.

Example 6.11. Consider the equation of a pendulum

� 00+
g
l
sin(�)= 0; (6.27)

and let us rewrite the equation in the following form(
�1
0 = �2
�2
0 =¡ g

l
sin(�1)

: (6.28)

The above system is integrable as it satisfies the continuity condition and the relation

@
@�1

�2=¡
@
@�2

�
¡g
l
sin(�1)

�
:

It is simply verified that the scalar function H is as follows

H(�1; �2)=
1
2
(�2)2¡

g
l
cos(�1);

and thus 1

2
(�2)2¡ g

l
cos(�1)=C is the solution of the system in the phase plane (�1; �2).
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Observe that some trajectories are closed around the point (0; 0). For this trajecto-
ries, the solutions �1= �1(t) and �2= �2(t) in the (t; �)-plane are periodic.

6.5.3 Stability

Definition 6.2. A point p� = (x�; y�) is called an equilibrium point of the system (6:26) if
f(p�)= g(p�)= 0. An equilibrium point p� is called an isolated equilibrium if there is an open
neighborhood of p� containing no other equilibrium other than p�.

Usually it is desired to gain some information about the behavior of a system about
one of its equilibrium points. For example, the system (6.28) has equilibrium points of the
form (n�; 0) for (�1; �2). The trajectories near the equilibrium (0; 0) are periodic, while at
(�; 0) or (¡�; 0) are unstable.

Definition 6.3. An isolated equilibrium p� is called stable if there is an open disk D cen-
tered at p� such that all trajectories starting at D remain inside D or in a bigger disk D1.
An equilibrium p� is called asymptotically stable id there is an open disk D centered at p�
such that all trajectories starting inside D approach p� when t!1.

An important result about the asymptotically stable equilibria is given in the following
theorem.

Theorem 6.3. Let p�= (x�; y�) be an isolated equilibrium of the system ( 6.26) and assume
that the eigenvalues of the Jacobi matrix J(f ;g)(p�) has negative real part. Then p� is an
asymptotically stable equilibrium of the system.

Example 6.12. Consider the following system8<:
dx

dt
=¡y¡ 1

2
x(1¡ y2)

dy

dt
= x¡ 1

2
y(1¡ y2)

:
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The Jacobi matrix at p�= (0; 0) is

J =

24 ¡1

2
¡1

1 ¡1

2

35;
with eigenvalues

�=¡1
2
� i 2
p

2
:

Therefore, p� is asymptotically stable.

Although, the above theorem provides us with a powerful tool to decide whether if an
equilibrium is asymptotically stable or not, it does not provide us with any estimation of
the domain of the stability. For the above example, consider the following scalar function

V (x(t); y(t))= jx(t)j2+ jy(t)j2;

which is the magnitude of the solution of the system. We have

dV
dt

=2x(t)x0(t)+ 2y(t) y 0(t)=¡(x2+ y2) (1¡ y2):

Obviously, dV

dt
< 0 for ¡1< y < 1 and thus we expect that trajectories starting or entering

in the disk x2+ y2< 1 approach the origin when t!1.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Example 6.13. Consider the following damped pendulum equation

� 00+ "� 0+
g
l
sin(�)= 0: (6.29)

As we know, the system dissipate its energy and approaches the equilibrium (0; 0). In fact,
if we multiply the equation by � 0, we obtain

d
dt

�
1
2
j� 0j2+ g

l
(1¡ cos(�))

�
=¡" j� 0j2:
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If we take

V (�; � 0)=
1
2
j� 0j2+ g

l
(1¡ cos(�));

then

V (�; � 0)=V0¡ "
Z
0

t

j� 0(s)j2ds;

where V0 = V (�(0); � 0(0)) is the initial energy of the pendulum. Obviously, j� 0(t)j ! 0 for
t ! 1, and thus V (�(t); � 0(0)) ! 0 for t ! 1 (why?). This implies that the pendulum
approaches the equilibrium in long term. Let us write the equation in the following form(

�1
0 = �2
�2
0 =¡" �2¡ g

l
sin(�1)

:

The linearized version of the system is�
�1
0

�2
0

�
=

 
0 1
¡g
l
¡"

!�
�1
�2

�
:

The eigenvalues of the coefficient matrix are

�1;2=
¡"� "2¡ 4g

l

q
2

: (6.30)

If " is sufficiently small, then �1;2 are complex with the real part ¡"
2
. This implies that the

point (0; 0) is a spiral sink as we expected from the given non-linear equation.

If the real part of the Jacobi matrix is zero, we can not say that the equilibrium point
is a center, asymptotically stable or unstable. The following example explains this case.

Example 6.14. Consider the following damped pendulum equation

� 00+ "� 03+
g
l
sin�=0: (6.31)

Here the drag force is assumed to be of order 3 of the velocity. It is simply seen that this
nonlinear system dissipate energy in time and approaches the origin for small "> 0. Let us
write the equation in the system form as follows(

�1
0 = �2
�2
0 =¡" �23¡

g

l
sin(�1)

:

The linearize version of the system at (0; 0) is(
�1
0 = �2
�2
0 =¡ g

l
�1
;

and thus (0; 0) is a center point for the linearized system while it is a sink for the original
nonlinear system.
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Problems

Problem 6.35. For the following linear system, find the general solution in the phase plane and com-
pare the results with the solutions obtained by the direct method of solving linear systems.

a) 8<:
dy1
dt
=3y1¡ 5y2

dy2
dt
= y1¡ 3y2

:

b) 8<:
dy1
dt
=3y1¡ y2

dy2
dt
= y1+y2

:

c) 8<:
dy1
dt
= y1¡ y2

dy2
dt
= y1+y2

:

Problem 6.36. Verify that the following systems are integrable and then derive the potential H and
write the solution given the initial condition.

a) 8<:
dx

dt
=¡y

dy

dt
=x

; (x(0); y(0))= (1;¡1)

b) 8<:
dx

dt
=x¡ y2+1

dy

dt
=x2¡ y¡ 1

; (x(0); y(0))= (0; 1)

c) 8>><>>:
dx

dt
=¡ y

x2+ y2

dy

dt
=

x

x2+ y2

; (x(0); y(0))= (1; 1)

Problem 6.37. For each of the following system, find equilibrium points and determine the type of
each equilibrium of the correspond linearized system

i. (
y1
0 = y1 y2
y2
0 = y1

2+ y2
2¡ 1

ii. (
y1
0 = y1y2
y2
0 = y1

2¡ 3y1+2

iii. (
y1
0 = y1 sin(y2)
y2
0 =¡y2 sin(y1)

6.5 Nonlinear systems 43



iv. (
y1
0 = y1(1¡ y2

2)

y2
0 = y2(1+ y1)

v. (
y1
0 = y1

2+4y2
y2
0 = y1

2¡ y2
2

Problem 6.38. Prove that (0; 0) is an asymptotically stable point of the following system8<:
dx

dt
=¡xey+ y

dy

dt
=¡x¡ y

Problem 6.39. Linearize the following system at its equilibrium point(s) and determine the type of
the linearized system. �

x0= y(x¡ 1)
y 0=x(y¡ 1) :

6.6 Higher dimensional systems: fundamental matrix
A matrix �(x) is called the fundamental matrix of another matrix An�n if

i. �n�n(0)= I,

ii. �0(t)=An�n�(t) for all t2 (¡1;1)

Consider the following initial value problem(
d

dt
y=Ay+ r(t)

y(0)= y0
:

If �(t) is the fundamental matrix of A, then

y(t)=�(t)y0+�(t)

Z
0

t

�(¡� )r(� ) d�:

For a 2� 2 matrix A, the fundamental matrix � is just

�= [�1(t)j�2(t)] [�1(0)j�2(0)]¡1;

where �1; �2 are two linearly solutions of the system y 0=Ay. Here we introduce a method
to derive the fundamental matrix for general matrices.

6.6.1 Exponential formula
If A is a matrix, we define the exponential matrix eA through the following series

eA= I+A+
1
2
A2+

1
3!
A3+ ���: (6.32)

Apparently, we need to justify that the infinite series in the right hand side of the above
equality converges. In the appendix, we prove that the series is convergent.
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Theorem 6.4. Let A be a n�n constant matrix. The unique fundamental matrix �(t) of
the A is �(t)= eAt.

Proof. According to the definition of a fundamental matrix and of the matrix eAt, it is
immediately follows that �(0) = I. To justify the second property of a fundamental
matrix, we need the following fact from the linear algebra: if A; B are two n � n matrices
that satisfies the condition AB = BA then eAeB = eA+B. Using that fact, we justify the
second property as follows

d
dt
eAt= lim

h!0

eA(t+h)¡ eAt
h

= lim
h!0

eAh eAt¡ eAt
h

= lim
h!0

eAh¡ I
h

eAt:

According to the definition of eAh, we can write

eAh¡ I
h

=A+h

�
1
2
A2+ ���+ 1

n!
Anhn¡2+ ���

�
:

The expression in the bracket converges to a n�n matrix, say B, and then

lim
h!0

eAh¡ I
h

=A+ lim
h!0

hB=A:

This implies that d

dt
eAt = AeAt and thus eAt is a fundamental matrix of the matrix A. We

now show that this matrix is unique. If �1;�2 are two fundamental matrices, then for any
arbitrary c~ 2Rn, the vectors y1 = �1(t)c~ and y2 = �2(t)c~ are solutions to the initial value
problem (

d

dt
y=Ay

y(0)= c~
:

According to the uniqueness theorem, we have �1(t)c~ = �2(t)c~ for arbitrary c~, and thus
�1=�2. �

Below, we present an algorithm to calculate the summation of the infinite sums.

6.6.2 Calculation of the fundamental matrix
In order to derive the fundamental matrix in a closed form, we use the Jordan normal
form of a matrix; see the appendix of this book. Firs let us fix our notation. If v~1; :::; v~n
are the columns of a matrix Q, we represent Q by Q = [v~1jv~2j���jv~n] and by this notation,
the matrix multiplication AQ (in the case of the proper dimensionality) is defined by the
relation

AQ=[Av~1jAv~2j���jAv~n]: (6.33)

We need the following fact in our subsequent discussion.

Proposition 6.2. If C is an invertible matrix then for an arbitrary matrix A we have

eCAC
¡1
=CeAC¡1: (6.34)

Proof. Direct calculation gives the result. In fact, we have

eCAC
¡1
= I+CAC¡1+ ���+ 1

n!
(CAC¡1)n+ ���: (6.35)
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Since
(CAC¡1)k=CAC¡1CAC¡1���CAC¡1=CAkC¡1; (6.36)

we obtain

eCAC
¡1
= I+���+ 1

n!
CAkC¡1+ ���=C

�
I+ ���+ 1

n!
Ak+ ���

�
C¡1=CeAC¡1; (6.37)

and this completes the proof. �

Matrix A with real distinct eigenvalues.

Assume that An�n has n real distinct eigenvalues �1; :::; �n. In this case A has n linearly
independent eigenvectors v~1; :::; v~n. Moreover, for the eigenvector matrix Q = [v~1jv~2j���jv~n],
we have

Q¡1AQ=diag(�1; :::; �n):

The proof is straightforward and we leave it as an exercise to the reader.
Consider the following system

d
dt
y=Ay ;

and let Q be the eigenvector matrix Q= [v~1j���jv~n]. By the axis transformation Y = Q¡1y,
the above system is transformed to the following one

Q
d
dt
Y =AQY ;

and therefore,
d
dt
Y =Q¡1AQY =diag(�1; :::; �n)Y :

The fundamental matrix of the later system is

	(x)= ediag(�1t;:::;�nt)=diag(e�1t; :::; e�nt):

The above equality is directly follows from the definition of the exponential matrix eA. On
the other hand, since A=Q�Q¡1, we obtain

�(t)= eQdiag(�1t;:::;�nt)Q¡1=Qdiag(e�1t; :::; e�nt)Q¡1:

The last equality obtained by the proposition (6.2).

Example 6.15. Consider the following system

d
dt
y=

0@ 1 0 4
3 2 0
0 0 3

1Ay: (6.38)

The eigenvalues of the coefficient matrix are �1 = 1, �2 = 2 and �3 = 3. The associated
eigenvectors are

v~1=

0@ 1
¡3
0

1A; v~2=
0@ 0

1
0

1A; and v~3=

0BB@ 1
3
1

2

1CCA: (6.39)
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Therefore, � is obtained as follows

�=Q

0BB@ et 0 0

0 e2t 0

0 0 e3t

1CCAQ¡1=
0BB@ et 0 2e3t¡ 2et

3e2t¡ 3et e2t 6e3t¡ 12e2t+6et

0 0 e3t

1CCA:
Matrix A with repeated eigenvalues.

One eigenvector.

Assume that A has only one eigenvector v~1. This implies that the characteristic polyno-
mial p(�) of A has only one root, say �1, that is, p(�) = (� ¡ �1)n. It is known (see the
appendix of the book) that there are exactly n¡ 1 generalized eigenvectors v~2; :::; v~n for A
satisfying the following relation

(A¡�I)v~k= v~k¡1; k=2; :::; n:

Moreover, we have the following fact.

Proposition 6.3. Assume that An�n has only one eigenvector v~1 and one eigenvalue �.
Let v~2; :::; v~n be the generalized eigenvectors of An�n. Then Q¡1AQ = �I + [�i;j¡1], where
�i;j=

�
1 i= j
0 i=/ j

and Q= [v~1j���jv~n].

Proof. We have

AQ= [Av~1jAv~2j���jAv~n] = [� v~1jv~1+�v~2j���jv~n¡1+�v~n]:

On the other hand, we have

[� v~1jv~1+�v~2j���jv~n¡1+�v~n] = [� v~1j�v~2j���j�v~n] + [0jv~1j���jv~n¡1] =
=�Q+[0jv~1j���jv~n¡1]:

It is simply seen that

[0jv~1j���jv~n¡1] =Q [0je~1je~2j���je~n¡1]:

Thus Q¡1AQ = �I + [0je~1je~2j���je~n¡1] and this is the Jordan form of a matrix with only
one eigenvector. �

We use the notation S = [0je~1je~2j���je~n¡1] in our subsequent calculation. It is simply
seen that S2 = [0j0je~1j���je~n¡2], and S3 = [0j0j0je~1j���je~n¡3]. This implies that Sn = 0n�n.
Now, we have

Q¡1eAtQ= eQ
¡1AtQ= e�t eSt= e�t

�
I+ tS+

1
2!
t2S2+ ���+ 1

(n¡ 1)!t
n¡1Sn¡1

�
: (6.40)

This implies

�(t)= e�tQ

�
I+tS+

1
2!
t2S2+ ���+ 1

(n¡ 1)!t
n¡1Sn¡1

�
Q¡1: (6.41)
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Example 6.16. Let us find the fundamental matrix of A =

0BB@ 2 3 ¡1
0 2 0
0 1 2

1CCA. The matrix has

repeated eigenvalue �= 2 with the eigenvector v1~ =

0BB@ 1
0
0

1CCA. The generalized eigenvector v~2 is

determined by solving the equation (A ¡ 2I)v~2 = v~1. It is simply verified that v~2 =

0BB@ 0
0
¡1

1CCA.
Similarly, for the generalized eigenvector v~3, we solve the equation (A ¡ 2I)v3~ = v~2 and

obtain v~3=

0BB@ 0
¡1
¡3

1CCA. For Q=

0BB@ 1 0 0
0 0 ¡1
0 ¡1 ¡3

1CCA, the fundamental matrix is

�= e2tQ

0BB@ 1 t
1

2!
t2

0 1 t
0 0 1

1CCAQ¡1= e2t

0BB@ 1 3t¡ 1

2
t2 ¡t

0 1 0
0 t 1

1CCA: (6.42)

Multiple eigenvectors.

With only one eigenvalue, the matrix An�n can have one, two or even n independent
eigenvectors based on the algebraic multiplicity of the eigenvalue.

Definition 6.4. Let An�n be a matrix. The algebraic multiplicity of an eigenvalue �� of A
is the value m such that p(�) is of the form

p(�)= (�¡��)m q (�); (6.43)

where q(�) does not have any factor of � ¡ ��. The geometric multiplicity r of �� is the
dimension of the null space of the map (A¡ ��I), i.e., r= ker (A¡��I).

Remark 6.3. Note that r is always less than or equal m. If r <m then there exist m¡ r
generalized eigenvectors w1; :::; wm¡r such that (A¡��I)w1 is an eigenvector and

(A¡��I)wk=wk¡1 for k=2; :::;m¡ r: (6.44)

Example 6.17. Consider the following matrix

A=

0@ 1 1 1
0 1 0
0 0 1

1A: (6.45)

This matrix has repeated eigenvalue � = 1 with the algebraic multiplicity m = 3. It is

simply verified that vectors v1~ =

0BB@ 1
0
0

1CCA and v2~ =

0BB@ 0
1
¡1

1CCA are eigenvectors associated to �= 1

and thus �= 1 has geometric multiplicity r = 2. Note that for any vector v~ in span

(0BB@ 1
0
0

1CCA;0BB@ 0
1
¡1

1CCA
)
, we have (�¡ I)v~ =0. Moreover, we have (A¡ I)w~ = v~1 for w~ =

0BB@ 0
1
0

1CCA and thus w~ is

a generalized eigenvector of A.
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Example 6.18. Consider the system

d
dt
y=

0@ 1 1 1
0 1 0
0 0 1

1Ay: (6.46)

As we saw above, the matrix has two eigenvectors v~1 =

0BB@ 1
0
0

1CCA and v~2 =

0BB@ 0
1
¡1

1CCA with eigen-

value �=1. Since (A¡ I)w= v~1 for w=

0BB@ 0
1
0

1CCA, the matrix Q is Q= [v~1jw~ jv2~ ] and then

Q¡1AQ=

0BB@ 1 1 0
0 1 0
0 0 1

1CCA: (6.47)

Observe how a Jordan block is formed in the upper sub-matrix of Q¡1AQ. Accordingly,
we have

eAx=Q

0BB@ et tet 0

0 et 0

0 0 et

1CCAQ¡1= et

0@ 1 t t
0 1 0
0 0 1

1A: (6.48)

Matrix A with complex eigenvalues.
We describe first the method for a 2 � 2 matrix and then generalize the result for higher
dimensional systems. First, note that if A2�2 has complex eigenvalues �1;2 = � � i! then
its associated eigenvectors v~1, v~2 are in conjugate form, i.e., v~2 = v~1� . For simplicity, we
denote the eigenvalue by � = � + i! and the complex eigenvector by v~. In this case, the
matrix Q = [v~ j v~�] is complex. We transform this matrix to a real one by a simple trick.
Define Q as

Q=
1
2
[v~ j v~�]

�
¡i 1
i 1

�
=
1
2
[¡i(v~ ¡ v~�)jv~ + v~�]= [Im(v~)jRe(v~)]: (6.49)

Proposition 6.4. For Q defined in (6:49), we have

Q¡1AQ=

�
� ¡!
! �

�
: (6.50)

Proof. Direct calculation proves the claim. In fact, we have

AQ=A[v~ j v~�]
�
¡i 1
i 1

�
= [�v~ j��v~�]

�
¡i 1
i 1

�
= [v~ jv~�]

 
� 0

0 ��

!�
¡i 1
i 1

�
=

=[v~ jv~�]
�
�+ i! 0
0 �¡ i!

��
¡i 1
i 1

�
= [v~ jv~�]

�
!¡ i� �+ i!
!+ i� �¡ i!

�
:

On the other hand, we have

Q

�
� ¡!
! �

�
= [v~ jv~�]

�
¡i 1
i 1

��
� ¡!
! �

�
=[v~ jv~�]

�
!¡ i� �+ i!
!+ i� �¡ i!

�
:
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Therefore AQ=Q
�
� ¡!
! �

�
and this completes the proof. �

Accordingly, we have the equality

A=Q

�
� ¡!
! �

�
Q¡1; (6.51)

and then

�=Qe

�
� ¡!
! �

�
t
Q¡1: (6.52)

Now, we have the following proposition.

Proposition 6.5. The following relation holds

e

�
� ¡!
! �

�
t
= e�t

�
cos(!t) ¡sin(!t)
sin(!t) cos(!t)

�
: (6.53)

Proof. Consider the following decomposition�
� ¡!
! �

�
=�I2�2+!D; (6.54)

where D= [e~2j¡e~1]. Then we can write

e

�
� ¡!
! �

�
t
= e�te!tD: (6.55)

But we have
e!tD= I2�2+!tD+

1
2!
!2 t2D2+ ���: (6.56)

Simple calculation shows D2=¡I and then

D3=¡D;D4= I2�2;D
5=D; ���: (6.57)

Let us denote S the matrix e!tD. We have then

S1;1=1¡ 1
2!
!2 t2+

1
4!
!4t4¡ ���= cos(!t); (6.58)

and
S12=¡!t+

1
3!
!3t3¡ 1

5!
!5 t5+ ���=¡sin(!t): (6.59)

Similarly we obtain S2;1= sin(!t) and S22= cos(!t). �

By the above proposition, the fundamental matrix � is

�= e�tQ

�
cos(!t) ¡sin(!t)
sin(!t) cos(!t)

�
Q¡1: (6.60)

Example 6.19. Let us find the fundamental matrix of A =
�
1 ¡5
1 ¡3

�
. This matrix has

eigenvalue � = ¡1 + i and thus � = ¡1 and ! = 1. The associated eigenvector is v~ =�
5

2¡ i

�
. For the matrix Q we have

Q= [Im(v~)jRe(v~)] =
�

0 5
¡1 2

�
: (6.61)
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Therefore � is

�= e¡t
�

0 5
¡1 2

��
cos(t) ¡sin(t)
sin(t) cos(t)

��
0 5
¡1 2

�¡1
=

=e¡t
�

cos(t)+ 2 sin(t) ¡5 sin(t)
sin(t) cos(t)¡ 2 sin(t)

�
:

Now, we follow the same method to find the fundamental matrix of a 4� 4 matrix.

Example 6.20. We find the fundamental matrix associated to the matrix

A=

0BBBBBB@
1 1 0 1
¡1 1 1 0
0 0 1 ¡1
0 0 1 1

1CCCCCCA: (6.62)

The eigenvalue of the matrix is �= 1+ i with the algebraic multiplicity m= 2. The eigen-
vector of the matrix is v~ = (1; i; 0; 0). So we have two eigenvectors v~ and v~�. We find the
generalized eigenvector w~ such that

(A¡�I4�4)w~ = v~: (6.63)

A simple calculation gives w~ =(1; i; i; 1). The matrix Q is

Q= [Im(v~)jRe(v~)jIm(w~ )jRe(w~ )] =

0BBBBBB@
0 1 0 1
1 0 1 0
0 0 1 0
0 0 0 1

1CCCCCCA:
It is seen that

�=Q¡1AQ=

0BBBBBB@
1 ¡1 1 0

1 1 0 1
0 0 1 ¡1
0 0 1 1

1CCCCCCA: (6.64)

Note the identity block in the upper diagonal of the matrix �. We have

e�t= et

0BBBBBB@
cos(t) ¡sin(t) t cos(t) ¡t sin(t)
sin(t) cos(t) t sin(t) t cos(t)
0 0 cos(t) ¡sin(t)
0 0 sin(t) cos(t)

1CCCCCCA;
and finally the fundamental matrix is

�=Qe�tQ¡1= etQ

0BBBBBB@
cos(t) sin(t) t sin(t) t cos(t)
¡sin(t) cos(t) t cos(t) ¡t sin(t)

0 0 cos(t) ¡sin(t)
0 0 sin(t) cos(t)

1CCCCCCAQ¡1: (6.65)

6.6 Higher dimensional systems: fundamental matrix 51



6.6.3 General matrices
Let us show the method for a general matrix by solving an example. Consider the system
y=Ay, where A is

A=

0BBBBBBBBBB@
1 2 3 4 5
0 1 ¡1 3 4
0 1 3 2 4
0 0 0 1 ¡5
0 0 0 1 ¡3

1CCCCCCCCCCA: (6.66)

The eigenvalues of the matrix are

�1=1; �2;3=2; �4;5=¡1� i; (6.67)

with the associated eigenvectors

v~1=

0BBBBBBBBBB@
1
0
0
0
0

1CCCCCCCCCCA; v~2=
0BBBBBBBBBB@

1
¡1
1
0
0

1CCCCCCCCCCA; v~4;5=
0BBBBBBBBBB@
¡1.36� i0.58
¡3.84� i3.38i
¡1.06� i0.08

2� i
1

1CCCCCCCCCCA (6.68)

The generalized eigenvector v~3 is obtained by solving the equation

(A¡ 2I) v~3= v~2; (6.69)

that gives v~3=(1; 1; 0; 0; 0). Thus, the matrix Q is

Q= [v~1jv~2jv~3jIm(v~4)jRe(v4~ )]=

0BBBBBBBBBB@
1 1 1 0.58 ¡1.36
0 ¡1 1 ¡3.38 ¡3.84
0 1 0 0.0.8 ¡1.06
0 0 0 1 2
0 0 0 0 1

1CCCCCCCCCCA
It is simply verified that

Q¡1AQ=

0BBBBBBBBBB@
1 0 0 0 0
0 2 1 0 0

0 0 2 0 0
0 0 0 ¡1 ¡1
0 0 0 1 ¡1

1CCCCCCCCCCA: (6.70)

So �=Q¡1AQ is a Jordan 3-block matrix. Therefore we have

e�t=

0BBBBBBBBBB@
et 0 0 0 0

0 e2t te2t 0 0

0 0 e2t 0 0

0 0 0 e¡t cos(t) ¡e¡t sin(t)
0 0 0 e¡t sin(t) e¡t cos(t)

1CCCCCCCCCCA: (6.71)
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The matrix � is obtained by the formula �=Qe�tQ¡1.

Problems
Problem 6.40. Show that the fundamental matrix of a system is unique. That is, if �1; �2 are two
fundamental matrices of a matrix A, then �1=�2.

Problem 6.41. If � is the fundamental matrix of matrix A, show that the solution to the problem�
y 0=Ay+ r(t)
y(0)= y0

;

is obtained by the relation

y(t)=�(t)y0+�(t)

Z
0

t

�(¡�)r(�)d� : (6.72)

Problem 6.42. Show that if � = [�1(t)j�2(t)] is a solution matrix of the system y 0 = Ay, then � =
�(t)�¡1(0) is the fundamental matrix of A.

Problem 6.43. Consider the problem
�
y 0=Ay
y(0)= y0

and assume A has two real distinct eigenvalue �1;

�2 with associated eigenvalue v~1; v~2.

i. Show that the solution can be written as follows

y(t)= e�1ty0+(e�2t¡ e�1t) cv~2;
for some suitable constant c.

ii. Show that

c v~2=
1

�2¡�1
(A¡�1I)y0;

and conclude that

y(t)=

�
e�1t I+

(e�2t¡ e�1t)
�2¡�1

(A¡�1I)
�
y0: (6.73)

iii. Show that

y(t)=

�
e�1t

�1¡�2
(A¡�1I)+

e�2t

�2¡�1
(A¡�2I)

�
y0 (6.74)

iv. Assume that A2�2 has only one eigenvector v~ with eigenvalue �. Use formula (6.73) and show
that the fundamental matrix �(x) of A is

�(t)= e�t [I+ t (A¡�I)]: (6.75)

Hint: For �1=� let �2!� and calculate the limit.

v. Assume that A has a complex eigenvalue �= � + i! and a complex eigenvector v~ . Use formula
(6.74) and show that the fundamental matrix �(t) of A is

�(t)= e�t
�
cos(!t)I+

1
!
sin(!t)(A¡�I)

�
:

Problem 6.44. Use the formula � = �(t)�¡1(0) to determine the fundamental matrix of the fol-
lowing system. Then use the exponential form of the fundamental matrix and verify it is equal to the
obtained one.

a)

y 0=

�
2 3
3 2

�
y:

b)

y 0=

�
¡2 3
¡1 2

�
y:
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c)

y 0=

�
0 2
¡1 ¡2

�
y:

d)

y 0=

�
0 1
¡1 0

�
y:

e)

y 0=

�
6 3
¡2 1

�
y:

f)

y 0=

�
5 2
¡2 1

�
y:

g)

y 0=

�
6 4
¡1 2

�
y:

h)

y 0=

�
¡3 2
¡1 ¡1

�
y:

i)

y 0=

�
1 3
¡3 1

�
y:

Problem 6.45. Write down the following equations in a system form, find the fundamental matrix of
the system and then find the solution of the system satisfying the initial conditions

i. y 00+3y 0+2y= sin(x), y(0)=0, y 0(0)=0.

ii. y 00¡ y= ex, y(0)=0, y 0(0)=1.

iii. y 00¡ 2y 0¡ 3y=x, y(0)=1, y 0(0)=¡1.
Problem 6.46. Consider the system (

d

dt
y=Ay

y(0)= y0
:

Divide the segment [0; t] into n sub-interval with the length h= t

n
and use the approximation

y((k+1)h)= y(kh)+ y 0(kh)h;

to conclude

y(t)= (I+hA)
t

hy0:

Let n!1 and conclude y(t)= eAty0.

Problem 6.47. Consider the system in the previous problem. Rewrite the system in the integral
form

y(t)= y0+A

Z
0

t

y(�) d� :

Use the Picard approximation and conclude

yn+1(t)=

�
I+A+

1
2
A2+ ���+ 1

n!
An
�
y0:

Let n!1 and conclude y(t)= eAty0.

Problem 6.48. Assume that An�n has only one eigenvalue ��. This implies p(�) = (�¡ ��)n and by
the Cayley-Hamilton theorem we know (A¡��I)n=0. Use this identity to show

�(t)= e��t
X
k=1

n¡1
1
k!
(A¡��I)k: (6.76)
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Problem 6.49. Obtain the fundamental matrix of the following system

y 0=

0@ 1 2 3
0 0 ¡1
0 1 0

1Ay:
Problem 6.50. Obtain the fundamental matrix of the following system and solve it:

y 0=

0@ 1 2 3
0 1 0
0 1 1

1Ay+
0@ 0

0
1

1A; y(0)=

0@ 1
0
0

1A
Problem 6.51. Find the fundamental matrix of the following system8>><>>:

y1
0 = y1+5y3+ t

y2
0 =2y2+6y3
y3
0 =3y1+3y3+ sin(t)

and find y1(t) if the initial condition is (y1(0); y2(0); y3(0))= (0; 0; 0).

Problem 6.52. Find the fundamental matrix of the following system8>><>>:
y1
0 =2y1+3y3+ t

y2
0 =2y2+ y3¡ e¡t
y3
0 =x¡ 4y2+4y3

and find y3 if the initial condition is (y1(0); y2(0); y3(0))= (0; 0; 0).

Problem 6.53. For the following system, write down the equation of motion. It gives a system of
second order equations. If b1 = b2 = 2, make a substitution to reduce the system to a decoupled
system. Analyze the obtained system in terms of k1; k2.

x1

b1 b2

m1

k2
k1

m2

x2
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Appendix A

Repeated eigenvalue: A justification

In the case of repeated roots for the characteristic polynomial p(�), the matrix A2�2 may
have only one eigenvector v~ . In this case, p(�) has the form

p(�)= (�¡��)2: (A.1)

Proposition A.1. Assume �� is a repeated eigenvalue of the matrix A2�2 with only one
eigenvector v~. Then there exist w~ such that

(A¡��I)w~ = v~: (A.2)

Proof. Recall the Cayley-Hamilton theorem which states that every matrix satisfies in
its characteristic polynomial, i.e.,

(A¡��I)2= 0: (A.3)

If V is the one dimensional space containing v~, choose arbitrary vector w~ 2 V. For the
vector u~ =(A¡ ��I)w~ , we have (A¡��I) u~ =0. This implies that u~ = c v~ for some constant
c=/ 0 (note that if c = 0 then u~ = 0 or equivalently w~ 2V). Now choose w~ such that c= 1
and therefore (A¡��I)w~ = v~1. �

Let V and W be one dimensional spaces of v~ and w~ respectively. If y(0) = v~1 then
according to the relation y 0=�� y and we obtain y(t)= e��t v~1. If y(0)= v~2 then we have

y 0(0)=�� v~2+ v~1: (A.4)

In order to obtain y(t) when y(0)=w~ 2W;we do as follows. Divide the segment [0; t] into
n sub-interval �x= t

n
. The approximation value of y(�t) is

y(�t)=� y(0)+ y 0(0) �t=(1+�� �t)w~ + �tx v~: (A.5)

At 2�t, the approximation is

y(2�t)= y(�t)+ y 0(�t) �t=(1+�� �t)2w~ +2(1+���t) v~: (A.6)

It is seen that for t=n�t

y(t)= (1+�� �t)n w~ +n(1+���t)n¡1 v~: (A.7)
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Now let n!1, then according to the formula

lim
n!1

�
1+��

t
n

�n
= e��t; (A.8)

and

lim
n!1

n(1+���t)
n¡1= te��t; (A.9)

we obtain the solution

y(t)= e��tw~ +te��t v~: (A.10)

In general if y(0)= a1 v~ + a2 v~ , we obtain y(t) as

y(t)= e��ta1 v~ + e��t(a2 t v~ + a2w~ ): (A.11)

We can write (A.11) as

y(t)= e��ty0+ te��t a2 v~: (A.12)

On the other hand, according to the relation (A.2) we can write

a2v~ =(A¡��I)y0; (A.13)

and this justifies formula we obtained for repeated eigenvalue.

A.1 Convergence of matrix series

Theorem A.1. If An�n is a constant matrix, the matrix series

eA= I+A+
1
2!
A2+ ���+ 1

n!
An+ ���;

converges to a n�n matrix.

We define the norm of a matrix A= [aij]n�n as

kAk=
X
i;j

jaij j: (A.14)

Lemma A.1. If A= [aij]n�n, B= [bij]n�n are two matrices then

i. kA+Bk�kAk+ kBk
ii. kABk�kAk kBk.

Proof. The proof of the part (i) is straightforward and is left as an exercise to the reader.
For the part (ii), first note that if

a=(a1; :::; an); and b=

0@ b1
���
bn

1A;
then

ab� (ja1j+ ���+ janj) (jb1j+ ���+ jbnj): (A.15)
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If Ai
~ denotes the ith row of the matrix A and Bj denotes the jth column of the matrix B

then AB= [A~iBj]n�n and

kABk=
X
ij

jA~iBj j �
X
ij

jA~ij jBj j=(jA~1j+ ���+ jA~nj) (jB1j+ ���+ jBnj); (A.16)

where jA~ij=
P

j
jaij j and jBj j=

P
i
jbij j. Since

kAk=
X
i

(jA~ij); and kBk=
X
j

(jBj j); (A.17)

we obtain

kABk�kAk kBk; (A.18)

and this completes the proof. �

Define the matrix SN as

SN = I+A+ ���+ 1
N !

AN: (A.19)

Using the above lemma we have

kSNk�kIk+ kAk+ ���+
1
N !
kANk�n+ kAk+ ���+ 1

N !
kAkN (A.20)

But we have

ekAk=1+ kAk+ ���+ 1
N !
kAkN+ ���; (A.21)

and then

kSNk� (n¡ 1)+ ekAk: (A.22)

Let N!1 and then we have kSk � (n¡ 1) + ekAk. In particular, for S = [sij]n�n we have
jsij j<1 and then SN converges to the n�n matrix S.
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