
Chapter 4

Series Solution of Linear Equations

The solution of a linear equation with analytic coefficients is analytic. That is a deep
result in the theory of linear differential equations. Although there is non guarantee that
the solution of a singular differential equation is expanded as a power series, the Frobe-
nius method provided us with conditions under which such equations possess solutions in
the series form. In the last part of this chapter, we introduce some important equations of
mathematical physics.

4.1 Introduction

4.1.1 Power series

The reader is referred to the appendix of this book for a detailed discussion on the topic.
Here, we assume that the reader is familiar with the numeric seriesX

n=0

1

an= a0+ a1+ a2+ ���;

and the notion of convergence and divergence of numeric series. Remember also the ratio
test for the convergence of a numeric series. If

lim
n!1

��������an+1an

��������< 1;

then the series convergence absolutely , that is,
X
n=0

1

janj= a�<1. If

lim
n!1

��������an+1an

��������> 1;

the series diverges. The general form of a power series centered at a point x0 isX
n=0

1

cn(x¡x0)n= c0+ c1(x¡x0)+ c2(x¡x0)2+ ���: (4.1)
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Definition 4.1. The series
X
n=1

1

cn(x ¡ x0)n is convergent at a point x = a if numeric

series
X
n=1

1

cn(a¡x0)n is convergent.

Example 4.1. Consider the following seriesX
n=0

1

xn=1+ x+x2+ ���:

Here cn=1, and x0=0. Note that the series is a geometric series for any jxj< 1, and thus
the series converges to 1

1¡x .

Let us use the ratio test to determine the values of x for which power series (4.1) con-
verges. According to the test, the series is absolutely convergent if

lim
k!1

�������� ck+1(x¡x0)k+1ck(x¡x0)k

��������< 1;

that implies

jx¡x0j lim
k!1

�������� ck+1ck

��������< 1;

or equivalently

jx¡x0j< lim
k!1

�������� ckck+1

��������:
The above inequality gives a range for x for which the series converges absolutely , that is,X

n=0

1

jcn(x¡x0)jn;

convergent. The value L := lim
k!1

�������� ckck+1

�������� is called the radius of convergence of the series,

and thus the series converges for all x in (x0 ¡ L; x0 + L). This interval is called the
domain of convergence of the series.

Example 4.2. Consider series 1+ x+x2+ ���. The test implies

L: = lim
n!1

�������� cncn+1

��������=1

and thus the series converges for all x in interval (¡1; 1). The series represents the func-

tion f(x)=
1

1¡x expanded at x0=0. The radius of convergence of series
X
n=0

1
1
n!
xn is

L= lim
n!1

������������
1

n!
1

(n+1)!

������������= lim
n!1

(n+1)=1;

and thus the series converges for all x 2 (¡1; 1). The series represents function ex

expanded at x0=0.
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4.1.2 Analytic functions

Definition 4.2. A real valued function f is called analytic at x0 if there is an open
interval I =(x0¡L; x0+L), for some L> 0, and constants ck such that

f(x)= c0+ c1(x¡ x0)+ c2(x¡x0)2+ ���; (4.2)

for all x2 I.

The definition states that for any a2 I, the following convergence holds

lim
n!1

[c0+ c1(a¡x0)+ ���+ cn(a¡x0)n] = f(a):

Problem 4.1. If a function f is analytic at a point x0 with the domain of convergence I, show that
f is analytic at all points x2 I.

Hint: Without loss of generality assume x0=0 and for a2 I write

f(x) =
X
n=0

1

cn(x¡ a+ a)n:

Use binomial formula and write

f(x)=
X
k=0

1

dk(x¡ a)k;

where

dk=
X
n=k

1

cn

�
n
k

�
an¡k:

Show jdkj<1 for all k.

Theorem 4.1. Assume that f is analytic at x0 and

f(x)=
X
n=0

1

cn(x¡x0)n:

Then f and f 0 are continuous at x0 and furthermore

f 0(x)=
X
n=1

1

ncn(x¡x0)n¡1:

Proof. Without loss of generality, let us assume x0=0. Consider the series

f(x)=
X
n=0

1

cnxn; (4.3)

and assume it converges in I. Choose �x sufficiently small such that x+ �x2 I. Therefore,
the series X

n=0

1

cn(x+ �x)n; (4.4)

converges to f(x+ �x) and we have

f(x+ �x)¡ f(x)=
X
n=1

1

cn[(x+ �x)n¡xn]: (4.5)
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Use the intermediate value theorem to write

(x+ �x)n¡xn=n(x+ �n)n¡1 �x; (4.6)

for some �n in the segment <x; x+ �x> . Thus

jf(x+ �x)¡ f(x)j � �x
X
n=1

1

n jcnj jx+ �xjn¡1:

Note that the series in the right hand side is convergent according to the ratio test.
Therefore, we have

lim
�x!0

f(x+ �x)¡ f(x)= 0;

and this proves the continuity of f . Now, define function g as

g(x)=
X
n=1

1

ncnxn¡1: (4.7)

Clearly g is well defined because the series in the right hand side is convergent. We have��������f(x+ �x)¡ f(x)
�x

¡ g(x)

���������X
n=2

1

n jcnj j(x+ �n)n¡1¡xn¡1j: (4.8)

Use the intermediate value theorem and write

j(x+ �n)
n¡1¡xn¡1j � (n¡ 1) jx+ �xjn¡2 j�xj: (4.9)

Therefore ��������f(x+ �x)¡ f(x)
�x

¡ g(x)

��������� j�xjX
n=2

1

(n¡ 1)n jcnj jx+ �xjn¡2:

Since the series in the right hand side converges, we have��������f(x+ �x)¡ f(x)
�x

¡ g(x)

��������!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�x!0
0: (4.10)

Therefore, g(x) is the derivative of f(x). The continuity of g is proved by a similar argu-
ment. �

Corollary 4.1. If a function f is analytic, then it is differentiable of any order and all
f (n) are analytic with the same domain of convergence.

Example 4.3. Function f(x) = xjxj is not analytic at x0 = 0. In fact, f 00(0) does not
exists and then f2 can not be determined. Note that every analytic function is continu-
ously differentiable of any order. These functions are generally called C1 functions. If f
is analytic, it is C1, however, every C1 function is not analytic. For example, the func-
tion f(x) = e¡1/x

2
is C1 in any open interval around x0 = 0 but it is not analytic at this

point. In fact, if we write

e¡1/x
2
= c0+ c1x+ c2x2+ ���; (4.11)
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then c0= e¡1/x
2jx=0=0, and

c1=
d
dx

e¡1/x
2

��������
x=0

=0;

and similarly we obtain all cn = 0. Thus, e¡1/x
2
is not analytic at x0 = 0 even though it is

C1 at x0=0.

We use the following proposition in our subsequent discussions. The proof is straight-
forward and the reader is asked for prove it.

Proposition 4.1. If f and g are analytic functions in an open interval I, then functions
f � g and f:g are analytic in I as well.

Theorem 4.2. Assume that f(x) is analytic at x0. Then cn, the coefficients of the series
of f at x0 are as follows

cn=
1
n!
f (n)(x0); (4.12)

where f (n) stands for the nth derivative of f. Moreover, f 0(x) has the following series rep-
resentation

f 0(x)=
X
n=1

1

ncn(x¡x0)n¡1:

Therefore, an analytic function f at x0 can be represented as the following series

f(x)=
X
n=0

1
1
n!
f (n)(x0)(x¡x0)n; (4.13)

for all x in an open interval I at x0. The above representation is called the Taylor's
series of f at x0.

Example 4.4. Function f(x) = ex is analytic everywhere. At x0= 0, the function has the
familiar expansion

ex=1+x+
1
2!
x2+

1
3!
x3+ ���:

Note that f (n)(0)= 1 and thus cn=
1

n!
. The domain of convergence for the expansion is

L= lim
n!1

������������
1

n!
1

(n+1)!

������������=1;

and thus the series converges for x2 (¡1;1). Similarly, function sin(x) is analytic every-
where. It is simply seen that

dn

dxn
sin(x)jx=0=

(
(¡1)n+1/2 n: odd
0 n: even

;
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and thus

sin(x)= x¡ 1
3!
x3+

1
5!
x5¡ ���:

Function cos(x) has the following series expansion

cos(x)= 1¡ 1
2!
x2+

1
4!
x4¡ ���:

The domain of convergence of sine and cosine functions are 1.

4.1.3 Partial sums and convergence
Obviously, we are unable to add up infinite terms of a series directly and calculate its
value. Therefore, we should consider the partial sums of an infinite series

Sn(x)=
X
k=1

n

ck(x¡x0)k:

Therefore, we find a function sequence (Sn(x)) for n = 0; 1; ���, that we can study its con-
vergence. In addition to the pointwise convergence of the sequence, that is,

lim
n!1

Sn(a)= f(a);

for any a in the domain of convergence of f , we can define the notion of uniform conver-
gence of the sequence. Let us first see an example.

Example 4.5. Consider function f(x)=
1

1¡x2 in (¡1; 1) with the series expansion

1
1¡x2 =1+ x2+ x4+x6+ ���:

Now, consider the following partial sum

Sn(x)= 1+x2+x4+ ���+x2n=
1¡x2n+2
1¡x2 :

Note that if jxj < 1 then x2n+2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !n!1
0. Fig.4.1 shows the graph of function f(x) and

Sn(x) for a few values of n. Also note that f(x) goes unbounded at x=�1 and no partial
sums (of any terms) is able to catch up the function in adjacent of these two points. In
other words, for any n> 0, there is some point xn2 (¡1; 1) such that

jf(xn)¡Sn(xn)j> 1:

On the other hand, let us restrict the domain to
�
¡1 + 1

m
; 1¡ 1

m

�
for any m> 1. Then for

any "> 0, there is n such that

max
x2

h
¡1+ 1

m
;1¡ 1

m

i jf(x)¡Sn(x)j<":

For example, for [¡0.99; 0.99] and "= 0.1, we can choose as large as n= 310 to make sure
the above inequality holds for all x in the closed interval .
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−1. 0 −0. 5 0. 5 1. 0

S2(x)

S3(x)

S4(x)

Figure 4.1.

Example 4.6. The function sin(x) is analytic everywhere and its power series representa-
tion centered at x0=0 is

sin(x)=x¡ 1
3!
x3+ ���+ (¡1)n

(2n+1)!
x2n+1+ ���:

Fig.4.2 shows S2(x); S3(x); S4(x) and S5(x) with the graph of the original function sin(x)
in the range [0; 2�] for the partial sum Sn

Sn(x)=
X
k=0

n
(¡1)k

(2k+1)!
x2k+1: (4.14)

Again, we can choose n sufficiently large such that Sn(x) is very close to f(x) in the given
closed interval, however, there is no such n that be close enough to f(x) in whole domain
(¡1;1).

1
2
π π 3

2
π 2π

S2(x)

S3(x)

S4(x)

S5(x)

Figure 4.2. Graphs of Sn(x) and sinx.

Theorem 4.3. Assume that a function f is analytic with the domain of convergence I,
and J � I is a closed subinterval. Then for any arbitrary "> 0, there is N(")> 0 such that

max
x2J

jf(x)¡SN(x)j<";
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where SN is the partial sum of the expansion of f(x) at x0 up to order N.

Proof. For any x2 [a; b], the series Sn(x) converges to f(x) and thus there is N =N(x; ")
such that

jf(x)¡SN(x)j<":

Let (xn)� [a; b] be a sequence that maximize N , that is N(xn+1; ")�N(xn; "). Since [a; b]
is closed, xn converges to some x� 2 [a; b]. On the other hand, Sn(x�) converges to f(x�) and
thus there is N� such that for all n>N� , we have

jf(x�)¡Sn(x�)j<";

and this completes the proof. �

Problems
Problem 4.2. Show that in any closed interval [a; b] � (¡1; 1), and any " > 0, there is N0 = N0(")
such that

max
x2[a;b]

j(1¡x)¡1¡Sn(x)j<"; 8n�N0;
where Sn(x)= 1+ ���+xn.

Problem 4.3. Consider the integral

I(x)=

Z
0

xsin(t)
t

dt: (4.15)

It is known that I(x) can not be written in terms of elementary functions.

i. By substituting the series of sin(t) in the integral, find a power series for I(x).

ii. Use the alternating series concept and find a partial sum In(x) such that

jI(1)¡ In(1)j< 10¡3:

Repeat this for x=3, that is jI(3)¡ In(3)j< 10¡3.

Problem 4.4. Use the power series of e¡x to approximate the following integral with the accuracy
10¡4

I =

Z
1

2e¡x

x
dx:

Problem 4.5. Sketch the graph of each function and determine those that are analytic at x0=0. For
each analytic function, obtain the radius of convergence for the associated series.

i. f(x)= e¡jxj

ii. f(x)= (4¡x2)¡1

iii. f(x)=x2jxj

iv. f(x)= sin(j1+xj)

Problem 4.6. Find the radius of convergence of the following series

i. X
n=1

1
(¡1)nn
4n

(x¡ 1)n
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ii. X
n=1

1
3n

n+1
(2x+1)n

iii. X
n=1

1
2n

nn
(2x+1)n

Problem 4.7. Show that the series

S(x) =x2¡ 23

4!
x4+

25

6!
x6¡ ���;

converges to the function f(x)= sin2x. Find a power series expansion for f(x)= cos2(x).

Problem 4.8. Here we give another proof for the formula (4.12).

a) Write f as

f(x) =
X
n=0

1

cnx
n:

By the aid of binomial formula

(x+x0)
n=

X
l=0

n �
n
l

�
xlx0

n¡l;

derive

f(x+x0) =
X
n=0

1

cn
X
l=0

n �
n
l

�
x0
n¡lxl:

b) For l=0 calculate the series and show it is f(x0).

c) For l=1 calculate the series and show it is f 0(x0).

d) For l=2 calculate the series and show it is 1

2
f 00(x0).

Problem 4.9. If f , g are analytic functions, prove that f � g and f:g are analytic. Hint: may need
the formula  X

n=0

1

fn xn

! X
n=0

1

gnxn

!
=
X
n=0

1  X
k=0

n

fk gn¡k

!
xn:

Problem 4.10. Plot the function f(x) = e¡1/jxj for ¡1 < x � 1. Is it possible to find a series repre-
sentation of f around x0=0?

4.2 Linear differential equations: Analytic solutions

4.2.1 Equations with analytic coefficients

Consider the the initial value problem�
y 00+ p(x) y 0+ q(x) y=0
y(x0)= y0; y 0(x0)= y1

: (4.16)
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As we know, there is no general method to solve the problem in closed form, like an expo-
nential, trigonometric or a polynomial function, but it does not mean that the solution
can not be expressed in terms of a series.

Theorem 4.4. Assume that functions p; q are analytic at x0 with the radius of conver-
gence L. Then problem (4:16) has an analytic solution at x0 with the minimum radius of
convergence L.

The theorem states that the problem has a unique solution y(x), and the solution can
be expressed in terms of a power series as

y=
X
n=0

1

yn (x¡x0)n: (4.17)

Here the coefficients yn are unknown, and if we are able to determine them somehow, the
true solution y(x) can be at least approximated by a partial sum. The complete proof of
the theorem needs some technical tools that is beyond the scope of this book. However,
the following problem shows how the coefficients can be calculated.

Problem 4.11. Assume that p; q are analytic functions at x0. Consider the problem�
y 00+ p(x) y 0+ q(x) y=0
y(x0) = y0; y

0(x0)= y1
:

We show that the coefficients of the series solution are derived by the formula

yn+2=
¡1

(n+1)(n+2)

X
k=0

n

[(k+1)pn¡k yk+1+ qn¡k yk]; n� 0; (4.18)

where pn; qn are coefficients of the series of p(x) and q(x) respectively, i.e.,(
p(x) = p0+ p1(x¡x0)+ p2(x¡x0)2+ ���
q(x)= q0+ q1(x¡x0) + q2(x¡x0)2+ ���

: (4.19)

i. By the relation

y(n+2)=¡(p(x) y 0)(n)¡ (q(x) y)(n);
conclude

y(n+2)(x) =¡
X
k=0

n �
n
k

�
[p(n¡k)(x) y(k+1)(x) +q(n¡k)(x) y(k)(x)]:

ii. Now put x=0 in the above equation and conclude

(n+2)!yn+2=¡
X
k=0

n �
n
k

�
[(n¡ k)! (k+1)!pn¡k yk+1 +(n¡ k)!k!qn¡k yk]:

iii. Simplify the above identity and conclude (4.18).

Example 4.7. Consider the following initial value problem�
y 00+(x+1) y 0+xy=0
y(0)= 1; y 0(0)=¡1 : (4.20)
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It is simply seen that y(x) = e¡x is the unique solution of the problem. Let us derive that
solution by the series method. Since x0=0, we write the solution as

y(x)=
X
n=0

1

ynxn:

Since p0= 1; p1= 1, and pn= 0 for n � 2, and q1= 1, q0= qn= 0 for n � 2, the summation
in formula (4.18) is nonzero only for k=n¡ 1; n, and thus

yn+2=
¡1

(n+1)(n+2)
[(n+1)p0 yn+1+np1 yn+ q1 yn¡1];

and by substituting p0; p1; q1, we obtain

yn+2=¡
yn+1
n+2

¡ nyn
(n+1)(n+2)

¡ yn¡1
(n+1)(n+2)

:

The above formula defines a recursive formula for the coefficients of the series solution of
the given differential equation. Note that y(0)= y0=1 and y 0(0)= y1=¡1, and thus

y2=
¡y1
2

=
1
2
; y3=

¡1
6
; y4=

1
24
; ���:

Therefore, the series solution has the form

y(x)= 1¡x+ 1
2
x2¡ 1

6
x3+

1
24
x4¡ ���:

The above series is the representation of y(x)= e¡x at x0=0.

Example 4.8. (Cont.) Let us derive the recursive formula in the previous example by
the direct calculation. Write the solution as the following series

y(x)=
X
n=0

1

ynxn:

Since y(x) is analytic, then we can differentiate the series term by term and thus by for-
mula (4.21) we can write

y 0(x)=
X
n=1

1

nynxn¡1; and y 00(x)=
X
n=2

1

n(n¡ 1)ynxn¡2:

Note that the series of y 0 starts at n=1 and y 00 starts at n=2. Substituting these formula
into the equation, we reach

y 00+(x+1)y 0+ xy=
X
n=2

1

n(n¡ 1)ynxn¡2+(x+1)
X
n=1

1

nynxn¡1+ x
X
n=0

1

yn xn=0:

A simple algebraic simplification givesX
n=2

1

n(n¡ 1)yn xn¡2+
X
n=1

1

nynxn+
X
n=1

1

nynxn¡1+
X
n=0

1

ynxn+1=0:
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Here we have four summations. In order to merge these summations, we first make expo-
nents of x in all summations equal. Taking m=n¡ 2 in the first summation we reachX

n=2

1

n(n¡ 1)ynxn¡2=
X
m=0

1

(m+2)(m+1)ym+2xm:

In the second summation, we do not change the exponent and just take m = n. In the
third summation, we take m=n¡ 1 and thenX

n=1

1

nynxn¡1=
X
m=0

1

(m+1)yn+1xm:

In the forth summation, we take m=n+1, we reachX
m=1

1

ym¡1xm:

Therefore, we obtainX
m=0

1

(m+2)(m+1)ym+2xm+
X
m=1

1

mymxm+
X
m=0

1

(m+1)ym+1xm+
X
m=1

1

ym¡1xm=0:

Now, first and third summations start from m = 0 while second and fourth summation
start from m = 1. For this, we pull out one term from first and third summations and
write

2y2+ y1+
X
m=1

1

[(m+2)(m+1)ym+2+mym+(m+1)ym+1+ ym¡1] xm=0:

Since the left hand side is identically zero for all x, we obtain the relations

2y2+ y1=0; and (m+2)(m+1)ym+2+mym+(m+1)ym+1+ ym¡1=0:

From the first identity we obtain y2=
1

2
. From the second identity we obtain the following

formula that is called a recursive formula for ym

ym+2=¡
ym+1

m+2
¡ mym
(m+2)(m+1)

¡ ym¡1
(m+2)(m+1)

:

Example 4.9. (Cont.) Instead of finding a recursive formula for the equation, we can
calculate only a few terms of the coefficients by the following method. Write the solution
as follows

y(x)= y0+ y1x+ y2x2+ ���:

and substitute y into the equation. We have

y 0(x)= y1+2y2x+3y3x
2+ ���; and y 00(x)= 2y2+6y3x+ 12y4x2+ ���; (4.21)

and thus

(2y2+6y3x+ 12y4x2+ ���)+ (x+1)(y1+2y2x+3y3x2+ ���)+ x(y0+ y1x+ y2x2+ ���)= 0:
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Since the series in the left hand side is identically zero for all x, all coefficients of xn for
arbitrary n� 0 must be zero. We have

0-terms. (terms with x in power of zero)

2y2+ y1=0;

and thus y2=¡y1/2= 1

2
.

1-terms. (coefficient of x)

6y3+ y1+2y2+ y0=0;

and thus y3=
¡1
6
.

2-terms. (coefficients of x2)

12y4+2y2+3y3+ y1=0;

and thus y4=
1

24.

We can continue the calculation to find y5; y6; ���. As it is observed, the coefficients are as
before.

Example 4.10. Find five terms of the series solution of the following problem�
y 00+ exy 0+ sin(x)y=1¡ 2x
y(0)= 1; y 0(0)=¡1 :

We substitute the series of y; y 0; y 00 along with the series of ex; sin(x) into the equation.
With 8>><>>:

y(x)= y0+ y1x+ y2x2+ ���
y 0(x)= y1+2y2x+3y3x2+ ���
y 00(x)= 2y2+6y3x+ 12y4x2+ ���

;

and 8<: ex=1+x+
1

2
x2+ ���

sin(x)=x¡ 1

6
x3+ ���

;

we reach

(2y2+6y3x+ 12y4x2+ ���)+
�
1+x+

1
2
x2+ ���

�
(y1+2y2x+3y3x2+ ���)+

+

�
x¡ 1

6
x3+ ���

�
(y0+ y1x+ y2x2+ ���)= 1¡ 2x

0-terms. (terms with x in power of zero)

2y2+ y1=1) y2=1:

1-terms. (coefficient of x)

6y3+ y1+2y2+ y0=¡2) y3=¡
2
3
:
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2-terms. (coefficients of x2)

12y4+3y3+2y2+
3
2
y1=0) y4=

1
8
:

Therefore, the series solution is

y(x)= 1¡x+ x2¡ 2
3
x3+

1
8
x4¡ ���:

Example 4.11. Find a recursive formula for the coefficients of the series solution of the
following problem and verify that the series is convergent(

(1¡x2)y 00+2y=0
y(0)= y0; y 0(0)= y1

:

We first note that the coefficient of y 00 that is (1¡ x2) goes zero at x=�1. In other word,
here q(x) = 2

1¡x2 is analytic at x0 = 0 with the radius of convergence L = 1. According to
the theorem (4.4), the minimum radius of convergence of the series solution is L. We see
how this domain of convergence shows itself in the series solution. By taking y as

y(x)=
X
n=0

1

yn xn;

we reach

y 00(x)=
X
n=2

1

n(n¡ 1)ynxn¡2:

Substituting into the equation, we reach

X
n=2

1

n(n¡ 1)ynxn¡2¡
X
n=2

1

n(n¡ 1)ynxn+
X
n=0

1

2ynxn=0:

By taking m=n¡ 2, we reach

X
n=2

1

n(n¡ 1)ynxn¡2=
X
m=0

1

(m+2)(m+1)ym+2xm:

Notice that without loss of generality we can assume that the the second summation
starts from n=0, that is, X

n=2

1

n(n¡ 1)yn xn=
X
n=0

1

n(n¡ 1)yn xn:

Putting altogether, we obtain

X
m=0

1

[(m+2)(m+1)ym+2¡m(m¡ 1)ym+2ym]xm=0;
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and therefore

ym+2=
m¡ 2
m+2

ym;m� 0

By the above recursive formula, we calculate

y2=¡y0; y3=
¡1
3
y1; y4=0; y5=

1
5
y3; y6=0; y7=

3
7
y5; y8=0; ���:

Therefore, the truncated solution is

y(x)� y0(1¡x2)+ y1

�
x¡ 1

3
x3¡ 1

15
x5¡ 3

105
x7
�
¡ ���:

Let us calculate the radius of convergence of the series by the aid of the recursive formula.
Remember that the radius of convergence is determined by the formula

L := lim
n!1

�������� ynyn+1

��������:
The recursive of formula states

n+2
n¡ 2 =

yn
yn+2

=
yn
yn+1

yn+1
yn+2

;

and thus

L2= lim
n!1

�������� ynyn+1

�������� �������� yn+1yn+2

��������= lim
n!1

n+2
n¡ 2 = 1;

and thus the series converges in the interval x2 (¡1; 1) with the radius of convergence L=
1, the same radius of convergence of q(x) = 2

1¡x2 . However, if y1= 0, then the series solu-
tion reduces to a polynomial solution y(x) = y0(1 ¡ x2), and thus with the radius of con-
vergence L =1. This justifies the claim why the radius of convergence of the solution is
equal at least to the radius of convergence of p and q.

Let us summarize what we discussed in this section. We saw that if p; q are analytic
functions, then the problem (4.16) has a unique analytic solution where its radius of con-
vergence is at least equal to the radius of convergence of p; q. In addition, if y 0(x0) = 0,
the recursive formula for coefficients yn are only depends on y0, and thus

y(x)= y0(1+ c1x+ c2x2+ ���):

Similarly, if y(x0)= 0, all coefficients will depends on y1, and therefore

y(x)= y1(x+ d2x2+ d3x3+ ���):

4.2.2 Linear Equation with non-analytic coefficients

We solve here three equations with non-analytic coefficients to illustrate the difficulty that
arises in this case.
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Example 4.12. Consider the problem�
y 00+ jxjy=0
y(0)= y0; y 0(0)= y1

: (4.22)

The existence and uniqueness are guaranteed for the problem since the coefficients are
continuous. Note that the function jxj is not analytic at x0 = 0 and for this, the assump-
tion on the analyticity of the solution may fail. Let us first find a series solution to the
problem for x> 0. The equation in this domain reads�

y 00+xy=0
y(0)= y0; y 0(0)= y1

:

The recursive formula for the coefficients of the series solution is

yn+2=¡
1

(n+2)(n+1)
yn¡1; n� 1;

and y2=0. Let us denote this solution by y+(x)

y+(x)= y0+ y1x¡
y0
6
x3¡ y1

2
x4+

y0
180

x6+
y1
84
x7¡ ���:

For x< 0, the problem reads �
y 00¡xy=0
y(0)= y0; y 0(0)= y1

and the recursive formula changes to

yn+2=
1

(n+2)(n+1)
yn¡1; n� 1:

and again y2=0. Let us denote this solution by y¡(x)

y¡(x)= y0+ y1x+
y0
6
x3+

y1
2
x4+

y0
180

x6+
y1
84
x7+ ���:

Two solution y+ and y¡ connect at x0=0 smoothly of order 2, i.e., y+
(k)(0) = y¡

(k)(0) for k=
0; 1; 2 but not for k � 3. Hence, the derived series solution is not analytic at x0. The figure
(4.3) shows the solution for y0=1 and y1=¡1. The dashed line is the tangent line at x0.

−2 −1 1 2

−4

−2

2

4

Figure 4.3.
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Example 4.13. Consider the following problem:(
x2 y 00+(x¡x2) y 0¡ y=0
y(0)= y0; y 0(0)= y1

: (4.23)

Apparently the problem does not satisfy the conditions of the existence theorem and
therefore, there is no guarantee that the problem possesses a solution (analytic or non-
analytic). Let us try to find a series solution and see the result. By substituting y =X
n=0

1

yn x
n into the equation, we reachX

n=2

1

n(n¡ 1) ynxn+
X
n=0

1

nyn xn¡
X
n=0

1

nyn xn+1¡
X
n=0

1

ynxn=0: (4.24)

Merging summations leads to the following equation

¡y0+
X
n=2

1

(n2¡ 1) yn¡ (n¡ 1)yn¡1)xn=0; (4.25)

and therefore y0=0 and

yn=
1

n+1
yn¡1; n� 2: (4.26)

Note that if y0 =/ 0, there is no series solution to the problem. To justify that the series
converges to the true solution, we have to show that the obtained series has a non-zero
radius of convergence. This is justified easily by the relation

R= lim
n!1

��������yn¡1yn

��������= lim
n!1

n+1=1; (4.27)

and thus this series converges to the true solution in (¡1;1). A few terms of the series
are

y2=
1
3
y1; y3=

1
4
y2=

1
3� 4 y1; y4=

1
5
y3=

1
3� 4� 5 y1; ���: (4.28)

Observe that yn=
2

(n+1)!
y1 and thus

y=2y1

�
1
2!
x+

1
3!
x2+

1
4!
x3+ ���

�
: (4.29)

Therefore we are able to find only one analytic solution to the equation

x2 y 00+(x¡x2) y 0¡ y=0;

at x0=0, and it corresponds to y0=0. It is simply verified that the series in the bracket is
the expansion of the function

y(x)=
ex¡ 1¡x

x
: (4.30)

Observe that

lim
x!0

y(x)= 0:
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In order to find a second linearly independent solution, we can use the reduction of order
method and obtain y(x)=

x+1

x
. Note that the new solution is unbounded at x=0.

Example 4.14. Consider the following equation(
x3 y 00¡ y=0
y(0)= y0; y 0(0)= y1

: (4.31)

Like the second example, the problem does not satisfy the condition of the existence the-
orem and thus a solution is not guaranteed for the problem. Let us try to find a series
solution to the problem. We haveX

n=2

1

n(n¡ 1) ynxn+1¡
X
n=0

1

ynxn=0: (4.32)

A simplification gives

¡y0¡ y1x¡ y2x2+
X
n=3

1

( (n¡ 1)(n¡ 2) yn¡1¡ yn)xn=0; (4.33)

and thus y0= y1= y2=0. The recursive formula for n� 3 is

yn=(n¡ 1)(n¡ 2)yn¡1: (4.34)

According to the formula, we derive yn = 0 for all n � 3 and thus yn = 0 for all n. There-
fore, the problem has a solution if and only if y0 = y1 = 0 and in this case, the only pos-
sible solution is the trivial one y� 0.

Problems
Problem 4.12. By the mathematical induction prove the following formula

(fg)(n)=
X
k=0

n
n!

(n¡ k)!k!f
(k) g(n¡k):

Use this formula to find a recursive formula for the series solution to the equation�
y 00+xy=0
y(0)=1; y 0(0)=0

;

and determine the radius of convergence of the series.
Hint: Write

y(n)(0)=¡(xy(x))(n¡2)jx=0;
and use the above formula.

Problem 4.13. Consider the initial value problem�
y 0+2xy=0
y(0)= 1

:

i. Find the closed form solution to the problem

ii. Find a series solution and compare it with the closed form solution.
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Problem 4.14. Consider the initial value problem�
xy 0¡ y=0
y(1)= 1

:

i. Find the closed form solution to the problem

ii. Find a series solution and compare it with the closed form solution.

Problem 4.15. Find a series solution to the problem�
y 00+xy 0+ y=0
y(0)=1; y 0(0)=0

:

Verify that the solution is the expansion of the solution y= e¡x
2/2.

Problem 4.16. Find a series solution to each of the following problems

i. �
y 00+2y 0+ y=0
y(0)= 0; y 0(0)= 1

ii. �
xy 00+ y=0
y(0)= 0; y 0(0)= 1

iii. �
xy 00+ y=0
y(0)= 1; y 0(0)= 0

iv. (
x2 y 00+4xy 0+2y=0
y(0)= y0; y

0(0)= y1
Problem 4.17. Consider the problem (

x2y 00¡ 2y=0
y(0)= y 0(0)= 0

:

Clearly the problem has the trivial solution y(x) � 0. Try to find a series solution to the problem.
Why the problem has multiple solutions?

Problem 4.18. If x0 is non-zero, it is convenient to shift it to zero. Consider the following problem:�
y 00¡xy 0¡ y=0
y(1)= 1; y 0(1)= 0

: (4.35)

a) Take t=x¡ 1 and write the equation in terms of t.

b) Find a power series solution to the new equation and then rewrite the solution in terms of x

Problem 4.19. The following equation is called a Cauchy-Euler equation

x2y 00+xy 0¡ y=0:

This equation has solutions y1=x and y2=x¡1 which y(0)= 0 and y2(0) is unbounded at x0=0.

i. Set appropriate initial conditions (at x0 = 0) such that the problem has a bounded solution at
x0=0.

ii. Try to solve the problem (with the initial conditions you set for the equation) by the power
series method.

Problem 4.20. Find four nonzero terms of the power series solution to each of the following equa-
tions.

i. y 00+xy 0+ ex y=0; y(0)= 1; y 0(0)= 1
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ii. y 00¡ sin(x) y= cos(x); y(0)= 1; y 0(0)=¡1

iii. (1¡x2)y 00¡ 2xy 0+ sin(x)y=0, y(0)= 1; y 0(0)= 0.

iv. ex y 00+3xy 0¡ tan(x) y= sec(x), y(0)=0; y 0(0)=1.

v. cos(x) y 00+ ex y 0+ y= sin(x), y(0)=1; y 0(0)=¡1.

Problem 4.21. Consider the equation �
y 00+ y= sin(2x)
y(0)=1; y 0(0)=0

:

i. This a linear equation with constant coefficients. Find a solution of the equation.

ii. Now, expand sin(2x) and find a power series solution to the equation and compare two solu-
tions.

Problem 4.22. Consider the equation (
y 00+ y= tan¡1(x)
y(0)= 1; y 0(0)= 0

:

Find a recursive formula for the series solution of the equation and calculate 5 non-zero terms.

Problem 4.23. For each of the following problems, find the recursive formula for the power series
solution and write down a series containing at least 5 nonzero terms.

i. �
y 00+(1+x)y=0
y(0)= 1; y 0(0)= 0

ii. (
y 00+xy 0+x2y=0
y(0)= 0; y 0(0)=1

iii. �
y 00+xy 0+ y=0
y(0)= 1; y 0(0)=¡1

Problem 4.24. For the equation

y 00+xy 0+ y=
1

1¡x

a) Show that cn, the coefficient of the power series solution of the equation around x0= 0, satis-
fies the following recursive formula for n� 0:

yn+2=
1

(n+1)(n+2)
¡ yn
n+2

:

b) Calculate y0 to y4 for the initial conditions y(0)= 0; y 0(0)= 1.

c) Show that the above formula is equivalent to

yn+3=
n+1
n+3

yn+2+
n+1

(n+2)(n+3)
yn¡

1
n+3

yn+1:

d) Find the radius of convergence of the series solution.

Problem 4.25. The application of power series method for non-linear equations is limited. Consider
the following IVP. �

y 00+x sin(y)= 0
y(0)=1; y 0(0)=0

:
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Linearize the equation around the working point and obtain 5 non-zero term of the power series solu-
tion. Use a computer software to compare the obtained solution with the numeric one given by the
software.

4.3 Singular equations

Definition 4.3. Consider the equation

y 00+ p(x) y 0+ q(x) y=0: (4.36)

If functions p; q are analytic at x0, then x0 is called a regular point for the equation. If at
least one of p(x) or q(x) are not analytic at x0, the point is called a singular point for the
equation. There are two kinds of singular points:

� If functions (x¡ x0)p(x) and (x¡ x0)2q(x) are analytic at x0, then x0 is a regular-
singular point.

� If at least one of functions (x¡x0)p(x) or (x¡ x0)2q(x) are non-analytic, the point
is called an essential singular or singular-singular point.

Example 4.15. The point x0=0 is a regular point for the following equation

(1+x2)y 00+ xy=0; (4.37)

since p(x) = 0 and q(x) =
x

1+x2
are both analytic at x0= 0. The point x=¡1 is a regular-

singular point for the following equation

(1¡x2)y 00+ sin(1¡x)y 0+(1¡x)y=0: (4.38)

In fact, for p(x) = sin(1¡x)
1¡x2 , q(x) = 1¡x

1¡x2 , the only singular point is x=¡1. Note that both
p(x) and q(x) have removable singularity at x=1 as

lim
x!1

sin(1¡x)
1¡x2 = lim

x!1

1¡x
1¡ x2 =

1
2
:

Moreover,

(1+ x) p(x)= (1+x)
sin(1¡x)
1¡x2 =

sin(1¡x)
1¡x ;

(1+x)2q(x)= (1+ x)2
1¡x
1¡x2 =

1¡x2
1¡x ;

are analytic at x = ¡1. The point x0 = 0 is an essential singular point for the equation
y 00+ jxjy=0. In fact, x2q(x)=x2jxj is not analytic at x0.

4.3.1 Cauchy-Euler equations
The reason for classifying a point will be clear when we discuss the Cauchy-Euler equa-
tion. The general form of a homogeneous equidimensional or Cauchy-Euler equation is

(x¡x0)2y 00+ a(x¡x0) y 0+ by=0; (4.39)
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where a and b are some constants. Here, we have

p(x)=
a

x¡x0
; q(x)=

b
(x¡x0)2

;

and thus x0 is a regular-singular point for the equation. Fortunately, there is a simple
transformation that converts the above equation to an equation with constant coefficients.
Let x¡x0= et for x>x0. We have

dy
dt
=
dy
dx

dx
dt

=
dy
dx

(x¡x0); (4.40)

d2y
dt2

=
d
dt

�
dy
dx

(x¡x0)
�
=

�
d
dx

�
dy
dx
(x¡x0)

��
(x¡ x0)=

d2y
dx2

(x¡ x0)2+
dy
dt
: (4.41)

Substituting above formula into (4.39), yields

d2y
dt2

+(a¡ 1)dy
dt
+ by=0; (4.42)

which is a second order equation with constant coefficients. The characteristic polynomial
of the new equation is

f(s)= s2+(a¡ 1)s+ b:

Case 1. If f(s) = 0 has two real distinct roots s1; s2, then the new equation has two
solutions es1t, es2t, and by transformation x ¡ x0 = et, two solutions for the
Cauchy-Euler equation are obtained y1(x)= (x¡x0)s1; y2(x)= (x¡x0)s2.

Case 2. If f(s) = 0 has a repeated root s1 = s2 = s, then the equation has two solu-
tions est; test, and then y1(x)= (x¡x0)s, y2(x)= (x¡x0)s ln(x¡x0).

Case 3. If f(s) = 0 has complex roots s = � � i!, the equation has two solutions
y1(x)= (x¡x0)� cos(!ln(x¡x0)), y2(x)= (x¡x0)� sin(! ln(x¡x0)).

Example 4.16. The substitution x= et transforms the equation

x2y 00+xy 0¡ y=0;

into equation d2y

dt2
¡ y = 0 with solutions y1 = et and y2 = e¡t, and thus y1(x) = x and

y2(x) = x¡1. Note that y2(x) goes unbounded when x approaches zero. Now, consider the
following equation

x2y 00¡xy 0+ y=0:

The Cauchy-Euler characteristic equation is

s2¡ 2s+1=0;
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and thus y1(t) = et and y2(t) = tet are two solutions of its transformed equation, and thus
y1(x) = x, y2(x) = x ln(x) are two solutions to the above equation. Note that both solu-
tions vanishes at x=0. Consider the following equation

(x¡ 1)2y 00+(x¡ 1)y 0+ y=0: (4.43)

We take x¡ 1= et and obtain the following constant coefficients equation

d2y
dt2

+ y=0: (4.44)

It is simply seen that the original equation has following solutions

y1(x)= cos(ln (x¡ 1)); y2(x)= sin(ln(x¡ 1)):

Example 4.17. Consider the following equation

x2 y 00¡ 2xy 0+2y=x3ex:

The homogeneous solutions to the equation are y1= x and y2= x2. The particular solution
is obtained by the variation of parameters method

yp(x)=¡x
Z
xexx2

x2
+ x2

Z
x 2ex

x2
=xex:

The general solution is y(x)= c1x+ c2x2+xex.

4.3.2 Regular singular equations: I
Assume that x0 is a regular-singular point for (4.36). If we multiply the equation by (x ¡
x0)2, we derive the following one

(x¡x0)2y 00+(x¡x0)2 p(x) y 0+(x¡x0)2q(x)y=0:

Let us denote function (x¡ x0)p(x) by a(x) and (x¡ x0)2 q(x) by b(x). Then we can write
the equation as follows

(x¡x0)2y 00+(x¡x0) a(x) y 0+ b(x)y=0: (4.45)

Observe that the obtained equation is very similar to a Cauchy-Euler equation except
that a; b are not constant in the present case. Since a(x); b(x) are analytic, we can express
them as

a(x)=
X
n=0

1

an(x¡ x0)n; and b(x)=
X
n=0

1

bn(x¡x0)n;

for some constants an; bn. Comparing Eq.4.45 with the Cauchy-Euler equation, we can
write the solution as

y=(x¡x0)s g(x);

for an analytic function g(x), where s is a constant. The following equation is called the
characteristic polynomial of Eq. (4.45):

f(s)= s2+(a0¡ 1)s+ b0; (4.46)
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where a0; b0 are first coefficient series representation of a(x) and b(x) respectively.

Theorem 4.5. Assume that x0 is a regular-singular point of (4:36) and that f(s) = 0 has
two real roots s1� s2. Then one solution of the equation is

y1(x)= (x¡x0)s1
X
n=0

1

cn (x¡ x0)n; (4.47)

The value c0 is arbitrary and cn are determined by the following recursive formula:

cn=
¡1

f(s1+n)

X
k=0

n¡1

((k+ s1) an¡k+ bn¡k)ck: (4.48)

Proof. We prove the relation for x0=0. First we rewrite the equation (4.36) as

x2y 00+xa(x)y 0+ b(x)y=0: (4.49)

This is very similar to a Cauchy-Euler equation, and thus it is justifiable to assume the
solution in the following form

y(x)=xs g(x); (4.50)

for some constant s and an analytic function g. Without loss of generality, we can assume
that g(0) =/ 0, otherwise we can rewrite y as y = xs+1 g~(x) where g~(0) =/ 0. Let us substi-
tute (4.50) into (4.49). We have

y 0(x)= sxs¡1 g(x)+ xs g 0(x);

y 00(x)= s(s¡ 1) xs¡2g(x)+ 2sxs¡1 g 0(x)+xs g 00(x):

Substitution the above formula into the equation gives

xsfx2 g 00+x(a(x)+ 2s) g 0(x)+F (s; x) g(x)g=0

where

F (s; x)= s2+(a(x)¡ 1)s+ a(x):

In order to have the above identity valid in a neighborhood of x0, it is necessary to have

x2 g 00+x(a(x)+ 2s) g 0(x)+F (s; x) g(x)= 0: (4.51)

Now, let x! 0 and obtain F (s; 0) g(0) = 0 and thus F (s; 0) = 0. Note that F (s; 0) = f(s),
the characteristic polynomial of the equation. For a moment assume that roots of f(s) are
real (not necessarily distinct). We take the biggest root s1 for s in (4.50). Now let us find
a series expansion for g(x). Write it as

g(x)=
X
n=0

1

cn xn;

where c0 is arbitrary (we can take it equal to 1) and calculate the n order derivative of
both sides of (4.51) at x=0. We have

(x2 g 00)(n)jx=0=¡(F (s1; x) g)(n)jx=0¡2s1(xg 0)(n)jx=0¡(xa(x) g 0)(n)jx=0: (4.52)
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Since

(x2 g 00)(n)=
X
k=0

n �
n
k

�
(x2)(n¡k) g(k+2);

is non-zero at x=0 only for n¡ k=2, we obtain

(x2 g 00)(n)jx=0=n(n¡ 1) g(n)(0): (4.53)

Note that g(n)(0)=n!cn and then

(x2 g 00)(n)jx=0=n(n¡ 1)n!cn:
Similarly we have

(xg 0)(n)jx=0=(n! )ncn:

For the first term in the right hand side of (4.52), we have

(F (s1; x) g)
(n)=

X
k=0

n �
n
k

�
F (s1; x)

(n¡k) g(k+2):

Note that for k=n, the expression F (s1; 0) is zero. For 0� k�n¡ 1, we have

F (s1; 0)
(n¡k)=(n¡ k)!(s1an¡k+ bn¡k): (4.54)

Therefore

(F (s1; x) g)
(n)jx=0=n!

X
k=0

n¡1

(s1 an¡k+ bn¡k) ck: (4.55)

For the last expression in (4.52), we have

(xa(x) g 0)(n)jx=0=n!
X
k=0

n¡1

(k+1) an¡k¡1 ck+1: (4.56)

If we take k= k+1, then we reach

(xa(x) g 0)(n)jx=0=n!
X
k=0

n

kan¡k ck: (4.57)

Substitution all above formula into (4.52) gives the recursive formula (4.48). �

Example 4.18. Let us find a homogeneous solutions to the following equation

2x2 y 00¡x(1+ x) y 0+ y=0; (4.58)

for x0=0. Note that zero is a regular-singular point of the equation and

a(x)=¡1
2
¡ 1
2
x; b(x)=

1
2
: (4.59)

The characteristic polynomial is

f(s)= s2¡ 3
2
s+

1
2
; (4.60)
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with two roots s1 = 1, s2 =
1

2
. According to the theorem (4.5), the equation has one solu-

tion

y1= x(c0+ c1x+ c2x2+ :::); (4.61)

where cn; n� 1 are obtained by (4.48). Note that an=0 for n� 2, and bn=0 for n� 1 and
then the summation is zero for k � n ¡ 2. We obtain the following recursive formula for
the coefficients

cn=
(s1+n¡ 1)

2(s1+n¡ 1)
¡
s1+n¡ 1

2

�cn¡1: (4.62)

Since s1=1, the above formula reads

cn=
1

2n+1
cn¡1: (4.63)

Since c0 is arbitrary, we can safely take it equal to 1. Calculating few terms gives the fol-
lowing homogeneous solution to the equation

y1(x)= x

�
1+

1
3
x+

1
15
x2+

1
105

x3+ ���
�
: (4.64)

Example 4.19. Consider the following equation

x2 y 00¡x(1¡x) y 0+ y=0: (4.65)

Again x0=0 is a regular-singular point for the equation. With a(x) =¡1+ x and b(x) = 1,
the characteristic polynomial is f(s) = (s¡ 1)2 with repeated root s1=1. Notice that an=
0 for n � 2 and bn = 0 for n � 1. Thus the summation in (4.48) runs only for k = n ¡ 1.
The recursive formula (4.48) gives

cn=¡
1
n
cn¡1; (4.66)

and thus for c0=1 we obtain

y1= x

�
1¡x+ 1

2
x2¡ 1

6
x3+ ���

�
= xe¡x: (4.67)

Example 4.20. Consider the following equation

x2 y 00+ x(1¡x) y 0¡ y=0: (4.68)

Here a(x) = 1¡ x and b(x) =¡1 and x0= 0 is a regular-singular point of the equation. We
have f(s)= s2¡ 1 and then s1=1, s2=¡1. The recursive formula is

cn=
1

n+2
cn¡1; (4.69)

and thus

y1=x

�
1+

1
3
x+

1
12
x2+

1
60
x3+ ���

�
: (4.70)

It is seen that the obtained series is the expansion of the following function y=2
ex¡ 1¡x

x
.

26 Series Solution of Linear Equations



4.3.3 Regular singular equations: II
The structure of a second linearly independent solution for a regular-singular point
depends on the second root of f(s). For our subsequent discussion, we need to rewrite
(4.48) in the following form

cn(s)=
¡1

f(s+n)

X
k=0

n¡1

((k+ s) an¡k+ bn¡k)ck(s); (4.71)

Here the formula emphasizes the dependence on s that can be any of two roots of the
characteristic polynomial (4.46). Here cn(s1) is the same cn we used before. Again we
assume that s1; s2, the roots of f(s) are real

s1¡ s2 is non-integer.
If s1¡ s2 is non-integer, a second linearly independent solution y2 is

y2=(x¡x0)s2
X
n=0

1

cn(s2) (x¡ x0)n: (4.72)

Example 4.21. Consider the equation (4.58). Since s1¡ s2=
1

2
is non-integer, the second

solution is

y2= x
p
�
c0+ c1

�
1
2

�
x+ c2

�
1
2

�
x2+ ���

�
:

The recursive formula for cn
¡ 1
2

�
is

cn

�
1
2

�
=

1
2n

cn¡1

�
1
2

�
: (4.73)

Calculation of few terms gives

y2= x
p
�
1+

1
2
x+

1
8
x2+

1
48
x3+ ���

�
: (4.74)

Note that y20(x) goes unbounded when x approaches 0.

s1= s2.
If f(s) has a repeated root s1, the second solution y2 is

y2(x)= y1(x) ln(x¡x0)+ (x¡x0)s1
X
n=1

1

hn (x¡x0)n; (4.75)

where hn are determined by the following formula

hn=
dcn
ds

(s1): (4.76)

Proposition 4.2. A recursive formula for hn is as follows

hn=¡
1
n2

X
k=0

n¡1

f[(k+ s1)an¡k+ bn¡k]hk+ an¡k ckg¡
2
n
cn: (4.77)

4.3 Singular equations 27



Proof. By reduction of order method if y1(x) is a solution of the equation, we can write
y2(x) the second solution as

y2= y1(x)

Z
e¡

R
p(x)/x

y1
2(x)

dx: (4.78)

Notice that

e¡
R
p(x)/x

y1
2(x)

= x¡2s
x¡p0 e

¡
�
p1x+

1

2
p2x

2+���
�

g2(x)
: (4.79)

Since p0= 1¡ 2s (note that f(s) = 0 has the repetitive root), we have x¡2s x¡p0= x¡1 and
then

e¡
R
p(x)/x

y1
2(x)

=x¡1(�0+�1x+�2x2+ ���); (4.80)

for some sequence (�n). Note that �0 =
1

y0
2 =/ 0. The second solution y2(x) is then derived

by

y2= y1(x)

Z
x¡1(�0+�1x+�2x2+ ���)=�0 y1(x) ln(x)+

+�1�1 (x)x+
1
2
�2 �2(x) x2+ ���:

Let us take �0=1 for simplicity and write

y2= y1(x) ln(x)+ xs
�
�1xg(x)+

1
2
�2x2 g(x)+ ���

�
: (4.81)

Recall that y1=xs g(x). We write the series in the bracket as

h(x)=
X
k=1

1

hnxn; (4.82)

and find hn. Similar to the proof of the theorem (4.5), if we substitute

y2=xs[g(x) ln(x)+h(x)]; (4.83)

into the equation, we reach

2xg 0+(2s+ a(x)¡ 1) g+x2h00+x(a(x)+ 2s)h0+F (s; x) h=0 (4.84)

In order to find hn for n � 1, we calculate the n order derivative of the above equation.
We have

2(xg 0)(n)+ [(2s+ a(x)¡ 1) g](n)+ [x2h00+ x(a(x)+ 2s)h0+F (s; x) h](n)=0:

If we follow the proof of the theorem (4.5), we obtain

2ncn+
X
k=0

n¡1

an¡k ck+ f(s+n) hn+
X
k=0

n¡1

[(k+ s)an¡k+ bn¡k]hk=0:

The above recursive formula is the same as one given in the theorem after a straightfor-
ward simplification. �

28 Series Solution of Linear Equations



Example 4.22. Consider the equation (4.65). Since s1= s2, we can write the second solu-
tion as

y2=xe¡x ln(x)+ x(h1x+ h2x2+ :::. ):

The coefficients hn can be calculated by formula (4.76) or the recursive formula (4.77). If
we sue (4.77), we get

hn=¡
1
n2
(nhn¡1+ cn¡1)¡

2
n
cn: (4.85)

Here are some values of hn
h1=1; h2=¡

3
4
; h3=

11
36
; :::

and then

y2= xe¡x ln(x)+ x2
�
1¡ 3

4
x+

11
36
x2¡ ���

�
: (4.86)

It is interesting to find the second solution by the aid of reduction of order method. Since
y1=xe¡x, a linearly independent solution y2 is

y2= y1(x)

Z exp
¡R 1¡x

x

�
y1
2(x)

= xe¡x
Z
ex

x
:

If we write the argument in the integral as the series

ex

x
=
1
x
+1+

1
2
x+ ���;

we reach

y2= xe¡x ln(x)+xe¡x
�
x+

1
4
x2+

1
18
x3+ ���

�
:

Finally, if we expand e¡x, we obtain

e¡x
�
x+

1
4
x2+

1
18
x3+ ���

�
=

�
1¡x+ 1

2
x2+ ���

��
x+

1
4
x2+

1
18
x3+ ���

�
=

=x¡ 3
4
x2+

11
36
x3+ ���:

Putting all together we obtain the same solution we derived above by (4.77).

s1¡ s2=m an integer.

Let the roots of f(s) are an integer, that is, s1¡ s2=m2Z. Then, a second linearly inde-
pendent solution is

y2=�y1(x) ln(x¡x0)+ (x¡x0)s2
X
n=0

1

en (x¡x0)n; (4.87)

where the constant � and coefficients en are determined by the following formula

�= lim
s!s2

(s¡ s2) cm(s); where m= s1¡ s2; (4.88)

en=
d
ds
(s¡ s2) cn(s)js=s2: (4.89)
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4.3.4 Regular singular equations: III
If f(s) has complex roots s1;2=�� i! then s1¡ s2 is non integer and thus we can write

y1(x)=x�xi!
X
n=0

1

cn(s1) xn; y2(x)= x�xi!
X
n=0

1

cn(s2)xn: (4.90)

It is seen that cn(s2)= cn(s1), and thus

y2(x)=x�x¡i!
X
n=0

1

cn(s1)xn: (4.91)

According to the superposition property, we can derive two real solutions 1

2
(y1 + y2) and

1

2i
(y1¡ y2) for the equation. It is simply verifies that two real solutions are as follows

y1(x)= x�
X
n=0

1

fRe cn(s1) cos(!lnx)¡ Im cn(s1) sin(!lnx)gxn (4.92)

and

y2(x)= x�
X
n=0

1

fRe cn(s1) sin(!lnx)+ Im cn(s1) cos(!lnx)gxn (4.93)

Example 4.23. The following equation

x2y 00+ x(1+x)y 0+ y=0;

has the index equation

s2+1=0;

and thus s1;2=�i. The formula for cn(i) is

cn(i)=¡
n¡ 1+ i
n(n+2i)

cn¡1(i):

and by assuming c0=1, we obtain

c1(i)=¡0.4¡ 0.2i; c2(i)= 0.1+ 0.05i; c3(i)=¡0.022¡ 0.008i; :::

and thus

y1(x)= 1+ [¡0.4 cos(lnx)+ 0.2 sin(lnx)]x+ [0.1 cos(lnx)¡ 0.05 sin(lnx)]x2+ ���

y2(x)= 1+ [¡0.4 sin(lnx)¡ 0.2 cos(lnx)]x+ [0.1 sin(lnx)+ 0.05 cos(lnx)]x2+ ���:

Problems
Problem 4.26. Classify the singular points of each of the following equations

i. x3 y 00¡x sin(x) y 0+(1¡ cos(x)) y=0,

ii. x(1+x) y 00+ y 0¡ y=0,

iii. (1¡x2) y 00+xy 0¡ ex y=0,

iv. sin2(x)y 00+ y 0+xy=0.
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Problem 4.27. Find the general solution to the following Cauchy-Euler equations:

i. x2 y 00+6xy 0+6y=0.

ii. x2 y 00+7xy 0+9y=0.

iii. x2 y 00+xy 0+4y=0.

iv. x2 y 00+3xy 0+2y=x cos(ln(x)).

v. (2x+1)2y 00+2(2x+1)y 0¡ 4y=x.

Problem 4.28. Consider the following equation

xy 00+2(1¡x)y 0+(x¡ 2)y=0

a) Find a series solution for the equation around x0 = 0. Verify that the obtained series is the
expansion of �1= ex.

b) Use the reduction of order method to find �2(x), the second solution of the equation.

c) Use variation of parameters method to find the general solution to the following equation:

xy 00+2(1¡x)y 0+(x¡ 2)y=xex

Problem 4.29. Consider the following equation:

xy 00¡ (1¡x)y 0+ y=0:

a) Use Frobenius method to obtain a solution to the problem.

b) Verify that y(x)=x2 e¡x is a solution to the problem�
xy 00¡ (1¡x)y 0+ y=0
y(0)= y 0(0)= 0

:

This implies that the above problem has multiple solution. Why?

c) Obtain 5 nonzero terms of the second solution.

Problem 4.30. Consider the equation

x2y 00+x(1+x)y 0¡ (1¡ 2x)y=0:

i. Use Frobenius method and show one solution is y(x) =xe¡x.

ii. Use reduction of order and conclude that the second solution is

z(x) =xe¡x
Z
ex

x3
dx:

iii. Expand the integral and calculate few terms of the second solution.

iv. Calculate the second solution by the method described in this section and compare two solu-
tions.

Problem 4.31. Consider the equation

x2y 00¡x(1¡x)y 0+ y=0:

i. Use power series method and conclude that the first solution is y(x)=xe¡x.

ii. Use reduction of order to obtain the second solution as

z(x)=xe¡x
Z
ex

x
dx:

iii. Expand the ex and calculate few terms of the above solutions.
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iv. Calculate the second solution by the method described in this section and compare two solu-
tions.

Problem 4.32. For each of the following equation, try to find two solutions. For each solution calcu-
late few terms.

i. 4x2 y 00¡ 2x(1+x) y 0+2y=0.

ii. x2 y 00+xy 0+(x2¡ 1) y=0.
iii. x2 y 00+x(1+ 2x) y 0+(x¡ 2)y=0.
iv. 4x2 y 00+4x(1+2x) y 0¡ y=0:

v. x2 y 00¡xy 0+(1¡x)y=0:

vi. x2 y 00+xy 0¡ (x+ 1

9
) y=0

vii. x2 y 00+x(x2+1)y 0¡ 1

4
y=0

viii. x2 y 00+x(1¡ 2x)y 0+(x¡ 2

9
)y=0

ix. x2 y 00+x(1+x) y 0+(
4

3
x¡ 1

9
)y=0

Problem 4.33. For the equation

x(1¡x) y 00+ y 0+(1¡x) y=0; x > 0

a) Find two roots of the characteristic equation for x0=0.

b) Show that yn the coefficients of first series solution y(x) is obtained by the following recursive
formula for y1=¡y0 and for n� 1

yn+1=
n2¡n¡ 1
(n+1)2

yn+
1

(n+1)2
yn¡1

c) Obtain the interval of convergence for y(x) using the recursive formula.

d) Show that for the second solution z(x), the coefficients (dn) of the series solution are obtained
through the following recursive formula

dn=¡
2

n
cn¡

1

n2

X
k=0

n¡1

ck¡
1

n2

(X
k=0

n¡1

kdk+ dn¡1

)

Problem 4.34. Here we obtain the power series solution associated with the complex roots of char-
acteristic equation. For the equation

x2y 00+x(1¡x) y 0+ y=0; x > 0

i. Show that s1= i; s2=¡i are roots of the characteristic equation for x0=0.

ii. Show that the coefficients of power series solution at x0=0 are obtained through the formula

yn(i)=

�
n2¡n+2
n(n2+4)

+ i
2¡n

n(n2+4)

�
yn¡1(i)= yn(¡i)

iii. Find four non-zero terms of each series solution.

4.4 Differential equations of mathematical physics
In this section, we study a few equations that are frequently used in mathematical
physics. They appear again the second part of this book where we study partial differen-
tial equations.
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4.4.1 Hermite equation
The general form of Hermite equation is

y 00¡ 2xy 0+�y=0; (4.94)

where � 2 R is a parameter. The point x0 = 0 is a regular point of the equation and the
recursive formula of the coefficients is

yn+2=
2n¡�

(n+2)(n+1)
yn; n� 0: (4.95)

Here the values y0 and y1 are arbitrary and thus the equation admits two linearly inde-
pendent analytic solutions. Observe that for � = 2n, the coefficient yn+2 is zero and then
yn+2k = 0 for any k. Therefore, one of the solutions is a polynomial of order n which is
denoted by Hn(x) and is called the Hermite polynomial after the French Mathematician
Charles Hermite (1822 � 1901).

Example 4.24. Consider the following initial value problem�
y 00¡ 2xy 0+ 10y=0
y(0)= y0; y

0(0)= y1
: (4.96)

The recursive formula (4.95) implies y7= y9= y11= ���=0, and thus

y= y0

�
1¡ 5x2+ 5

2
x4+

1
6
x6+ ���

�
+ y1

�
x¡ 4

3
x3+

4
15
x5
�
: (4.97)

Now, if y0=0, we obtain the polynomial solution

H5(x)=x¡ 4
3
x3+

4
15
x5: (4.98)

Proposition 4.3. (Rodrigues formula) The polynomial solution to the Hermite equa-
tion is obtained by the following formula

Hn(x)= (¡1)n ex2 dn

dxn
e¡x

2
: (4.99)

Proof. We verify that Hn satisfies (4.94). For the sake of simplicity, let us use the nota-
tion Dn=

dn

dxn
. By substituting Hn into the equation, we reach

Dn+2 e¡x
2
+2xDn+1 e¡x

2
+2(n+1)Dn e¡x

2
=0: (4.100)

We claim that the above identity is true. We have

Dn+2 e¡x
2
=¡2Dn+1(xe¡x

2
)=¡2

X
k=0

n+1 �
n+1
k

�
DkxDn+1¡k (e¡x

2
);

and by simplifying Simplification the right hand side, we get

Dn+2 e¡x
2
=¡2xDn+1 e¡x

2¡ 2(n+1)Dn e¡x
2
; (4.101)
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and thus the claim. �

Proposition 4.4. Hn(x) is even function if n is even and odd if n is odd.

Proof. According to the formula (4.99) and the fact that the derivatives of even polyno-
mials are odd and vice versa, the function

Dn e¡x
2
=D(Dn¡1 e¡x

2
); (4.102)

is even if Dn¡1 e¡x
2
is odd and odd if Dn¡1 e¡x

2
is even. But, H0= 1 is even and H1= 2x

is odd and this justifies the claim. �

Remark 4.1. The Hermite equation finds its application in quantum mechanics. Usu-
ally, the Hermite equation is written in the following eigenvalue problem form

d
dx
[e¡x

2
y 0] =¡�e¡x2y: (4.103)

Here � is called an eigenvalue and a non-zero solution of the equation is called an eigen-
function �(x). Physicists are interested in eigenfunctions with the bounded energy, that is,

E[�] =

Z
0

1
e¡x

2
�2(x) dx<1: (4.104)

It is seen that the above integral diverge if � =/ 2n and converges if � = 2n, and thus
�(x)=Hn(x) are only acceptable eigenfunctions.

4.4.2 Chebyshev equation
The general form of the Chebyshev equation is

(1¡x2)y 00¡xy 0+�y=0; (4.105)

where � 2 R is a parameter. The point x0 = 0 is a regular point for the equation and the
convergence interval of the series solution is (¡1; 1). The recursive formula for the coeffi-
cients of the series solution is

yn+2=
n2¡�

(n+2)(n+1)
yn; n� 0 (4.106)

with y0 and y1 arbitrary and thus two linearly independent analytic solutions. Observe
that if � = n2 then yn+2 = 0 and therefore yn+2k = 0 for all k � 0. This implies that one
solution to the equation is a polynomial of order n. This polynomial is denoted by Tn(x),
and is called the Chebyshev polynomial after the Russian mathematician Pafnuty
Chebyshev (1821-1894).

Example 4.25. Consider the following initial value problem(
(1¡x2)y 00¡xy+4y=0
y(0)= y0; y 0(0)= y1

: (4.107)
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The recursive formula implies y2=¡2y0 and that y2k=0 for all k� 2. The solution is

y= y0(1¡ 2x2)+ y1

�
x¡ 1

2
x3¡ 1

8
x5¡ ���

�
: (4.108)

If y1=0, the above series reduces to the polynomial 1¡ 2x2.

Proposition 4.5. The polynomial solution of (4:105) is derived by the formula

Tn(x)= cos(n cos¡1x): (4.109)

Proof. If we take x= cos(�) in (4.105), the equation is transformed to the form

d2y
d�2

+�y=0: (4.110)

Clearly, the above equation has one solution y = cos( �
p

�). Assuming � = n2, n 2 Z, we
obtain y = cos(n cos¡1x). We show that this solution is a polynomial of order n. By the
formula

cos(n�)=
1
2
[(ei�)n+(e¡i�)n] =

1
2
[(cos�+ i sin�)n+(cos�¡ i sin�)n]; (4.111)

and the binomial formula

(a+ b)n=
X
k=0

n �
n
k

�
an¡k bk; (4.112)

we derive

cos(n�)=
X
k:even

n �
n
k

�
(¡1)k/2 cosn¡k� sink�: (4.113)

Now replace sink�=(1¡ cos2�)k/2 for k even, and x= cos�, to obtain

cos(ncos¡1x)=
X
k:even

n �
n
k

�
xn¡k(1¡x2)k/2; (4.114)

which is a polynomial of order n. �

Properties of Chebyshev polynomial.

Tn(x) have important properties and are extensively used in the approximation of func-
tions, and also in mathematical physics. We discuss some of its properties below.

1. The solution of a Chebyshev equation goes unbounded at x = �1 if � =/ n2. The
only possibility that the solution remain bounded is the case � = n2 for n, an
integer.

2. Tn(x) is an even function for n even and an odd function for n odd.

3. Tn(x) satisfies the following recursive formula

Tn+1(x)= 2xTn(x)¡Tn¡1(x); (4.115)
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where T0(x) = 1 and T1(x) = x. In fact, the above formula is another form of the
familiar identity

cos((n+1)�)+ cos((n¡ 1)�)= 2 cos� cos(n�): (4.116)

The figure (4.4) shows a few of the Chebyshev polynomials.

−1. 0 −0. 5 0. 0 0. 5 1. 0
−1

1

T1(x)

T2(x)

T3(x)

Figure 4.4. The graphs of some Chebyshev polynomials.

4. Since every continuous function can be approximated by polynomials, we can
approximate a continuous function defined in ¡1� x� 1 by Tn(x), that is,

f(x)=� c0T0+ c1T1(x)+ ���+ cnTN(x): (4.117)

The advantage of expanding f in terms of Tn comes from the following orthogonal
property: Z

¡1

1 1

1¡x2
p Tn(x)Tm(x)dx=

8>><>>:
0 n=/ m
� n=m=0
�

2
n=m=/ 0

: (4.118)

The proof is left as an exercise. This property let us to determine constants ck in
(4.117) as follows. For c0, we multiply (4.117) by 1

1¡x2
p T0 and integrate in the

interval (¡1; 1). Since T0=1, according to the orthogonality property, we obtainZ
¡1

1 1

1¡x2
p f(x)dx= c0

Z
¡1

1 1

1¡x2
p dx= c0�; (4.119)

and thus

c0=
1
�

Z
¡1

1 1

1¡x2
p f(x) dx: (4.120)

Repeating the calculation for k� 1, we reachZ
¡1

1 1

1¡x2
p f(x)Tk(x) dx= ck

Z
¡1

1 1

1¡x2
p Tk

2(x)dx:

But by trigonometric substituting, we haveZ
¡1

1 1

1¡x2
p Tk

2(x)dx=

Z
0

�

cos2(k�) d�=
�
2
;
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and therefore

ck=
2
�

Z
¡1

1 1

1¡x2
p f(x)Tk(x): (4.121)

In the problem set, we asked the reader to approximate a continuous function with
some polynomial and compare the results.

4.4.3 Legendre equation

The general form of Legendre equations is

(1¡x2)y 00¡ 2xy 0+�y=0; (4.122)

where � is a real value. The point x0 = 0 is regular and the equation is defined in the
interval ¡1<x< 1. The recursive formula for the coefficients of the series solution is

yn+2=
n(n+1)¡�
(n+2)(n+1)

yn: (4.123)

The radius of convergence of the series is L = 1. If � = n(n + 1) for some positive integer
value n, then one solution becomes a polynomial which is denoted by Pn(x) and is called
the Legendre polynomial after the French mathematician Adrien Marie Legendre
(1752-1833).

Example 4.26. Consider the problem(
(1¡ x2)y 00¡ 2xy 0+6y=0
y(0)= y0; y 0(0)= y1

: (4.124)

Here �=6= 2� 3 and then the equation have a polynomial solution. By the recursive for-
mula, we have y2=¡3y0, and y2k=0 for k� 2. Therefore, the general solution is

y= y0(1¡ 3x2)+ y1

�
x¡ 2

3
x3+

1
5
x5+ ���

�
: (4.125)

If y1=0, then y=1¡ 3x2 is the Legendre polynomial solution.

Proposition 4.6. (Rodrigues) Pn(x) are derived by the formula

Pn(x)=
(¡1)n
2nn!

dn

dxn
(1¡x2)n: (4.126)

Proof. The factor in the front of the derivative is just to normalize the polynomials.
First, we have

Dn+1[(1¡ x2)D(1¡x2)n] =
X
k=0

n+1 �
n+1
k

�
Dk(1¡x2)Dn+2¡k (1¡x2)n: (4.127)
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Simplifying the above formula gives

Dn+1[(1¡x2)D(1¡x2)n] = (1¡x2)Dn+2(1¡x2)n¡ 2x(n+1)Dn+1(1¡x2)n¡
¡n(n+1)Dn(1¡x2)n:

On the other hand, we have

Dn+1[(1¡x2)D(1¡ x2)n] =¡2nDn+1[x (1¡ x2)n] =
¡2nxDn+1(1¡x2)n¡ 2n(n+1)Dn(1¡ x2)n:

Equating two above identities, gives

(1¡x2)D2Pn(x)¡ 2xDPn(x)+n(n+1)Pn(x)= 0; (4.128)

which is the Legendre equation. �

Properties of Legendre polynomials.

We use Legendre equation frequently in the second part of this book. Here, we intro-
duce some of its important properties.

1. The solution of Legendre equation goes unbounded at x=�1 except the polyno-
mial solution for �= n(n+ 1). In this case, the equation has a polynomial solution
Pn(x).

2. It is verified immediately from the Rodrigues formula that Pn(x) is even function
for n even and odd for n odd. The figure (4.5) shows the graphs of some
Legendre polynomials:

−1. 0 −0. 5 0. 0 0. 5 1. 0
−1

1

P1(x)

P2(x)

P3(x)

Figure 4.5. The graphs of some Legendre polynomials.

3. Polynomials Pn(x) satisfies the following orthogonality propertyZ
¡1

1

Pn(x)Pm(x) dx=

(
0 n=/ m

2

2n+1
n=m

: (4.129)

We can approximate continuous functions by Pn(x) in the interval ¡1 � x � 1.
That is, if f is continuously defined in [¡1; 1], then

f(x)=� c0P0(x)+ ���+ cnPn(x); (4.130)
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where by (4.129), the coefficients are determined by the formula

cn=
2n+1
2

Z
¡1

1

f(x)Pn(x) dx: (4.131)

4.4.4 Bessel equation
The general form of the Bessel equation is

x2y 00+xy 0+(x2¡�2)y=0; (4.132)

where � 2R is a parameter. The point x0= 0 is a regular-singular point for the equation.
In order to keep the solution, we must impose the following initial conditions

lim
x!0

y(x): bounded; and, lim
x!0

y 0(x): bounded: (4.133)

Note that a(x) = 1 and b(x) = x2¡ �2 and the characteristic polynomial is f(s) = s2¡ �2,
with roots s1=� and s2=¡�. Therefore, one solution is

y(x)=x�
X
n=0

1

cnxn;

where cn are calculated from formula (4.48). A direct simplification yields8>>>><>>>>:
cn=¡ 1

n(n+2�)
cn¡2

c0= arbitrary
c1=0

: (4.134)

Note that cn=0 for n=2k+1 and for n=2k, we have

c2k=¡
1

22 k(k+�)
c2k¡2; k=1; 2; ���:

In particular, if �=m an integer, then

c2k=
(¡1)km!

22k k! (k+m)!
;

and thus

y(x)= c0
X
k=0

1
(¡1)km!

22k k! (k+m)!
x2k+m:

For c0=
1

m!2m
, we obtain the Bessel function of the first type

Jm(x)=
X
k=0

1
(¡1)k

k!(k+m)!

�
x
2

�
2k+m

:

The second solution of the Bessel equation can be derived by the method outlined in
this chapter. Since s1¡ s2=2�, if 2� is not an integer, the second solution is

Y�(x)= x¡�
X
n=0

1

cn(¡�)xn; (4.135)
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where cn(¡�) can be calculated by formula (4.71). If 2�= n is an integer, the second solu-
tion is determined by the method we explained in the previous section. The second solu-
tion Y�(x) is called the Bessel function of second type. The following figure shows J1/2(x)
and J2(x) in the same coordinate.

5 10 15 20
−0. 2

0. 2

0. 4

0. 6 J2(x)

J1/2(x)

Figure 4.6.

Observe the quasi-periodicity of the Bessel functions. We can justify this by the fol-
lowing argument. By the substitution u = x

p
y, the equation (4.132) becomes (see the

problem set)

u00+

 
1¡

�2¡ 1

4

x2

!
u=0: (4.136)

When x!1, the equation (4.136) looks like a harmonic oscillator with the solutions u=
A0 sin(x+ '0). This justifies the fact that for x sufficiently large, the solution y(x) is

y� A0

x
p sin(x+ '0): (4.137)

4.4.5 Gauss hyper-geometric equation

The general form of Gauss equation is

x(x¡ 1) y 00+ [(�+ �+1)x¡ ]y 0+��y=0; (4.138)

where �; �;  are constants. Although, the form of the equation seems somehow far
reaching, the reader is asked to verify that all equations we studied above are specific
instances of this general equation. Note that the Gauss equation has tow regular-singular
points x0=0 and x1=1. At x0=0, we have

p(x)=
(�+ �+1)x¡ 

x¡ 1 ; and q(x)=
��x
x¡ 1 ; (4.139)

and the characteristic polynomial is

f(s)= s2+( ¡ 1)s; (4.140)
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with roots s=0 and s=1¡ . If  is not an integer, then there are two independent solu-
tions

y1(x)=
X
n=0

1

yn(0)xn; and y2(x)=x1¡
X
n=0

1

yn(1¡ ) xn: (4.141)

If we substitute y1(x) and y2(x) into the Gauss equation, we get the following recursive
formula for the coefficients

cn(0)=
(�+n¡ 1)(�+n¡ 1)

n(n¡ 1+ )
cn¡1(0); (4.142)

and

cn(1¡ )=
(n+�¡ )(n+ � ¡ )

n(n+1¡ )
cn(1¡ ): (4.143)

A straightforward calculation gives the following formula if y0=1:

cn(0)=

Q
k=1
n

(�+ k¡ 1)(�+ k¡ 1)
n!
Q

k=1
n (+ k¡ 1) ; (4.144)

cn(1¡ )=

Q
k=1
n

(k+�¡ )(k+ � ¡ )

n!
Q

k=1
n (k+1¡ )

: (4.145)

The series with the coefficients cn(0) is denoted by F (�; �; ; x) and are called hyper-geo-
metric functions. Accordingly, the series with the coefficients cn(1 ¡ ) is written F (� ¡
+1; � ¡ +1; 2¡ ;x). We conclude that for  a non-integer, the solution to (4.138) is

�(x)= c1F (�; �; ;x)+ c2x1¡F (�¡ +1; � ¡ +1; 2¡ ; x): (4.146)

For the solution at x1=1, we take the substitution t=1¡x to rewrite the equation as

t(t¡ 1)yt00+ [(�+ �+1) t¡  0] yt
0+��yt=0; (4.147)

where  0= �+ � + 1¡ . Thus, for  a non-integer, the solution at x1= 1 can be written
as

�(x)= c1F (�; �; 
0; 1¡x)+ c2 (1¡x)1¡

0
F (¡ �;  ¡�; 2¡  0; 1¡x): (4.148)

For  an integer, the second solution is determined by the method we presented in the
previous section.

Problems
Problem 4.35. Verify that the radius of convergence of the series generated by (4.95) is infinity.

Problem 4.36. Find a polynomial solution for the following equation:

y 00¡ 2xy 0+8y=0;

and compare it with H4(x).

Problem 4.37. Show that the Hn(x) satisfy the following recursive formula

Hn+1¡ 2xHn+2nHn¡1=0:
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Problem 4.38. Show the following relation for Hn

d
dx
Hn=2nHn¡1:

Problem 4.39. Find the radius of the convergence of the series generated by (4.106).

Problem 4.40. Use mathematical induction to prove that cos(n�) is a polynomial in terms of cos(�)
and conclude that one solution of the Chebyshev equation is a polynomial.

Problem 4.41. Show that Tn(x) even if n is even number and odd if n is odd.

Problem 4.42. Show that the Chebyshev polynomial satisfies the following recursive formula

Tn+1(x) =2xTn(x)¡Tn¡1(x):

Use the above formula to calculate Tn(x) for n=0; 1; 2; 3.

Problem 4.43. Prove the orthogonality property (4.118).

Problem 4.44. Find two solutions of the following equations

i. (1¡x2)y 00¡xy+9y=0:

ii. (1¡x2)y 00¡xy+ 16y=0:

Problem 4.45. Find an approximation of the following analytic functions of in the interval (¡1; 1) in
terms of polynomials (T0; :::; T4) and compare them with the approximation by (1; x; :::; x4):

i. f(x)= ex,

ii. f(x)= sin(x).

Problem 4.46. Solve the following equation

(1¡x2)y 00¡ 2xy 0+2y=0:

Problem 4.47. Show that the substitution u = x
p

y transforms the Bessel equation into the fol-
lowing equation

u00+

 
1¡

�2¡ 1

4

x2

!
u=0:

Since the above equation looks like a simple harmonic oscillator for large x, it justifies that y(x)! 0
when x!1.

Problem 4.48. Consider the following equation

y 00+ cxm y=0;

for c> 0 and m=/ ¡2.

i. Apply the substitution y= x
p

u to obtain

x2u00+xu0+(cxm+2¡ 1
4
)u=0:

ii. Now apply the substitution

t=
2 c
p

x
m+2

2

m+2
;

to obtain

t2u00+ tu0+(t2¡ 1
(m+2)2

)u=0:

iii. Now solve the following equation using the above substitution:

y 00+9x3 y=0:
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Problem 4.49. Show that the substitution t=2ex/2 transforms the following equation into a Bessel
equation

y 00+(ex¡m2)y=0:

Use the above substitution to solve the following equation

y 00+(ex¡ 4)y=0:

Problem 4.50. Show that the equation

(x¡ r1)(x¡ r2) y 00+ a(x¡ r3) y 0+ by=0

can be transformed to the Gauss equation through the substitution

x=(r2¡ r1)z+ r1:

Use the above transformation to solve the following equation

3x(x¡ 2) y 00¡ (x+3)y 0+ y=0
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