
Chapter 3
Higher Order Equations

The dynamics of several physical systems are expressed in terms of second or higher-order
ordinary differential equations. We study this class of equations in this chapter.

3.1 Introduction

1. (General form) The general form of a second-order ODE is

y 00= f(x; y; y 0); (3.1)

where y 00= d2y

dx2
is the second-order derivative of unknown function y(x). A standard

model of this equation in physics is the Newton's second law

m
d2x
dt2

= f(t; x; x0);

where x = x(t) is the position function of a mass m, and f is the total force exer-
cising on m. The general form of an initial value problem for second-order equation
is as follows 8<: y 00= f(x; y; y 0)

y(x0)= y0
y 0(x0)= y1

:

To determine the location of a mass m at any instance of time, one needs in addi-
tion to the total force, the initial state of the mass which is the pair (x(0); v(0)) or
equivalently (x(0); x0(0)). The general form of a n-order equation is

y(n)= f(x; y; y 0; :::; y(n¡1));

where y(n) stands for nth order derivative dn y

dxn
. The associated initial value problem

contains n initial conditions of the form

y(x0); y 0(x0); :::; y
(n¡1)(x0):

2. (Linear equation) If function f in Eq.3.1 is linear with respect to y and y 0, then
the equation is called linear . The general form of a second-order linear equation is

y 00+ p(x)y 0+ q(x)y= r(x): (3.2)
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The justification of the terminology will be clear if we think of differentiation as an
operator . In fact, if we interpret y 0 := dy

dx
as the action of mapping d

dx
on function y

and rewrite it as d

dx
[y] or simply by D[y], where D :=

d

dx
, then Eq.3.2 can be

rewritten as

(D2+ p(x)D+ q(x))[y] = r(x); (3.3)

where D2 :=
d2

dx2
. For the sake of simplicity, let us denote the composite operator

D2+ p(x)D+ q(x) by T , and rewrite equation in the following operator form

T [y] = r(x):

It is straightforward to verify that T is a linear operator , that is, for any two func-
tions y1; y2 and any constants c1; c2, operator T satisfies the relation

T [c1y1+ c2 y2] = c1T [y1] + c2T [y2]:

Remember the concept of linear mappings from linear algebra and compare it with
the above concept of a linear differential operator .

3. (Linear homogeneous equations) If function r(x) in Eq.3.2 is identically zero,
the equation is called linear homogeneous, otherwise, linear non-homogeneous. The
solutions of a linear homogeneous equation is called homogeneous solution. The
general form of a linear homogeneous equation is

y 00+ p(x)y 0+ q(x)y=0;

or in the operator form T [y] = 0. Note that if y1(x); y2(x) are two homogeneous
solutions, that is, T [y1] =T [y2] = 0, then any linear combination

y= c1 y1(x)+ c2 y2(x);

is also a homogeneous solution. The claim is simply verified by the linearity prop-
erty of T , that is,

T [y] =T [c1 y1+ c2 y2] = c1T [y1] + c2T [y2] = 0:

Remember the concept of null space of a linear mapping L: Rn ! Rm in linear
algebra. A vector u~ is in the null space of L if L[u~ ] = 0, and moreover, the null
space of a linear mapping is a vector subspace of the domain space, that is, if u~ 1; u~ 2
are in null space of L, then for any constants c1; c2, the linear combination c1 u~ 1 +
c2 u~ 2 is in the null space of L. The same property holds for the differential operator
T and the linear homogeneous differential equations.

4. (Non-homogeneous equations) Consider non-homogeneous equation T [y] =
r(x). If yp(x) is a solution to the equation, that is, T [yp(x)] = r(x), then for any
homogeneous solution yh which is in the null space of T , T [yh] = 0, function yh+ yp
solves the non-homogeneous equation, that is, T [yh + yp] = r(x). The claim is
simply verified using the linearity property of T , that is,

T [yh+ yp] =T [yh] +T [yp] = 0+ r(x):
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5. (Mass-spring system) Consider the following figure where a mass m is connected
to an ideal spring with stiffness k:

k

xf

m

Figure 3.1.

In the figure, x(t) represents the displacement of the mass with respect to its
resting position, where the spring is not under stretch or contraction. The force
exercising by the spring follows the Hook's law f = ¡kx(t) where k > 0 denotes
the stiffness of the spring. If m is not under any external force fext(t), we reach the
following equation for the displacement x

m
d2x
dt2

=¡kx: (3.4)

We have to solve the above equation in order to determine the position of m at any
instance of time.

6. (Initial states of the mass-spring) The state of a mass-spring system is defined
by pair (x(t); x0(t)), the position and the velocity, and thus the initial state is the
pair (x0; v0) where v0 = x0(0) is the initial velocity of the mass. The following
problem is the associated initial value problem of the mass-spring system(

m
d2x

dt2
=¡kx

x(0)=x0; x0(0)= v0
: (3.5)

It is simply verified that above problem is solved for the following function

x(t)=x0 cos
�

k
m

r
t

�
+ v0

m
k

r
sin
�

k
m

r
t

�
:

Note that if x0 = v0 = 0, then x(t) = 0 for all t, that means the system is in rest or
equilibrium. Also note that differential equation

d2x
dt2

+
k
m
x=0;

has two linearly independent solutions

x1(t)= cos
�

k
m

r
t

�
; x2(t)= sin

�
k
m

r
t

�
:

It is clear from the solution that mass m moves back and forth following a trigono-
metric sine function.
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7. (External forces) If an external engine is connected to m exercising a force f =
r(t), then Eq.(3.4) reads

m
d2x
dt2

+ kx= r(t): (3.6)

Let us see the role of r(t) in the solution of the equation. Consider the initial value
problem (

m
d2x

dt2
+ kx= r(t)

x(0)= 0; x0(0)=0
;

where r(t) is as follows

r(t)=

�
0 t < 1
1 t > 1

:

In fact, for t< 1, the problem is(
m

d2x

dt2
+ kx=0

x(0)= 0; x0(0)=0
;

and the unique solution is x(t)= 0 f or t< 1. For t> 1, the problem becomes(
m

d2x

dt2
+ kx=1

x(0)= 0; x0(0)=0
;

and the unique solution is x(t) = m

k

�
1¡ cos

�
k

m

q
t
� �

. Therefore, the mass-spring

systems starts motion only at t=1 due to the external force r(t).

Remark. The general solution of a mass-spring system consists two terms: 1) the
solution associated to the initial conditions, 2) the solution associated to the
external force.

8. (Energy interpretation) Obviously if the mass-spring is not initially at the
resting state, the the mass moves periodically, and the domain of motion depends
on the internal energy of the system (in the absence of any external force). Mul-
tiply equation mx00+ kx=0 by x0, and rewrite it as follows

d
dt

�
1
2
m jx0j2+ kx2

�
=0:

and therefore

E(t) :=
1
2
m [x0(t)]2+ k [x(t)]2= const:

Note that in the above formula, the first term is the kinetic energy of the mass,
and the second term is the potential energy of the spring in accordance with the
relation f = ¡ d

dx
(kx2). Therefore, the total energy of the mass is independent of t

and thus is equal to its initial energy

E(t)=E0 :=
1
2
mv0

2+ kx0
2:
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The graph of the energy in the (x; x0)-plane is very important for us. The following
figure show three different level of energy for the system of m= k=1.
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9. (Damped mass-spring) Now assume the friction force for the motion of the form
fd = ¡2�v where � is a constant and v is the velocity of m. The differential equa-
tion in this case reads

m
d2x
dt2

=¡kx¡ b dx
dt
: (3.7)

Note that in the presence of friction, the energy of the systems vanishes in time
Accordingly, we expect that the motion vanishes in long term, that is,

lim
t!1

x(t)= 0:

The following figure shows the level of energy for �= 0.05 of a system with m= k=
1.

-0.5 0.5 1

-0.5

0.5

10. (A nonlinear equation) Now we consider a single pendulum that it mathemat-
ical model is a nonlinear differential equation. Consider the pendulum shown in
Fig(3.2). The total force acting on m is f = mg, where the component fs =
mg cos(�) is balanced by the string tension. Therefore, fa = mg sin(�) is the only
force that causes the motion of m. Since x= `�, the Newton's second law reads

m`
d2�
dt2

=¡mg sin(�): (3.8)

The negative sign enters because this force push the mass back to its resting posi-
tion �= 0. Canceling out m from both sides of the equation, we reach the following
equation for �(t)

d2�
dt2

+
g
`
sin(�)= 0: (3.9)
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mg cos(�)
mg

T

m

`

mg sin(�)

Figure 3.2.

Scientists usually tend to linearize the nonlinear equations, and thus by
assuming sin�� � for small �, they write the equation as follows

d2�
dt2

+
g
`
�=0: (3.10)

The reason is that the later equation is simply solved by an standard method,
while the former one is a little complicate.

Problems

Problem 3.1. Consider the mass-spring system introduced in this section

a) Integrate the energy equality equation

1

2
m [x0(t)]2+

1

2
k [x(t)]2=

1

2
m [x0(0)]2+

1

2
k [x(0)]2

for x0(0)=0 and x(0)=x0, and find the displacement function x(t) of

b) Now assume a drag force for the system. Show that the energy dissipate in long terms, that is,

lim
t!1

E(t)= 0:

Problem 3.2. Consider the circuit shown in the figure (3.3)

Figure 3.3.

Assume that Vc, the voltage across the capacitor C, is chosen as the response of the circuit to Vs,
the power supply (input or forcing term).

a) Suppose that Vs = 0. Write down a differential equation for Vc. Recall that the voltage-current
relationship for an inductor L is VL=L

di

dt
and for a capacitor C is i=C dVc

dt
.

b) Compare the derived differential equation with the mass-spring equation (3.4) and write down
a relationship for k;m;C; L if two system have same response.
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c) Verify that functions Vc= cos
�

1

LC
p t

�
and Vc= sin

�
1

LC
p t

�
solves the derived equation.

d) Write down the energy formulation of the circuit and determine initial conditions for which the
circuit remain in its resting state (zero energy). With these initial conditions, connect the
supply Vs = 1 to the circuit, that causes the circuit to operate. Verify that the response of cir-
cuit to this supply (when the initial conditions are zero) is

Vc(t) =1¡ cos
�

t

LC
p

�
:

e) By using an electrical resistor, draw an electrical circuit that simulate the equation (3.7).

Problem 3.3. The following equation describes the motion of a vertical pendulum in terms of its
angle � with respect to the resting position

l� 00+ g sin�=0:

a) Multiply the equation by � 0 and derive the following energy equality

1
2
l j� 0j2+ g(1¡ cos�)= const:

b) If � 0(0) = 0 and �(0) = �

2
, find time T when �(T ) =¡�

2
. You need a numerical integration. Feel

free to use any online or off-line integration software.

c) Determine an initial condition �(0)= �0, � 0(0)= �1 such that

lim
t!1

�(t)=¡�:

Problem 3.4. The following equation is called the Duffing's equation

x00+ ax0+ bx+ cx3=0:

a) If a=0, and b; c> 0, show that the system conserves the energy.

b) If a> 0, and b; c > 0, show that dE

dt
< 0.

c) If b:c < 0, find two non-zero equilibrium points of the equation by rewriting the equation as the
following system (

x0= y

y 0=¡ay¡ bx¡ cx3
:

In this case, x� is an equilibrium for the system if the right-hand side of the above system is
zero.

3.2 Theory of linear second-order equations

3.2.1 Existence and uniqueness problem
We first introduce a theorem on the existence of second-order initial value problem.

Theorem 3.1. (Existence) Consider the following initial value problem�
y 00= f(x; y; y 0)
y(x0)= y0; y 0(x0)= y1

;
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and assume that there is a cube D centered at point (x0; y0; y1) such that f is continuous
on D. Then, there is at least one solution of the initial value problem.

Theorem 3.2. (Uniqueness) In the above initial value problem, if f ; @f

@y
, and @f

@y 0
are

continuous on D, then the problem has a unique solution.

Although the proof of the uniqueness is similar to one done for the first-order prob-
lems, we should wait until we study the theory of first-order systems of differential equa-
tions in the last chapter. An immediate corollary is presented below.

Corollary. A linear initial value problem�
y 00+ p(x)y 0+ q(x)y=0
y(x0)= y0; y 0(x0)= y1

;

has a unique solution if there is an open interval I centered at x0 such that p(x); q(x) are
continuous on I.

The corollary is simply verified. In fact, for f(x; y; y 0) = ¡p(x)y 0 ¡ q(x)y, the conti-
nuity of f depends only on the continuity of p(x); q(x) in an interval of x0, and also

@f
@y

=¡q(x); @f
@y 0

=¡p(x);

and thus the continuity of p; q guarantees the uniqueness of the initial value problem.

Example 3.1. Consider the following problem(
y 00= 30y

2

3

y(0)= y 0(0)=0
:

The equation passes the condition for the existence theorem, and thus possess one solu-
tion. Simply, the solution is y(x) = 0. However, there are other solutions as y(x) = x6.
Now, Consider the following problem(

x2y 00+2xy 0¡ 2y=0
y(0)=0; y 0(0)= 1

:

Obviously. the problem does not pass the condition even for the existence theorem, since
p(x) =

2

x
; q(x) =¡ 2

x2
are not continuous in any interval around x0= 0. However, the equa-

tion has a unique solution y(x) = x. If the initial condition change to y(0) = � for any
nonzero �, the no solution exists for the problem. Therefore, the existence and uniqueness
theorems provide sufficient conditions for the existence and uniqueness of the solution of
an IVP.

Problem 3.5. Assume p; q are continuous functions, T : d2

dx2
+ p(x)

d

dx
+ q(x), and y = �(x) is the

unique solution of the following IVP �
T [y] = 0
y(x0)= y0; y

0(x0)= y1
:

8 Higher Order Equations



Show that y=��(x) is the unique solution to the following problem�
T [y] = 0
y(x0)=�y0; y

0(x0)=�y1
:

In particular, the unique solution to the following problem is y(x)= 0�
T [y] = 0
y(x0) =0; y

0(x0)= 0
:

Problem 3.6. Assume p; q are continuous functions, T : d2

dx2
+ p(x)

d

dx
+ q(x), and that y1; y2 are solu-

tions of the following IVPs respectively

(1)

�
T [y] = 0
y(x0)= 1; y 0(x0)= 0

; (2)

�
T [y] = 0
y(x0)=0; y

0(x0)= 1
;

find the unique solution to the following IVP�
T [y] = 0
y(x0)= 1; y 0(x0)= 1

3.2.2 Linear independence and Wronskian
We start with a definition.

Definition 3.1. Two functions f ; g are called linearly independent on an open interval I
if the linear combination

c1f(x)+ c2 g(x)= 0; 8x2 I
implies c1= c2=0.

The above definition simply states that f can not be written in terms of function g or
vice versa. For example, functions f = sin(x), g = cos(x) are linearly independent, while
f = sin(x), g = 0 are linearly dependent. This is generalized for higher numbers of func-
tions. Functions f1(x) = 1, f2(x) = 2x+ 1, f3(x) = 3x ¡ 1 are linearly dependent in R due
to equality f3=

3

2
f2¡ 5

2
f1. Functions f1(x) = 1, f2(x) = x and f3(x) = x2 are linearly inde-

pendent in R. In fact, identity c1+ c2x+ c3x2� 0 implies c1= c2= c3=0.
If f ; g are continuously differentiable functions in I, then a linear combination

c1f + c2 g� 0;
implies also

c1f 0+ c2 g 0� 0;

and thus, we can write them in the matrix form as�
f(x) g(x)
f 0(x) g 0(x)

��
c1
c2

�
=

�
0
0

�
: (3.11)

Proposition 3.1. If there is one point x0 such that

det
�

f(x0) g(x0)
f 0(x0) g 0(x0)

�
=/ 0; (3.12)
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then f ; g are linearly independent.

Proof. If condition (3.12) holds, then matrix
 

f(x0) g(x0)

f 0(x0) g 0(x0)

!
is invertible, and thus Eq.3.11

is uniquely solved for c1= c2=0, a condition for the linear independence of f ; g. �

Remark 3.1. The reverse of the above proposition does not hold in general. That is, if

det
�

f(x) g(x)
f 0(x) g 0(x)

�
=0;

for all x, then we can not conclude that f ; g are linearly dependent . For example, two
functions f(x) = x2, g(x) = xjxj are linearly independent on any interval (¡a; a) for a > 0,
however, the determinant of their matrix is zero everywhere. It is left as an exercise to the
reader to verify the claim.

Theorem 3.3. Consider the following equation

T [y] := y 00+ p(x)y 0+ q(x)y=0; (3.13)

where p; q are assumed to be continuous on an open interval. If y1(x), y2(x) are two solu-
tions of the equation, and if there is a point x0 such that the Wronskian

W (y1; y2)(x0) :=det
�
y1(x0) y2(x0)
y1
0(x0) y2

0(x0)

�
=0;

then y1(x); y2(x) are linearly dependent. If there is a point x0 such that W (y1; y2)(x0) =/ 0,
then y1(x); y2(x) are linearly independent.

Proof. The second part is proved in the above proposition. We prove the first part. We
assume that y1; y2 are not identically zero, since if so, they are obviously dependent. First
assume that y1(x0)=/ 0 and y1

0(x0)=/ 0. Then we can write

y2(x0)
y1(x0)

=
y2
0(x0)
y1
0(x0)

=�;

for some constant �. No consider the following IVP8>><>>:
T [y] = 0
y(x0)=�y1(x0)
y 0(x0)=�y1

0(x0)

:

Clearly, functions y = �y1(x) and y = y2(x) are both solutions of the above IVP, and
according to the uniqueness theorem, it is possible only if y2(x) = �y1(x). If either one of
y1(x0) or y10(x0) is zero, the proof is similar and we left it as an exercise to the reader. �

The determinant W (y1; y2)(x) := y1(x) y2
0(x)¡ y1

0(x) y2(x) is called Wronskian of y1; y2
after the Polish mathematician J. Wronski.
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3.2.3 Number of core solutions
We prove that a linear second-order differential equations has exactly two linearly inde-
pendent or core solutions if its coefficient functions are continuous.

Theorem 3.4. Assume p; q are continuous functions, and T :=
d2

dx2
+ p(x)

d

dx
+ q(x).

There are exactly two linearly independent solutions of equation T [y] = 0.

Proof. Consider the following IVPs�
T [y] = 0
y(x0)= 1; y 0(x0)= 0

;

�
T [y] = 0
y(x0)= 0; y 0(x0)= 1

;

Clearly y1; y2 are linearly independent (why?). Assume y= y3(x) is a solution to the equa-
tion. Consider the following initial value problem�

T [y] = 0
y(x0)= y3(x0); y 0(x0)= y3

0(x0)
:

It is simply seen that functions y= y3(x) and

y= y3(x0) y1(x)+ y3
0(x0) y2(x);

are the solutions of the given IVP, and thus according to the uniqueness

y3(x)= y3(x0) y1(x)+ y3
0(x0) y2(x);

and this completes the proof. �

Corollary 3.1. Assume that p; q are continuous functions, T : d2

dx2
+ p(x)

d

dx
+ q(x), and

y1; y2 any two linearly independent solutions of equation T [y] = 0. Then the general solu-
tion to the equation is

yh(x)= c1 y1(x)+ c2 y2(x);

where c1; c2 are arbitrary constant. This means, for any initial value problem�
T [y] = 0
y(x0)=�; y 0(x0)= �

;

the solution can be written as a linear combination of y1; y2 with specified constants c1; c2.

Problem 3.7. Prove the corollary.

3.2.4 Abel's identity
There is a beautiful theorem about the Wronskian of the homogeneous solutions of a
second-order linear ODE. This relation is called Abel's formula after the Norwegian
mathematician N. H. Abel.
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Theorem 3.5. (Abel) Assume p; q are continuous functions, T : d2

dx2
+ p(x)

d

dx
+ q(x),

and y1; y2 are two solutions (not necessarily independent) to equation T [y] = 0. Then

W (y1; y2)(x)=W (y1; y2)(x0) e
¡
Z
x0

x

p(s)ds

; (3.14)

where x0 is an arbitrary point in the domain of definitions of y1(x) and y2(x).

Proof. According to the derivative formula of matrices, we can write

d
dx
W (y1; y2)=det

�
y1
0 y2

0

y1
0 y2

0

�
+ det

�
y1 y2
y1
00 y2

00

�
= y1 y2

00¡ y2 y1
00: (3.15)

On the other hand, we have

y1
00=¡p(x)y1¡ q(x)y1; y2

00=¡p(x)y2¡ q(x)y2;

and substituting them into (3.15) leads to the following differential equation for W

d
dx
W (y1; y2)= y1(¡py10 ¡ qy1)¡ y2(¡py20 ¡ qy2)=¡p(x)W (y1; y2); (3.16)

which is solved for

W (y1; y2)(x)=W (y1; y2)(x0) e
¡
Z
x0

x

p(s)ds

; (3.17)

and this completes the proof. �

Since p(x) is continuous, function e
¡
Z
x0

x

p(s)ds

never vanishes, and thus W (y1; y2) = 0 if
and only if W (y1; y2)(x0)= 0 for some x0.

3.2.5 Linear equations: extension of solutions

Theorem 3.6. Assume that p; q are continuous functions in (¡1; 1), and T :
d2

dx2
+

p(x)
d

dx
+ q(x). Then the solution of the following initial value problem�

T [y] = 0
y(x0)=�; y 0(x0)= �

; (3.18)

extends in (¡1;1). for arbitrary x0; y0; y1.

Proof. We need tow show that |y(x)| does not blow up at any finite x. Define the fol-
lowing function

V (x)= y 02(x)+ y2(x): (3.19)

We have
dV
dx

=2y 0 y 00+2yy 0=¡2y 0 (p(x) y 0+ q(x) y)+ 2yy 0: (3.20)
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Use the inequality

ab� 1
2
a2+

1
2
b2; (3.21)

and conclude that there is a continuous and positive functions f(x) (depending on p; q)
such that

dV
dx
� f(x)V : (3.22)

Let us multiply both sides of the above inequality by �

�(x)= e
¡
Z
0

x

f(t)dt
; (3.23)

and obtain
d
dx
(�(x)V )� 0: (3.24)

Since the above inequality holds for all x, we conclude

�(x)V (x)� V (0); (3.25)

and thus

0�V (x)�V (0)e
Z
0

x

f(t)dt
=(�2+ �2)e

Z
0

x

f(t)dt
<1; (3.26)

for all x. Since jy(x)j � V (x)
p

, we conclude jy(x)j<1 for all x. �

Problem 3.8. Repeat the argument for the non-homogeneous problem�
T [y] = r(x)
y(x0)=�; y

0(x0) = �

Exercise 3.1. Consider the equation y 0 = f(y) such that f is continuous everywhere and f(y) 6 y.
prove that the solution can be extend arbitrary.

Exercise 3.2. Show that the solution of the following problem can extends in (x0;1)(
y 0=x3¡ y3
y(x0)= y0

:

Problems
Problem 3.9.

i. Show that functions y1(x) =x3 and y2(x)= jxj3 are solutions to the problem(
x2y 00¡ 6y=0
y(0)= 0; y 0(0)= 0

:

ii. Show that W (y1; y2)� 0.

iii. Show that y1, y2 are linearly independent. Does this results contradict what we proved in this
section?
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Problem 3.10. If y1 and y2 are two solutions to the equation

y 00+ cos(x) y 0+ ex y=0;

show that

W (y1; y2)(0)=W (y1; y2)(�):

Problem 3.11. If y1 and y2 are solutions to the equation

y 00+ p(x) y 0+ q(x)y=0;

show that

q(x)=¡W (y1
0; y2

0)
W (y1; y2)

:

Problem 3.12. Generalize the Abel's formula for the following equation

y(n)+ a1(x) y
(n¡1)+ ���+ an(x)y=0:

Problem 3.13. Let y1(x) and y2(x) be two core solutions to the homogeneous equation

y 00+ p(x)y 0+ q(x)y=0: (3.27)

The solution to the initial value problem�
y 00+ p(x)y 0+ q(x)y=0
y(x0)= y0; y

0(x0)= y1
; (3.28)

is obtained by the formula

y(x) =
W (y; y2)(x0)

W (y1; y2)(x0)
y1(x)¡

W (y; y1)(x0)

W (y1; y2)(x0)
y2(x): (3.29)

Problem 3.14. Show that functions f(x) = e�1x, g(x) = e�2x for �1 =/ �2 are linearly independent
functions. Repeat the argument for functions f(x) = e�x, g(x) = xe�x, and also for functions f(x) =
e�x cos(!x), g(x) = e�x sin(!x).

Problem 3.15. If the determinant of
�

f(x) g(x)
f 0(x) g 0(x)

�
is zero at a point, it does not imply that func-

tions f ; g are linearly dependent. Even, the determinant may be zero everywhere, and even functions
are linearly independent. Consider functions f(x) = x2, g(x) = x jxj defined on (¡1; 1). Show that the
determinant of the associated matrix is zero in (¡1; 1) but functions are linearly independent.

Problem 3.16. Assume that three functions f(x); g(x) and h(x) are linearly independent in an
interval around x0. Show that

det

0@ f(x0) g(x0) h(x0)
f 0(x) g 0(x0) h0(x0)
f 00(x0) g 00(x0) h00(x0)

1A=/ 0:
Problem 3.17. Assume that two functions y1= 3e2x+ xe¡x and y2= 2e3x¡ 3xe¡x are solutions to
the equation

y 00+ p(x) y 0+ q(x)y=0:

Which one of the following functions are solution to the given equation?

i. y=9e2x+2e3x

ii. y=6e2x+2e3x¡xe¡x

iii. y=2e3x¡ 2xe2x

Problem 3.18. Show that functions y1= e�1x, y2= e�2x are linearly independent functions if �1=/ �2.
Repeat the argument for the functions y1= e�x, y2= xe�x; and also for the functions y1= e�x cos(!x),
y2= e�x sin(!x).
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Problem 3.19. This problem justifies why the superposition property does not hold for nonlinear
equations. Consider the nonlinear equation

y 00+ y 0+ y2=0:

i. If y(x) is a non-trivial solution to the equation, show that the function cy(x), for a constant c
is a solution to the equation if and only if c=0 or c=1.

ii. If y1 and y2 are two solutions to the equation, show that the function y = y2¡ y1 is a solution
to the equation if and only if y1= y2.

Problem 3.20. Assume that p; q are continuous functions. Show that any nontrivial solution to the
equation

y 00+ p(x) y 0+ q(x)y=0;

can not be tangent to the x-axis.

Problem 3.21. Assume �1 and �2 are respectively solutions to the following initial value problems�
y 00+ p(x)y 0+ q(x)y=0
y(0)= a; y 0(0)= b

;

�
y 00+ p(x)y 0+ q(x)y=0
y(0)= c; y 0(0)= d

;

where p; q are continuous functions and ad¡ bc=0. Show that �1; �2 are linearly dependent.

Problem 3.22. Assume p; q are continuous functions and y1, y2 are two solutions to the following
equation

y 00+ p(x) y 0+ q(x)y=0:

Prove the following properties

i. if y1 and y2 have maximum at a same value x0, then they are linearly dependent.

ii. if y1 and y2 vanishes at a same value x0, then they are linearly dependent.

Problem 3.23. Assume that p; q are continuous functions and p(x) =/ 0. Suppose that y1 and y2 are
two linearly independent solutions to the following equation

y 00+ p(x) y 0+ q(x)y=0:

Show that y1 , y2 can not have same inflection point.

Problem 3.24. Assume that f1 and f2 are two linearly independent functions in an interval I (they
are not necessarily differentiable). Show that tow functions g1 = af1 + bf2, g2 = cf1 + df2 are linearly
independent if and only if ad¡ bc=/ 0.

Problem 3.25. Assume that f is a nontrivial continuously differentiable function in I = (¡a; a) for
some a> 0 such that f(0)= f 0(0)= 0. Show functions f and g

g(x)=

�
f(x) 0�x��
¡f(x) ¡� �x� 0 ;

are linearly independent while W (f ; g)� 0 on I .

Problem 3.26. Determine the linearly dependence or independence of the following set of functions
in the given interval I:

i. f(x)= e�x cos(!x), g(x) = e�x sin(!x), I =R.

ii. f(x)= jxj sin(x), g(x)=x sin(x), I =(¡�/2; �/2).

iii. f(x)= jxj , g(x) =
�
0 x> 0
x x� 0 , h(x)=

�
0 x< 0
x x� 0 , I =R.

iv. f(x)= 1 , g(x)=x+1, h(x)= 1¡x, I =R.

v. f(x)=x , g(x)= cos(ln(x)), h(x)= sin(ln(x)), I =(0;1).
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3.3 Solution to linear homogeneous equations

3.3.1 Equations with constant coefficients
Consider the following equation

y 00+ ay 0+ b y=0; (3.30)

where a1 and a2 are constants. Let us assume that the equation has solutions of the expo-
nential form y = e�x for some unknown constant �. Substituting this function into the
equation leads to the following algebraic equation

p(�) :=�2+ a�+ b=0;

which is called the characteristic equation of the given differential equation. There are
three possibilities for the roots of the characteristic equation: 1) two distinct real roots
�1=/ �2, 2) two complex conjugate roots �1;2= �� i!, and 3) one repeated root �.

Case 1. Real distinct roots

If �1; �2 are two distinct roots, then the differential equation has two core solutions

y1(x)= e�1x; y2(x)= e�2x;

and thus the general homogeneous solution is yh(x)= c1 e�1x+ c2 e�2x.

Example 3.2. Consider the initial value problem�
y 00+3y 0+2y=0
y(0)=1; y 0(0)= 0

:

The characteristic equation is

�2+3�+2=0;

with two roots �1=¡2, and �2=¡1, and thus

yh(x)= c1 e¡2x+ c2 e¡x:

Applying the given initial conditions yields c1=¡1; c2=2, and finally

y(x)= 2e¡x¡ e¡2x:

Remark. If we write the differential equation in the operator form as

(D2+ aD+ b)[y] = 0;

then by decomposing the operator as

D2+ aD+ b=(D¡�1) (D¡�2);

and thus the equation is reduced to the following T1 T2[y] = 0, where T1 := (D ¡ �1), and
T2 := (D ¡ �2). Clearly, the equation also can be written as T2 T1[y]. In any case, we
obtain two simple first-order equation T1[y] = 0, which is solved for y1= e�1x, and T2[y] = 0
with the solution y2= e�2x.
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Case 2. Complex roots

If roots of p(�) are complex �= � � i!, functions y1= e�x ei!x, and y2= e�x e¡i!x solve the
equation. Remember the Euler's formula

ei�= cos(�)+ i sin(�);

and therefore

y1= e�x(cos(!x)+ i sin(!x)); y1= e�x(cos(!x)¡ i sin(!x)):

Since linear combinations
y1+ y2
2

;
y1¡ y2
2i

;

are also solutions of the equation, we obtain two real solutions y1 = e�x cos(!x), and y2 =
e�x sin(!x) of the equation, and finally

yh(x)= e�x(c1 cos(!x)+ c2 sin(!x)):

Example 3.3. The characteristic equation of the equation

y 00+!2y=0;

is �2+ !2= 0 and thus � =�i!. Note that the real part of the characteristic root is zero.
The equation has two core solutions y1 = cos(!x), y2 = sin(!x). Now, consider the equa-
tion

y 00+2by 0+!2y=0;

where b < !. The roots of characteristic polynomial are �=¡b � i !2¡ b2
p

and thus the
general solution is

y= e¡bx(c1 cos(!~x)+ c2 sin(!~x));

where !~= !2¡ b2
p

.

Remark. The differential operator in this case has complex roots as

D2+ aD+ b=(D¡�¡ i!)(D¡ �+ iw);

and therefore two complex conjugate solutions y1; y�1. Accordingly, y1+ y�1= 2Refy1g, and
y1¡ y2� = 2i Im(y1) provide us with desired real solutions.

Case 3. Repeated roots

If � = �1= �2, then y1= e�x is one solution to the equation. Let us write the second solu-
tion y2 as y2= e�x v(v) for some unknown function v(x). Substituting y2 into the equation
gives

(�2+ a�+ b) v(x)+ (2�+ a) v(x)+ v 00(x)= 0:

Notice that terms �2 + a� + b and 2� + a are zero (why?), and thus we reach v 00(x) = 0
with the solution v(x)= x. Therefore, the second core solution is y2=xe�x.
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Problem 3.27. The general solution of v 00=0 is v(x)=Ax+B. Why did we choose only v(x)=x?

Example 3.4. Let us solve the equation�
y 00+2y 0+ y=0
y(0)=1; y 0(0)= 0

:

The characteristic equation is �2 + 2� + 1 = 0 and thus � = ¡1 is the repeated root. The
general solution to the equation is y= e¡x(c1+ c2x). By applying the initial conditions, we
obtain y=(1+ x)e¡x.

Remark. In the operator form, we have�
D+

a
2

��
D+

a
2

�
[y] = 0;

or just T1 T1[y] = 0. Definitely, one solution is y = e
¡a

2 which is the solution of T1[y] = 0.
The second solution can be obtained as follows. If z = T1[y], then T1[z] = 0. Definitely, z =
e
¡a

2
x, and thus we reach T1[y] = e

¡a

2
x, or y 0+ a

2
y= e

¡a

2 which is solved for

y= c1 e
¡a

2
x
+ c2xe

¡a

2
x
:

Problems.

Problem 3.28. Find two core solutions for each of the following equations and then write down the
general solution:

i. y 00+4y 0+2=0

ii. (y 0¡ 6y)0+9y=0

iii. (y 0¡ 1)0=1¡ y

iv. y 00+7y 0+ 12y=0

Problem 3.29. Which one of the following equations does have a solution which remain bounded
when x ! �1? Determine equations with the property that its all solutions remain bounded when
x! +1. Determine equations with the property that their all solutions remain bounded when x!
¡1.

i. y 00+2y 0+ y=0

ii. y 00¡ 5y 0+4y=0

iii. y 00+3y 0+2y=0

iv. y 00¡ 2y 0=0

v. y 00+9y=0.

Problem 3.30. For each of the following equations, set an initial conditions such that the solution
(non-trivial) to the corresponding initial value problem remain bounded when x!+1.

i. y 00+ y 0¡ 2y=0

ii. y 00¡ 5y 0=0

iii. y 00¡ 4y=0

iv. y 00¡ y 0¡ 12y=0

18 Higher Order Equations



Problem 3.31. Consider the equation

y 00+2�y 0+!2y=0;

where �2>!2> 0. If y(x) is a solution to the given equation, show that

lim
x!1

jy(x)j=
�
0 �> 0
1 �< 0

:

Problem 3.32. Solve the following problems:

i. y 00+3y+2=0, y(0)= 1, y 0(0)=¡1

ii. y 00+4y 0+ 13y=0; y(0)= 0, y 0(0)= 1

iii. y 00¡ 4y 0+4y=0, y(1)= 0, y 0(1)= 0

iv. y 00+9y=0, y(�/3)= 1, y 0(�/3)=¡1

v. y 00+3y 0=0, y(0)= 1, y 0(0)= 0

Problem 3.33. Find y0 such that the solution to the problem�
y 00¡ y 0¡ 2y=0
y(0)= y0; y

0(0)= 2
;

remains bounded when x!1.

Problem 3.34. For each pair of the given functions, write down a differential equation having them
as its core solutions.

i. y1=3e2x+2e3x, y2= e3x¡ e2x

ii. y1=(x¡ 1)e¡x, y2=(x+1)e¡x

iii. y1= sinx+2 cosx, y2=2 sinx

iv. y1=2e¡x cos(2x), y2= e¡x(sin(2x)¡ cos(2x)).

3.3.2 Equations with variable coefficients
Consider the equation

y 00+ p(x)y 00+ q(x)y=0: (3.31)

Although there is no general method to solve equations with variable coefficients, there
are two important cases that they can be reduced to first-order linear equations, and thus
to be solved by simple integration methods.

Case 1. Defective equations

If q(x) in (3.31) is identically zero, the equation is called defective:

y 00+ p(x)y 0=0; (3.32)

By taking y 0= u(x), the equation is reduced to a linear first-order equation which is sepa-
rable as well.

Example 3.5. Consider the initial value problem�
xy 00¡ y 0=0
y(1)=1; y 0(1)=¡1 :
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Taking u = y 0 transforms the equation to xu0 ¡ u = 0 and thus u = c1x. Therefore, we
obtain y=

1

2
c1x2+ c2. Applying the given initial conditions yields y(x)=¡1

2
x2+

3

2
.

Case 2. Reduction of order by the variation of parameter

Suppose we know one solution y1 of Eq.(3.31). If we take the second solution as y2 =
y1 v(x) for an unknown function v(x) and substitute it into the equation, we reach

y1v 00+(2y1
0 + p(x)y1)v 0+(y1

00+ p(x)y1
0 + q(x)y1)v=0:

Since y1 is a solution of the equation, the above equation reduces to the following defec-
tive one

y1v 00+(2y1
0 + p(x)y1)v 0=0:

By taking v 0=u(x), we obtain

y1u
0+(2y1

0 + p(x)y1)u=0;

which is solved for

u=
1

y1
2e
¡
Z
p(x)dx

;

and finally

y2= y1

Z
e
¡
Z
p(x)dx

y1
2(x)

dx: (3.33)

Example 3.6. Consider the following equation

y 00¡ 1
x
y 0+

y
x(x+1)

=0:

a) Find a solution to the equation if we know it has a first order polynomial solution.

b) Find the solution to the following initial value problem8<: y 00¡ 1

x
y 0+

1

x(x+1)
y=0

y(1)=1; y 0(1)=
1

2

:

To solve part a), we substitute y1(x) = ax + b for unknown a and b into the equation and
obtain y1= a (x+ 1) for some constant a. Without loss of generality, we assume a= 1 and
write y1=x+1. For part b), We use formula (3.33) to determine y2 as

y2(x)= (x+1)

Z
x

(x+1)2
dx=(x+1) logjx+1j+1:

The general solution is then equal to

yh(x)= c1(x+1)+ c2 (x+1) lnjx+1j+ c2:

Applying the initial conditions determines c1 =
1

2
and c2 = 0 and hence the solution is

obtained as y= 1

2
(x+1).
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3.3.3 Operator form of equations with variable coefficients

Perhaps one is tempted to write the operator for of the equation as

(D2+ p(x)D+ q(x))[y] = 0;

and try to decompose T into T1; T2 as we did for equations with constant coefficients. Let
us assume the following decomposition for T :

(D2+ a1(x)D+ a2(x)) [y] = (D¡�2(x))f(D¡�1(x))[y]g; (3.34)

where �1; �2 are two unknown functions. According to the following relation

(D¡�2(x))f(D¡�1(x))[y]g=(D¡�2(x))fy 0¡�1(x)yg=
=y 00¡ (�1+�2)y 0+(�1�2¡ �10 )y;

we reach the following system for �1(x); �2(x):�
�1(x)+�2(x)=¡p(x)
�1(x)�2(x)¡�10 (x)= q(x)

: (3.35)

If we eliminating �2 in the above system, we reach the following equation for �1

�1
0 + p(x)�1=¡q(x)¡�12: (3.36)

This is a Riccati equation and it is known that there is no general method to solve it.
Therefore, in contrast to equations with constant coefficients, it is not in general possible
to write a decomposed form for equations with variable coefficients.

Problem

Problem 3.35. Solve the following initial value problems

i. (
y 00+

1

4
xy 0=x

y(0)=¡1; y 0(0)=4
:

ii. (
(1+ ex)y 00¡y 0= e2x

y(0)= 0; y 0(0)=
1

2

:

iii. (
y 00+2 tanxy 0=3+ tan2x
y(0)= 0; y 0(0)= 0

Problem 3.36. Consider the following equation

xy 00+(x¡ 1)y 0¡ y=0:

a) There is a solution for the equation in the exponential form. Find this solution and call it
y1(x).
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b) Use reduction of order method and find the solution to the following initial value problem�
xy 00+(x¡ 1)y 0¡ y=0
y(1)=1; y 0(1)=0

:

Problem 3.37. Consider the following equation

xy 00+2(1¡x) y 0+(x¡ 2)y=0:

a) Find a solution to the equation in exponential form.

b) Now find the solution to the following initial value problem�
xy 00+2(1¡x) y 0+(x¡ 2)y=0
y(1)= 1; y 0(1)=¡1 :

Problem 3.38. Consider the following equation

xy 00¡ (x+1)y 0+ y=0:

a) Find a solution to the equation in exponential form.

b) Use reduction of order method and find the solution to the following initial value problem�
xy 00¡ (x+1)y 0+ y=0
y(1)= 1; y 0(1)=0

:

Problem 3.39. Find the general solution to the following equation if we know that one of solutions
of the equation is a first order polynomial

x2 y 00¡x(x+2)y 0+(x+2) y=0:

Problem 3.40. If the equation (x2+ 1)y 00¡ 2y= 0 has a polynomial solution of order 2, find its gen-
eral solution.

Problem 3.41. Consider the equation

cos(x)y 00+ sin(x)y 0+ sec(x)y=0:

i. Verify that y1= cos(x) is a solution to the equation.

ii. Find the general solution to the problem.

Problem 3.42. Consider the problem �
y 00+ jy j=0
y(0)=0; y 0(0)=1

:

a) State the result of existence and uniqueness theorem for the problem.

b) Solve the problem in the interval (¡1; �). This is a unique solution to the equation.

c) Does it contradicts the uniqueness theorem?

Problem 3.43. Consider the initial value problem�
xy 00¡ (x+1)y 0+ y=0
y(0)= 0; y 0(0)= 0

: (3.37)

a) State the result of the existence and uniqueness theorem for this problem.

b) Find a solution to the equation

xy 00¡ (x+1)y 0+ y=0;
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if we know it has a solution of the type a first order polynomial.

c) Find a second solution that is linearly independent to the first solution.

d) Find a non-trivial solution to the problem (3.37).

3.4 Linear non-homogeneous equations

3.4.1 General solution
Consider the non-homogeneous equation

T [y] = r(x); (3.38)

where T is the differential operator D2+ p(x)D+ q(x). Remember that T has a null space
of dimension 2. If yp(x) is a particular solution to the above equation, that is, T [yp] =
r(x), then the general solution of the equation is

y(x)= c1 y1(x)+ c2 y2(x)+ yp(x);

where y1; y2 are two core homogeneous solutions of the equation. The fact that y(x) solves
the equation is straightforward. In fact, we have

T [c1 y1+ c2 y2+ yp] =T [c1 y1+ c2 y2] +T [yp] = 0+ r(x):

Theorem 3.7. Consider the following initial value problem8<: T [y] = r(x)
y(x0)= y0
y 0(x0)= y1

:

There are unique c1; c2 such that the solution of the above IVP is

y(x)= c1 y1(x)+ c2 y2(x)+ yp(x);

where y1; y2 are two core homogeneous solution and yp is a particular solution of the equa-
tion.

Proof. Assume that � is a solution to the above IVP. We have

T [�¡ yp] =T [�]¡T [yp] = 0;

and thus �¡ yp2Null(T ) and therefore, there are constants c1; c2 such that

�¡ yp= c1 y1+ c2 y2:

We show c1; c2 are unique. We have(
y0¡ yp(x0)= c1 y1(x0)+ c2 y2(x0)

y1¡ yp
0(x0)= c1 y1

0(x0)+ c2 y2
0(x0)

:
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In the matrix form, we have�
y1(x0) y2(x0)
y1
0(x0) y2

0(x0)

��
c1
c2

�
=

 
y0¡ yp(x0)

y1¡ yp
0(x0)

!
;

and thus �
c1
c2

�
=

�
y1(x0) y2(x0)
y1
0(x0) y2

0(x0)

�¡1 y0¡ yp(x0)

y1¡ yp
0(x0)

!
;

and this completes the proof. �

Problem 3.44. Suppose that y1(x) = sin(� sin(x)) and y2 = cos(�cos(x)) are two solutions to the
equation

y 00+ p(x)y 0+ q(x)y=0: (3.39)

i. Find the solution to the problem �
y 00+ p(x)y 0+ q(x)y=0
y(0)=2; y 0(0)=�

:

ii. If yp(x)= sin(�ex) is a solution to the equation

y 00+ p(x)y 0+ q(x)y= r(x); (3.40)

find the solution to the problem �
y 00+ p(x)y 0+ q(x)y=2r(x)
y(0)= 2; y 0(0)=�

Problem 3.45. If y1(x) and y2(x) are two solutions to the equation

y 00+ sin(x)y 0+ y= ex;

which one of the following functions is a solution to the equation y 00+ sin(x)y 0+ y=¡ex?

i. y1(x)¡ y2(x)

ii. 2y1(x)¡ y2(x)

iii. y1(x)¡ 2y2(x)

iv. 2y2(x)¡ 2y1(x)

Problem 3.46. Assume that y1(x) is a solution to the equation

y 00+ sin(x)y 0+ exy=0;

and y2(x) is a solution to the equation

y 00+ sin(x)y 0+ exy= sin(x):

Which one of the following functions is a solution to the following equation?

y 00+ sin(x)y 0+ exy=¡2 sin(x)

i. ¡2y1(x)

ii. ¡2y1(x) + y2(x)

iii. ¡2y1(x)¡ 2y2(x)

iv. y1(x)¡ 2y2(x)
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v. 2y1(x)¡ 2y2(x)

Problem 3.47. Consider the problem �
L[y] = r
y(0)= y0; y

0(0)= y1
:

Show that the solution to above problem is the summation of solutions to the sub-problems�
L[y] = r
y(0)=0; y 0(0)= 0

;

�
L[y] = 0
y(0)= y0; y

0(0)= y1
:

3.4.2 Variation of parameters method

Consider the following equation

y 00+ p(x)y 0+ q(x)y= r(x); (3.41)

and suppose that two linearly independent solutions y1; y2 of the associated homogeneous
equation are known. We write the particular solution as follows

yp= y1 v1(x)+ y2 v2(x); (3.42)

where functions v1(x); v2(x) should be determined such that yp satisfies Eq.3.41. Let us
substitute yp into the equation. We have

yp
0 = y1

0 v1+ y1 v1
0 + y2

0 v2+ y2 v2
0:

Here, we assume

y1 v1
0 + y2 v2

0 =0; (3.43)

and continue the calculation:

yp
00= y1

00 v1+ y1
0 v1
0 + y2

00 v2+ y2
0 v2
0 : (3.44)

Substituting yp; yp0 ; yp00 into Eq.(3.41) results to

y1
0 v1
0 + y2

0 v2
0 = r(x): (3.45)

In this way, we reach the following two equations in two unknowns for v10 and v20:�
y1 v1

0 + y2 v2
0 =0

y1
0 v1
0 + y2

0 v2
0 =r(x)

: (3.46)

Example 3.7. Consider the equation

y 00+ y= tan(x):

Since y1 = cos(x), y2 = sin(x) are two linearly independent solutions to the homogeneous
equation, we write yp as

yp= cos(x) v1(x)+ sin(x) v2(x);
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where v1; v2 satisfy the following system�
cos(x) v10 + sin(x) v20 =0
¡sin(x) v10 + cos(x) v20 =tan(x)

:

Eliminating v20 gives v10 =¡sin(x) tan(x) and

v1(x)= sin(x)¡ lnjtan(x)+ sec(x)j:

Eliminating v1
0 gives v20 = sin(x) and thus v2(x) = ¡cos(x) and finally the particular solu-

tion is obtained as

y=¡cos(x) lnjtan(x)+ sec(x)j:

Example 3.8. Consider the following equation

(1¡x)y 00+xy 0¡ y=(1¡x)2:

It is simply verified that functions y1= x, y2= ex are linearly independent solutions to the
homogeneous equation. For the particular solution, we solve the system�

xv1
0 +ex v2

0 =0
v1
0 +ex v2

0 =1¡x :

Note that r(x) = 1 ¡ x after dividing by the coefficient of y 00. Eliminating v20 gives v10 = 1,
and v1(x) = x. Eliminating v10 gives v20 =¡e¡x and thus v2(x) = e¡x. Therefore, the partic-
ular solution is yp= x2+1.

Remark 3.2. The assumption (3.43) simplifies significantly our calculations. If instead of
taking it equal zero, we take it any other function, like f (x), makes our calculations
unnecessarily complicated. For example, by assumption it equal f(x), we reach the fol-
lowing system �

y1 v1
0 + y2 v2

0 =f(x)
y1
0 v1
0 + y2

0 v2
0 =r(x)¡ f 0(x)¡ p(x) f(x)

:

Remark 3.3. To determine v1; v2 in a unique way, we need to justify that

Remark 3.4. Why is it possible to solve system (3.46)? Let us rewrite the system in the
following matrix form �

y1 y2
y1
0 y2

0

��
v1
0(x)
v2
0(x)

�
=

�
0

r(x)

�
;

and thus v10; v20 are determined by the following formula as long as the coefficient matrix is
invertible �

v1
0

v2
0

�
=

�
y1(x) y2(x)
y1
0(x) y2

0(x)

�¡1� 0
r(x)

�
=

1
W (y1; y2)(x)

�
¡r(x)y2
r(x)y1

�
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We saw in the previous section that W (y1; y2)(x) remain nonzero for all x in the domain
of the definition of the equation as long as y1; y2 are linearly independent solutions of the
homogeneous equation. Therefore, we obtain

v1=¡
Z

r(x) y2(x)
W (y1; y2)(x)

dx; v2=

Z
r(x) y1(x)
W (y1; y2)(x)

dx; (3.47)

and finally

yp=¡y1
Z

r(x) y2(x)
W (y1; y2)(x)

dx+ y2

Z
r(x) y1(x)
W (y1; y2)(x)

dx: (3.48)

Example 3.9. Let us find the general solution to the following initial value problem(
y 00+4y 0+4y= ex

y(0)=
1

9
; y 0(0)= 0

:

The homogeneous solutions are y1= e¡2x, y2=xe¡2x, and thus W (y1; y2)= e¡4x. We have

yp= e¡2x
Z
¡xe¡2x ex

e¡4x
dx+ xe¡2x

Z
e¡2x ex

e¡4x
dx=

1
9
ex:

Therefore� the general solution is

y=(c1+ c2x)e¡2x+
1
9
ex:

Applying the given initial conditions yields c1=0, c2=¡1

9
and thus y= 1

9
(ex¡xe¡2x).

3.4.3 Undetermined coefficient method
In spite of variation of parameters method, the undetermined coefficient method is applied
only to constant coefficient equations. Consider the equation

y 00+ ay 0+ by= r(x): (3.49)

This method

i. applies only if a; b are constants,

ii. and if r(x) has the following forms:

a. an exponential,

b. a polynomial,

c. trigonometric cosine and sine functions.

1. Exponential functions.

If r(x) = e�x, and if e�x is not a homogeneous solution of the equation, then yp(x) = Ae�x

for an undetermined A that should be determined by substitution yp into the equation.
For example, consider the equation

y 00+3y 0+2y=2e3x:
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The equation has two solutions y1 = e¡2x, y2 = e¡x, and thus yp = Ae3x. Substituting this
into the equation gives A= 1

10 and therefore yp=
1

10e
3x.

If e�x is a homogeneous solution then yp = Axe�x as long as xe�x is not a homoge-
neous solution. If xe�x is a homogeneous solution then yp=Ax2 e�x.

Example 3.10. Consider the equation

y 00+3y 0+2y=3e2x¡ 2e¡x:

a) Find the general solution to the problem,

b) find the solution to the initial value problem(
y 00+3y 0+2y=3e2x¡ 2e¡x

y(0)=
1

2
; y 0(0)=¡2

:

For part a), we observe that the roots of characteristic polynomial are �1 = ¡1, �2 = ¡2
and thus y1= e¡x and y2= e¡2x are two linearly independent solutions of the homogeneous
equation. The right hand side consists two terms r1=3e2x, and r2=¡2e¡x. Thanks to the
linearity, we determine yp one by one, that is yp1 for the first term, and yp2 for the second
term and finally yp = yp1 + yp2. Associated to r1, we consider yp1 = Ae2x, and substituting
this into the equation y 00+ 3y 0+ 2y = 3e2x, determines A=

1

4
, and thus yp1=

1

4
e2x. Associ-

ated to r2. we consider yp2=Axe¡x (note that �=¡1 is a simple root of the characteristic
polynomial) and we obtain A = ¡2, and hence yp2 = ¡2xe¡x. Therefore, the particular
solution is

yp= yp1+ yp2=
1
4
e2x¡ 2xe¡x:

Finally, the general solution to the equation is

y= c1e
¡x+ c2e

¡2x+
1
4
e2x¡ 2xe¡x;

for arbitrary constants c1; c2. For part b), applying given initial conditions determines c1=
0, and c2=

1

4
, and thus

y(x)=
1
4
e¡2x+

1
4
e2x¡ 2xe¡x:

2. Polynomial functions.

If r(x) is a polynomial of order n and if � = 0 is not a root of p(�), then the particular
solution is a polynomial of order n. In other word, if r = p0 + p1x + ::: + pn xn, then yp =
q0 + q1x + ::: + qn x

n if y = 1 is not a homogeneous solution. If � = 0 is a simple root of
p(�), the particular solution is of the form yp = x(q0 + q1x + ::: + qn xn). If � = 0 is a
repeated root of p(�), the particular solution is of the form yp=x2(q0+ q1x+ :::+ qnxn).

Example 3.11. Consider the equation

y 00+3y 0=4ex+1¡ 2x+ e¡3x:

28 Higher Order Equations



The roots of p(�)=�2+3� are �=0 and �=¡3, and therefore

yh(x)= c1+ c2 e¡3x:

The particular solution associated to the forcing term r1 = ex is yp1 = ex. Since � = 0 is a
root for p(�), the particular solution associated to the forcing terms r2 = 1 ¡ 2x is yp2 =
x(q0 + q1x). Substituting yp2 into the equation y 00 + 3y 0 = 1 ¡ 2x, determines q0 =

5

9
and

q1 =
¡1
3
, and thus yp2 =

5

9
x ¡ 1

3
x2. The particular solution associated to r3 = e¡3x is yp3 =

xe¡3x, and finally

yp= ex+
5
9
x¡ 1

3
x2+xe¡3x:

The general solution is

y= c1+ c2 e¡3x+ ex+
5
9
x¡ 1

3
x2+ xe¡3x:

3. Trigonometric functions.

If r= cos (!x) or r=sin (!x) and none of them is a homogeneous solution to the equation,
then

yp=A1 cos (!x)+A2 sin (!x); (3.50)

where A1; A2 are undetermined coefficients. If they are homogeneous solutions then

yp= x(A1 cos(!x)+A2 sin(!x)): (3.51)

Example 3.12. Find the particular solution to the following equation.

y 00+2y 0+ y=2 sin(x)¡ 3e¡x+1:

Functions y1 = e¡x; y2 = xe¡x are homogeneous solutions to the equation. The particular
solution associated to the terms 1 ¡ 3e¡x is 1 ¡ 3

2
x2 e¡x. Regrading the term 2 sin(x), the

particular solution is

yp1=A1 cos(x)+A2 sin(x):

Substituting yp1 into the equation

y 00+2y 0+ y=2 sin(x);

determines A1=¡1 and A2=0 and thus

yp=1¡ 3
2
x2 e¡x¡ cos(x):

4. Multiplication of source terms.

In previous examples we saw how to find particular solution by undetermined coefficient
methods for exponential, polynomials and sine and cosine functions, and also for the sum-
mations of them. Here we discuss the particular solution for the multiplication of these
forms.
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Case 1. If r(x) = e�xcos (!x) or r(x) =e�xsin (!x) and �= � � i! are not roots of p(�),
then the particular solution has the same form

yp=A1e�x cos (!x)+A2 e�x sin (!x): (3.52)

If �=�� i! are roots of p(�), the particular solution has the form

yp= x(A1 e�xcos(!x)+A2 es�xsin(!x)): (3.53)

Example 3.13. Consider the equation

y 00+2y 0+2y= e¡x sinx:

a) Find the general solution to the equation.

b) Solve the following initial value problem�
y 00+2y 0+2y= e¡xsinx
y(0)= 0; y 0(0)=¡1 :

For part a), The characteristic polynomial has roots �=¡1� i and thus the homogeneous
equation has two core solutions y1 = e¡x cosx and y2 = e¡x sinx. Since the The particular
solution is of the form

yp=A1xe¡x cosx+A2xe¡x sinx:

Substituting yp into the equation determines A1=¡1

2
and A2=0 and thus

yp=¡
1
2
xe¡x cosx:

This implies that the general solution to the equation is

y= c1 e¡x cosx+ c2 e¡x sinx¡
1
2
xe¡x cosx;

for arbitrary constants c1; c2. For part b), it is enough to apply the initial conditions and
obtain c1=0 and c2=

¡1
2
, and thus

y=¡1
2
e¡x (sinx+ x cosx):

Case 2. If r = pn(x)e�x (pn(x) a polynomial of order n) and e�x is not a homogeneous
solution, then the particular solution is of the form yp= qn(x) e�x where qn(x) is a polyno-
mial of order n. If e�x is a homogeneous solution then yp is of the form yp = xqn(x) e�x,
and xe�x is a homogeneous solution then yp= x2 qn(x) e�x.

Example 3.14. Consider the following equation

y 00+3y 0+2y= xe¡x+2e¡x sinx:

Functions y1= e¡x; y2= e¡2x are homogeneous solution, then the particular solution associ-
ated to r1=xe¡x is

yp1=x(q0+ q1x)e
¡x:
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Substituting yp1 into the equation gives q0=¡1, q1= 1

2
and then yp1=

¡ 1
2
x2¡ x

�
e¡x. The

particular solution associated to r2=2e¡x sinx is yp=¡e¡x cosx¡ e¡xsinx, and finally

yp= e¡x
�
1
2
x2¡x¡ cosx¡ sinx

�
:

Example 3.15. Consider the equation y 00 +y 0 = xex + xe¡x + x. The homogeneous solu-
tions are y1 = 1, y2 = e¡x. The particular solution associated to the first term is yp1 =
(A1x+A2) ex and to the second term is yp2= x(A3x+A4)e¡x. Note the x multiplication in
yp2. This is because A4e¡x is a homogeneous solution. The particular solution associated
to the last term is yp3=x(A5x+A6).

Case 3. If r= pn(x)cos(!x) or r= pn(x) sin(!x) and fcos(!x); sin(!x)g are not homoge-
neous solutions, then

yp=Pn(x) cos(!x)+Qn(x) sin(!x); (3.54)

where Pn and Qn are polynomials of order n. If fcos(!x); sin(!x)g are homogeneous solu-
tions, then

yp=x(Pn(x) cos(!x)+Qn(x) sin(!x)): (3.55)

Example 3.16. Find a particular solution to the equation

y 00+ y=(x+1)sinx:

Since fcos(x); sin(x)g are homogeneous solutions, the particular solution has the form

yp= x(p0+ p1x) cos(x)+ x(q0+q1x) sin(x):

Substituting yp into the equation gives

yp=¡
�
1
4
x2+

1
2
x

�
cos(x)+

1
4
x sin(x):

Problems

Problem 3.48. Solve the following initial value problems

i. y 00+3y 0+2y= ex+ e2x, y(0)= 0, y 0(0)= 0

ii. y 00+4y 0+4y= e¡2x, y(0)= 1, y 0(0)= 0

iii. y 00+4y=2 sin(2x), y(0)= 0, y 0(0)=¡1

Problem 3.49. Use undetermined coefficient method to find a particular solution for each of the fol-
lowing equations.

i. y 00¡ 5y 0+4y=2e3x¡ 3e4x

ii. y 00+9y= sin(2x)+x+1

iii. y 00+3y 0+2y=x2+2e¡2x

iv. y 00+3y 0+2y=(x¡ 1)e¡2x

v. y 00+4y= ex sin(2x)
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Problem 3.50. Use undetermined coefficient method to find the solution to each following problems:

i. y 00+ y= sin(2x), y(0)= 1; y 0(0)= 0.

ii. y 00¡ 3y 0+2y= ex+ sin(x), y(0)= 0; y 0(0)= 1.

iii. y 00+4y 0+4y=x+2e¡x, y(0)= 1; y 0(0)=¡1.
iv. y 00+4y 0+5y=x+2e¡x, y(0)= 1; y 0(0)=¡1.

Problem 3.51. Use undetermined coefficient method to find the correct form of the particular solu-
tion to each of the following equations. DO NOT calculate the coefficients.

i. y 00+2y 0+ y=3(x+1) e¡x,

ii. y 00+3y 0+2y= e¡2xcos(x)¡x2e¡x

iii. y 00+ y=x sin(x)+xe¡x

iv. y 00+ y= ex (x¡ 3)+ cos(2x)

v. y 00+3y 0+2y=xe2x+xe¡x

Problem 3.52. Use the variation of parameters method to find solution to each of the following ini-
tial value problems

i. y 00+ y= sec(x); y(0)= y 0(0)= 0

ii. y 00+ y= tan(x), y(1)= 0, y 0(1)=¡1
iii. y 00+3y 0+2y= sin(ex), y(0)= y 0(0)= 1

iv. y 00¡ 2y 0+2y= sec(x) ex, y(0)= y 0(0)= 0

v. y 00+3y 0+2y=(1+ ex)¡1, y(0)=2, y 0(0)=0

vi. y 00¡ y= ex

1+ e2x
, y(0)= 0, y 0(0)= 0.

vii. y 00¡ 3y 0+2y= sin(1+ e¡x), y(0)= y 0(0)= 0.

Problem 3.53. Consider the problem �
y 00+ y= r(x):
y(0)= y 0(0)= 0

i. Verify that the function � defined as

y(x)=

Z
0

x

sin(x¡ t) r(t) dt;

is the solution to the given problem.

ii. Obtain this formula from the variation of parameter formula.

Problem 3.54. Consider the following equation

x2y 00+xy 0+

�
x2¡ 1

4

�
y=0:

i. Verify that the function y1(x)= sin(x)/ x
p

is a solution to the equation.

ii. Obtain the second linearly independent solution to the equation.

iii. Write down the general solution to the following equation

x2y 00+xy 0+

�
x2¡ 1

4

�
y=x x

p
:

Problem 3.55. Verify that y1= ex is a solution to the following equation

xy 00+2(1¡x) y 0+(x¡ 2)y=0;
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and then find the solution to the following problem�
xy 00+2(1¡x) y 0+(x¡ 2)y=1
y(1)= 0; y 0(1)= 0

:

Problem 3.56. Find the general solution to the following equations if we know they have a first
order polynomial solution to the homogeneous equation

i. xy 00¡ (x+1) y 0+ y=x2,

ii. x2 y 00¡x(x+2)y 0+(x+2) y=x3

Problem 3.57. Consider the equation

cos(x)y 00+ sin(x)y 0+ sec(x)y=0:

i. Verify that y1= cos(x) is a solution to the equation.

ii. Find the general solution to the equation

cos(x)y 00+ sin(x)y 0+ sec(x)y=1:

Problem 3.58. Consider the equation

y 00+ tan(x)y 0= cos(x):

It is simply verified that y1=1 is a homogeneous solution to the homogeneous equation.

i. Use reduction of order method to find the second solution y2(x) to the homogeneous equation.

ii. Use variation of parameters formula to derive the general solution to the equation.

iii. If we rewrite the equation as a system of two first order differential equation, we reach�
y 0= p
p0+ tan(x)p= cos(x)

:

Solve this system and prove that the solution is equal to the solution obtained in part (ii).

Problem 3.59. There is a chance to solve autonomous second order equations that have the general
form y 00= f(y; y 0). The method is as follows. Take p= y 0 and write

y 00=
dp
dx

=
dp
dy

dy
dx

=
dp
dy
p: (3.56)

Substituting the above relation into the equation gives the following first order equation in terms of
p= p(y)

dp
dy
p= f(y; p):

For the solution p =  (y) of the last equation we reach another first order equation of the form y 0 =
 (y). Solution of the later equation is the desired solution. Use the described method to solve the fol-
lowing equations

i. y 00+ e2y y 03=0, y(0)= 0; y 0(0)=¡2.
ii. y 00+(y+1)y 0=0, y(0)= 0; y 0(0)=¡1

2
.

iii. e¡y y 00= y 03, y(0)= 0; y 0(0)=¡1.
Problem 3.60. Here we justify the structure of the particular solution yp = y1v1(x) + y2 v2(x) for
second order equations with constant coefficients. Let us find the solution to the following problem

y 00+ ay 0+ by= r(x):;

where a; b are constants. Assume y1= e�1x, y2= e�2x are two core solutions of the homogeneous equa-
tion. We can rewrite the equation in the following form

(D¡�2)f(D¡�1)[y] = r(x):
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If we take Y (x)= (D¡�1)[y], then we reach the following system�
y 0¡�1y=Y (x)
Y 0¡�2Y = r(x)

:

i. If �1=/ �2 show that the solution is

yp(x)= e
�2x

Z
r(x) e¡�2x

�2¡�1
dx¡ e�1x

Z
r(x)e¡�1x

�2¡�1
dx;

and conclude the formula is the variation of parameters formula (3.48).

ii. If �1=�2=�, show that the solution is

yp(x) =xe
�x

Z
r(x) e¡�x dx¡ e�x

Z
xr(x)e¡�x dx;

and conclude the formula is (3.48).

iii. If �1;2=�+ i! show that the solution is

yp(x)= e
�xcos(!x)

Z
¡r(x) e¡�xsin(!x)

!
dx+ e�x sin(!x)

Z
r(x) e¡�x cos(!x)

!
dx;

and conclude the formula is (3.48).

3.5 Higher order equations

3.5.1 Homogeneous equations
The method of characteristics works equally well for homogeneous higher order equations
with constant coefficients. Consider the following homogeneous equation

y(n)+ a1 y
(n¡1)+ ���+ an y=0; (3.57)

where a1; :::; an are some constants. The characteristic polynomial p(�) of this equation is
obtained by substituting e�x into the equation.This gives

p(�)=�n+ a1�
n¡1+ ���+ an: (3.58)

Proposition 3.2. If � is a simple real root of p(�) (i.e., the multiplicity of � is one),
then y = e�x is a solution to the differential equation (3:57). If � is a repeated root of mul-
tiplicity r, then all the functions xk¡1e�x, for k = 1; :::; r are solutions to the equation. If
�= � + i! is a simple complex root of p(�) then functions e�x cos(!x), and e�x sin(!x) are
two solutions to the equation and if � = � + i! is a complex root with the multiplicity r,
then all functions xk¡1e�x cos(!x), and xk¡1e�x sin(!x) are solutions to the equation.

Example 3.17. Consider the following equation

y 000¡ 6y 00+ 11y 0¡ 6y=0:

The characteristic polynomial is

p(�)= (�¡ 1)(�¡ 2)(�¡ 3);
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and thus functions y1= ex, y2= e2x and y3= e3x are solutions to the equation. The general
homogeneous solution is

y= c1 ex+ c2 e2x+ c3 e3x:

The equation

y 000+ y 00+ y 0+ y=0;

has the characteristic polynomial p(�) = (�+1)(�2+1), and functions y1= e¡x, y2= cos(x)
and y3= sin(x). The characteristic polynomial of the equation

y(4)+2y 00+ y=0;

is p(�)= (�2+1)2 with the repeated complex root �= i. In this case, functions y1= cos(x),
y2=x cos(x), y3= sin(x) and y4=x sin(x) are core solutions to the equation.

Example 3.18. Consider the following equation

y(4)¡ y=0:

The characteristic polynomial is

p(�)=�4¡ 1:

The roots of p(�) are �1=1; �2=¡1; �3;4=�i and thus

y= c1 e
x+ c2 e

¡x+ c3 cos(x)+ c4 sin(x)x:

3.5.2 Particular solutions
The method of undetermined coefficients works equally well for the linear equations of
higher order with constant coefficients. Since it is completely similar to the second order
equation, we do not repeat it here. Let us formulate the variation of parameters method
for third order equations here. Consider the following equation

y 000+ a1(x) y 00+ a2(x) y 0+ a3(x) y= r(x); (3.59)

and assume that y1; y2; y3, the three linearly independent homogeneous solutions. Define

yp= c1(x)y1+c2(x) y2+ c3(x) y3: (3.60)

To determine functions ck(x), we set

y1 c1
0 + y2 c2

0 + y3 c3
0 =0 and y1

0 c1
0 + y2

0 c2
0 + y3

0 c3
0 =0; (3.61)

and substitute yp into the equation to obtain

y1
00 c1
0 + y2

00 c2
0 + y3

00 c3
0 = r(x): (3.62)

We obtain a system to determine c10 ; c20 , and c30 as follows8>><>>:
y1 c1

0 + y2 c2
0 + y3 c3

0 =0
y1
0 c1
0 + y2

0 c2
0 + y3

0 c3
0 =0

y1
00 c1
0 + y2

00 c2
0 + y3

00 c3
0 = r(x)

:
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Example 3.19. Let us solve the following problem

y 000¡ 6y 00+ 11y 0¡ 6y= 2e4x

1+ ex
:

The core solutions of the homogeneous equation are y1 = ex, y2 = e2x and y3 = e3x. We
reach the following system for c10; c20 ; c308>>>><>>>>:

ex c1
0 + e2x c2

0 + e3x c3
0 =0

ex c1
0 +2e2x c2

0 +3e3x c3
0 =0

ex c1
0 +4e2x c2

0 +9e3x c3
0 =

2e4x

1+ ex

:

We obtain

c1
0 =

1
2
e¡xr(x); c2

0 =¡r(x)e¡2x; c30 =
1
2
r(x)e¡3x:

Therefore

c1=
1
2

Z
e3x

1+ ex
dx=

1
2
e2x¡ ex+ ln(1+ ex);

c2=¡
Z

e2x

1+ ex
dx=2ln(1+ ex)¡ 2ex;

c3=
1
2

Z
ex

1+ ex
dx= ln(1+ ex):

The particular solution after simplification is determined as

yp= ex(1+ ex)2 ln(1+ ex):

Remark 3.5. The above three equations is put in the matrix form and gives0BB@ y1 y2 y3
y1
0 y2

0 y3
0

y1
00 y2

00 y3
00

1CCA
0BB@ c1

0

c2
0

c3
0

1CCA=
0@ 0

0
r(x)

1A; (3.63)

and thus

c1(x)=

Z
W (y2; y3)(x) r(x)
W (y1; y2; y3)(x)

dx; (3.64)

c2(x)=¡
Z
W (y1; y3)(x) r(x)
W (y1; y2; y3)(x)

dx; (3.65)

c3(x)=

Z
W (y1; y2)(x) r(x)
W (y1; y2; y3)(x)

dx: (3.66)

Here W (y1; y2; y3) is the determinant of the matrix in the left hand side of (3.63).

Example 3.20. Let us solve the following problem�
y 000¡ y 00¡ y 0+ y=4ex sin(2x)
y(0)= y 0(0)= y 00(0)= 0

:
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The core solutions of the homogeneous equation are y1 = ex, y2 = xex and y3 = e¡x. We
have W (y1; y2; y3)(x)= 4ex and

W (y1; y2)(x)= e2x;W (y1; y3)(x)=¡2;W (y2; y3)(x)=¡2x¡ 1: (3.67)

Therefore

c1=

Z
0

x

(¡2s¡ 1) sin(2s)= 1
2
(2x+1)cos(2x)¡ 1

2
sin(2x)¡ 1

2
;

c2=2

Z
0

x

sin(2s) ds=¡cos(2x)+ 1;

c3=

Z
0

x

e2s sin(2s) ds=
e2x

4
(sin(2x)¡ cos(2x))+

1
4
:

The solution after simplification is

y=
ex

4
[cos(2x)¡ sin(2x)]¡ 1

2
ex+xex+

1
4
e¡x: (3.68)

Problems

Problem 3.61. Solve the following higher order problems

i. y 000¡ 2y 00+ y 0¡ 2y=0, y(0)=1, y 0(0)= y 00(0)= 0

ii. y 000¡ y 00+ y 0¡ y= 0, y 0(0)=0, y 0(0)=1, y 00(0)= 0

iii. y 000+ y 00¡ 2y=0, y(0)= y 0(0)=0, y 00(0)=1

iv. y(4)¡ 3y 00+2y=0, y(0)= y 0(0)= y 00(0)= 0, y 000(0)=1

v. y(5)+ 32y=0, y(0)= 1, y(k)(0)=0 for k=1; :::; 4.

Problem 3.62. For each pair or triple of the given functions, write down a differential equation
having them as its core solutions.

i. y1=1, y2=2e¡x, y3=¡e2x

ii. y1=1, y2=x, y3= ex

Problem 3.63. Undetermined coefficients method works equally for higher order linear problems
with constant coefficients. Use this method method to find the general solution to each following
higher order equation:

i. y 000¡ y 0=xex+xe2x+x.

ii. y 000¡ 2y 00+ y 0¡ 2y= e¡x:

iii. y(5)+ 32y=x6+x4+x2+1.

iv. y(4)+4y 00+4y=3 cos(2x).

Problem 3.64. Consider the following equation

y 000¡ y 00+ y 0¡ y= r(x):

Use undetermined coefficient method to determine the correct form of a particular solution to the
equation. You don't need to calculate the coefficients.

i. r(x)= 2e¡x+ sin(x).

ii. r(x)= ex¡x cos(x).

iii. r(x)= ex sin(x)+x .
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iv. r(x)= ex sin(x)+ ex

3.6 Applications

The following simple equation models the behavior of several physical systems mathemati-
cally

y 00+!0
2 y=0: (3.69)

Interpreting the equation as a harmonic oscillator , !0 is called the natural frequency of
the oscillation. If we multiply the equation by y 0, we obtain

y 0y 00+!0
2y 0y=0;

and integrate it, we reach the following equality representing the energy of the oscillator

1
2
(y 0)2+

1
2
!0
2y2=E: (3.70)

3.6.1 Conservation principle
Conservation of energy, mass, and momentum is a principal part of mathematical mod-
eling of physical systems. Consider a particle of mass m moving along a path  in the
space. The kinetic energy Ek of the particle is defined as follows

K =
1
2
m jv j2; (3.71)

where v(t) is the velocity of the particle. If this particle is under the influence of a conser-
vative force f , the potential energy V of the mass is as follows

¡rV = f ; (3.72)

where r (read nabla) is the gradient operator. The conservation of energy states that the
total energy K + V of the particle along its path  is constant. In fact, the derivative of
K+V along  is zero as the following calculation shows

d
dt

�
1
2
m jv j2+V

�
=mv:

dv
dt

+rV d
dt
;

where d

dt
is equal to velocity v of the particle. Therefore, we reach the equality

v:

�
m
dv
dt

+rV
�
= v:

�
m
dv
dt
¡ f

�
=0:

The expression in the bracket is related to the Newton's second law

m
dv
dt

= f ;
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where derivative are taken along the path of the motion of mass m.

3.6.2 Mass-spring system
Let us apply the conservation of energy to formulate the equation of a mass-spring
system. The Hook's law states the relationship between the displacement x (with respect
to its resting length) and the force exerted on it; see figure (3.4)

2m

2kx
m

3m

kx

3kx

Figure 3.4.

The mass m causes the spring to be stretched kx unit. Replacing m with 2m, causes
the spring to be stretched 2kx and so on. This implies that the relationship between the
force and the stretch is linear f = kx, where k is a positive constant called stiffness of the
spring. This law is called the Hook's law after the British physicist R. Hook. The
potential energy stored in a stretched (or contracted) spring is V =

1

2
kx2 by Eq.3.72. Con-

sider the mass-spring system shown in the figure (3.5).

k

xf

m

Figure 3.5.

.

The conservation of energy for this system reads

1
2
mv2(t)+

1
2
kx2(t)=E: (3.73)

Since E is constant, the value of E is determined by the initial state

E=
1
2
mv0

2+
1
2
kx0

2; (3.74)

where x0 and v0 are respectively the initial displacement (with resting to the resting posi-
tion) and the initial velocity of the mass m. The equation (3.73) is solved for v by

v=� 2E ¡ kx2(t)
m

r
: (3.75)
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Since v= x0, we obtain the following separable equation for x= x(t):

x0=� 2E ¡ kx2(t)
m

r
: (3.76)

The function x(t) is derived by the following integrationZ
x0

x ds

2E ¡ ks2
p =

1

m
p t; (3.77)

and thus

x(t)=
2E
k

r
sin
�

k
m

r
t+ �0

�
: (3.78)

Here �0 is the constant

�0= sin¡1
�

k
2E

r
x0

�
: (3.79)

Note that the equivalent second order equation formulation of this system is(
x00+

k

m
x=0

x(0)=x0; x0(0)= v0
:

It is simply verified that the solution to this equation is (3.78). In fact, applying given ini-
tial conditions to the general homogeneous solution

x= c1 cos
�

k
m

r
t

�
+ c2 sin

�
k
m

r
t

�
;

gives c1 = x0 and c2 =
m

k

q
v0. By simple trigonometric simplifications, one can derives

Eq.(3.78).

Example 3.21. Suppose that a spring with the stiffness k = 104N /m is connected to a
mass m= 40kg (the mass-spring is under the gravity force) and assume that the system is
at rest. If the spring is stretched for x0= 0.1m and released (the initial velocity v0=0), we
obtain the position function x(t). To do that, we calculate first the total energy of the
system

E=
1
2
kx0

2= 50 joule:

We also have

sin(�0)=
kx0

2

2E

r
=1;

that gives �0=
�

2
. This implies that

x(t)= 0.1 cos(5 10
p

t):
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The xv-plane for this system is called the state space or phase plane. For a numeric
example, assume k = 10¡3N /m and m = 1kg. If the initial displacement data are x0 =
10¡1m, v0 = 0m / s, then the energy level of the system is E = 5 � 10¡6 Jul. The figure
(3.6) shows the graph of the solution.

−0. 1 −0. 05 0. 05 0. 1
x

−0. 004

0. 004

v

E=5× 10−6

Figure 3.6.

Observe that the curve is closed. This implies that the functions x = x(t) and v = v(t)
are periodic with respect to time. In fact, since the parametric curve (t) = (x(t); v(t)) is
closed, there exists T0 > 0 such that (t + T0) = (t), and therefore both x(t) and v(t) are
periodic with the period T0.

Now, assume a drag force acting on the mass of the form fd = ¡bx0, where b > 0 is a
constant. The equation of motion in this case is

mx00+ bx0+ kx=0:

Multiplying the equation by x0 and integrating results to

E(t)=
1
2
mx02(t)+

1
2
kx2(t)=E(0)¡ b

Z
0

t

x02(s) ds:

Note that the energy is dissipating in this case as shown in the figure (3.7).

−2 −1 1 2

−1

1E ′(t) = 0

E ′(t)< 0

Figure 3.7.

3.6.3 Pendulums
The motion of a pendulum can also be derived by the conservation of energy. Consider
the pendulum shown in the figure (3.8).
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l � l

l cos�

m m

h=l(1¡ cos�)

Figure 3.8.

Since the potential energy of the mass at height h is V = mgh, by the relation h =
l(1¡ cos�), we obtain

V (�)=mgl(1¡ cos�): (3.80)

Note that x = l� and consequently we obtain v = x0 = l� 0. By the conservation of energy,
we have

1
2
ml2 � 02+mgl(1¡ cos�)=E: (3.81)

If the mass is initially at �= �0 and the initial velocity is v0=0, total energy is

E=mgl(1¡ cos�0): (3.82)

Consequently, we derive the following differential equation for the motion of the mass

d�
dt
=� 2g

l

r
cos(�)¡ cos (�0)

p
: (3.83)

Integrating the above equation gives

2g
l

r
t=

Z
�

�0 d�

cos(�)¡ cos (�0)
p : (3.84)

If �0 is small enough, we can write

cos(�)¡ cos(�0)=�
1
2
(�0
2¡ �2); (3.85)

and then the integration gives

g
l

r
t=�

�
2
¡sin¡1

�
�
�0

�
: (3.86)

This gives � as

�(t)=� �0 cos

 
g
l

r
t

!
: (3.87)

Note that the period of the oscillation is

T =2�
l
g

r
; (3.88)

which is independent of the mass m and the initial angel �0.
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The equation (3.81) is the energy formulation of the second order equation

� 00+
g
l
sin�=0; (3.89)

which is derived in the beginning of this chapter. Note that l� 0 = v and 1

2
ml� 02 =

1

2
mv2,

the kinetic energy of the system. The figure (3.9) shows some energy levels of the pen-
dulum.

−π π
θ

−π

π

θ ′

Figure 3.9.

3.6.4 Electrical circuits
Consider the LC circuit shown in the figure (3.10).

Figure 3.10.

As we observed in the first section, the differential equation describing the voltage
across the capacitor C is

d2Vc
dt2

+
1
LC

Vc=0: (3.90)

The quantity !0 =
1

LC
p is the natural frequency of the circuit. We observe that a LC cir-

cuit conserves its energy. The energy formulation of the above circuit is simply derived by
multiplying the equation by Vc0 and integrating it

1
2
L (Vc

0)2+
1
2C

Vc
2=E:

Since Vc0= i, the electrical current in the inductor L, we obtain

1
2
Li2+

1
2
CVc

2=E:
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If the inductor L is not ideal, having a resistance R, the equation reads

d2Vc
dt2

+
R
L
dVc
dt

+
1
LC

Vc=0:

Observe the similarity between the behavior of an electrical circuit, a mechanical mass-
spring systems and a pendulum. They follow same energy formulation and have same
form of differential equations.

Now let us consider a switching circuit. Consider the figure (3.11).

Figure 3.11.

Assume that the switch S connects at time t= 1 to the voltage supply Vs= 1 Volt and
disconnects from the supply at t=2. Furthermore, assume that Vc(0)= 1 and i(0)=0. The
mathematical model of this circuit is�

Vc
00+Vc= r(t)

Vc(0)= 1; Vc
0(0)=0

; (3.91)

where r=
�
1 1<t< 2
0 else

is a unit pulse. To solve this problem, we split up the problem into 3

sub-problems.

For t < 1. The problem for t< 1 reads�
Vc
00+Vc=0

Vc(0)= 1; Vc
0(0)=0

: (3.92)

Note that in this case, the dynamic of the system is influenced by initial conditions.
The solution is Vc(t)= cos(t) for t� 1.

For 1<t< 2. The problem in this interval reads�
Vc
00+Vc=1

Vc(1)= cos(1); Vc0(1)=¡sin(1)
:

Note that the initial conditions of the problem set such that the solution is contin-
uous at t= 1. The solution to this problem is V (t) = cos(t) + 1¡ cos(t ¡ 1) for 1�
t� 2.

For t > 2. The problem reads�
Vc
00+Vc=0

Vc(2)= cos(2)+1¡ cos(1); Vc0(2)= sin(1)¡ sin(2)
:
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Again the initial conditions of the problem are set at t= 2 and are provided by the
solution for t < 2. The solution to the problem for t� 2 is

Vc(t)= cos(t)¡ cos(t¡ 1)+ cos(t¡ 2):

The figure (3.12) shows the solution in the interval [0; 8]. We solve this type of
problems by simpler method in next chapters when we introduce Laplace trans-
form method.

1 2 4 6 8

0. 5

1. 0

Figure 3.12.

3.6.5 Classification of damped oscillators
Engineers usually use a damper to control oscillations such that they vanish in long term.
A damper like friction acts always against the direction of motion and causes the total
energy of a system to be dissipated. For example, a dashpot is used to control the vibra-
tion in a mechanical mass-spring system. Let us write the general form of a damped oscil-
lator as

y 00¡ 2�y 0+!0
2 y=0; (3.93)

where � > 0 is a constant. The characteristic polynomial p(�) of the equation has roots

�1;2=¡�� �2¡!02
p

: (3.94)

There are three different cases for the solutions based on the term �2¡!02.
Case 1. (under-damped) If � <!0 we have two complex roots

�1;2=¡�� i!; (3.95)

where != !0
2¡�2

p
and the solution can be written as

y=A0 e¡�t sin(!t+ '0); (3.96)

for some constants A0 and '0. Observe that the solution is oscillatory due to the
trigonometric term sin(!t + '0) and vanishes in long term due to the factor e¡�t

(note that � > 0). Consider the following example�
y 00+2�y 0+4y=0
y(0)= 0; y 0(0)= 1

: (3.97)
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Clearly, for 0 < � < 2, the solution is under-damped. For a numerical example, let
us assume �= 0.5. The solution in this case is

y(t)=
2

15
p e¡t/2 sin( 15

p
t/2):

The figure (3.13) shows the graph of the solution.

π 2π 3π

0. 2

0. 4
2√
15

e−t

0. 2
y

−0. 5

1. 0

y ′

Figure 3.13.

Although the function is not periodic in the usual sense, we define T = 2�

!
as the

quasi-period T of the solution.

Case 2. (critically damped) If �=!0 then �1=�2=¡� and then

y=(c1+ c2t) e¡�t: (3.98)

For the problem (3.97), the solution is critically damped if � = 2. In this case the
solution is y = te¡2t. Note that y(t)! 0 when t!1. The figure (3.14) shows the
time and phase behavior of the solution.

1
2
π π 3

2
π 2π

0. 1

0. 1
y

1. 0

y ′

Figure 3.14.

Case 3. (over-damped) If � >!0, the characteristic p(�) has two real distinct roots

�1;2=¡�� �2¡!02
p

; (3.99)

which are both negative, i.e., �1; �2< 0. The solution in this case is

y(x)= c1 e�1t+ c2 e�2t; (3.100)
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and therefore y(t)! 0 in long term. For example, if � = 3 in the problem (3.97),
then �1;2=¡3� 5

p
and thus the solution is

y(t)=
e(¡3+ 5

p
)t

2 5
p ¡ e(¡3¡ 5

p
)t

2 5
p :

The graph of the solution is shown in the figure (3.15).

π 2π 3π
t

0. 05

0. 1

y(t)

0. 1
y

1. 0

y ′

Figure 3.15.

3.6.6 Resonance
A harmonic oscillator shows the resonance behavior if it is stimulated by a forcing term
having same frequency as the natural frequency !0. Consider the equation

y 00+!0
2y= sin(!t): (3.101)

Clearly if !=/ !0, the function

y=A(!) sin(!t); (3.102)

where A(!) =
1

!0
2¡!2

solves the equation. Observe that the magnitude of the solution,

A(!), depends on the difference !0 ¡ !. If j! ¡ !0j is small, then A(!) is very large. For
example if !0 = 1, then A(0.9) = 5.26, A(0.95) = 10.26, A(0.98) = 25.25 and A(0.99) =
50.25. As we know, the structure of the solution changes when ! = !0. In fact, if ! = !0,
the solution is

y(t)=¡1
2
!0 t sin(!0t): (3.103)

This phenomena is called resonance. Consider the circuit shown in the figure (3.16).

Figure 3.16.
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The natural frequency of this circuit is !0 = 1. If Vs = sin(t), the solution is Vc =
¡1

2
tsin(t). The magnitude of the voltage across C increases unbounded with respect to

time. The graph of the solution is shown in the figure (3.17). Clearly, no capacitor can
endure this increase in magnitude and will eventually burn.

10 20 30
t

y(t)

y= t/2

y= − t/2

Figure 3.17.

3.6.7 Moving objects with variable masses

The familiar form of the Newton's second law f = ma holds only if the mass remains
unchanged during its motion. In several applications this assumption fails and the mass
changes duration the motion. For this, we should write the law in its original form

dP
dt

= f ; (3.104)

where P (t) =m(t) v(t) is the momentum of the system at time t and f is the total forces
acting on the mass m(t) at that time. For a simple illustration, let us consider a system
consisting two masses: the mass m that moves with the velocity v and mass �m that
moves with the velocity u. The momentum of the system by definition is

P (t)=mv(t)+ �mu(t): (3.105)

Suppose that at time t + �t, the mass �m attaches to the mass m and the combined mass
moves with the velocity v(t+ �t). The momentum at t+ �t is

P (t+ �t)= (m+ �m) v(t+ �t): (3.106)

According to (3.104), we can write

lim
�t!0

(m+ �m)v(t+ �t)¡mv(t)¡ �mu(t)
�t

= f: (3.107)

The limit in the left hand side is equal to

lim
�t!0

(m+ �m)v(t+ �t)¡mv(t)¡ �mu(t)
�t

=m
dv
dt
+
dm
dt

v¡ dm
dt

u: (3.108)
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Thus the correct form of the second Newton's law is

d
dt
(mv)¡u dm

dt
= f: (3.109)

Note that if m is constant, the above relation has the familiar form f = ma. The case
when m is loosing the quantity is similar. In fact, at time t+ �t we have

P (t+ �t)=m(t+ �t) v(t+ �t)¡u�m; (3.110)

which leads to the equation (3.109) as well.

A space rocket problem.

As an application of the variable mass formula (3.109), let us find the equation of the
motion of a space rocket. Suppose that the mass of the rocket is m1 and it has a fuel con-
tainer of mass m2; which is shown schematically in the figure (3.18). Furthermore assume
that the rocket burns during its motion the fuel with the constant rate a and ejects the
produced gas backward with the constant velocity c (relative to the rocket). In other
word, if the velocity of the rocket is v(t), then the produced gas will be emitted with the
velocity u(t)=¡c+ v(t).

m1

m2

Figure 3.18. A simple model of space rocket.

If we ignore the air resistance against the rocket, formula (3.109) reads

m
dv
dt
+ c

dm
dt

=¡mg: (3.111)

We can rewrite the above equation as

d(v+ c logm)=¡gdt: (3.112)

Assuming v(0)=0, gives v(t) as

v= c log
m(0)
m(t)

¡ gt: (3.113)
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Notice that m(t) = ¡at + m1 + m2 and then for T =
m2

a
, the whole amount of the fuel in

the container is consumed. At this moment the velocity will be

v(T )= c log
�
1+

m2

m1

�
¡ gm2

a
: (3.114)

The height function h(t) is obtained by the integration of v(t) as

h(t)=¡1
2
gt2+ ct+

c
a
m(t) log

�
m(t)
m(0)

�
: (3.115)

A rain drop

Consider a rain drop falling straight down and it absorbs water (in the form of steam)
from air. Let us obtain the equation of the motion of the rain drop. Assume that the drop
is in the shape of a ball with the initial mass m0 and that it is absorbing water with the
rate proportional to its surface are. According to the assumptions about the shape of the
drop and the in-take rate, we can write

dm
dt
(t)= k1 r2(t); (3.116)

where k1 is a positive constant. Since m= k2 r
3(t) for some constant k2, we obtain the fol-

lowing differential equation for m

dm
dt

= k3m
2/3; (3.117)

where k3 is some positive constant. Solving the above equation gives m(t):

m=(k3t+m0
1/3)3: (3.118)

We assume that the velocity of the steam in the environment is zero, that is, u = 0. Thus
the formula (3.109) es expressed by

d
dt
(mv)=¡mg: (3.119)

Integrating the above equation gives

m(t) v(t)=¡g
Z
0

t

m(s) ds=¡ g
4k3

m4/3+
g
4k3

m0
4/3: (3.120)

Finally, v(t), the velocity of the drop is obtained

v(t)=¡ g
4k3

m1/3+
g
4k3

m0
4/3

m
: (3.121)

Problems
Problem 3.65. Consider the problem �

y 00+4y= r(t)
y(0)= 1; y 0(0)=¡1 ;
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where r(t)=
�
1 t < 1
2 t > 1

. Draw the solution in the interval [0; 6].

Problem 3.66. Consider the problem �
y 00+ p(x)y 0+ y=0
y(0)= 1; y 0(0)=¡1 ;

where p(x) =
�
2 x<�
0 x>�

. Find the solution to the problem and use a computer software to draw the

solution in the interval (0; 2�).

Problem 3.67. Consider a damped mass-spring system with a unilateral dashpot shown in the figure
(3.19). Assuming m = 0.1kg, K = 0.5N /m and D =

�
0.2v x> 0
0 x< 0

, write the differential equation

describing the position function x(t) (with respect to the resting state) if initial conditions are x(0) =
0, v(0)= 2. Draw the solution in the interval t= [0; �].

D

K

m

x

Figure 3.19.

Problem 3.68. Consider the mass-spring system shown in the figure (3.20). If x(t) denotes the dis-
placement of the mass m with respect to the resting position, write down the equation for x(t).

k2k1
m

Figure 3.20.

Problem 3.69. Consider the forced oscillator shown in the figure (3.21)

Figure 3.21.

where the supply Vs is

Vs(t)=

8<: Lt 0� t� �

!

L�

!
t� �

!

;

for !2 = 1

LC
. Write down the differential equation for Vc(t), the voltage across the capacitor and solve

it assuming Vc(0)= i(0)= 0 where i(0) is the initial eclectic current in the inductor L.

Problem 3.70. Write down the differential equation of the parallel RCL circuit shown in the figure
(3.22) and discus the type of solutions based on the values of R;L and C.
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Figure 3.22.

Problem 3.71. Consider the switching circuit shown in the figure (3.23). If the switch S connects at
t=0 and disconnects at t= �

2
, find the value Vc(�) if Vc(0)=0 and Vc0(0)=2.

Figure 3.23.

Problem 3.72. Assume that the mass m starts off the point A with the initial velocity v0 = 0 and
reaches to the point B along the path . Show that its velocity at the point B is independent of the
path  and is equal to vB= 2gh

p
where h is the relative height of the point A with respect to B.

A

B


m

h

Problem 3.73. For a body moving with the initial velocity V0, assume the air resistance is propor-
tional to the velocity. If the velocity of the body reduces to V0 / 2 after T , find the time when the
velocity reduces to V0/5.

Problem 3.74. The water resistance against a moving raft with the mass m= 10kg is given by

F =¡v¡ 0.1v3;

where v is the velocity of the raft. If the initial velocity of the raft is v0= 100m/s, find the time when
the velocity drops to 1m/s.

Problem 3.75. Assume that the air resistance against a falling body with the unit mass is propor-
tional to its velocity. If the wind is blowing with the angel 45 degree with the constant force 1N ,
write down the system of equations and propose a method to solve it.

Problem 3.76. Deduce the conservation of energy for conservative force fields using the Newton's
law mv_ =F .

Problem 3.77. Assume a spring displaces 0.05 meter if a 50kg mass hang to its end. Draw the dis-
placement function function if a 25kg mass hang to the spring with the initial conditions x0 = 0, v0 =
1m/s.

Problem 3.78. Obtain the displacement of a mass-spring system m = 4kg, k = 104 with the initial
conditions x0= 0.1m, v0=0.

Problem 3.79. Consider the pendulum shown in the following figure.
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According to the figure, the only force acting on the mass m is F =mg sin(�). Remember that the
gradient operator r in the polar coordinate has the form

rV =
1
r
@V
@�

+
@V
@r

:

Use this information to prove that

V (�) =mgl (1¡ cos(�)):

Problem 3.80. For the space rocket described in this chapter, assume as=n air resistance of the
form f =¡kv for a constant k > 0. Obtain the differential equation and solve it.

Problem 3.81. For the rain drop problem described in this chapter, assume an air resistance of the
form f =¡kv for a constant k > 0. Obtain the differential equation and solve it.

Problem 3.82. Assume a piece of ice in the shape of a ball with the initial radius r0 is connected to
a pendulum with the length l. If the ice loses its mass according to its surface area, write the equation
of motion. Use a computer software to draw some trajectories of the equation.

Problem 3.83. In contrast to the constant acceleration g for a free falling body, prove that the
acceleration of a rain drop explained in this chapter is

g~(t)=¡g
4

�
1+ 3

�
m0

m

�
4/3
�
:
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