
Chapter 5

Laplace Transform Method

In this chapter, we introduce one of the crucial tools in engineering mathematics called
Laplace transform. This tool enables us to solve differential equations with discontin-
uous terms in an efficient and straightforward way. Besides solving ordinary differential
equations, with the aid of the Laplace transform, we are able to define the concept of the
transfer function of complex systems in engineering and the idea of the fundamental solu-
tion.

5.1 Definition of the transformation

The unilateral Laplace or L-transform of a function f(t) is defined by the following inte-
gral

L(f)(s)=
Z
0

1
e¡st f(t) dt; (5.1)

as long as the integral exists for some values of s. Note that (5.1) transforms a function of
t (that we can interpret as time) to a function of s (can be considered just as a para-
meter). In this chapter, we use notations f̂(s), L(f) for the transform. It is called unilat-
eral because f(t) for t< 0 (the history of f) does not affect the transformation.

Definition 5.1. A function f(t) is called L-admissible if there is an interval of s for
which the integral ( 5.1) converges.

Remark 5.1. The class of L-admissible functions is wide, however, the sub-exponential
functions are well-known to be L-admissible (see the problem set). A function f (t) is
called sub-exponential if there are a> 0; b> 0 such that jf(t)j<aebt for all t2 [0;1).

At the first glance, formula (5.1) looks peculiar, nevertheless, the transform possesses
nice properties that makes it desirable in engineering mathematics. For example, it trans-
forms the derivative operation to an algebraic multiplication, that is, if f 0(t) is the deriva-
tive of a function f(t), then

L(f 0)= s L(f)¡ f(0):

The above property finds its importance to solve ordinary differential equations.
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5.1.1 L-Transform of basic functions
1. The Heaviside or unit step function u(t) is defined by the following two valued

function

u(t)=

�
0 t< 0
1 t> 0

: (5.2)

In some texts, the value u(0) is considered 1

2
, or even 1, but u(0) does not affect its

transformation. We have

û(s)=

Z
0

1
e¡stu(t) dt=

Z
0

1
e¡st dt=

1
s

h
lim
t!1

e¡st¡ 1
i
: (5.3)

Clearly, the above integral converges to 1

s
if s > 0. Note that L(1) = 1

s
since two

function u(t) and 1 are equal for t� 0.
2. Consider the unit pulse

p(t)=

�
1 0< t< 1
0 otherwise

: (5.4)

Its L-transform is

p̂(s)=

Z
0

1

e¡st dt=
1¡ e¡s

s
: (5.5)

Note that the value of p(t) at the end points does not affect the transformation.

3. The transform of the ramp function r(t)= t is

L(t)=
Z
0

1
te¡st dt=¡ lim

t!1

t
s
e¡st+

1
s

Z
0

1
e¡st dt: (5.6)

If s> 0, we have
lim
t!1

t
s
e¡st=0;

and thus L(t )= 1

s2
.

4. The transform of the exponential function f(t)= eat is

L(eat )=
Z
0

1
e¡st eat dt=

Z
0

1
e¡(s¡a)t dt: (5.7)

Clearly the integral converges for s> a and then L(e¡at)= 1

s¡ a .

5. The L-transform of the function f(t) = sin(!t) is simply derived by the aid of the
Euler formula

sin(!t)=
ei!t¡ e¡i!t

2i
:

A simple algebraic simplification gives

L(sin(!t))=
1
2i
fL(ei!t)¡ L(e¡i!t )g= !

s2+!2
: (5.8)

A similar argument applies for the transform of f(t)= cos(!t)

L(cos(!t))=
s

s2+!2
:
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6. Remember the formula sinh(!t)= e!t¡ e¡!t

2
. For s> j! j, we have

L(sinh(!t))=
1
2
fL(e!t)¡ L(e¡!t)g= !

s2¡!2 : (5.9)

A similar argument applies for the transform of cosh(!t)

L(cosh(!t))=
s

s2¡!2 : (5.10)

5.1.2 The inverse of Laplace transform
We saw that L(u(t)) = 1

s
for s > 0, and it implies that functions u(t) in t-domain has the

representation 1

s
in s-domain through the Laplace transform; see the figure (5.1)

1 2 3
t

u(t)

L-Transform

1 2 3
s

4

8

12

û(s)

Figure 5.1.

An inverse transformation from s-domain to t-domain is also can be defined through
the following relation

L(f(t))= f̂(s), f(t)= L¡1(f̂(s)):

However, since the transform is unilateral, we just write L¡1(f̂(s)) = f (t) for t > 0.
Accordingly, since L(t) = 1

s2
, we write L¡1

¡ 1

s2

�
= t; t > 0. There is still a minor problem

here. Let f~(t) be the function

f~(t)=

�
t t=/ 1
0 t=1

:

It is simply seen that L(t) = L(f~) = 1

s2
, and therefore it is not clear that L¡1

¡ 1

s2

�
how

should be defined. In fact the transformation L is not one-to-one. Here we make the fol-
lowing convention.

Convention. The function L¡1(f̂(s)) refers to the most possibly continuous function f(t)
for t> 0 such that L(f(t))= f̂(s).

According to the above convention, we define L¡1
¡ 1
s

�
= 1, L¡1

¡ 1

s ¡ a

�
= eat,

L¡1
¡ s

s2+!2

�
= cos(t), and L¡1

¡ !

s2+!2

�
= sin(t) all for t> 0.
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Proposition 5.1. Assume that f(t) is sub-exponential, then

lim
s!1

f̂ (s)= 0: (5.11)

Proof. We have

lim
s!1

f̂(s)= lim
s!1

Z
0

1
e¡st f(t) dt: (5.12)

Since the function f(t) is sub-exponential, the function je¡st f(t)j is bounded. By the
dominant convergence theorem, we can pass the limit inside the integral and write it as

lim
s!1

f̂(s)=

Z
0

1
lim
s!1

e¡st f(t) dt=0; (5.13)

and this completes the proof. �

We have also the following fact.

Proposition 5.2. Assume that f(t) is sub-exponential, then f̂ (s) is continuous in its
domain of definition.

Proof. Since the domain of f̂(s) is open, let us consider the fraction

f̂ (s+ h)¡ f̂ (s)=

Z
0

1
e¡stf(t)(e¡ht¡ 1) dt:

Now, for h! 0, we have

lim
h!0

(f̂(s+ h)¡ f̂(s))= lim
h!0

Z
0

1
e¡stf(t)(e¡ht¡ 1) dt:

Now, if jf(t)j < aebt for some a; b > 0 holds, then the condition of dominant convergence
theorem (see the appendix to this book) holds for the above integral since

je¡stf(t)(e¡ht¡ 1)j � ae¡(s¡b)t je¡ht¡ 1j � ae¡(s¡b+h)t<a

if s is sufficiently large. Therefore

lim
h!0

Z
0

1
e¡stf(t)(e¡ht¡ 1) dt=

Z
0

1
e¡stf(t)lim

h!0
(e¡ht¡ 1) dt=0;

and this completes the proof. �

Problems
Problem 5.1. Assume that the function f(t) is sub-exponential, that is, there are constants a; b such
that jf(t)j<aebt for all t2 [0;1). Show that f(t) is L-admissible.

Problem 5.2. Assume that f(t) is a sub-exponential function and f 0(t) is L-admissible.

a) Use the definition and show

L(f 0)=
Z
0

1
e¡st f 0(t) dt+ s

Z
0

1
e¡st f(t) dt:
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b) Show the relation

lim
t!1

e¡stf(t)= 0;

and conclude

L(f 0)= s L(f)¡ f(0):

Problem 5.3. Use the definition and find the L-transform of the following functions

i.

f(t)=

�
1 0< t< 1
¡1 1< t< 2

:

ii.

f(t)=

(
et¡ 1 0< t< 1
0 t > 1

:

iii. f(t)= et¡ e¡2t.

Problem 5.4. Use the definition and calculate the transform of the following functions. For each
function determine the domain of s for which the transform exists

a)

f(t)=

(
e2t 0� t < 1
t t > 1

b) f(t)= cos2(t)

c) f(t)= sinh2(t)

d)

f(t) =

�
1 1< t< 2
¡1 2< t< 3

Problem 5.5. If f̂ (s) is given we can recover the function f(t) such that L(f(t)) = f̂(s). For the fol-
lowing functions, find f(t) such that L(f)= f̂ .

i. f̂(s)= 3

s2+1

ii. f̂(s)= 2¡ 3s
s2+4

iii. f̂(s)= 3

s¡ 2

iv. f̂(s)= 1

(s+1)(s+2)

Problem 5.6. Is there any L-transform of the function f(t) = et
2
? Is it possible the function f̂ (s) = 1

to be the transform of a sub-exponential function?

Problem 5.7. Determine which one of the following functions are sub-exponential in [0;1)

i. f(x)= t sin(t)

ii. f(x)= t sin(1/t)

iii. f(x)= 1+ et+ e2t+ ���+ ent.

iv. f(x)= 1+ et+ e2t+ ���

v. f(x)=u(t)+u(t¡ 1)+u(t¡ 2)+ ���

Problem 5.8. Show L( t
p
)=

�
p

2
s¡3/2. Hint: Remember the integralZ

0

1
e¡u

2
du=

�
p

2
:
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5.2 Properties of Laplace transform
Here we study only important properties of L-transform that we need for solving initial
value problems.

Linearity.

L-transform is linear in the sense that for any pair of admissible functions f(t); g(t) and
any arbitrary constants c1; c2, it satisfies the relation

L(c1 f + c2 g)= c1 L(f)+ c2 L(g) (5.14)

The property is directly proved by the definition (5.1):

L(c1 f + c2 g)=

Z
0

1
e¡st(c1 f(t)+ c2 g(t))dt= c1

Z
0

1
e¡stf(t) dt+

+c2

Z
0

1
e¡stg(t) dt= c1 L(f)+ c2 L(g):

The linearity of L-transform implies the linearity of L¡1 as well. In fact, by the relation

c1 f + c2 g= L¡1L(c1 f + c2 g)= L¡1(c1 f̂ + c2 ĝ);

we obtain

L¡1(c1 f̂(s)+ c2 ĝ(s))= c1 L¡1(f̂(s))+ c2 L¡1(ĝ(s)):

Example 5.1. Let us find L¡1
�

1

s(s+1)

�
. According to the relation

1
s(s+1)

=
1
s
¡ 1
s+1

;

we can write

L¡1
�

1
s(s+1)

�
= L¡1

�
1
s

�
¡ L¡1

�
1

s+1

�
=(1¡ e¡t); t > 0:

Multiplication by t.

If f(t) is an sub-exponential functions then

d
ds

f̂(s)=

Z
0

1 d
ds

e¡st f(t) dt=¡
Z
0

1
e¡st tf(t) dt (5.15)

In other word we can write
d
ds
f̂(s)=¡L(tf(t)); (5.16)

or equivalently

L(tf(t))=¡ d
ds
f̂(s): (5.17)

It is left as an exercise to the reader to verify the following formula by the mathematical
induction

L(tn f(t))= (¡1)n d
n

dsn
f̂(s): (5.18)
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Example 5.2. We calculate the inverse transform of the following function

f̂(s)= ln
s¡ 1
s

: (5.19)

Taking derivative of f̂(s) gives

df̂
ds
(s)=

1
s(s¡ 1) =

1
s¡ 1 ¡

1
s
: (5.20)

According to the linearity of L¡1, we have L¡1(df̂
ds
) = et ¡ 1. Now use the property

L¡1(df̂
ds
)=¡tf(t) and write

f(t)= L¡1(f̂(s))=
1¡ et
t

; t > 0: (5.21)

Note that f(t) is a sub-exponential function.

Division by t.

Let f(t) be a sub-exponential function that satisfies the relation

lim
t#0

��������f(t)t
��������<1: (5.22)

Consider the function g(t)=
f(t)

t
. By (5.16), we have

d
ds
ĝ(s)=¡L (tg(t))=¡L(f(t))=¡f̂(s): (5.23)

Integrating both sides of the above formula in [s;1) gives

¡ĝ(s)+ lim
s!1

ĝ(s)=¡
Z
s

1
f̂(v) dv: (5.24)

By (5.11) we have

lim
s!1

ĝ(s)= 0;

and thus

L

�
f(t)
t

�
=

Z
s

1
f̂(v) dv: (5.25)

Example 5.3. Some definite integrals can be calculated by the aid of the above property.
For example, let us find the following integral

I =

Z
0

1sin(t)
t

dt: (5.26)

We can write Z
0

1sin(t)
t

dt=

Z
0

1
lim
s!0

e¡st
sin(t)
t

dt: (5.27)

5.2 Properties of Laplace transform 7



Since sin(t)
t

is sub-exponential, we can take the limit out of the integral and writeZ
0

1sin(t)
t

dt= lim
s!0

Z
0

1
e¡st

sin(t)
t

dt= lim
s!0

L

�
sin(t)
t

�
:

But, we have

L

�
sin(t)
t

�
=

Z
s

1 dv
v2+1

=
�
2
¡ tan¡1(s): (5.28)

Finally for s! 0, we obtainZ
0

1sin(t)
t

dt=
�
2
¡ lim

s!0
tan¡1(s)=

�
2
: (5.29)

Shift in t-domain.

Suppose that f(t) is an admissible function and g(t)= f(t¡ t0)u(t¡ t0) is the time shift of
f by t0� 0; see the figure (5.2).

t0

f (t¡a)u(t¡ a)f (t)

Figure 5.2. f(t) and its shifted graph f(t¡ t0).

We have

L(g)=
Z
0

1
e¡st f(t¡ t0)u(t¡ t0) dt=

Z
t0

1
e¡stf(t¡ t0) dt: (5.30)

For � = t¡ t0, we obtainZ
t0

1
e¡stf(t¡ t0) dt=

Z
0

1
e¡s(�+t0)f(�) d� = e¡t0s

Z
0

1
e¡s� f(� ) d� ; (5.31)

and then

L(f(t¡ t0)u(t¡ t0))= e¡t0s f̂(s): (5.32)

Example 5.4. The above property is used to calculate the inverse transform of some s-
functions of the form ĝ(s)= e¡t0s f̂(s). For example,

L¡1
�
e¡2s

s
s2¡ 1

�
= L¡1

�
s

s2¡ 1

�
jt!t¡2u(t¡ 2): (5.33)

But,

L¡1
� s
s2¡ 1

�
= cosh(t): (5.34)

and hence

L¡1
�
e¡2s

s
s2¡ 1

�
= cosh(t¡ 2) u(t¡ 2): (5.35)
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Example 5.5. Let g(t) be the following function:

g(t)=
X
k=0

1

f(t¡ kt0)u(t¡ kt0); (5.36)

and assume that f(t) is sub-exponential. We have

jg(t)j �
X
k=0

1

jf(t¡ kt0)j u(t¡ kt0)� a
X
k=0

1

eb(t¡kt0)u(t¡ kt0)�

�aebt
X
k=0

1

e¡bkt0u(t¡ kt0):

Since X
k=0

1

e¡bkt0u(t¡ kt0)�
1

1¡ e¡bt0 ; (5.37)

we conclude

jg(t)j � a

1¡ e¡bt0 e
bt: (5.38)

The above argument guarantees that g(t) is a sub-exponential function. Let us define

gn(t)=
X
k=0

n

f(t¡ kt0)u(t¡ kt0); (5.39)

and then

ĝ(s)= lim
n!1

ĝn(s)= lim
n!1

Z
0

1
e¡st gn(t) dt: (5.40)

But, we haveZ
0

1
e¡st gn(t) dt=

X
k=0

n

L(f(t¡ kt0) u(t¡ kt0))=
X
k=0

n

e¡kt0s f̂(s); (5.41)

and finally

ĝ(s)= f̂ (s) lim
n!1

X
k=0

n

e¡kt0s=
1

1¡ e¡t0s f̂(s); (5.42)

or equivalently

L¡1
�

1
1¡ e¡t0s f̂(s)

�
=
X
k=0

1

f(t¡ kt0)u(t¡ kt0): (5.43)

In particular, if f(t) is a T -periodic function, that is, f(t+T )= f(t), then

L(f(t))=
1

1¡ e¡sT
Z
0

T

e¡st f(t) dt:

Shift in s-domain.

There is a beautiful duality between the shift in t domain and the shift in s domain some-
times called phase shift . For g(t)= eat f(t), we have

L(g)=
Z
0

1
e¡steatf(t) dt=

Z
0

1
e¡(s¡a)tf(t) dt= f̂(s¡ a); (5.44)

5.2 Properties of Laplace transform 9



or equivalently

L¡1(f̂(s¡ a))= eat L¡1(f̂(s)): (5.45)

Example 5.6. Let us use the above property to find

L¡1
�
e¡2s

s¡ 1
(s¡ 1)2¡ 4

�
: (5.46)

We have

L¡1
�
e¡2s

s¡ 1
(s¡ 1)2¡ 4

�
= L¡1

�
s¡ 1

(s¡ 1)2¡ 4

�
jt!t¡2u(t¡ 2): (5.47)

Since

L¡1
�

s¡ 1
(s¡ 1)2¡ 4

�
= et cosh(2t); (5.48)

we obtain

L¡1
�
e¡2s

s¡ 1
(s¡ 1)2¡ 4

�
= e(t¡2) cosh2(t¡ 2)u(t¡ 2): (5.49)

Derivative.

If f(t) is a sub-exponential differentiable function, thenZ
0

1
e¡st f 0(t) dt= lim

t!1
e¡st f(t)¡ lim

t!0+
f(t)+ s

Z
0

1
e¡st f(t) dt: (5.50)

Since f(t) is sub-exponential, we have limt!1e¡st f(t) = 0. If f(t) is continuous at t = 0,
then limt!0+f(t)= f(0), and then

L(f 0)= s f̂(s)¡f(0): (5.51)

Example 5.7. Consider the following problem�
y 0+ y= u(t¡ 1)
y(0)= y0

:

Taking the L-transform to the both sides of the equation gives

s ŷ(s)¡ y0+ ŷ(s)=
e¡s

s
;

or equivalently

(s+1)ŷ(s)=
e¡s

s
+ y0:

This yields ŷ(s) as

ŷ(s)=
1

s+1
y0+

e¡s

s(s+1)
:

To obtain y(t), we should take inverse transform of ŷ(s). Note that

L¡1
�

e¡s

s(s+1)

�
=(1¡ e¡(t¡1))u(t¡ 1);

and

L¡1
�

1
s+1

y0

�
= y0e¡t; t > 0:
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Here we should take a notice. The term L¡1
¡ 1

s+1
y0
�
is associated to the initial condition

of the equation at time t = 0 and L¡1
�

e¡s

s(s+1)

�
is associated to the external term that is

exercised for t > 1. For this the homogeneous solution y0 e¡t is not only defined for t > 0
but also for all t2 (¡1;1). Therefore, we can write the solution to the equation as

y(t)= y0 e¡t+(1¡ e¡(t¡1))u(t¡ 1); (5.52)

for all t 2 (¡1; 1). Note also that the solution is continuous everywhere and differen-
tiable, but it is not differentiable at t=1 due t the term u(t¡ 1).

The following formula is simply proved by the mathematical induction:

L(f (n)(t))= sn f̂(s)¡ sn¡1f(0)¡ ���¡ f (n¡1)(0): (5.53)

Integration.

Let us derive the L-transform of the integral function

g(t)=

Z
0

t

f(�) d� ; t> 0: (5.54)

Since g 0(t)= f(t) and limt!0+g(t)= 0, we obtain

f̂ (s)= L(g 0)= s ĝ(s) (5.55)

and thus

L

�Z
0

t

f(� ) d�

�
=
1
s
f̂ (s); (5.56)

or equivalently Z
0

t

f(�) d� = L¡1
�
1
s
f̂(s)

�
; (5.57)

for t> 0.

Example 5.8. By the aid of the integral property, we are able to calculate the inverse of
some s-functions of the form ĝ(s)=

1

s
f̂ (s). Consider the function

f̂(s)=
1

s(s2+1)
: (5.58)

We have

L¡1(f̂(s))= L¡1
�
1
s

1
(s2+1)

�
=

Z
0

t

L¡1
�

1
s2+1

�
=

Z
0

t

sin (v) dv=(1¡ cos(t))u(t): (5.59)

Example 5.9. Let us calculate L¡1
�

f̂(s)

s+ a

�
. According to the phase shift property, we

have

L

�
e¡at

Z
0

t

f(� )

�
= L

�Z
0

t

f(� )

�
js!s+a=

f̂(s)
s
js!s+a=

f̂(s+ a)
s+ a

:

5.2 Properties of Laplace transform 11



Since we need f̂ (s) in the top, we write

L

�
e¡at

Z
0

t

ea�f(� )

�
= L

�Z
0

t

ea�f(� )

�
js!s+a:

But

L

�Z
0

t

ea�f(�)

�
=
1
s
L(eatf(t))=

f̂ (s¡ a)
s

;

and therefore

L

�
e¡at

Z
0

t

ea�f(� )

�
=
f̂(s¡ a)

s
js!s+a=

f̂(s)
s+ a

;

or equivalently

L¡1
 
f̂ (s)
s+ a

!
=

�
e¡at

Z
0

t

ea�f(� ) d�

�
u(t)

5.2.1 Dirac delta function and its Laplace transform

The Dirac delta function �, introduced by the English physicist Paul Dirac (1902-
1984) is a specific type of singularity used in advanced physics. There are different ways
to define the Dirac delta function. One way that we adopt here is to define it as the limit
of a sequence of functions called the delta-sequence functions. Consider the following
sequence

�n(t)=

(
n

2
¡ 1

n
< t<

1

n

0 otherwise
; (5.60)

for n=1; 2; 3; ���. The graph is shown below.

�n(t)

n

2

¡1
n

1

n

t

Figure 5.3. An example of �n-sequence functions.

Assume that f(t) is a continuous function. We can write

min
t2

h
¡1
n
;
1

n

i f(t)�
Z
¡1

1
f(t)�n(t) dt� max

t2
h
¡1
n
;
1

n

i f(t): (5.61)
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Since

lim
n!1

min
t2

h
¡1
n
;
1

n

i f(t)= lim
n!1

max
t2

h
¡1
n
;
1

n

i f(t)= f(0);

then by the squeeze theorem, we can write

lim
n!1

Z
¡1

1
f(t)�n(t) dt= f(0):

As it is seen, �n(t) converges to a spike at t = 0 with infinite height and zero width with
the property Z

¡1

1
�n(t) dt=0; 8n� 1:

This limiting function which is a singularity at t = 0 is called the Dirac delta function.
The above defined sequence is not unique and there are other sequences with the same
property. For example, consider the sequence of function Gn(t) =

n

�
p e¡n

2t2 for n = 1; 2; ���
shown below. Note that all Gn(x) are derived from the Gaussian function G(t) =

1

�
p e¡t

2

by the relation Gn(t)=nG(nt).

−2 2

1

2

3

4

n=1

n=8

Figure 5.4.

When n approaches infinity, the function approaches to a spike with the width 0 and
the height infinity at t=0. Let f(t) be a continuous and bounded function. We haveZ

¡1

1
f(t)Gn(t) dt=

Z
¡1

1
f(t)

n

�
p e¡n

2t2 dt;

and by taking � =nt, we obtainZ
¡1

1
f(t)Gn(t) dt=

1

�
p
Z
¡1

1
f
� �
n

�
e¡�

2
d� :

5.2 Properties of Laplace transform 13



For n!1, we can write

lim
n!1

Z
¡1

1
f(t)Gn(t) dt=

1

�
p
Z
¡1

1
lim
n!1

f
�
�
n

�
e¡�

2
d� =

1

�
p
Z
¡1

1
f(0)e¡�

2
d� = f(0):

Note that in the above calculations, we took the limit inside the integral which is justifi-
able by the assumption on f . Note also the relationZ

¡1

1
Gn(t) dt=1; 8n� 1:

Definition 5.2. A sequence of function (�n(x)) is called a �-sequence function if the fol-
lowing relation holds for any bounded and continuous function f

lim
n!1

Z
¡1

1
f(t) �n (t)dt= f(0):

The limit function of a �-sequence function is called the Dirac delta function and is
denoted by �(t).

An alternative way for defining � is by the following equalityZ
¡a

a

f(t) �(t)dt= f(0); (5.62)

for any a > 0 and any continuous function f . The formula (5.62) gives immediately the
following relation Z

t¡a

t+a

f(� )�(t¡ � )d� = f(t); (5.63)

or equivalently Z
¡1

1
f(�) �(t¡ � ) d� = f(t):

That �(t) is not a function in the usual sense is seen from the following observation. If
� was a classical function then it would had to satisfy the following condition

lim
a!0

Z
¡a

a

f(t) �(t) dt=0;

which contradicts the relation (5.62). In engineering literature, �(t) is called an impulse
and is usually denoted by a unit arrow; see Fig.5.5. For this reason, �(t) is sometime
defined (and it is not technically correct) by the following relation

�(t)=

�
1 t=0
0 otherwise

: (5.64)

14 Laplace Transform Method



�(t)

t

Figure 5.5. The graph of � function.

For any � > 0, the relation (5.63) implies

L(�(t¡ a))=
Z
0

1
e¡st �(t¡ a) dt= e¡as:

We accept this definition for a=0 as well and write

L(�)= 1; and L¡1(1)= �(t): (5.65)

By this definition, the following relation is immediately followed

L(f(t)�(t¡ a))= f(a)e¡as: (5.66)

Problems
Problem 5.9. Find the transform of the following functions

i. f(t)= etu(t¡ 1)

ii. f(t)= te¡tu(t¡ 1)

iii. f(t)=u(t)¡ etu(t¡1)

iv. f(t)= esin(�t) �(t¡ 2)

v. f(t)= (1¡u(t¡ 2)) u(t¡ 1).

Problem 5.10. Compare the transformation of the function

f(t) =

�
1 0< t< 1
0 otherwise

;

and the function

g(t)=

�
t 0< t< 1
0 otherwise

;

and conclude ĝ(s)=¡ d

ds
f̂(s).

Problem 5.11. Use the definition and derive the Laplace transform of the function

f(t) =

�
1 0<t< 1
0 otherwise

; g(t) =

�
1 1< t< 2
0 otherwise

;

and conclude ĝ(s)= e¡s f̂(s).

Problem 5.12. Use the Laplace transform properties to calculate

i. L(teat)

ii. L(t sin(!t))

5.2 Properties of Laplace transform 15



iii. L(t cos(!t))

iv. L(t sinh(!t))

v. L(t cosh(!t))

Problem 5.13. Find the transformation of the following functions

i. L(t3/2).

ii. L(t¡1/2)

iii. L(e¡tt¡1/2)

Problem 5.14. Use mathematical induction to prove the identities

L(tn f(t))= (¡1)n d
n

dsn
f̂(s);

and conclude

i. L(tn)= n!

sn+1
,

ii. L(tn e¡at) = n!

(s+ a)n+1
.

Problem 5.15. Use partial fraction to find the inverse transformation of the following functions:

i. f̂(s)= s

s2¡ 3s+2

ii. f̂(s)= 1

s(s2+4)

iii. f̂(s)= s+2

s3¡ s2+ s¡ 1 .

Problem 5.16. Use the properties of Laplace transform to obtain the following integrals:

i.
R
0

1 1¡ e¡t

t
e¡t dt,

ii.
R
0

1 1¡ cos(t)
t

e¡t dt,

iii.
R
0

1 sin(t)
t
e¡t dt

iv.
R
¡1
1

e¡jtj
1¡ cos(t)
ln(2) jtj dt

Problem 5.17. Find the inverse transformation of the following functions:

i. f̂(s)= s

s2¡ 4s+5

ii. f̂(s)= s+3

s2+2s+5

iii. f̂(s)= s

(s¡ 1)2+3

iv. f̂(s)= e¡s log
¡ s+1

s

�
v. f̂(s)= e¡2s

s

(s2+3)2
,

vi. f̂(s)= e¡s
s

s2+3s+2
.

Problem 5.18. Find the inverse transformation of following functions:

i. f̂(s)= 1

1¡ e¡s
1

s2¡ 1

ii. f̂(s)= 1+ e¡s

1¡ e¡2s
1

s2+1
.

Problem 5.19. If we define

g(t)=
X
k=0

1

(¡1)kf(t¡ ka)u(t¡ ka)
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show that

ĝ(s)=
1

1+ e¡as
f̂(s):

Using the above argument calculate the following inverse transformation

L¡1
�

1
1+ e¡2s

3!
(s¡ 3)4

�
:

Problem 5.20. Use mathematical induction to prove

L(f (n)(t))= sn f̂ (s)¡ sn¡1f(0)¡ ���¡ f (n¡1)(0):

Problem 5.21. Use Laplace transform of tsin(!t) and tcos(!t) to find the inverse transformation of
the following functions:

i. f̂(s)= 2

(s2+1)2
,

ii. f̂(s)= 2

((s¡ 2)2+1)2

Problem 5.22. Find the transformation of the following periodic functions:

i. f(t)= t; 0< t< 1; f(t+1)= f(t),

ii. f(t)=
�
1 0<t< 1
¡1 1<t< 2

, f(t+2)= f(t).

Problem 5.23. Show the following relation

L¡1
 

f̂(s)
(s+ a)2

!
= e¡at

Z
0

t
�Z

0

�

eas f(s) ds

�
d� :

Use integration by part formula and rewrite the right hand side of the above formula as

e¡at
Z
0

t
�Z

0

�

eas f(s) ds

�
d� =

Z
0

t

(t¡ �)e¡a(t¡�) f(�) d� :

Problem 5.24. Even though the derivative of the unit step function u(t ¡ a) is not defined at t = a
(it is not even continuous at this point), show that �(t ¡ a) and u(t ¡ a) are related in the following
way

L(�(t¡ a))= s L(u(t¡ a));

that is �(t¡ a) can be considered as the generalized derivative of u(t¡ a).

Problem 5.25. Consider the sequence of functions

fn(t) =

8<: nt 0� t� 1

n

1 t� 1

n

:

i. Find f̂n(s) and then obtain lim
n!1

f̂n(s).

ii. What is the limit function lim
n!1

fn(t)?

iii. Compare lim
n!1

f̂n(s) with the the L-transform of the limiting function you obtained in part
(ii).

Problem 5.26. In the proposition (5.2) we proved that f̂(s) is continuous in its domain of definition.

i. For f(t)= e¡t sin(t) find
R
0

1
f(t)dt.
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ii. Find f̂(s) and let lim
s!0

f̂(s) and explain why it gives the same result in part (i).

iii. Now for f(t) = sin(t) we know f̂(s) =
1

s2+1
and lim

s!0
f̂(s) = 1. Does it imply that

Z
0

1
sin(t) dt=

1? why?

Problem 5.27. It is not always allowed to pass the limit inside the integral.

i. Let fn(t)=
n

1+n2t2
. Find

R
0

1
fn(t).

ii. Compare lim
n!1

Z
0

1
fn(t)dt and

Z
0

1
lim
n!1

fn(t)dt and explain why they are not equal.

Problem 5.28. Let fn(t)= sin(nt).

i. Find limn!1f̂n(s).

ii. Can we pass the limit inside the integral of L-transform?

5.3 Initial value problems and L-transform

In this section, we solve initial value problems by the aid of the Laplace transform. As
we will see, this method offers considerable advantage over the classical methods for
solving initial value problem, specially when the forcing terms are discontinuous. Consider
the following initial value problem�

y 00+ a y 0+ by= f(t)
y(0)= y0; y 0(0)= y1

; (5.67)

where a; b are constants. The L-transform of the equation transforms the equation into the
following algebraic one

L(y 00)+ a L(y 0)+ b L(y)= f̂(s): (5.68)

Using the relations

L(y 00)= s2ŷ(s)¡ sy0¡ y1; and L(y 0)= sŷ(s)¡ y0;

we obtain

s2 ŷ(s)¡ sy0¡ y1+ as ŷ(s)¡ ay0+ b ŷ(s)= f̂(s); (5.69)

and thus we reach

(s2+ as+ b) ŷ(s)= (s+ a)y0+ y1+ f̂(s): (5.70)

Note that the coefficient of ŷ(s) is the characteristic polynomial of the differential equa-
tion. Therefore,

ŷ(s)=
f̂(s)

s2+ as+ b
+

s+ a
s2+ as+ b

y0+
1

s2+ as+ b
y1; (5.71)

and finally

y(t)= y0 L¡1
�

s+ a
s2+ as+ b

�
+ y1 L¡1

�
1

s2+ as+ b

�
+ L¡1

 
f̂(s)

s2+ as+ b

!
(5.72)
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Example 5.10. Consider the following problem�
y 00+ y= u(t¡ 2)¡u(t¡ 8)
y(0)= y 0(0)= 0

: (5.73)

Here a pulse in the period (2; 8) is applied to a harmonic oscillator. By the method of
Laplace transform, the problem reduces to the following algebraic one

(s2+1)ŷ(s)=
e¡2s¡ e¡8s

s
;

and thus

y(t)= L¡1
�
e¡2s¡ e¡8s
s(s2+1)

�
= L¡1

�
e¡2s

s(s2+1)

�
¡ L¡1

�
e¡8s

s(s2+1)

�
:

By the property

L¡1(e¡as f̂ (s))= f(t¡ a)u(t¡ a);
we have

L¡1
�

e¡2s

s(s2+1)

�
= L¡1

�
1

s(s2+1)

�
jt=t¡2u(t¡ 2):

Since

L¡1
�

1
s(s2+1)

�
=

Z
0

t

L¡1
�

1
s2+1

�
=

Z
0

t

sinvdv=1¡ cost;

we conclude

y(t)= [1¡ cos(t¡ 2)] u(t¡ 2)¡ [1¡ cos(t¡ 8)] u(t¡ 8): (5.74)

The figure (5.6) shows the graph of this solution.

2 8 16
t

1

2

y(t)

Figure 5.6. The graph of the solution y(t).

Observe from the figure that y(t) � 0 for t < 2 that confirms our expectation because
the system is at rest for t < 2. The solution y(t) is smooth of order 1 at t = 2 since y 00(t)
has a finite jump at that time. A similar argument holds at t=8 where f(t) jumps from 1
to 0. By the classical method of previous chapters, to solve the problem, we had to split
the problem into the three dub-domains t < 2, 2< t < 8 and t > 8 as follows. For t < 0 the
problem is �

y 00+ y=0;
y(0)= y 0(0)=0

; (5.75)
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and thus the unique solution is y(t)= 0. In the interval (2; 8), the problem reads�
y 00+ y=1;
y(2)= y 0(2)=0

; (5.76)

with the solution y(t)= 1¡ cos(t¡ 2). In the interval (8;1), we have�
y 00+ y=0; for t > 8
y(8)=1¡ cos(6); y 0(8)= sin(6)

; (5.77)

with the solution y = cos(t ¡ 2) ¡ cos(t ¡ 8). Note the initial conditions in the above
problem.

Example 5.11. Let us solve the following problem�
y 00+ y=u(t¡ 1)
y(1)=1; y 0(1)= 0

:

Here the initial data is given at t= 1 instead of t= 0. To solve the problem, we process as
if conditions y(0)= y0 and y 0(0)= y1 are known. Taking L-transform we obtain

ŷ(s)=
e¡s

s(s2+1)
+ y0

s
s2+1

+ y1
1

s2+1
:

This implies

y(t)= (1¡ cos(t¡ 1))u(t¡ 1)+ y0 cos(t)+ y1 sin(t):

Now, we apply the data y(1) and y 0(1) and get y0= cos(1) and y1= sin(1) and thus

y(t)= (1¡ cos(t¡ 1))u(t¡ 1)+ cos(t¡ 1)=
�

cos(t¡ 1) t� 1
1 t� 1 :

The graph of the solution for t> 1 is shown in the figure (5.7).

0. 5 1. 0 1. 5 2. 02. 0

0. 5

1. 0

Figure 5.7.

Note that two branches of the solution for t � 1 and for t � 1 connect together
smoothly of first order. This is because y 00 has a finite jump at t=1 due to the term u(t¡
1) and therefore y 0 is continuous at this point. Note that the initial condition at t = 1
determines y(t) for t< 1.
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Example 5.12. Let f(t) be the function

f(t)= u(t)¡ 2u
�
t¡ �

2

�
+u(t¡�);

and let g(t) be the �-periodic extension of f in (0;1); see the figure (5.8).

�

2

¡1

1

�

f(t)

2�

t

3�

2

Figure 5.8.

Note that g has the representation

g(t)=
X
k=0

1

f(t¡ k�) u(t¡ k�):

Now consider the problem �
y 00+ y= f(t)
y(0)= y 0(0)= 0

: (5.78)

We have

L(f)=
X
k=0

1

L(g(t¡ k�)u(t¡ k�))= ĝ(s)
X
k=0

1

e¡k�s=
1

1¡ e¡�s ĝ(s):

By the L-transform method, we have

ŷ(s)=
1

1¡ e¡�s
ĝ(s)
s2+1

;

and thus

y(t)= L¡1
�

1
1¡ e¡�s

ĝ(s)
s2+1

�
: (5.79)

We use the formula (5.42) to write y(t) as

y(t)=
X
k=0

1

L¡1
�

ĝ(s)
s2+1

�
jt!t¡k�u(t¡ k�): (5.80)

But

ĝ(s)=
1¡ 2e¡�s/2+ e¡�s

s
;

and therefore

L¡1
�

ĝ(s)
s2+1

�
=(1¡ cos(t))u(t)¡ 2 (1¡ sin(t)) u

�
t¡ �

2

�
+(1+ cos(t))u(t¡�):

The figure (5.9) shows the solution to the problem.
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Figure 5.9. The graph of the solution y(t).

Example 5.13. Consider the initial value problem(
y 00+ y= esin(log(t/�)) �(t¡�)
y(0)= y 0(0)= 0

: (5.81)

The transform reduces the equation to the following algebraic one

(s2+1)ŷ(s)= L(esin(log(t/�)) �(t¡�)): (5.82)

It is simply seen that

L(esin(log(t/�)) �(t¡�))= esin(log(�/�))e¡�s= e¡�s; (5.83)

and thus ŷ(s)= e¡�s

s2+1
which gives

y= sin(t¡�)u(t¡�): (5.84)

Observe that the solution starts at t=�, the time when the external source is applied.

Problems
Problem 5.29. Use the Laplace transform method to solve the following initial value problems

i. �
y 0+ y= sin(t¡ 1)u(t¡ 1)
y(0)= 0:

ii. (
y 00+4y 0+3y= et

y(1)= 0; y 0(1)= 1

iii. �
y 00+ y= sin(t)
y(0)= 0; y 0(0)= 1

iv. �
y 00+ y=u(t¡ 1)
y(0)= 0; y 0(1)= 1

v. (
y 00+3y 0+2y=2u(t¡ 1)+ et�(t¡ 2)
y(0)= y 0(0)= 0
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vi. (
y 00+ y=u(t¡ 1)¡u(t¡ 2);
y(0)= y(

�

2
); y 0(0)= 1:

vii. �
y 00+ y= sin(t)u(t¡�)
y(0)= y 0(0)= 0

;

viii. (
y 000¡ 3y 00+3y 0+ y= et(1+ t)
y(0)= y 0(0)= y 00(0)= 0

:

Problem 5.30. Let us solve the problem (5.11) as follows. Let � = t ¡ 1 and defined z(�) = y(t).
Then we have �

z 00(�) + z(�)=u(�)
z(0)= 1; z 0(0)= 0

:

The L-transform of the problem gives

ẑ(s) =
1

s(s2+1)
+

s
s2+1

=
1
s
:

Therefore z(�)=u(�) and y(t) =u(t¡ 1) (!) What is wrong here?

Problem 5.31. Solve the following equations and use a computer software to draw the solutions

i. y 00+2y 0+ y= f(t); y(0)= y 0(0)= 0 and f(t) is a periodic function as follows

f(t)=u(t)¡u(t¡ 1), f(t+2)= f(t)

ii. y 00+ y= f(t), f(t) = t for 0< t< 1 and f(t+1)= f(t)

iii. y 00+ y= f(t) where f(t) is given in the following figure

1 2 3

t

2

1

3

Problem 5.32. Assume that s(t) is a continuous function such thatZ
¡1

1
s(t) dt=1: (5.85)

Prove that the sequence sn(t) = ns(nt) is a �-sequence functions for the class of continuous and
bounded functions f(t). Use this property to conclude thatZ

¡1

1 n cos(t)
�(1+n2 t2)

dt!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !n!1
1:

Problem 5.33. If L¡1(F (s))= f(t), show that

L¡1(e¡2ssF (s))= f 0(t¡ 2)u(t¡ 2)+ f(0) �(t¡ 2):

Problem 5.34. Solve the following problem and draw the solution y(t) in the interval [0; 10](
y 00+ y=

P
k=1
1 �(t¡ k)

y(0)= y 0(0)=0
:
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Problem 5.35. Solve the following problem and draw the solution y(t) in the interval [0; 10](
y(4)+2y 00+ y=

P
k=1
1

2¡k �(t¡ k)
yk(0)= 0; k=0; 1; 2; 3

:

5.4 Impulse response and convolution

5.4.1 Convolution

Definition 5.3. Assume that f(t) and g(t) are two integrable functions defined on (¡1;
1). The convolution f � g is defined by the following relation integral relation

(f � g) (t)=
Z
¡1

1
f(� ) g(t¡ � ) d� : (5.86)

Although it looks odd at first glance, we will see the importance of convolution in real
applications. Before that, let us solve a few examples.

Example 5.14. If f(t)= �(t), then for arbitrary integrable function g(t), we have

(� � g) (t)=
Z
¡1

1
�(� ) g(t¡ �) d� = g(t): (5.87)

If f(t)=u(t) then for arbitrary integrable function g(t) we have

(u � g)(t)=
Z
¡1

1
u(�) g(t¡ � ) d� =

Z
0

1
g(t¡ � ) d� =

Z
¡1

t

g(�) d� ; (5.88)

and in particular, if g(t)= 0 for t< 0, then

(u � g)(t)=
Z
0

t

g(� )d�:

Assume f(t)= e¡tu(t), then

(f � f)(t)=
Z
¡1

1
e¡�u(� ) e¡(t¡�)u(t¡ � ) d� =

Z
0

t

e¡t d� = te¡t:

Remark 5.2. If f ; g are zero for t < 0 (as we usually assume for the Laplace transform)
the integral reads

(f � g )(t)=
Z
0

t

f(�) g(t¡ � ) d�: (5.89)

Remark 5.3. It is simply verified that the convolution relation is commutative, that is,
f � g= g � f

(f � g)(t)=
Z
¡1

1
f(�)g(t¡ �) d� =

Z
¡1

1
f(t¡ � ) g(� ) d� =(g � f)(t):
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The equality is verified simply by the change of variable v= t¡ � .

Theorem 5.1. For any admissible function f(t) and g(t) we have

L(f � g)= f̂(s)ĝ(s): (5.90)

Proof. By definition, we can write

L(f � g)=
Z
0

1Z
0

t

e¡st f(�) g(t¡ � ) d�dt: (5.91)

Remember the following change of order of the integration from calculusZ
0

bZ
0

t

h(t; � ) d�dt=

Z
0

bZ
�

b

h(t; �) dtd� : (5.92)

The following figure justifies the above relation

b

�

� = t

t

Figure 5.10.

Using the above formula for b=1, we can writeZ
0

1Z
0

t

e¡st f(� ) g(t¡ � ) d�dt=
Z
0

1Z
�

1
e¡st f(� ) g(t¡ �) dtd� =

=

Z
0

1
f(� )

�Z
�

1
e¡st g(t¡ � ) dt

�
d�:

By the change of variable t¡ � = v, we reachZ
0

1Z
0

t

e¡st f(�) g(t¡ � ) d�dt=
�Z

0

1b

e¡s�f(�) d�

��Z
0

1
e¡sv g(v) dv

�
= f̂(s) ĝ(s);

and this completes the proof. �

As it is seen, the Laplace transform, transforms the convolution relation to a simple
algebraic multiplication. As we will see below, this relation offers significant a simplifica-
tion in the calculations of linear systems. But before that, let us solve a few examples.

Example 5.15. Let us start with the following inverse transformation

L¡1
�
1
s
f̂(s)

�
:
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As we know, it is equal to

L¡1
�
1
s
f̂(s)

�
=

Z
0

t

f(t) d� :

By the convolution relation, we can write

L¡1
�
1
s
f̂(s)

�
= L¡1

�
1
s

�
� L¡1ff̂(s)g= u(t) � f(t)=

Z
0

t

f(� )u(t¡ �) d� =
Z
0

t

f(�)d� ;

for t> 0. Similarly, we can write

L¡1
�

1
s+ a

f̂ (s)

�
= L¡1

�
1

s+ a

�
� L¡1ff̂ (s)g= e¡at � f(t)=Z

0

t

f(�) e¡a(t¡�) d� = e¡at
Z
0

t

f(� ) ea� d� :

The above relation is the solution of the familiar initial value problem�
y 0+ ay= f(t)
y(0)= 0

;

which is by the Laplace transform is equivalent to

ŷ(s)=
f̂(s)
s+ a

:

Example 5.16. Let us solve the following integral equation

y¡
Z
0

t

et¡� y(� ) d� = �(t¡�): (5.93)

Since the integral term in the equation is equal to et � y, the Laplace transform of the
equation is

ŷ(s)¡ L(et � y)= e¡�s; (5.94)
and therefore

ŷ(s)¡ ŷ(s)
s¡ 1 = e¡�s: (5.95)

The above equation is solved for ŷ as

ŷ(s)=
s¡ 1
s¡ 2e

¡�s; (5.96)
and finally

y(t)= L¡1
�
s¡ 1
s¡ 2e

¡�s
�
= �(t¡�)+ e2(t¡�)u(t¡ �): (5.97)

5.4.2 System approach and transfer function
The word system is a prevalent term in the whole of applied sciences. Almost all physical
systems, including man-machine and natural systems, are formulated in terms of three
fundamental terms: input , output , and transaction.
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Transaction
input output

For example, the movement of a mass connected to a spring of stiffness k under the influ-
ence of an external force f(t), or the change of inflation rate in an economy, or the reac-
tion of a body to some virus all of them can be interpreted in terms of the above simple
block-diagram. The advantage of block-diagram representation is find out the existent
functional similarities between seemingly different systems. For example, the dynamic of
a mass-spring system is described by the following differential equation

m
d2x
dt2

+ kx= f(t); (5.98)

where k is the stiffness of the spring, m is the mass of the body, and f(t) is the external
force exerting to the mass. In the block-diagram representation, we can show the above
system as follows

1

ms2+ k

x̂(s)f̂(s)

In the above block-diagram, the transaction is represented by the Laplace transform of
the differential equation

x̂(s)=
1

ms2+ k
f̂ (s): (5.99)

The expression ĥ(s) =
1

ms2+ k
is also called the transfer function of the mass-spring system.

Now, let us consider the following LC circuit and assume that the switch S connects at
t=0.

According to the voltage-current relationships of the capacitor C and the inductor L,
we can write

LC
d 2Vc
dt2

+Vc= vs(t) u(t): (5.100)

Assuming that the system is at rest, the Laplace transform of the equation is

(LCs2+1)V̂c(s)= v̂s(s); (5.101)

or equivalently

V̂c(s)=
1

LCs2+1
v̂s(s); (5.102)

which has the following block-diagram.
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1

LCs2+1

Vĉ(s)vŝ(s)

As it is seen, two systems have the completely similar transfer function and thus they
behave completely similar from the functional point of view.

Note that if the input in the above examples is �(t), then the Laplace transform of
the output will be ĥ(s). In fact, for the mass-spring functional equation (5.99), if f(t) =
�(t), then f̂(s)= 1 and thus x̂(s)= 1

ms2+ k
:= ĥ(s).

Definition 5.4. The response of a system to the input �(t) is called the impulse response
of the system and is usually denoted by h(t). The Laplace transform of the impulse
response is called the transfer function of a system and is denoted by ĥ(s).

For example, for the impulse response of the mass-spring system is

h(t)= L¡1(ĥ(s))=
1
km

r
sin
�

k
m

r
t

�
u(t); (5.103)

and the impulse response of the above LC circuit is

h(t)=
1

LC
p sin

�
t

LC
p

�
u(t): (5.104)

Example 5.17. Consider the following initial value problem�
y 0+ y= �(t¡ � ); � > 0
y(0)= 0

:

By Laplace transform method, the response of the system to the input �(t¡ � ) is

h(t¡ �)= e¡(t¡�)u(t¡ �):

Note that since y 0(t) is a Dirac singularity at t = � , the response y(t) is of a finite jump
at that time. For �! 0, we take

h(t)=

�
e¡t t > 0
0 t� 0 :

On the other hand, the response of the system to input r(t) is

ŷ(s)=
r̂(s)
s+1

;

and hence,

y(t)=h(t) � r(t)= e¡t
Z
0

t

e� r(� ) d� :

5.4.3 LTI systems
General systems are usually classified into the following classes:

a) Causal system: The output y at time t depends only on the input x(� ) for � � t
and is independent of � > t.
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b) Memory-less system: The output y at time t depends only on the input x at time t,
not on the previous or future values of t.

c) Time Invariant: The output y is not sensitive to the time of applying input x. In
other word, if y(t) is the response to the input x(t), then y(t ¡ � ) will be the
response of x(t¡ � ).

d) Linear system: If y1; y2 are respectively the response to inputs x1; x2, then the
response of the system to �x1+ �x2 for arbitrary constants �; � is �y1+ �y2.

Example 5.18. Suppose that the transaction T is a derivative operator, that is,

y(t)=T fx(t)g= x0(t):

The system is not causal and memory-less because of the definition of the derivative:

x0(t)= lim
h!0

x(t+ h)¡x(t)
h

:

The system is linear due to the relation T fax1+ bx2g= ax1
0 + bx2

0 = ay1+ by2. In addition,
this system is time invariant y(t¡ t0)= x0(t¡ t0): Similarly, an integrator

y(t)=

Z
¡1

t

x(� ) d� ;

is a linear, time invariant and causal but not memory-less.

Definition 5.5. Consider a system (S) with input x(t) and output y(t). The system is
called linear if it satisfies the following two conditions:

1. for arbitrary �2R, the response to input �x(t) is �y(t), (homogeneity property)

2. if y1, y2 are responses to inputs x1 and x2 respectively, the response to the input
x1(t)+ x2(t) is y1(t)+ y2(t) ( additive property)

This concept is shown in the figure (5.11) schematically.

S

�y�x
x1 y

S

y1

y2x2

+ +

Figure 5.11. A linear system.

Definition 5.6. A system (S) with input x(t) and output y(t) is called Time Invariant
(TI) if response to x(t¡ � ) is y(t¡ � ) for arbitrary � � 0.
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Example 5.19. Consider the mass-spring system (5.99). It is almost straightforward to
verify that the system is linear. In fact, if f(t) is replaced by �f(t) (for arbitrary constant
�), the response changes to �x(t). Furthermore, if f(t) is replaced by f1(t) + f2(t), then
by superposition principle, we can write

x(t)=x1(t)+ x2(t): (5.105)

In addition, if f(t)u(t) is replaced by f(t¡ �)u(t¡ � ) for some � � 0, then the response of
the system changes to

L¡1
 

e¡s�f̂
ms2+ k

!
= L¡1

 
f̂

ms2+ k

!
jt!t¡�u(t¡ � )= x(t¡ � )u(t¡ � ): (5.106)

Therefore, the mass spring system is an LTI system. The reader can check that the LC
circuit in the previous example is LTI as well.

Example 5.20. Consider the following initial value problem(
y(n)+ a1y

(n¡1)+ ���+ any= x(t)

y(k)(0)=0; for k=0; :::; n¡ 1
; (5.107)

where ak are some constants. We write the equation as L[y] = x(t), for L the operator

L :=Dn+ a1Dn¡1+ ���+ an: (5.108)

It is simply verified that the equations represents an LTI system with x(t); y(t) as its
input and output respectively. In fact, for arbitrary �1; �2 2 R, the solution to the input
x(t) = �1x1(t) + �2x2(t), is y(t) = �1y2(t) + �2y2(t), where L[y1] = x1(t) and L[y2] = x2(t).
Furthermore, according to the relation

y(n)(t¡ � )+ a1 y
(n¡1)(t¡ � )+ ���+ an y(t¡ � )= x(t¡ � ); (5.109)

we have L[y](t¡ � )= x(t¡ � ). The transfer function of this system is:

ĥ(s)=
1

sn+ a1sn¡1+ ���+ an
: (5.110)

In this section, we study causal linear time invariant (LTI) systems described by linear
differential equations with constant coefficients�

y 00+ ay+ by= r(t)
y(t0)= 0; y 0(t0)= 0

: (5.111)
Or in the operator form as

L[y](t)= r(t);

where L stands for the differential operator d2

dt2
+ a

d

dt
+ b. Accordingly, we can write

y(t)=L¡1[r(t)];

where L is the inverse of the differential operator L.

r(t) y(t) ŷ(s)
1

s2+ as+ b

r̂(s)
L¡1
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5.4.4 Convolution and LTI control systems
The importance of convolution lies in the following theorem.

Theorem 5.2. Assume that h(t) is the impulse response of an LTI system. Then the
response of the system to an arbitrary input x(t) is determined by the following convolu-
tion

y(t)=

Z
0

t

h(t¡ � )x(� ) d� : (5.112)

Proof. Note that we can write x(t) as the convolution as

x(t)=

Z
0

t

x(� ) �(t¡ �) d�: (5.113)

Let us write the above integral as the following Riemann sumZ
0

t

x(� ) �(t¡ � ) d� = lim
n!1

X
k=1

n

x(�k) �(t¡ �k)��k; (5.114)

and define xn(t) by the following partial sum

xn(t)=
X
k=1

n

x(�k)�(t¡ �k)��k: (5.115)

Since the system is linear time-invariant, yn(t) is determined by the following summation

yn(t)=
X
k=1

n

x(�k)h(t¡ �k)��k; (5.116)

where h(t¡ �k) is the response to the impulse �(t¡ �k). Now, we can write

y(t)= lim
n!1

yn(t)= lim
n!1

X
k=1

n

x(�k)h(t¡ �k)��k=
Z
0

t

x(� )h(t¡ �) d� ; (5.117)

and this completes the proof. �

Example 5.21. For a LTI system, we know that the impulse response function h(t) is

h(t)= e¡t sin(t) u(t):

We would like to find the response of the system to the input function r(t) = e¡t u(t).
According to the above theorem, we can write

y(t)= r(t) � h(t)=
Z
0

t

e¡(t¡�) e¡� sin(�) d� = e¡t(1¡ cos(t))u(t):

Problem 5.36. Following problems:

a) If we know that the impulse response of an LTI system is sin(t), find the response to the input
x(t)= cos(t).
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b) If we know that the response of an LTI system to input u(t) is sin(t), find the response to the
input x(t)= cos(t).

Working with convolution integrals is not always as simple as above, specially for con-
trol systems. For example consider a simple feedback control system shown below.

+

c(t)

y(t)x(t)
h(t)

¡

Figure 5.12.

By a a straightforward calculation, we can write y(t) as the following convolution:

y(t)= (x(t)¡ c(t) � y(t)) �h(t); (5.118)

or equivalently in the integral form as

y(t)=

Z
0

t
�
x(� )¡

Z
0

�

c(� ¡ v)y(v) dv
�
h(t¡ � ) d�:

As it is seen, the formula looks very complicated even for such a simple feedback system.
Here we see how the Laplace transform simplifies the calculations. Remember the rela-
tion

Lff � gg= f̂ (s) ĝ(s);

and thus for (5.118), we can write

ŷ(s)= ĥ(s)[x̂(s)¡ ĉ(s) ŷ(s)];

which is solved simply for ŷ(s) as

ŷ(s)=
ĥ(s)

1+ ĉ(s) ĥ(s)
x̂(s):

Therefore, the transfer function of the above control system is

ĥc(s)=
ĥ(s)

1+ ĉ(s) ĥ(s)
:

Problem 5.37. Find the transfer function of the control system shown in the following diagram

c1(t)

h1(t)

¡

+

¡

x(t)
h2(t)

c2(t)

+ y(t)
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Problems
Problem 5.38. Show that an integrator

y(t) =

Z
¡1

t

x(�) d� ;

is time invariant system.

Problem 5.39. Consider the discrete system y[n] =x[2n] for n2Z. Give and example that shows the
system is not time invariant.

Problem 5.40. Consider the equation

y 0+ ay= r(t);

where r(t)= 0 for t < 0. Show that the transaction L¡1 defined by

L¡1[r](t) =

Z
0

t

e¡a(t¡�)r(�)d� ;

is a system representation of the given equation. Show that the system L¡1 is linear time invariant.

Problem 5.41. Consider a system that its response is described by the following differential equation

y 0+ ay= r(t):

i. Find the impulse response of the system.

ii. Write the solution in the convolution form.

The solution is the same as we obtained through solving a linear first order equation in previous chap-
ters.

Problem 5.42. Consider a system that its response is described by the following differential equation

y 00+y= r(t):

i. Find the impulse response of the system.

ii. Write the solution in the convolution form.

iii. Verify that the obtained formula is a solution to the problem�
y 00+y= r(t)
y(0)= y 0(0)=0

:

Problem 5.43. Consider the following initial value problem�
y 00+ a1y

0+ a2y= r(t)
y(0)= y 0(0)=0

:

i. If the characteristic polynomial of the equation has two distinct roots �1 =/ �2, use convolution
theorem to show that the solution to the equation is

�(t) =
1

�1¡�2
(e�1t � r(t)¡ e�2t � r(t)):

ii. If the characteristic polynomial has a repeated root �, use convolution theorem to show that

�(t) = te�t � r(t):

Problem 5.44. For the RC circuit shown in the figure (5.13), find the impulse response h(t) and the
transfer function ĥ(s) if vo(t) is considered as the response of the system. Find vo(t) if v(t) = 1 and
the switch S connects at time t=1.
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Figure 5.13.

Problem 5.45. Consider the circuit shown in the figure (5.14) where vi(t) and vo(t) are the input
and output of the system respectively. Find the transfer function and the impulse response of the
system. If R=L=C =1, find the response vo(t) provided that vi(t)= sin(t).

Figure 5.14.

Problem 5.46. Use the definition of convolution to calculate the convolution of following function.
Use Laplace transform method for convolution and compare the results.

i. f(t)= tu(t), g(t)=u(t)

ii. f(t)= e¡t, g(t)=u(t)¡u(t¡ 1)
iii. f(t)=u(t), g(t)= t[u(t)¡u(t¡ 1)]
iv. f(t)=u(t)¡u(t¡ 1), g(t)=u(t¡ 1)¡u(t¡ 2)

Problem 5.47. Use convolution property to calculate the inverse transformation of the following
function

i.

L¡1
�

1
s(s2+1)

�
ii.

L¡1
�

1
(s2+1)2

�
iii.

L¡1
�

e¡s

(s¡ 1)(s2+2s+2)

�
Problem 5.48. Show that convolution is commutative, that is, f � g= g � f .
Problem 5.49. Us Laplace transform method to solve the following integro-differential equations.
The initial condition(s) for all equations is assumed zero.

i. y+3
R
0

t
y(v) sin(t¡ v) dv=u(t¡ 1),

ii. y 0+ et
R
0

t
e¡� y(�) d� = cos(t) �(t¡�)

iii. y+
R
0

t
y 0(�) et¡� d� =u(t¡ 1).

iv. y 00+
R
0

t
y(v)u(t¡ v) dv= �(t¡ 1)+u(t¡ 1)

5.5 Systems of differential equations
In this section we see how the method is employed to solve the linear systems of differen-
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tial equations with constant coefficients. Consider the following system8>><>>:
y1
0 = a11 y1+ a12 y2+ b1(t)
y2
0 = a21 y1+ a22 y2+ b2(t)
y1(0)= y2(0)=0

: (5.119)

The Laplace transform of the system reduces it to the following algebraic system(
(s¡ a11)ŷ1(s)¡ a12ŷ2(s)= b̂1(s)

(s¡ a22)ŷ2(s)¡ a21ŷ1(s)= b̂2(s)
; (5.120)

that can be put in the following matrix form in turn�
s¡ a11 ¡a12
¡a21 s¡ a22

��
ŷ1(s)
ŷ2(s)

�
=

 
b̂1(s)

b̂2(s)

!
: (5.121)

The system (5.121) is solvable if the coefficient matrix is invertible. If so, we can write�
ŷ1(s)
ŷ2(s)

�
=

1
p(s)

�
s¡ a22 a12
a21 s¡ a11

� 
b̂1(s)

b̂2(s)

!
; (5.122)

where p(s) is the characteristic polynomial of the matrix

p(s)= s2¡ (a11+ a22)s+ a11a22¡ a12a21: (5.123)

Now, y1(t) and y2(t) can be restored by the inverse transform of ŷ1(s) and ŷ2(s) respec-
tively.

Example 5.22. Consider the following system8>><>>:
y1
0 = y1¡ y2
y2
0 = y1+ �(t¡ 1)
y1(0)= y2(0)=0

: (5.124)

By Laplace transform, we write the above system as the following algebraic one�
(s¡ 1)ŷ1(s)+ ŷ2(s)= 0
sŷ2(s)¡ ŷ1(s)= e¡s

;

or in the matrix form �
s¡ 1 1
¡1 s

��
ŷ1(s)
ŷ2(s)

�
=

�
0
e¡s

�
:

The above system is solved for the vector (ŷ1; ŷ2) by the formula�
ŷ1(s)
ŷ2(s)

�
=

1
s2¡ s+1

�
s ¡1
1 s¡ 1

��
0
e¡s

�
=

1
s2¡ s+1

�
¡e¡s

(s¡ 1) e¡s
�
:

Thus ŷ1(s)=
¡e¡s

s2¡ s+1
and therefore

y1(t)=
¡2
3

p e
t¡1
2 sin

�
3

p

2
(t¡ 1)

�
u(t¡ 1):
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Likewise, we have ŷ2(s)=
(s¡ 1)e¡s

s2¡ s+1
and therefore

y2(t)= e(t¡1)/2 cos
�

3
p

2
(t¡ 1)

�
u(t¡ 1)¡ 1

3
p e

t¡1
2 sin

�
3

p

2
(t¡ 1)

�
u(t¡ 1):

The method is applied to higher order systems as well. The following example presents
the method for a second order system.

Example 5.23. Consider the following system8>><>>:
y1
00=2y2+u(t)
y2
00=8y1
y1(0)= y2(0)= y1

0(0)= y2
0(0)=0

:

The system reduces to the algebraic one(
s2y1̂(s)= 2ŷ2(s)+

1

s

s2 ŷ2(s)= 8ŷ1(s)
:

Solving the system for ŷ1(s) and ŷ2(s) gives

ŷ1(s)=
s

s4¡ 16
, ŷ2(s)=

8
s(s4¡ 16)

:

The inverse transform yields y1(t) and y2(t) as follows

y1(t)=
1
8
cosh(2t)¡ 1

8
cos(2t) and y2(t)=

1
4
cosh(2t)+

1
4
cos(2t)¡ 1

2
:

Problems
In the following problems, use Laplace transform method to solve the following systems.

Problem 5.50.

(
y1
0 = y2+ �(t¡ 1)
y2
0 =¡y1+u(t)

; y1(0)= y2(0)= 0

Problem 5.51.

(
y1
0 =¡y1¡ y2+ �(t¡ 1)
y2
0 =¡2y1

; y1(0)=0; y2(0)=1

Problem 5.52.

(
y1
00=2y1+ y2
y2
00= 12y1¡ 2y2

; y1(0)= 1; y2(0)= y1
0(0)= y2

0(0)= 0

Problem 5.53.

(
y1
00=2y2¡ y1

0 + y2
0

y1
0 ¡ y2

0 =¡y1
; y1(0)= y2(0)= 1; y1

0(0)= y2
0(0)= 0

Problem 5.54.

(
y1
00+3y2

00= y1+ �(t¡ 1)
y1
0 +3y2

0 =2y2
; y1(0)= y2(0)= y1

0(0)= y2
0(0)= 0

Problem 5.55. Use the Laplace transform method to prove that the following two systems have
the same solution
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1. y~ 0=A2�2 y~ ; y~(0)= y~0
2. y~ 0=A2�2 y~ + �(t)y~0; y~(0)=0.
Here y~ stands for the vector

�
y1
y2

�
and the matrix A2�2 is a constant matrix

A2�2=

�
a11 a12
a21 a22

�
:
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