
Chapter 2
First Order Equations

It turns out that first-order differential equations express the behavior of several real-world
problems mathematically. Since there is no hope to solve general first-order equations in
closed form, we confine our study to equations for which a standard method has already been
developed. In the last section of this chapter, we study the existence-uniqueness problem of
the general first-order differential equations.

2.1 Linear first-order equations

2.1.1 General form
Perhaps the most important type of differential equations is linear equations. The general
form of a linear first-order equation is

a(x) y 0+ b(x)y= c(x): (2.1)

Note that the algebraic exponent of y and of y 0 is one. If c(x) is identically zero, the equation
is called linear homogeneous, otherwise, linear non-homogeneous equation. The canonical
form of a linear first-order equation is obtained by dividing the equation by a(x) as

y 0+ p(x)y= r(x): (2.2)

The equation models the behavior of several real phenomena. For example, the population
dynamics of a typical living species, the voltage across the capacitor in a RC circuit, the
change in the height of a falling body, the growth of the money you deposited in financial
institute, the carbon dating of an old fossil, and many other real-world problems. For all
those example, the rate of change of the amount of some quantity y(x) is proportional to
the current amount of that quantity, i.e, dy

dx
/ y(x), and an external factor r(x). The linear

differential equations is a special case of a general non-linear one, for example, it turns out
that the rate of change of the population of some living species has the form

dp
dt

=�(x; p)p;

where �(y)= r
¡
1¡ p

K

�
, where r;K can be constant or functions of x. That is a non-linear

equation that in general can not be solved in closed form.
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On the other hand, linear differential equations enjoys pretty nice properties and for
this are very popular in different fields of sciences. If we rewrite a first-order equation in the
following operator form �

d
dx

+ p(x)

�
[y] = r;

and denote the differential operator by T , we reach the compact form of the equation T [y]=r.
With this notation, the operator T maps a function y(x) to another function r(x) in the
linear manner , that is,

T [�y1+ �y2] =�T [y1] + �T [y2];

for arbitrary functions y1(x); y2(x) and constants �; �. Therefore, a linear differential equa-
tion refers to the linearity of its differential operator . A function yh(x) is called a homogeneous
solution of linear mapping T if T [yh] = 0, and moreover, T [cyh] = 0 for arbitrary con-
stant c. The homogeneous equation for r� 0 is

dy
dx

+ p(x) y=0;

or equivalently in the differential form

1
y
dy+ p(x) dx=0;

that through integration yields

yh(x)= ce
¡
Z
p(x)dx

;

for arbitrary constant. On the other hand, if yp(x) is any particular solution of T [y] = r,
then y(x)= yh(x)+ yp(x) is also solves the equation due to the following argument

T [yh+ yp] =T [yh] +T [yp] = 0+ r:

2.1.2 General solution

To solve Eq.2.2, we multiply it by factor �(x)= e

Z
p(x)dx

which is called an integrating factor
that will be clear immediately. By multiplying, we reach

e

Z
p(x)dx

y 0+ p(x) e

Z
p(x)dx

y= r(x) e

Z
p(x)dx

;

and according to the equality

e

Z
p(x)dx

y 0+ p(x) e

Z
p(x)dx

y=
d
dx

�
e

Z
p(x)dx

y

�
;

we can write

d

�
e

Z
p(x)dx

y

�
= r(x) e

Z
p(x)dx

dx:
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The obtained equation is an integrable equation and for this �(x) is called an integrating
factor since it transforms the original equation to an integrable one. Now, by integrating the
above equation, we reach the following solution:

y(x)= ce
¡
Z
p(x)dx

+ e
¡
Z
p(x)dx

Z
r(x) e

Z
p(x)dx

dx: (2.3)

The above formula is called the general solution of the given linear-first order equation.
Before we justify the terminology of the general solution, let us solve an example.

Example 2.1. For equation y 0+ ay= r(x), where a is a constant., the integrating factor is
�= eax, as thus

eaxy 0+ aeaxy||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
d

dx
(eaxy)

= eax r(x);

or equivalently,
d(eax y)= eax r(x) dx

that by integration yields

eaxy= c+

Z
eax r(x) dx;

and finally

y(x)= ce¡ax+ e¡ax
Z
eax r(x) dx:

Note that y(x) consists two terms

y(x)= ce¡ax|||||||||||{z}}}}}}}}}}}
homogeneous solution

+ e¡ax
Z
eax r(x) dx||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

solution associated to r(x)

:

The first term yh = ceax which is called the homogeneous solution, is the solution of the
homogeneous equation

y 0+ ay=0;

and the second term which is called the particular solution is contributed by the external
term r(x).

2.1.3 Initial value problem
The general form of a linear first-order initial value problem is�

y 0+ p(x)y= r(x)
y(x0)= y0

; (2.4)

where y0 is called the initial value of the solution y(x) at x = x0. The point x0 is usually
chosen such that functions p; r are continuous in an open interval centered at x0. There are
two methods to solve the above problem: 1) definite integration, 2) substitution in the general
solution. The formula for the definite integration for solving the above problem is as follows

y(x)= y0 e
¡
Z
x0

x

p(t)dt

+ e
¡
Z
x0

x

p(t)dt
Z
x0

x

r(t) e

Z
x0

t

p(s)ds

dt: (2.5)
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It is simply verified that y(x0)= y0, and furthermore

y 0(x)=¡p(x)

"
y0 e

¡
Z
x0

x

p(t)dt

+ e
¡
Z
x0

x

p(t)dt
Z
x0

x

r(t) e

Z
x0

t

p(s)ds

dt

#
+ r(x);

or equivalently y 0(x)=¡p(x) y(x)+ r(x).

Example 2.2. Consider the following IVP(
xy 0¡ y= x2

y(1)=¡1 :

The canonical form of the equation is y 0¡ 1

x
y=x, and the integrating factor is

�(x)= e

Z
1

x

¡1
t
dt
=
1
x
:

Multiplying by �, we reach

d

�
1
x
y

�
=1)

Z
1

x

d

�
1
t
y

�
=

Z
1

x

dx) 1
x
y(x)¡ y0= x¡ 1:

Finally, the solution is obtained as y(x)= x(x¡ 2).

Example 2.3. (Cont.) Let us solve the above problem by using the general solution. Note
that the general solution of the equation is

y(x)= cx+ x2;

and applying the initial condition y=¡1 at x=1 yields c=¡2, and thus y(x)=x(x¡ 2)as
before.

2.1.4 Existence, uniqueness and extension
Assume that p; q are continuous function in an interval I = (x0 ¡ a; x0 + a) in the initial
value problem (2.4). Then it can be proved that the solution (2.5) is the unique continuously
differentiable solution on I. The uniqueness is justifies as follows. Assume y1(x); y2(x) are
two solutions to the problem, thus for y= y1¡ y2, we have(

d

dx
y+ p(x) y=0

y(x0)= 0
:

We should prove that y = 0 is the unique solution to the equation. Consider the function

z(x)= y(x)e

Z
x0

x

p(t)dt

. The continuity of p(x) guarantees that the term e

Z
x0

x

p(t)dt

never vanishes
for x2 I. We have

dz
dx

= y 0 e

Z
x0

x

p(t)dt

+ p(x) e

Z
x0

x

p(t)dt

y(x)= 0;
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and thus z(x)= c a constant that implies

y(x)= c e
¡
Z
x0

x

p(t)dt

:

The condition y(x0) = 0 implies c= 0 and finally y(x) = 0. The existence and extension of
the solution to I are directly concluded from solution (2.5).

Example 2.4. Consider the following problem(
cos(x) y 0+ sin(x) y= 1

2
sin(2x)

y(0)=0
: (2.6)

Since the initial point is x0=0 and the term cos(x) is non-zero in the interval (¡�/2; �/2),
we can safely rewrite the equation in the standard form

y 0+ tan(x) y= sin(x);

for x2 (¡�/2; �/2). The general solution to the equation is

y(x)= c cos(x)+ cos(x) lnjsec(x)j:

Applying initial condition determines c as c=0 and thus y= cos(x) lnjsec(x)j for x2 (¡�/2;
� /2). The graph of the solution is shown in Fig.(2.1). The solution is continuous beyond
this domain, however, y 0 goes unbounded at x=��

2
. Remember that the solution to an ODE

must be continuously differentiable, and the obtained solution is not a classical solution even-
though it is continuous everywhere.

−1
2
π −1

4
π 1

4
π 1

2
π

0. 2

y(x)

Figure 2.1.

2.1.5 Singular differential equations

Although, the differential equation in the above example fails at x=0, the solution for the
given initial condition extends on (¡1; 1). However, this is not the case for all initial
conditions. For example, the following problem does not have any solution(

xy 0¡ y= x2
y(0)=¡1 ;

2.1 Linear first-order equations 5



while the problem (
xy 0¡ y= x2
y(0)=0

;

has infinitely many solutions.

Example 2.5. Consider the following IVP(
x2 y 0¡ y= x2

y(1)=¡1 :

The integrating factor is

�(x)= e

Z
1

x

¡ 1

t2
dt
= e

1

x;

and thus Z
1

x

d
�
e
1

t y
�
=

Z
1

x

e
1

tdt) y(x)=¡e1¡
1

x + e
¡1

x

Z
1

x

e
1

t dt:

Obviously, lim
x!0¡

y(x) does not exist and therefor x = 0 is a singular point for the solution,

and hence the domain of the solution is (0;1).

2.1.6 System interpretation
From applied science point of view, a system is a transaction that transforms an input to
an output .

S
r y

Several transactions in applied sciences can be described by differential equations. A
system is called linear if its response to inputs is linear, that is, if its response to �r1+ �r2
is equal to �y1;+�y2 where y1; y2 are the responses to r1; r2 respectively. A linear differential
equation that is described by the linear differential operator T is a linear system. For the
initial value problem (2.4), the response consists two terms, the response to the initial
condition y(x0) that can be considered as the internal energy of the system, and the response
to the external factor r(t). For example, consider the following LC circuit:

The input to the system is the voltage supply Vs and the output is Vc, the voltage across
the capacitor. The differential equation that describes the system is as follows

dVc
dt

+
1
RC

Vc=
1
RC

Vs:
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The response depends in addition to Vs on the initial voltage in the capacitor Vc(0). This is
a linear system with the transaction T¡1[Vs] =Vc where

T : =

�
d
dt
+

1
Rc

�
:

It is simply seen that T¡1 is defined by

T¡1[Vs] =
1
RC

Z
0

t

Vs(s) e
¡(t¡s)

RC ds:

2.2 Linear piecewise equations

2.2.1 Jump discontinuities

If either function p(x) or r(x) in Eq.2.2 is piecewise continuous , the equation is called
a piecewise or switching equation. A piecewise continuous functions is a function that is
continuous everywhere except possibly at some finite points, and that its discontinuity points
only are finite jumps. Assume that r(x) in the following equation has a jump at x0

y 0+ p(x)y= r(x):

This jump must be due to a jump in y 0 only. The reason is that if the jump is associated to
y(x), then y 0(x) will have an infinite jump at x0 due to the definition of y 0(x0)

y 0(x0)= lim
h!0

y(x0+ h)¡ y(x0)
h

:

Therefore, y(x) is continuous at x0, and y 0(x) has finite jump at x0.

Example 2.6. Let us solve the following initial value problem and draw the solution�
y 0+ y= r(x)
y(0)= 0

;

where r(x) is the following piecewise function.�
1 1<x< 2
0 otherwise

:

We solve the problem by two methods

Method I. In the domain x< 1, the equation reads�
y 0+ y=0
y(0)=0

;

2.2 Linear piecewise equations 7



and thus y(x)= 0 for x2 (¡1; 1). In the interval x2 (1; 2), the equation reads

y 0+ y=1:

Here we need an appropriate initial condition. Note that we can not use the initial
condition y(0)=0 since the equation is defined for 1<x<2 and not at x=0. We can
assume that the solution y(x) is continuous at x=1. According with that assumption,
we can write the initial value problem as�

y 0+ y=1
y(1)=0

;

and thus y(x)= 1¡ e1¡x. For x> 0, the problem reads(
y 0+ y=0

y(2)= 1¡ e¡1 ;

which is solved for y(x)= (e2¡ e) e¡x, and finally

y(x)=

8>><>>:
0 x� 1
1¡ e1¡x 1�x� 2
(e2¡ e) e¡x x� 2

−2 2 4 6

0. 3

0. 6

Method II. The general solution is

y(x)= ce¡x+ e¡x
Z
0

x

r(t) ex dx;

and by substituting y(0)=0, c is determined 0, and thus

y(x)= e¡x
Z
0

x

r(t) et dt

For x< 1, r(x)= 0 and thus y(x)= 0 for x< 1. For x< 2, we have

y(x)= e¡x
�Z

0

1

r(t) et dt+

Z
1

x

r(t) et dt

�
= e¡x

Z
1

x

et dt=1¡ e1¡x:
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For x> 2, the solution is

y(x)= e¡x
�Z

0

1

r(t) et dt+

Z
1

2

r(t) et dt+

Z
2

x

r(t) et dt

�
= e¡x

Z
1

2

et dt=(e2¡ e) e¡x

Finally

y(x)=

8>><>>:
0 x� 1
1¡ e1¡x 1<x< 2

(e2¡ e) e¡x x� 2
:

Remark. Remember that the solution to a differential equation is a smooth or continuously
differentiable function. Therefore, the solution of piecewise equations is not classical in
technical terms.

2.2.2 Switching circuits

As a simple example, consider the switching circuit shown below

S1
R1

C1R2

V1

Vc

Assume that the switch S1 connects the circuit at time t0. For t > t0, let i1 denote the
electrical current in the resistor R1. According to the Kirchhoff's nodal law, we can
write i1 = i2 + ic, where i2; ic are electrical currents in the resistor R2 and the capacitor C
respectively. For t < t0, there is no current in R1 and thus i2 + ic = 0. On the other hand,
the Kirchhoff's mesh law states VR2= Vc, where VR2; Vc are the voltages across R2 and C
respectively. Now, we can obtain the equation for t < t0 where the switch S1 is off. Due to
relations ic=C

dVc
dt

and VR2= i2R2, we get i2=
Vc
R2
, and hence

Vc
R2

+C
dVc
dt

=0:

Therefore, we derive the following equation for t < t0:

dVc
dt

+
1

R2C
Vc=0: (2.7)

For t> t0, we have
Vc
R2

+C
dVc
dt

= i1; (2.8)

2.2 Linear piecewise equations 9



and by the Kirchhoff's mesh law VR1+ Vc= V1, we obtain i1=
V1¡Vc
R1

. Substituting i1 into
Eq.2.8 yields

Vc
R2

+C
dVc
dt

=
V1¡ Vc
R1

;

and finally
dVc
dt

+
1
RC

Vc=
1

R1C
V1; (2.9)

where 1

R
=

1

R1
+

1

R2
. Two equations (2.7) and (2.9) can be rewritten in the compact form as

follows
dVc
dt

+ p(t)Vc= r(t); (2.10)

where

p(t)=

8<:
1

R2C
t< t0

1

RC
t> t0

; r(t)=

(
0 t < t0
1

R1C
t > t0

:

Notice that in the above equation, functions p; r are piecewise functions. Let us solve the
equation if the initial condition Vc(0)=V0 is given. For t< t0, the solution is

Vc(t)=V0 e
¡ t

R2C:

For t > t0, the appropriate initial condition is the value of Vc(t0). This value is provided by

the solution for t < t0, that is, Vc(t0) = V0 e
¡ t0
R2C. To solve Eq.(2.9) with Vc(t0), we apply the

formula for linear differential equations and obtain

Vc(t)=V0 e
¡ t0
R2C e

¡(t¡t0)
RC + e

¡(t¡t0)
RC

Z
t0

t

e
(x¡t0)
RC

V1
R1C

dx:

If V1 is a constant value, then Vc is after some straightforward simplifications

Vc(t)=V0 e
t0
R1C e

¡ t

RC +
RV1
R1

�
1¡ e¡

(t¡t0)
RC

�
:

Note that Vc(t) is continuous at t0 but not differentiable at this point. Observe also the
property

lim
t!1

Vc(t)=
R
R1
V1=

R2

R1+R2
V1;

that means capacitor C acts like an open circuit in long term.

2.3 Bernoulli and Riccati equations

These are two important nonlinear first-order equations that can be transformed to linear
one after an algebraic transformation.
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2.3.1 Bernoulli equations
The standard form of a Bernoulli's equation is�

y 0+ p(x) y= r(x) y�

y(x0)= y0
; (2.11)

where � =/ 0; 1. Note that the equation is linear for � = 0; 1. Furthermore, if y0 = 0, then
y(x) = 0 is the solution to the equation. In fact, y = 0 is an equilibrium of the equation.
Therefore, we assume y0=/ 0 as well.

The general method to solve the equation suggested by G. Wilhelm Leibniz is as
follows. we divide the equation by y� (remember that y0 is non-zero and thus y(x) is nonzero
in an open interval around x0) and obtain

y¡� y 0+ p(x) y1¡�= r(x): (2.12)

Let u(x) be the function u = y1¡�, and thus u0 = (1 ¡ �)y¡�y 0. Therefore we obtain the
following equation for u(

u0+(1¡�)p(x) u=(1¡�)r(x)
u(x0)= y0

1¡� : (2.13)

This problem is linear in u and can be solved by the method presented above. Once u(x) is
determined, the true solution y(x) is derived by the relation y= u1/1¡�.

Example 2.7. Consider the equation(
y 0¡ 4xy=4x y

p

y(0)= 4
:

Here y(0) = 4> 0 and thus y(x) remain positive in an interval around x0= 0. By dividing
the equation by y1/2 we obtain

y¡1/2y 0¡ 4xy1/2=4x;

and for u= y1/2 we obtain u0= 1

2
y¡1/2 y 0. Substituting u and u0 into the equation leads�

u0¡ 2xu=2x
u(0)= 2

:

The obtained equation is solved for u = 3ex
2 ¡ 1. Since y = u2, we obtain the solution

y=(3ex
2¡ 1)2. Observe that the interval for the solution is I =(¡1;1).

Example 2.8. We solve the following initial value problem(
xy 0¡ y= ln(x) y2

y(1)=
1

2

:

First we write the equation in the standard form

y 0¡ 1
x
y=

1
x
ln(x) y2:

2.3 Bernoulli and Riccati equations 11



Dividing the equation by y2 leads to

y¡2y 0¡ 1
x
y¡1=

1
x
ln(x):

We take u= y¡1 to write the equation as(
u0+

1

x
u=¡ 1

x
ln(x)

u(1)=2
;

which is a linear equation. The solution to the above problem is u = x¡1 ¡ ln(x) + 1, and
thus y is

y(x)=
x

x+1¡x ln(x) :

The solution goes unbounded at x=�3.59 and thus the domain of the solution is I=(0;3.59).
Although, the solution y(x) is not defined at x=0, it has limit at this point. The graph of
the solution in the interval (0; 3.59) is shown below.

1 2 3

y(x)

x

2.3.2 Riccati equation
The general form of a Riccati equation is

y 0= a(x)y2+ b(x)y+ c(x): (2.14)

The important point is that there is no standard method to solve the equation in general.
However, if a solution to the equation is known, the general solution can be obtained by
a simple trick. Assume that y1 is a particular solution of the equation. Let us write the
general solution as y= y1+ v(x) for an undetermined function v(x). By substituting y into
the equation, we reach the following equation which is a Bernoulli equation

v 0¡ (2a(x)y1+ b(x))v= a(x)v2: (2.15)

Example 2.9. It is simply verified that the function y1= x is a solution to the equation

y 0= y2¡ 2xy+x2+1:

Substitution y=x+ v(x) leads to v 0= v2 with the solution v=¡ 1

x+ c
and thus

y(x)= x¡ 1
x+ c

:
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Problems
Problem 2.1. Find the solution to each of the following problems and determine the domain of the
definition for each solution:

i. y 0+ y=2xe¡x, y(0)= 1

ii. xy 0+2y= ex
2
, y(1)=0

iii. sin(x)y 0+ 1

2
sin(2x)y= 1

3
sin(3x), y(�/2)= 1

iv. y 0+ 1

x+1
y= ex, y(0)= 0

Problem 2.2. Write the general solution to the following equations

i. y 0+ tan(x)y= cos2(x).

ii. y 0+(tan(x) + cos(x))y= cos2(x).

iii. xy 0¡ 2y=x ln(x).

iv. xy 0+3y=3x2¡ 2x

v. xy 0¡ (x¡ 3)y= x+1

x2

Problem 2.3. Consider the initial value problem the following problem(
(1+ t2)y 0+2ty= r(t)
y(0)= 1

;

where r(t) =
�
0 t < 1
1 t > 1

. There is a jump in y 0(t) at t = 1, however, the solution is continuous. Find a

continuous solution to the equation that is differentiable everywhere except at t=1.

Problem 2.4. Solve the following initial value problem and draw the solution�
y 0+ y= r(x)
y(0)= 1

;

where r(x) is the following piecewise function.�
1 1<x< 2
0 otherwise

:

Problem 2.5. Solve the following piecewise problem and draw the solution:�
y 0+ p(x) y=¡p(x)
y(0)=1

;

where

p(x) =

�
0 x� 1
1 x> 1

:

Problem 2.6. Solve the following initial value problem and draw the solution�
y 0+ p(x)y= r(x)
y(0)=0

where p(x) is the function

p(x)=

�
1 x� 3
¡1 x> 3

;

and r(x) is

r(x) =

�
1 x> 1
0 x� 1 :

2.3 Bernoulli and Riccati equations 13



Problem 2.7. Find the solution to the following problems

i. y 0+ y+ y2=0, y(0)=2

ii. y 0+ y=x y
p

, y(0)= 1

iii. y 0¡ 2xy=xy2, y(0)=¡1

iv. 2 sin(x) y 0¡ cos(x) y+ sin2(x) y3=0, y(�/2)=1

v. 2 cos(x)yy 0¡ sin(x)y2= cos(x), y(0)=¡1

vi. x2y 0+2xy¡ y3=0, y(1)= 1

Problem 2.8. Solve the following problem and draw the solution(
y 0+ y= r(x)y2

y(0)= 1
;

where r(x) is

r(x) =

�
1 x< 1
0 x> 1

:

Problem 2.9. Solve the following problem and draw the solution(
y 0+ p(x)y= y

p

y(1)= 1
;

where p(x) is

p(x)=

�
1 x< 2
¡1 x> 2

:

Problem 2.10. (variation of parameter method) If r�0 in Eq2.2, then the solution of the equation
is

y(x)= ce¡
R
p(x): (2.16)

Now assume that r is not identically zero. We solve the equation by the method of variation of parameter.
For this, assume that c is a function of x, i.e.,

y(x)= c(x) e¡
R
p(x):

Substitute y(x) into the equation and find an expression for c(x).

Problem 2.11. Rewrite the following equation as a linear equation with respect to x=x(y)

(p(y)x+ q(y))y 0= r(y);

Use this idea to solve the following equations

i. (x¡y2)y 0= y

ii. (x2+ey)y 0=x:

Problem 2.12. Consider the following problem(
y 0¡ ay= ebx

y(0)= y0
:

i. Show that the problem has the following solution

y(x)= eaxy0+

8<: ebx¡ eax

b¡ a b=/ a

xeax b= a
: (2.17)
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ii. In the above solution, assume that b is a free parameter and let b! a. Find the limit and show
that the limit function is the solution when b=a, (the result implies that the solution is continuous
with respect to b).

Problem 2.13. Consider the equation �
y 0+ ay= f(t)
y(0)= y0

;

where a> 0 is a constant and f(t) is a continuous function and

lim
t!1

f(t)= 0:

Show that regardless of y0, the solution satisfies the relation

lim
t!1

y(t) =0

Problem 2.14. Suppose that a>0, and f is a bounded function; that is, maxx jf(x)j�M . Prove: there
is a unique initial condition y(0)= y0 such that the solution of the following IVP remain bounded�

y 0¡ ay= f(t)
y(0)= y0

:

hint: take the initial condition as follows and show the solution of the above IVP is bounded

y(0)=¡
Z
0

1
e¡at f(t) dt;

Show also that if f is periodic then the bounded solution is periodic.

Problem 2.15. Let a > 0 and f(t) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !t!1
b. Prove that there is a unique bounded solution to the

equation ty 0¡ ay= f(t) for t2 (0;1).

2.4 General first-order equations

We consider general first-order equations of the following form

M(x; y) dx+N(x; y) dy=0: (2.18)

Note that the above differential form is equivalent to the derivative form y 0= f(x; y), where
f(x; y)=¡M(x; y)

N(x; y)
.

2.4.1 Exact equations

The Eq.2.18 is called exact in an open domain D�R2 if the left-hand side of the equation
is the total differential of some function �(x; y) in D, i.e,

M(x; y) dx+N(x; y) dy= d�(x; y);

for all (x; y)2D. Remember that the total differential of a scalar function �(x; y) is defined as

d�=
@�
@x
dx+

@�
@y
dy;
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and therefore, the form Mdx+Ndy is exact in D if

M(x; y)=
@�
@x
(x; y); N(x; y)=

@�
@x
(x; y);

for all (x; y)2D.

Remark. If we write the differential equation in the derivative form as

dy
dx

=¡M(x; y)
N(x; y)

;

then we should assume N(x; y) is non-zero in D, otherwise the differential equation does not
make sense.

2.4.2 Solution of an exact equation
If we know the potential � of an exact equation Mdx+Ndy=0, then the solution is simply
obtained by the integration of equation d�=0 and thus

�(x; y)= �(x0; y0);

where y(x0)= y0 is an initial condition for the equation.

Example 2.10. Consider the following problem(
(2x+ y2) dx+(2xy+1) dy=0
y(0)= 1

:

It is simply verified that � = x2 + xy2 + y + c is a potential of the equation, and thus the
solution is �= const:, and by applying the initial condition, we obtain the following solution

x2+xy2+ y=1:

Note that N(x; y)=2xy+1 is not zero at (0;1) as well. The graph of the solution is a curve
in the (x; y)-plane that is called the integral curve of the differential equation because it is
obtained by the integration of the differential equation.

The solution of exact equations is usually in implicit form and needs to be verified that
y(x) can be defined explicitly in an open interval containing x0. The following theorem gives
a sufficient condition for the existence of such a function.

Theorem 2.1. (Implicit function theorem) Consider the implicit function f(x; y)= 0,
and assume that f(x0; y0) = 0 for some (x0; y0). If f and its partial derivatives @f

@x
;
@f

@y
are

continuous in an open set D around (x0; y0), and furthermore @f

@y
(x0; y0) =/ 0, then there is

an open interval I=(x0¡ �; x0+�) and a continuous function y= y(x), such that y(x0)= y0,
and f(x; y(x))= 0 for all x2 I.

Example 2.11. (Continue) For the above example, let us f be

f(x; y) := x2+xy2+ y¡ 1:
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Obviously, f is well-defined on any neighborhood of (0; 1) in the (x; y)-plane, f(0; 1) = 0,
and furthermore

@f
@y
(0; 1)= 1=/ 0;

and thus the conditions of the implicit function theorem are satisfied. The graph of the
solution is shown below. As it is seen, the acceptable domain for the solution is I =(¡0.27;
1.11) where the tangents at the end points go unbounded. The red points on the graph are
points at which the coefficient term N(x; y) become zero and thus y 0=¡M

N
goes unbounded.

The black point is the initial value of the problem. Note that in this interval, y can be
expressed as an explicit function y= y(x). This explicit function is the solution to the initial
value problem.

−0. 5 0. 0 0. 5 1. 0 1. 5

−1

0

1

2

x
=
−
0.
27 x

=
1.
11

Remark. Since @f

@y
(x0; y0) = N(x0; y0), thus the condition of exactness and N(x0; y0) =/ 0

guarantees the existence of an explicit solution in an open interval of x0.

2.4.3 Physical interpretation

Remember that a force field f~ is called conservative if there is a potential functions V such
that f~=¡rV . Now, if we interpret f~=¡

�
M(x; y)
N(x; y)

�
as a force field in the (x; y)-plane, and if

Mdx+Ndy is the differential of �(x; y), then f~=¡r�. What is conserved in a conservative
force field? If a mass-body with mass m is moving under the influence of f~ along path ,
then the total energy of the mass

E(t)=
1
2
m jv j2+ �(x; y);

is conserved along  as shown simply by the calculation

dE
dt

= v:

�
m
dv
dt

+r�
�
= v:

�
m
dv
dt
¡ f~

�
=0:

If a conservative force filed f~(x; y) is smooth in a simple domainD�R2, then its line integral
is independent of the path of integration on all paths inD as the following computations showZ

t0

T

fM((t))x0(t)+N((t)) y 0(t)g dt=¡
Z
t0

T

�0(x(t); y(t)) dt=

=¡�(x(T ); y(T ))+ �(x(t0); y(t0)):

2.4 General first-order equations 17



Remember that the line integral of a force field is called the work W done by that force, and
for conservative force fields, it is equal to the changes in the potential. Therefore, the solution
�(x; y)= c of an exact equationMdx+Ndy=0 defines equipotential curves of the equation.

2.4.4 A comment on the exactness

Theorem 2.2. Assume that there is an open rectangle D of (x0; y0) in the (x; y)-plane such
that functions M;N are continuously differentiable in D and furthermore

@M
@y

(x; y)=
@N
@x

(x; y);

for all (x; y)2D, then there is a potential �(x; y) for the form Mdx+Ndy.

Proof. Let  is any arbitrary closed curve in D and thus by Green's theorem, we haveI


Mdx+Ndy=

ZZ



�
@N
@x
¡ @M
@y

�
dA=0;

where 
 is the domain inside of . Therefore, the integration is independent of the path of
integration. Now, fix (x0; y0)2D, and for arbitrary (x; y)2D, we defined

�(x; y)=

Z
x0

x

M(t; y0)dt+

Z
y0

y

N(x; t)dt:

Note that � is the line integral of the form on the path 1: (t; y0) for t2 (x0; x), and 2: (x; t)
for t2 (y0; y). Because of the independence of path, � is uniquely defined for all (x; y)2D.

2
D

1

y

(x; y0)

(x0; y0)

(x; y)

x

Note that @�

@y
=N(x; y), and

@�
@x

=M(x; y0)+

Z
y0

y@N
@x

(x; t) dt:

By the relation
@N
@x

(x; t)=
@M
@t

(x; t);

we obtain

@�
@x

=M(x; y0)+

Z
y0

y@N
@x

(x; t) dt=M(x; y0)+

Z
y0

y@M
@t

(x; t) dt=M(x; y);

and this completes the proof. �
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2.4.5 Two methods of solutions
If the equationMdx+Ndy=0 is exact, then there are two equivalent methods to determine
the potential �(x; y).

1. (Definite integration) We use the above theorem to find the potential

�(x; y)=

Z
x0

x

M(t; y0)dt+

Z
y0

y

N(x; t)dt:

Example 2.12. Let us solve the following initial value problem(
(2x+ y2) dx+(2xy+1) dy=0
y(0)= 1

:

The above formula gives

�=

Z
0

x

(2t+1) dt+

Z
1

y

(2xt+1) dt= x2+ xy2+ y¡ 1;

and thus the solution to the equation is

x2+xy2+ y¡ 1=0:

Example 2.13. Let us solve the problem�
yexy+1+(xexy+ cos(y))y 0=0
y(0)=0

The integral formula givesZ
0

x

dt+

Z
0

y

(xext+ cos t) dt= x+ exy¡ 1+ sin(y)= 0:

The figure (2.2) shows the graph of the solution. The domain of the solution is shown
by the blue line where the implicit solution can be solved explicitly for y. Note that
at the boundary point of the blue line, the slope of the solution, y 0, goes unbounded.

−4 −2 2

−4

−2

2

acceptable solution

Figure 2.2.
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2. (Indefinite integral) Let us illustrate this method by solving the following example

(2x+ y2) dx+(2xy+1) dy=0:

Let � be the potential, therefore @�

@x
=2x+ y2, and thus

�=

Z
(2x+ y2) dx= x2+ xy2+ g(y);

where g(y) plays the role of the constant for the indefinite integral. Therefore,we need
to determine g(y) as well. By the relation @�

@y
=2xy+1, we reach

2xy+ g 0(y)= 2xy+1;

and thus g 0(y)= 1, or g(y)= y+ c. Finally, the solution is

x2+ xy2+ y= c:

Example 2.14. Consider the following initial value problem

(yexy+1) dx+(xexy+ cos(y)) dy=0 (2.19)

Here M is yexy+1, and thus

�=

Z
(yexy+1) dx= exy+x+ g(y):

To determine g(y), we use the relation

@
@y
(exy+x+ g(y))=N(x; y)=xexy+ cos(y);

and thus g= sin(y)+ c. Finally, the solution is

exy+x+ sin(y)= c:

The following figure shows few integral curves of this problem.

−3 −1 1 3
−4

−2

0

2

2.4.6 Two important types of exact equations
1. (Separable equations) The general form of a separable equation is as follows

N(y)y 0+M(x)= 0;
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or equivalently in the differential form N(y)dy +M(x)dx = 0 where M; N are are
continuous functions in an open domain in the (x; y) plane. Obviously,M;N satisfies
the condition for exactness. Similarly, the initial value problem�

N(y) y 0+M(x)= 0
y(x0)= y0

; (2.20)

is exact if and only if M; N are continuous in an open set D around (x0; y0), and
N(y) is nonzero in D. The solution to the above initial value is as followsZ

x0

x

M(t) dt+

Z
y0

y

N(t)dt=0:

Example 2.15. Consider the following initial value problem(
y 0=¡y tanx

1+ y

y(0)=1
:

Notice that y(0)=/ 0 and then it can be written in the separable form as follows

1+ y
y

y 0=¡tanx:
Now, the solution is Z

1

y1+ t
t

dt=¡
Z
0

x

tan(t) dt;

that gives

lnjy j+ y¡ 1= lnjcos(x)j:

Since y0= 1> 0 and cos(0) = 1> 0, it is safe to remove the absolute value sign and
write the solution as y + ln(y sec(x)) = 1 in the domain I =

¡ ¡�
2
;
�

2

�
. The graph of

the solution is shown in the figure (2.3). Observe that the curve passes through the
initial point (0; 1) and that y 0(x) goes unbounded when x!��

2
.

−1
2
π −1

4
π 1

4
π 1

2
π

(0, 1)

Figure 2.3.

Example. Consider the equation xy 0=1+ y2.

a. Find the general solution to the equation.
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b. Find the solution to the problem(
xy 0=1+ y2

y(1)=1
:

To solve part a), we write the equation in the standard form

dy
1+ y2

=
dx
x
:

Integrating both sides of the equation gives the general solution tan¡1(y)= lnjxj+ c.
To solve part b), we apply the initial condition that determines c= �

4
. Since x0=1>0,

we can safely remove the absolute value sign and write

y= tan
�
�
4
¡ ln(x)

�
:

Example 2.16. Let us solve the following non-smooth problem�
y 0= y jy j+1
y(0)=1

:

Since y0= 1> 0, we expect that the solution remains positive in an interval around
x0=0. Thus we assume first y > 0, and solve the following problem(

y 0= y2+1
y(0)=1

:

This is a separable equation with the solution �1(x)= tan
¡ �
4
+x

�
. Clearly, the solution

remains positive in the interval
¡
¡�

4
;
�

4

�
, (notice that the solution goes unbounded at

x=
�

4
). Now, let us solve the problem for x< ¡�

4
. Note that y

¡
¡�

4

�
=0 and y 0

¡
¡�

4

�
=1.

This implies that y(x) is negative in an interval on the left side of x= ¡�
4
. The equation

in this interval reads (
y 0=¡y2+1

y
¡
¡�

4

�
=0

:

The equation is solved for �2(x) =
e2(x+�/4)¡ 1
e2(x+�/4)+1

= tanh
¡
x +

�

4

�
. Thus the solution to

the given problem is

y=

8<: tan
¡
x+

�

4

�
x2

¡¡�
4
;
�

4

�
tanh

¡
x+

�

4

�
x<

¡�
4

:

2. (Homogeneous equations) The general form is

y 0= f
�
y
x

�
;
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for some continuous function. The equation is not exact in its original form, however,
if we define a new variable u= y

x
, then the equation reduces to the following one for

u(x)

xu0= f(u)¡u; (2.21)

that is separable, and thus integrable.

Case 1. If u0 is a root of f(u) ¡ u, then u = u0 is a trivial solution to (2.21), and
therefore y=u0x is a solution to the original equation.

Case 2. If f(u) ¡ u =/ 0, the general solution is derived by the integrating of the
following equation

du
f(u)¡u =

dx
x
:

Example 2.17. Solve the initial value problem(
y 0=

y(y+2x)

x2

y(2)=2
:

Observe that the equation is homogeneous. Taking y= xu leads to�
xu0=u(u+1)
u(2)=1

:

Since the right hand side of the above equation is nonzero around the initial value
u=1, we can rewrite the equation in the separable form

du
u(u+1)

=
dx
x
;

and thus u(x)= x

c¡x , that yields y=
x2

c¡x . Applying the initial condition determines
c = 4 and therefore y = x2

4¡x : Observe that the solution has the vertical asymptote
x=4. Thus the interval of the solution, regarding the initial point x0=2, is I=(¡1;
4). The solution has the inclined asymptote y=¡x¡ 4 when x!¡1.

-8 -4 4

y(x) = x2

4− x

Problems
Problem 2.16. For each of the following scalar functions, find the total differential at the given points

a) '= sin(xy)+x2+ y2 at (1; �)
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b) '= ex+y+xy at (0; 1)

Problem 2.17. For each of the following differential forms, determine whether it is exact or not. If it
is exact find its general potential

a) ydx+(y+x) dy

b) (x¡ y) dx+(y+x) dy

c) (2xy2+ y) dx+(2x2y+x) dy

Problem 2.18. Determine the domain in which the following initial value problems are exact

a)
¡ 1
2
y2+

1

2
x2¡ 1

�
dx+(xy¡ 1) dy=0, y(1)=2

b) (2xy+x2+1) dx+(x2+4y2¡ 1) dy=0, y
¡ 1
2

�
=0

Problem 2.19. Consider the implicit function y2+ y(x2¡ 1)+x2=0.

a) Use the implicit differentiation and find the slope of tangent line at the point (0; 0) on the graph
of the curve.

b) By the implicit function theorem, determine an interval around x0 = 0 such that the implicit
function can be solved for y in that interval (hint: find the equation for which the slope become
infinity. Substitute the obtained equation into the implicit function and determine the interval
around x0=0 for which the slope is not infinity).

Problem 2.20. Write the general solution to the following equations

i. (3y3 e3xy¡ 1) dx+e3xy(2y+3xy2) dy=0

ii. (y+x sin(x)) dx+(ey+x)dy=0

iii. (xe2x
2+y2+2¡x) dx+

¡ 1
2
ye2x

2+y2+ sin¡1y
�
dy=0

iv. (y sin(xy)+ 3¡x) dx+
�
x sin(xy)¡ 9¡ 4y2

p �
dy=0

Problem 2.21. Solve the following problems

i. sin(y) cos(x) dx+ sin(x) cos(y) dy=0, y(�/2)=�/4

ii. yexy dx+(1+xexy) dy=0, y(0)= 1

iii. (1+x)exydx+(xex+2)dy=0, y(0)=1

Problem 2.22. Assume that the function f(x; y) satisfies the relation f(�x; �y)= f(x; y). Show that
there is a function g such that f(x; y)= g(y/x).

Problem 2.23. Find the solution to the following problems and draw the solution curves in their domain
of definition.

i. cos(x)y 0+ y2=0, y(0)= 1

ii. y 0¡ (1+ y2)xex=0, y(0)=¡1

iii. ln(cos(x)) y 0¡ tan(x) cot(y)= 0, y(�/4)=�/4

iv. (1+x2)y 0=2xy ln(y), y(0)= e

Problem 2.24. Write the general solution to the following equations

i. y 0=(tan(x) + cos(x))cot(y)

ii. 3xyy 0+4y2=1

iii. (1+x2) yy 0=(1+ y2)x
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Problem 2.25. Solve the following problem(
y 0= 1+ jy j

p
y(0)= 1

:

Problem 2.26. Find a transformation to reduce the equation

y 0= f(ax+ by+ c);

to a separable one and then solve the following problems

i. y 0=(4x+ y)2, y(1/2)=¡2

ii. y 0=¡1+ 2(2x+ y)+ (2x+ y)2, y(0)=0

iii. y 0= tan2(y¡x), y(0)= 0

Problem 2.27. Find limx!1y(x) if y(x) is the solution to the following problem(
x2y 0=(1+ y2)
y(1)=0

:

Problem 2.28. Solve the following problems

i. xy 0=x+ y+ xy
p

, y(1)= 1

ii. xy 0= y+x cos2
¡ y
x

�
; y(1)=0.

iii. xy 0¡ y=x sec(y/x), y(1)= �

2

iv. xyy 0=(x2+2y2), y(1)=¡1

Problem 2.29. Determine values of y0 for which the solution to the following problem approaches zero
when x!1 �

xy 0= y(ln(y)¡ ln(x)+ 1)
y(1)= y0

:

Problem 2.30. Solve the following equations by suggested substitutions:

i. y 0=(y¡x)2; v= y¡x

ii. xy 0= e¡xy¡ y; v=xy

iii. y 0=(x+ y¡ 1)2¡ (x+ y+1)2; v=x+ y

Problem 2.31. Equations of the form

y 0= f

�
ax+ by+ e1
cx+ dy+ e2

�
;

for ad ¡ bc =/ 0 can be transformed to a separable equation by a simple trick. Shift axes x, and y by
x=X +� and y=Y + � for some (unknown yet) constants �, �. Substitution into the equation gives

Y 0= f

�
aX + bY + a�+ b�+ e1
cX + dY + c�+ d�+ e2

�
: (2.22)

Now determine �, � such that �
a�+ b�+ e1=0
c�+ d�+ e2=0

:

Use this trick to solve the following problem

y 0=

�
x+2y
2x

�
2

; and y(1)= 1:
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2.4.7 Non-exact equations and integrating factor
It frequently occurs that a given equation is not exact. In this case, we try to find an
integrating factor to male the equation exact while the solution of the original equation is
unchanged. For example, a first order linear equation

y 0+ p(x)y= r(x);

that can be rewritten as the differential form

dy+(p(x)y¡ r(x)) dx=0;

is not exact. Similarly, the Bernoulli's equation

dy+ y(p(x)¡ r(x)y�¡1) dx=0;

is not exact. We saw before that to solve a linear equation, we should multiply it with the

integrating factor �(x)= e

Z
p(x)

. In fact, if we do that, we obtain the equation

e

Z
p(x)

dy+

�
p(x) e

Z
p(x)

y¡ r(x)e
Z
p(x)

�
dx=0;

which is evidently exact. For a second example, consider the following equation

xydx+(x2+ y) dy=0:

Clearly the equation is not exact, but if we multiply it by I(x; y)= y, we reach the following
equation which is exact

xy2 dx+(x2y+ y2) dy=0:

But, how in general can we solve the equation

M(x; y) dx+N(x; y) dy=0;

if it is non-exact? In this section we answer that question. We start off by a definition.

Definition 2.1. The function �(x; y) is called an integrating factor for the problem�
M(x; y)dx+N(x; y)dy=0
y(x0)= y0

; (2.23)

if there exists a domain D around (x0; y0) such that

i. �(x; y)=/ 0 for (x; y)2D

ii. and that the problem �(x; y)M(x; y)dx+ �(x; y)N(x; y) dy=0 is exact in D.

2.4.8 Derivation of the integrating factor
If the equation

�(x; y)M(x; y) dx+ �(x; y)N(x; y)dy=0;
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is exact, then the following relation holds

M
@�
@y

+ �
@M
@y

=N
@�
@x

+ �
@N
@x

: (2.24)

This is a partial differential equation for I which we study in great detail in the second
volume of this book. In order to solve it here, we consider spacial cases where the solution
to the partial differential equation are significantly simplified.

Case 1. If �= �(y), then (2.24) reduces to the following ordinary equation

d�
�
=

1
M

�
@N
@x
¡ @M

@y

�
dy: (2.25)

Since the left hand side is a function of y, the assumption � = �(y) is valid if and
only if the right hand side of (2.25) is a function of y. For example, for the equation
xydx+(x2+ y) dy=0, we have d�

�
=

dy

y
and thus �= y is an integrating factor of the

equation.

Case 2. If �= �(x), then (2.24) reduces to

d�
�
=
1
N

�
@M
@y
¡ @N
@x

�
dx: (2.26)

Since the left hand side is a function of x, the assumption � = �(x) is valid if and
only if the right hand side of (2.26) is a function of x. For example, for the equation
(xy+1)dx+x(x+ y)dy=0, we have d�

�
=¡dx

x
and thus �= 1

x
is the integrating factor.

The above two cases are only simplest instances of more general forms. For example, the

integrating factor may have types � = �(xy), � = �
�
x

y

�
, � = �(ax + by), and so on. For

example, let us find a condition for the integrating factor of the form �= �(xy). If we take
z=xy, then

@�
@x

= y
d�
dz
;
@�
@y

=x
d�
dz
;

and this transforms the equation (2.24) to the following one

d�
�
=

1
xM ¡ yN

�
@N
@x
¡ @M

@y

�
dz:

The assumption �= �(xy) is true if and only if the expression in the right hand side is a
function of z=xy.

Example 2.18. Let us solve the following equation by assuming �= �(xy):

(2x cos(y)¡xy sin(y)) y 0+2y cos(y)=0:

It is simply seen that
d�
�
=
1
z
dz;
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for z= xy. Therefore �=xy makes the equation exact.

2.4.9 Lagrange equations
The general form of the equation is a follows

y= xf(y 0)+ g(y 0): (2.27)

As it is observed, it can not be put in the usual differential form Mdx+Ndy=0.

Example 2.19. We look for the shape of a mirror with the following property. All light
rays coming from a distant source are reflected to a focal point; see the figure (2.4).

� x

�

�

x

y

Figure 2.4.

It is simply seen from the figure in the right that tan(2�) = y / x. From the relation
y 0= tan� and the identity tan(2�) = 2tan�

1¡ tan2� , we obtain the following differential equation
for the mirror:

y=x
2y 0

1¡ y 02
: (2.28)

This is a Lagrange equation.

To solve (2.27), we look for a solution of the parametric form�
x=x(p)
y= y(p)

; (2.29)

where p is a parameter. Remember that the solution to a differential equation is a family of
planar curves, and a curves can be written as parametric as (2.29). If we take p= y 0 for the
parameter, we simply obtain

y(p)= x(p) f(p)+ g(p): (2.30)

The remaining job is to find x= x(p). For this, we take derivative of (2.27) with respect to
p and use the identity

dy
dp

=
dy
dx
dx
dp

= p
dx
dp
: (2.31)

In this manner, we obtain

dy
dp

= f(p)
dx
dp

+ f 0(p)x+ g 0(p); (2.32)
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that leads to the following linear first order equation for x

(p¡ f(p))
dx
dp
¡ f 0(p) x= g 0(p): (2.33)

If x= '(p) is a solution to (2.33), then the parametric solution is�
x= '(p)
y= '(p) f(p)+ g(p)

(2.34)

Example 2.20. To solve (2.28), let us take y 0= p as a free parameter and write the equation
in the form y=x

2p

1¡ p2
. The differential equation for x(p) is

¡p dx
dp

=
2x

1¡ p2
; (2.35)

that is solved for x= 1¡ p2

p2
. The parametric solution to the equation is8<: y(p)=

2

p
:

x(p)=
1

p2
¡ 1

: (2.36)

Eliminating p from the above solution gives the algebraic shape of the mirror x= 1

4
y2¡ 1,

that is a parabola.

Problems
Problem 2.32. Integrate the following equations with the given integrating factor

i. (2xy¡ 5y2) +(1¡ 5xy) y 0=0, I = I(y)

ii. (x2y+4)¡x2(y¡x) y 0=0, I = I(x)

iii. 2xy lnjy j+(x2+ y2 sin(y2)) y 0=0, I = I(y)

iv. y ln(y)(1+x)+x(1+ ln(y)) y 0=0, I = I(x)

v. (xy+1)+x(x+ y)y 0=0, I = I(x)

vi. (xey¡ 1)+(ye¡x+1) y 0=0, I = I(x¡ y)

vii. (x2+xy+1)+(y2+xy¡ 1) y 0=0, I = I(x+ y).

Problem 2.33. Consider the following equation

M(x+ y2) +2y y 0=0

where M(x+ y2) is a smooth function with respect to x+ y2. Prove or disprove: the above equation has
an integrating factor of the type I = I(x+ y2).

Problem 2.34.

i. For the following equation, obtain conditions under which the equation is exact:

M(x; y; z) dx+N(x; y; z) dy+P (x; y; z) dz=0:

ii. Obtain conditions such that the above equation has an integration factor I = I(x).

iii. Obtain conditions such that the above equation has an integration factor I = I(y).
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Problem 2.35. Integrate the following equations

i. y=1+ y 02, y(0)= 1

ii. y= eyy
0

iii. y=xy 0+
1

y 0

iv. y=xy 02+ y 02

Problem 2.36. Show that the parametric solution to the equation x= f(y 0) is

x= f(p); y=

Z
pf 0(p) dp:

Solve the following equation

x= y 02(1+ y 02):

Problem 2.37. A fisherman catches a fish at the distance a= 10 in a river.

w0

fisherman

x
v0

y

(10; 0)

Figure 2.5.

If the fisherman pull the fish with the constant velocity v0=1 toward himself, and the river velocity
is w0 = 2 in y-direction; see the figure (2.5), find the equation of the path the fish travels in xy-plane
(the blue line in the figure).

Problem 2.38. In the above problem, assume that the river velocity is given by the function w(x) =
x(10¡x). Find the equation of path of the fish if v0=5.

2.5 Theory of first order differential equations
In this section we briefly discuss the elements of the theory of first order differential equa-
tions. Our discussion is about the existence-uniqueness theorem and the Picard's iteration
formula. It is not trivial at all that a given initial value problem admits a solution. For
example, it is simply seen that the following problem�

xy 0= y
y(0)=1

;

admits no solution, while the problem �
xy 0= y
y(0)=0

;

admits infinitely many solutions y= cx for arbitrary c, and the problem�
xy 0= y
y(1)=1

;
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admits only one solution (unique) y= x.

2.5.1 Existence problem
The conditions under which an initial value problem admits at least one solution, is called
the existence problem. We have the following theorem.

Theorem 2.3. (Existence) Consider the following initial value problem�
y 0= f(x; y)
y(x0)= y0

; (2.37)

and assume that there is an open rectangle D centered at (x0; y0),

D= f(x; y); jx¡x0j � a; jy¡ y0j � bg; (2.38)

such that f(x; y) is continuous in D. Then there is at least one local solution to (2:37).

Recall that y(x) is a solution to (2.37) if there is an open interval I=(x0¡ �; x0+ �) such
that y0= y(x0) and y 0(x)= f(x; y(x)) for all x2 I. The rectangle D is called the continuity
rectangle of the problem; see the figure (2.6).

D

(x0; y0)

R

f :D!R

2a

2b

x

y

Figure 2.6.

The proof of the theorem is beyond the scope of this book and can be found in advanced
textbooks on the theory of ordinary differential equations.

Example 2.21. The existence condition is satisfied for the problem(
y 0=2xy2

y(0)=1
: (2.39)

In fact, the function f(x; y) = 2xy2, is continuous everywhere in R2. It is simply seen that
the function y =

1

1¡x2 solves the problem. Note that the domain of the solution (regarding
the initial point x0= 0) is I = (¡1; 1). The existence condition is satisfied for the following
problem as well (

y 0= y
2

3

y(0)=0
: (2.40)
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The function f(x; y) = y
2

3 is continuous everywhere and thus the existence of at least one
solution is guaranteed for the problem. We will see that this problem has infinitely many
solutions (see the problem set). The problem�

xy 0= y
y(0)=1

; (2.41)

does not satisfy the existence condition and it does not have a solution. In fact the function
f(x; y)=

y

x
, is unbounded in any rectangle about the initial point (0; 1).

Remark 2.1. The theorem states only a sufficient condition for the existence of a solution.
The condition may fail for a problem and even it admits a solution. For example, the problem�

xy 0= y
y(0)=0

; (2.42)

does not satisfy the condition of the existence theorem, however, it has infinitely many
solutions y= cx for all c2R.

2.5.2 Euler explicit method
Let us show how the existence theorem is justified by the Euler numerical method. For
the sake of simplicity, we assume that x0=0. Let x be an arbitrary point in the domain of
definition of the solution. Divide the segment [0; x] (if x> 0) into n division with the length
h=

x

n
, and points x1; x2; ���; xn where xk= kh. Remember the linear approximation formula

for a differentiable function g(x) at x0

g(t)=� g(x0)+ g 0(x0) (t¡x0):

Applying the formula for the solution y(x) at x1, gives

y 0(x1)=� y(0)+ y 0(0)x1= y0+ f(0; y0)h:

Let call this value y1, that is, y1 is an approximate value for true solution y(x) at x = x1.
Repeating that process for x2, we get

y(x2)=� y(x1)+ y 0(x1)(x2¡x1)=� y1+ f(x1; y1)h;

and generally for xk we derive the general formula

yk= yk¡1+ f(xk¡1; yk¡1)h:

In particular for k=n we have
yn= yn¡1+ f(xn¡1; yn¡1)h:

Note that yn is the approximation of the true solution y(x). The error between these two
values depends of course to h

e(h)= jy(x)¡ ynj:

Now, if n!1, that is h! 0, we have the following result

lim
n!1

jy(x)¡ ynj=0:
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Example 2.22. Consider the initial value problem y 0 = y and y(0) = y0. Obviously, the
problem has the solution y= y0ex. Let us solve this problem by the Euler's method. Divide
the segment [0; x] into n sub-intervals with the length h= x

n
. We have

y1= y0+ y0
x
n
= y0

�
1+

x
n

�
: (2.43)

repeating for 2h we have

y2= y0
�
1+

x
n

�
+ y0

�
1+

x
n

�
x
n
= y0

�
1+

x
n

�
2
; (2.44)

and for nh, we have

yn= y0
�
1+

x
n

�n
: (2.45)

Notice that nh=x and if we let n!1 we obtain

lim
n!1

yn= y0 lim
n!1

�
1+

x
n

�n
= y0 ex= y(x): (2.46)

Example 2.23. Let us solve the following problem by the Euler's method�
y 0= sin(xy)
y(0)= 1

: (2.47)

For h= 0.2, we obtain

y1= y0+ f(0; y0)h=1:

Likewise we have

y2= y1+ f(0.2; y1)h= 1.04:

The following figure shows the real solution y= �(x) and the numerical one obtained by the
Euler's method in the range [0; 6].

0. 0 2. 0 4. 0 6. 0

0. 5

1. 0

1. 5

y=φ(x)

numeric

Figure 2.7.

2.5.3 Uniqueness problem

Theorem 2.4. (Uniqueness) If in addition to the existence condition of the problem (2:37),
the function @f

@y
:D!R is continuous, then the problem has a unique solution.

2.5 Theory of first order differential equations 33



Proof. The proof is based on the integral representation of the initial value problem

y(x)= y0+

Z
x0

x

f(t; y(t)) dt: (2.48)

It is straightforward to verify that the above integral equation is equivalent to the given
initial value problem. Consider a continuity rectangle for the function f as

D := f(x; y); jx¡x0j<a; jy¡ y0j<bg:

Fix x� for which a solution exists in the interval [x0; x�]. Assume that there is two solutions
to the problem. Then for any arbitrary x2 [x0; x�], we have

jy1(x)¡ y2(x)j �
Z
x0

x�

jf(t; y1(t))¡ f(t; y2(t))j dt: (2.49)

Since f is continuously differentiable with respect to y, we can write

jf(t; y1)¡ f(t; y2)j �M jy1¡ y2j; (2.50)

for some M > 0 that is

M =max
y2D�

��������@f@y(t; y)
��������: (2.51)

This implies

jy1(x)¡ y2(x)j �M
Z
x0

x�

jy1(t)¡ y2(t)jdt�M ky1¡ y2k (x�¡ x0); (2.52)

where ky1¡ y2k=maxc2[x0;x�] jy1(c)¡ y2(c)j. Since the above inequality holds for all x2 [x0; x�],
we obtain

max
c2[x0;x�]

jy1(c)¡ y2(c)j �M ky1¡ y2k (x�¡ x0); (2.53)

or equivalently

ky1¡ y2k�M(x�¡x0)ky1¡ y2k:

Now, we can choose x�¡x0 so small such that M(x�¡x0)< 1, and thus if ky1¡ y2k=0, and
thus y1(x)= y2(x) for all x2 [x0; x�].

�

Example 2.24. The uniqueness condition is satisfied for the problem (2.39). In fact, the
function f(x; y) = 2xy2 and @yf = 4xy are both continuous in R2 and thus the uniqueness
is guaranteed. The uniqueness condition is not satisfied for the problem (2.40). In fact, we
have @yf =

2

3
y¡1/3 that is not continuous in any rectangle about the initial point (0; 0). It

is simply verified that functions y=0 and y=
1

27x
3 are both solutions to the problem.
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Example 2.25. Consider the initial value problem�
y 0= jy j+1
y(0)= 0

:

Clearly, the function f(x; y) = jy j + 1 is Lipschitz (with L = 1) but not differentiable at
y=0. This implies that the problem has a unique solution. Let us solve the problem directly
and obtain the solution. If y >0, the problem has the solution y(x)=¡1+ ex. Clearly y > 0
if x> 0. At x=0, we have y(x)= 0 and since y 0(0)=1, we conclude that y is negative for x
in some interval (¡a;0). But if y<0, the equation reads y 0=¡y+1 and thus y(x)=1¡e¡x.
Observe that y(x) remain negative for all x<0. This implies that the solution to the problem
is

�(x)=

�
¡1+ ex x� 0
1¡ e¡x x� 0 : (2.54)

Note that � is C1(¡1;1) and is a solution to the initial value problem; see the figure (2.8).
Notice that �00(0) does not exist.

−1+ ex

1− e−x

y ′(0)= 1

Figure 2.8.

Definition 2.2. A function f(y) is called Lipschitz in an interval I if there is a constant
L> 0 such that the following inequality holds for all y1 and y2 in I

jf(y1)¡ f(y2)j �Ljy1¡ y2j: (2.55)

Example 2.26. Function f(y) = jy j is Lipschitz in R but not differentiable at y = 0. In
fact, we have

jf(y1)¡ f(y2)j= jjy1j ¡ jy2jj � jy1¡ y2j: (2.56)

Here the Lipschitz constant L is 1. Function f(y) = ey is Lipschitz in any bounded
interval. In fact, if I =(¡a; a) then

jf(y1)¡ f(y2)j= jey1¡ ey2j � eajy1¡ y2j: (2.57)

Here L=ea. Function f(y)= jy j
p

is not Lipschitz in interval I=(¡a;a). In fact, for y2=0
and y1> 0, we have

L� jf(y1)¡ f(0)j
y1

=
1

y1
p ; (2.58)
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which is not bounded when y1#0.

Proposition 2.1. Let I be an open interval and assume that f 2C1(I), i.e., f 0 is continuous
in I, then f is Lipschitz in any interval [a; b]� I.

For a multi-valued functions f(x; y), the Lipschitz condition is defined similarly. The
function f(x; y) is called Lipschitz in the domain D with respect to y if there exists L> 0
such that for all (x; y1) and (x; y2) in D, the following inequality holds

jf(x; y1)¡ f(x; y2)j �Ljy1¡ y2j: (2.59)

The condition in the uniqueness theorem (that @yf to be continuous is a neighborhood of
(x0; y0)) can be relaxed according to the following theorem.

Theorem 2.5. (uniqueness) Assume that there is a rectangle D centered at (x0; y0) such
that the function f :D!R is continuous in D and is Lipschitz with respect to y. Then the
initial value problem �

y 0= f(x; y)
y(x0)= y0

; (2.60)

has a unique solution.

An immediate consequence of the uniqueness theorem is the uniqueness for linear prob-
lems. In fact, if p(x); r(x) are continuous functions, by the existence and uniqueness theorem,
the following problem �

y 0+ p(x)y= r(x)
y(x0)= y0

;

has a unique solution. It also can be shown that the solution is extended in the whole of R.
The uniqueness part is immediately verified by the observation

@
@y
(r(x)¡ p(x)y)= p(x):

That the solution is extended in R is justified by the exponential form of the solution
obtained in this chapter. By the aid of the uniqueness theorem, we can prove the following
important fact which is left as an exercise.

Proposition 2.2. Let ye be an equilibrium for the equation y 0= f(y). If f is continuously
differentiable in a neighborhood of y0, then the solution to the problem�

y 0= f(y)
y(0)= y0=/ ye

;

can not touch ye for a finite x.

Problem 2.39. Prove proposition (2.1).

Problem 2.40. Prove proposition (2.2).
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Problem 2.41. Verify the uniqueness theorem for the following problems

i. �
y 0= jsin(y)j
y(0)=0

ii. �
y 0=(1+x) f(y)
y(0)= 0

;

where

f(y)=

�
sin(y) y� 0
0 y < 0

:

iii. �
y 0=x+ jtan(y)j
y(0)=0

Problem 2.42. Verify the uniqueness condition for the following problem and find its solution�
y 0+2jxjy=x
y(0)=0

Problem 2.43. Verify the uniqueness theorem for the following problem and find its unique solution�
y 0=1+ y jy j
y(0)= 0

:

Problem 2.44. Verify the uniqueness theorem for the following problem and find its unique solution(
y 0= 1+ jy j

p
y(0)= 0

:

Problem 2.45. Verify the uniqueness theorem for the following problem and find its unique solution�
y 0+ y= y jy¡ 1j
y(0)=1

:

Problem 2.46. Prove that the following problem has a unique solution and then find its solution�
y 0= j2x¡ y j
y(0)= 0

:

Problem 2.47. Integrate the following i.v.p.s using suitable transformations. Determine the domain
of definition for each solution.

i. cos (y)y 0+ sin (y)=1; y(0)=�/2

ii. y 0=y(x+ ln (y)); y(0)=1

iii.
R
0

1
y(xt)dt=2y¡x; y(1)=¡1/3

Problem 2.48. Verify that the function

�(x) =

8<:
1

4
x2 x� 0
¡1
4
x2 x< 0

;

is a solution to the problem (
y 0= jy j

p
y(0)=0

:

In particular, you need to show that the given function is continuously differentiable at x=0. The other
solution is simply y(x)= 0. Can you construct other solutions to the problem?
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2.5.4 Picard iteration method
Let us explain a method introduced by the French mathematician E. Picard to estimate
the true solution to an initial value problem. Consider again the problem (2.37). It is simply
sen that the problem is equivalent to the following integral equation

y(x)= y0+

Z
x0

x

f(t; y(t)) dt: (2.61)

In fact, we have y(x0)= y0, and furthermore, by fundamental theorem of calculus, we have

y 0(x)= f(x; y(x)):

Then, if we could find a function y(x) that satisfies Eq.(2.61), then y(x) is the solution to the
original problem (2.37). But how can we find y(x)? Picard suggested to make a sequence
of functions y1(x); y2(x); ���, defined through the following recursive formula

yn(x)= y0+

Z
x0

x

f(t; yn¡1(t)) dt;

where y0(x)= y0, the initial condition. It is shown that yn(x)! y(x) when n!1 if function
f is continuously differentiable with respect to y.

Example 2.27. Consider the initial value problem�
y 0= y
y(0)= y0

: (2.62)

As it is know, the solution is y= y0 ex. Starting from y0, we obtain

y1(x)= y0+

Z
0

x

y0 ds= y0(1+x):

y2(x)= y0+ y0

Z
0

x

(1+ t) dt= y0

�
1+ x+

1
2
x2

�
;

and in the nth step,

yn(x)= y0

�
1+

1
2
x+ ���+ 1

n!
xn

�
: (2.63)

Clearly, yn(x) is the first n terms of the series expansion of y= y0 ex, i.e., yn(x)! y0 ex.

Example 2.28. Consider the following initial value problem(
y 0= y2;

y(0)=
1

2

: (2.64)

It is simply verified that the solution is y= 1

2¡x . The Picard method gives the sequence

y1(x)=
1
2
+
1
4
x; y2(x)=

1
2
+
1
4
x+

1
8
x2+

1
48
x3; ���:
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In the figure (2.9) the solution y(x) and the sequence y1; y2; y3 and y4 are given

1 2

1

2

3

4

y1

y2

y3

y4

y(x)

Figure 2.9.

2.5.5 Estimation of the domain of solution

As we learned in this chapter, the solution to an initial value problem is usually local, that
is, a function y(x) with the domain of definition an open interval (x0 ¡ �; x0 + �). In this
subsection, we estimate the value � for the domain of definition of the initial value problem
(2.37). In Fig.(2.10), the continuity rectangle and an integral curve are represented. As it
is seen, it is possible that the integral curves goes unbounded when x approaches �� where
� <a.

2�

y

D

x

2b
(x0; y0)

y(x)

2a

Figure 2.10.

We observe that

jy(x)¡ y0j � b;8x2 I := (x0¡ �; x0+ �): (2.65)

By the fundamental theorem of calculus, we have

y(x)¡ y0=

Z
x0

x

f(t; y(t)) dt; (2.66)

and thus

jy(x)¡ y0j �
Z
x0

x

jf(t; y(t))j dt� jx¡x0jM; (2.67)
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where

M = max
(x;y)2D�

jf(x; y)j: (2.68)

Note that the maximum exists because f is continuous in D. Since jx¡ x0j< �, we obtain
the inequality �M � b, and finally

�=min
�
b
M
; a

�
:

Example 2.29. For the problem (
y 0=2xy2

y(0)=1
;

the function f(x; y)= 2xy2 is continuous everywhere. If we choose D as

D= f(x; y); jxj � a; jy¡ 1j � bg; (2.69)

then we have

M = max
(x;y)2D�

jf(x; y)j=2a (1+ b)2: (2.70)

Thus

�=min
�

b
2a(1+ b)2

; a

�
:

Since b

(1+ b)2
� 1

4
, then �=min

¡ 1

8a
; a

�
. To maximize �, we put a= 1

8a
, which gives �=a= 1

2 2
p .

Example 2.30. The solution to the problem(
y 0=

y

1¡x

y(0)=1
(2.71)

is y= 1

1¡x with the domain of definition (¡1;1). Let us find � without solving the problem.
The function f(x; y) =

y

1¡x is continuous in the box D= f(x; y); jxj � a; jy ¡ 1j � bg where
0 < a < 1 and b is arbitrary. Therefore M =

1+ b

1¡a and � =
(1¡ a)b
1+ b

. Since b

1+ b
� 1 we have

�� 1¡ a. Since � � a, the condition a< 1 implies � < 1. Thus the interval of the solution is
I�=(¡1; 1).

Problems
Problem 2.49. For each of the following problem, solve the equation and find an interval on which the
solution can be extended. Then apply the method described in this section to estimate the interval of
solution.

i. y 0= 1

2x
y; y(1)=1

ii. y 0=2y2; y(0)= 1

iii. y 0= sec(x+y)¡ 1; y(0)= 0

iv. (1+x2)y 0¡ 2y=0; y(1)=1

v. yy 0=1+ 1

2
y2; y(0)= 0
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Problem 2.50. Verify the existence and uniqueness conditions for the following problems:

i. y 0=(1+ sin(x)) y5/3, y(0)= 0.

ii. y 0= ex j1+ y j, y(0)= 0.

iii. y 0= cos(x) sin(y), y(0)=0

iv. y 0= jy j1/2, y(0)=1.
Problem 2.51. Consider the following initial value problem�

yy 0= cos(x)sin(y)
y(�/2)= 0

:

What can you say about the existence and uniqueness of the solution to the problem?

Problem 2.52. Consider the initial value problem(
y 0=

y

sin(x)

y(0)=0
:

i. Show that the problem does not satisfies the condition of the existence theorem.

ii. Solve the equation in the problem and obtain a solution.

iii. In what sense the obtained solution to the equation is a solution to the given initial value problem?

Problem 2.53. Consider the initial value problem(
cos(y)y 0=2x

y(0)=
�

2

:

Verify that the implicit function sin(y)¡ x2= 1 satisfies the differential equation and the initial value.
Is � an acceptable solution to the problem?

Problem 2.54. Consider the following initial value problem(
(cosy¡ siny)y 0= ex

y(0)=
�

4

:

Try to integrate the equation and find a solution. Is the obtained solution acceptable?

Problem 2.55. Consider the following problem(
y 0= jy j1/2
y(0)= 0

:

a) State the existence and uniqueness theorem for the given problem.

b) Integrate the equation and find a solution.

c) Verify that the problem has infinitely many solutions for arbitrary c� 0 given below

y(x)=

8>>>><>>>>:
1

4
(x¡ c)2 x> c
0 ¡c6x6 c
¡1
4
(x+ c)2 x6¡c

Problem 2.56. Consider the initial value problem(
y 0= y2/3

y(0)= 0
:
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Integrate the equation and find a solution. Verify that for every c� 0, the following is a solution

�(x) =

8>>>><>>>>:
1

27(x¡ c)
3 x� c

0 ¡c�x� c
1

27(x+ c)3 x�¡c

Problem 2.57. Consider the initial value problem(
y 0= y1/3

y(0)= 0
:

Show that the equation has infinitely many solutions.

Problem 2.58. The uniqueness of the solution to linear problems can be proved without appealing to
the uniqueness theorem as follows

i. Prove that the problem �
y 0+ p(x)y=0
y(0)= 0

;

has the unique solution y � 0. Hint: If y(x) is another solution show that the function z =

y(x) e¡P (x), where P (x)=
R
p(x) is a constant.

ii. By the aid of the above result, prove that the problem�
y 0+ p(x)y= r(x)
y(0)= y0

;

has a unique solution. (Hint: Assume y1; y2 are two solutions and show y1= y2)

Problem 2.59. Consider the equation �
y 0= y jy j+1
y(0)= 0

:

a) State the result of the existence-uniqueness theorem for this problem.

b) Solve the equation and obtain the solution.

Problem 2.60. Consider the equation �
y 0= jy j+1
y(0)=0

:

a) State the result of the existence-uniqueness theorem for this problem.

b) Solve the equation and obtain the solution. This solution is unique and this justify that the
uniqueness theorem stated in this section is a sufficient condition only.

Problem 2.61. Prove the proposition (2.2)

Problem 2.62. Use the Euler's explicit method with h= 0.05 to obtain a numerical value for y(1) of
the following problems:

i. y 0=x+ y2, y(0)= 0.

ii. y 0= sin(y), y(0)= 1.

iii. y 0= cos(x+ y), y(0)= 0.5.

Problem 2.63. Apply the Picard method to approximate the solution to the following problems up
to order 3. Use a computer software to solve each equation numerically and plot both solutions in the
same coordinate to compare them.

i. y 0+2xy=1, y(0)= 1.
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ii. y 0=x+ y2, y(0)= 0.

iii. y 0+ y=1+ y2, y(0)=0.

2.6 Applications of first-order equations

2.6.1 Exponential law
The exponential growth and decay is very popular in natural and man-made systems.
Roughly speaking, a quantity y(t) is subject to the exponential law if its rate of change
y 0(t) is proportional to the present value of y, that is, y 0(t) / y(t). Here we discuss three
applications, 1) Mortgage calculation, 2) carbon dating, and 3) electrical circuits.

1. Mortgage and interest.

A financial institute uses different methods to calculate the interest rates to loans and
mortgages. One of them is the daily compounded formula

Cd=C0(1+ k/365)d;

where C0 is the initial money or loan, k is the annual interest rate and d is the number of
days after the loan. An alternative method is the continuous compounded method

C(t)=C0 e
kt:

The formula is followed directly by the differential equation

dC
dt

= kC:

Notice that the unit of t is year here because k is the annual interest rate. For example, for
C0= 1000$ and k = 0.04, the total loan that should be paid off at t= 2.5 (in two and half
year) is C(2.5)= 1000e0.1=� 1105.17$.

Now let us calculate the monthly payment installments C� for a mortgage C0 that should
be paid off at the maturity date T (in terms of months for example). Since the installments
are in month, we divide k by 12. Now the problem reduces to find C� in the following equation(

C 0(t)=
k

12 C ¡C�
C(0)=C0; C(T )= 0

: (2.72)

Note that the unit of t here is month. In order to find C�, we write the solution of the equation
as follows (assuming C� is constant)

C(t)=

�
C0¡

12
k
C�
�
ekt/12+

12
k
C�: (2.73)

Now, the condition C(T )= 0, determines C� as

C� =
kC0 ekT /12

12(ekT /12¡ 1)
: (2.74)
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For example, for a mortgage C0 = 1000$ with the maturity date T = 60 months (5 years)
borrowed with the annual interest rate k= 0.04, the monthly payment is C� =� 18.39. In this
way, the total money paid in 5 tears is equal 1103$. Note that if the money is paid as lump
sum in the maturity date, the money would be 1000� 1.045=� 1217$.

2. Radioactive decay and carbon dating.
Another example of exponential law is the decay of radioactive isotopes. As it is shown in
physics, the decay rate of these isotopes is proportional to the substance, that is, the following
equation holds for the quantity C at time t

C 0(t)=¡kC(t); (2.75)

where k>0 is some constant depends on the type of isotope. Usually radioactive isotopes are
classified based on their half-life, the time T when C0 become half. For example, the half-life
of Radium-226 is 1600 years and of Uranium-238 is 4.5 billion years, (radioactive isotopes last
a long time in the nature and most of them are very hazardous for living species). It is simply
seen that the solution to (2.75) can be rewritten based on the half-life as C(t)=C0 2¡t/T .

Of special interest is the half-life of carbon-14 (C14) because this radioisotope is used
for carbon dating. It is known that C14 (consisting 6 protons and 8 neutrons) is unstable
and transforms to C12 with half-life T14= 5730 years. On the other hand, it is known that
the ratio C14/C12 is constant in all living bodies (according to the carbon exchange with
the atmosphere) and is equal to �0=� 1.3� 10¡12 (equal to the same ratio of C14/C12 in the
atmosphere). After death, this ratio changes due to the transformation of C14 to C12. One
can obtain an estimate of the age of death by measuring the quantity C14/C12 in a dead
body. The procedure is as follows. If the age death is � , then

C14(�)=C14(0) 2
¡�/T14: (2.76)

According to the relation C14(0)=�0C12(0) and also to C14(� )=�1C12(� ) for �1=C14/C12,
the equation (2.76) is rewritten as

C12(� )
C12(0)

=
�0
�1

2¡�/T14: (2.77)

On the other hand, the mass conservation of C12 implies (C14 transforms to C12)

C12(� )=C12(0)+C14(0)¡C14(�); (2.78)

and thus dividing by C12(0), we obtain

C12(�)
C12(0)

=1+�0¡�1
C12(� )
C12(0)

: (2.79)

We can write the above relation as

C12(� )
C12(0)

=
1+�0
1+�1

; (2.80)

and substituting this into (2.77) gives

�1(1+�0)
�0(1+�1)

= 2¡�/T14: (2.81)
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In order to find � , we need to solve the above algebraic relation. The above calculations are
subject to several corrections for practical uses.

3. Electrical circuits.

Electrical circuit theory is another filed in which the exponential law comes into play. For
a simple example, consider the RC circuit shown in the figure (2.11).

Figure 2.11.

In the figure,R and C stands for the electrical resistance and the capacitance respectively.

Kirchhoff's mesh law. This law states that the algebraic sum of voltages across
elements in a closed mesh is zero. In the figure (2.12), if VR and VC denote respectively
the voltage across the resistance R and the capacitance L, we have

VR+VC ¡Vs=0; (2.82)

where the negative sign of the supply Vs is due to its negative port encountered in
the mesh.

VC

VR

+
Vs¡

+

+

¡

¡

Figure 2.12.

According to the Ohm's law, the voltage across the resistance is expressed by the formula

VR(t)=Ri(t); (2.83)

where i(t) is the electrical current in the resistor. The voltage-current relationship in the
capacitor is

i(t)=C
dVc
dt

(t); (2.84)

and thus, the Kirchhoff's formula is expressed by the following differential equation

dVc
dt

+
1
RC

Vc=
1
RC

Vs: (2.85)
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The appropriate initial condition for the circuit has the form Vc(0) = V0 for some constant
V0. If Vs is a constant supply, the voltage Vc(t) is determined by the formula

Vc(t)= (V0¡Vs)e¡t/RC+Vs (2.86)

The figure (2.13) shows the graph of Vc(t) with respect to time.

Vc(t)= (V0¡Vs)e¡t/RC+Vs

Vc(t)

t
V0

Vs

Figure 2.13.

Observe that
lim
t!1

Vc(t)=Vs; (2.87)

which means that the electric current i(t) in the circuit goes zero in long term and the voltage
across C will be equal to the voltage supply Vs.

Example 2.31. Consider the RC circuit shown in the figure (2.14).

Figure 2.14.

Assume that the switch S connects to R3 at t= t0> 0. We would like to determine Vc(t),
the voltage across the capacitor C at any time t> 0 provided that Vc(0)= 0.

Kirchhoff's nodal law. This law states that the algebraic sum of electrical currents
in a node is zero. In the figure (2.15), this law states that i1+ i2¡ i=0.

i

i1i2

n

Figure 2.15.
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In the figure (2.14), let us assume that i1; i2; i3 are respectively the electric current in the
resistances R1; R2 and R3. The Kirchhoff's mesh law for the circuit is

R1 i1(t)+Vc=Vs; (2.88)

If ic is the current passing through the capacitor C, then according to the Kirchhoff's
nodal law, we have

i1(t)= i2(t)+ ic(t): (2.89)

According to the voltage-current relation in a capacitor ic(t)=C
dVc
dt
(t), we can write

R1

�
i2+C

dVc
dt
(t)

�
+Vc=Vs: (2.90)

The Kirchhoff's mesh law for the resistor R2 and the capacitor C is R2 i2(t) = Vc, and
substituting this into (2.90) yields the differential equation for t< t0

dVc
dt

+
R12

C
Vc=

1
R1C

Vs; (2.91)

where R12=
R1+R2
R1R2

. By Vc(0)= 0, the solution to the this equation is

Vc(t)=
R2

R1+R2
Vs( 1¡ e¡R12t/C): (2.92)

Since the switch connects to R3 at t= t0, the problem changes to the following for t� t0(
dVc
dt
+

R13
C
Vc=

1

R1C
Vs

Vc(t0)=V0
; (2.93)

where R13=
R1+R3

R1R3
and V0=

R2
R1+R2

Vs(1¡ e¡R12t0/C). The solution for t� t0 is

Vc(t)=

�
V0¡

R3

R1+R3
Vs

�
eR13t0/C e¡R13t/C+

R3

R1+R3
Vs: (2.94)

The figure (2.16) shows the output function Vc(t) with respect to time. Observe that the Vc
approaches to the limit R3

R1+R3
in long term. This means that the capacitor behaves like an

open circuit in long term.

switching

R3

R1 +R3

t

Vc(t)

t0

R2
R1+R2

Vs

R3
R1+R3

Vs

Figure 2.16.
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Problem.

Problem 2.64. Find the maturity date T of a mortgage loan if C0=300;000$. Assume that the interest
rate is k= 0.035 annually and that the borrower pays 1402$ monthly to pay off the mortgage at T .

Problem 2.65. Find the annual interest rate of a mortgage loan if the initial loan is C0=100; 000$ and
the borrower pays monthly C� = 421$ to pay off the mortgage in 30 years. How much the borrower has
to pay monthly if he/she wants to pay off the loan in 20 years?

Problem 2.66. Find the half life of a radio active substance with the decay rate k=2.

Problem 2.67. Find the age date of a death body if the current C14 to C12 ratio is 10¡12.

Problem 2.68. By virtue of the Newton's law, the cooling rate of a body with temperature T in the
air is proportional to T ¡T� where T� is the temperature of the air. If the initial temperature of the body
is T0 and if it drops to (T0+T�)/2 in 1 hour, find the time when the temperature drops to (T0+3T�)/4.

Problem 2.69. Consider the RL circuit shown in the figure (2.17).

Figure 2.17.

Find the current function i(t) in the inductor if i(0)=0 and the voltage source V is as shown in the
figure (2.18)

1

t

¡1
3

4

2

V (t)

Figure 2.18.

Problem 2.70. Consider the circuit shown in the figure (2.19)

Figure 2.19.

Write down a differential equation describing Vc, the voltage across the capacitor C. Draw the solution
Vc(t) if Vc(0)= 0.
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Problem 2.71. In the circuit shown in the figure (2.20), assume that the switch connects at t=0 and
then disconnects from the voltage supply at t=5. Find the electric current function i(t) if i(0)= 0.

Figure 2.20.

Problem 2.72. Consider the circuit shown in figure (2.21). The switch connects the resistance 10
Ohm at t=0 and then changes to the other port at t=5. Find the electrical current function i(t) in the
inductor if i(0)= 0.

Figure 2.21.

2.6.2 Population dynamics

Logistic model.

In 1798, T. Malthus presented a mathematical formula of the form P 0 = rP for the
population growth and concluded that the population increases exponentially according
to the solution P (t) = P0 ert. Regarding the linear growth of food production (according
to the agricultural development), he led to a pessimistic view of the future of human kind
in starvation. In 1831, J. P. Verhulst published a paper and showed that the model
considered by Malthus is unrealistic. Based on some data collected from different sources,
he considered the growth rate r as r(P )= r0

¡
1¡ P

K

�
where r0 is a constant and K is called

the carrying capacity of the population. Finally, he suggested the following equation for the
population dynamics (

P 0= rP
¡
1¡ P

K

�
P (0)=P0

: (2.95)

Note that the equation is separable and is solved by the function

P (t)=
P0K

P0+(K ¡P0)e¡r0t
: (2.96)
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Verhulst called the solution (2.96) a logistic curve and thus the equation (2.95) the logistic
equation. Obviously, the equation has two equilibrium points P�1=0 and P�2=K. Evidently
for f(P )= rP

¡
1¡ P

K

�
, we have f 0(0)> 0 and thus P�1 is unstable. At P�2, we have f 0(K)< 0

and thus P�2 is stable equilibrium. For the concavity analysis, we have

P 00= k2(K ¡ 2P )
�
1¡ P

K

�
P ; (2.97)

and thus, Pc=
K

2
is the inflection point of the solution curves P (t;P0). The typical solution

curve is shown in the figure (2.22).

P (t)

P (t)
P =K

P0

Pc=
K

2

t

Figure 2.22.

Population growth with harvesting

There are different modifications of the logistic equation. Let us consider a harvesting term
(constant or variable rate) as a source term in the logistic model (this is the case for example
in a fish farm). If the harvesting rate is constant h0 (daily, monthly or yearly), the harvesting
logistic model reads

P 0= kP

�
1¡ P

K

�
+ h0: (2.98)

Note that, this is a type of Riccati equation if we rewrite it as follows

P 0=¡ k
K

�
P 2¡ 1

K
P ¡ h0K

k

�
: (2.99)

We can also rewrite the equation as P 0 = ¡ k

K
(P ¡ r1)(P ¡ r2) where r1 =

1

2K

�
1 ¡

1+
4h0K

3

k

q �
and r2=

1

2K

�
1 + 1+

4h0K
3

k

q �
. Therefore, the equation becomes a separable

one if we rewrite it as
dP

(P ¡ r1)(P ¡ r2)
=¡ k

K
dt: (2.100)

The solution is
P (t)¡ r2
P (t)¡ r1

=
P0¡ r2
P0¡ r1

ek(r2¡r1)t/K: (2.101)
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Time varying logistic model.
To let the growth rate factor (or decay) to be a function of time, we write the logistic equation
in the following form (it is also called the Bernoulli's equation)

P 0¡ r(t)P =¡k(t)P 2: (2.102)

This equation is specially useful if the offspring rate of a living species varies with time. Of
particular interest is when r(t) or k(t) is a periodic reflecting the periodic reproduction rate
of the species. For example, let us write r(t) as

r(t)= r0(1+ sin(�t/6)); (2.103)

which is periodic with period 12 and consider k(t)= k0. By the method we learned to solve
a Bernoulli's equation, we can rewrite the problem in the following linear one(

U 0+ r0(1+ sin(�t/6))U = k0
U(0)=P0

¡1 ; (2.104)

where U(t) =
1

P (t)
. The equation (2.104) can not be integrated in terms of elementary

functions. The figure (2.23) shows the numeric solution to the equation for some initial values
P0 and for r0=1 and k0=0.1. As it is observed from the figure, solution P (t;P0) converges to
a periodic function with period 12. This solution is stable as it is observed from the slop field.

0 6 12 18 24
0

10

20

Figure 2.23.

Bertalanffy's individual growth equation.
In his works on the individual growth model, Austrian biologist and general system theorist,
L. von Bertalanffy suggested a mathematical equation describing the growth of the size
of fish as

dL
dt

= r (L1¡L); (2.105)

where L1 is the ultimate size of the fish and r is a positive constant. The equation is solved
for the length function L(t) as

L(t)=L1¡ (L1¡L0)e¡rt; (2.106)

where L0 is the length at the start time t=0. Note that L!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !t!1
L1 and this means that a

fish never stop increasing in length! Anyways, this equation presents a goal oriented behavior
(the goal is L1) and Bertalanffy used this notion for his theory of general systems.
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Another model attributed to Bertalanffy, is the weight equation of a living body.
The change in the weight functionW (t) is positively proportional to anabolism (the building
up and synthesis of complex molecules) and negatively to catabolism (the breaking down of
complex molecules into simpler) which is written as

dW
dt

= rW 2/3¡ kW ; (2.107)

where r (the anabolism rate) and k (the catabolism rate) are positive constants. It is simply
seen that the equation has a non-trivial stable equilibrium W1=

¡ r

k

�
3. It is seen as well that

the weight function pursuits the ultimate valueW1 and never reach this value in a finite time.

Problems.

Problem 2.73. Assume that the growth rate of a living species is r= 0.002. The harvesting rate k0 is
equal 5 for the first six months and then k0=0 for the second six months. Assuming this pattern for all
successive years, write down the differential equation for the population P (t) and draw the solution if
P0= 1000.

Problem 2.74. For the following models of population dynamics, do the stability analysis and draw
some typical trajectories:

i.

P 0=2

�
1¡ P

3

�
P :

ii.

P 0=

�
1¡ P

p

2

�
P :

iii.

P 0=3(1¡P 2/3)P :

Problem 2.75. Solve the following problem

P 0=2

�
1¡ P

3

�
P +1

Problem 2.76. For each of the following time varying logistic equations, use a computer software and
draw the solution curves

i. �
P 0=P (100¡ 0.1(1+ sin(�t))P )
P (0)= 10

;

ii. �
P 0=3P (10¡ 0.5(2¡ cos(t))P )
P (0)=1

iii. �
P 0=P ((3+ sin(2�t))¡ 0.1P )
P (0)= 10

2.6.3 Water tank problems

Water level change in a tank.

Let us explain the method by solving an example.
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Example 2.32. Consider a water tank in the shape of a cube (length;width;height)=(L;W ;
H) and assume that a constant rate of water Qim3/s is running into the tank. Furthermore,
assume that a small outlet is placed at the bottom of the tank that let water runs out; see
the figure (2.24).

h

Qi

Qo

Figure 2.24.

If V (t) denotes the volume of water at time t, then we can write

dV
dt

(t)=Qi¡Qo; (2.108)

where Qi; Qo are the inflow and outflow rate of water at time t. According to the Torri-
celli's law, Qo is expressed by the formula

Qo= kAo 2gh
p

; (2.109)

where k is a constant (depending on the liquid) and Ao is the area of the hole, we can rewrite
Eq.(2.108) as

dh
dt

=
1
A
(Qi¡� h

p
); (2.110)

where � = kAo 2g
p

and A = LW is the cross section area of the tank. Note that the
equilibrium level is h�= 1

�2
Qi
2 and it is stable according to the relation

d
dh
(Qi¡� h

p
)=¡ �

2 h
p < 0: (2.111)

The equation (2.110) is separable and is solved by the formula

(Qi¡� h
p

)¡Qi lnjQi¡� h
p
j= �2

2A
t: (2.112)

Example 2.33. Consider the water tank in the shape of a cone shown in the figure (2.25).
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Qo

R

h

H
r

Figure 2.25. A cone water tank

Assume that R = H = 1 and the area of outlet is Ao = 0.01m2. We would like to find
time T when the tank become empty if the tank is initially full. To find T , we find first a
differential equation describing h(t). Note that

V (t)=
1
3
�r2(t)h(t); (2.113)

and since r= R

H
h= h, we obtain V (t)= �

3
h3(t). According to (2.108), we have

�h2
dh
dt

=¡Qo=¡� h
p

=�¡0.027 h
p

: (2.114)

Solving the above differential equation gives

2
5
h5/2=¡0.027

�
t+ c; (2.115)

and since h(0)= 1 we obtain

h5/2(t)=�¡0.02t+1: (2.116)

It is seen that it takes about T =� 50 secthat the tank become empty .

Chemical solutions.

The mixture of chemicals in fluids is another problem that bring differential equations into
play. Let us explain this by solving an example.

Example 2.34. Consider the water tank shown in the figure (2.26). Assume that a constant
rate of 10¡3 m3 / s pure water runs into the container and that a hole of the area Ao =
3� 10¡4m2 is placed at the bottom. If h0= 1m and the water is salty of the concentration
%5 (5 gram salt in 1m3) at time t=0, we would like to obtain the salt concentration when
the water level is h1= 1.3.
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Qo

Qi

R=1

h

H =2

Figure 2.26.

Let c(t) denote the amount of salt in the tank at time t. We derive a differential equation
for c(t) as follows. For small �t we can write

c(t+ �t)=� c(t)¡ �(t)Qo �t; (2.117)

where �(t)= c(t)

V (t)
. This leads to the equation

dc
dt
=¡�Qo: (2.118)

If we replace Qo from (2.109) and V (t)=�R2h(t) into the above equation, we obtain

dc
dt
=¡ �c

�R2 h
p : (2.119)

On the other hand, the equation for h(t) is

dh
dt

=
1
�R2

(Qi¡� h
p

): (2.120)

Note that the water level equilibrium is

h�=
1
�2
Qi
2
=� 1.57m: (2.121)

From equations (2.119) and (2.120) we derive

dc
dh

=
¡�c

h
p

(Qi¡� h
p

)
: (2.122)

The equation (2.122) is solved by

c(h)=K (Qi¡� h
p

)2; (2.123)

where K is a constant determined by the initial condition. At time t = 0, the water level
is h= 1m and the salt is c0= 5�gr. Substituting these amounts into the obtained solution
determines K =� 3.8� 108. Hence we obtain c(h) as

c(h)=� 380 (1¡ 0.797 h
p

)2: (2.124)
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When h= 1.3m, we derive c(1.3)=� 3.17 and thus �= 3.17
1.3� =

�%0.8.

Problems

Problem 2.77. Consider the water tank in the shape of cube shown in the figure (2.27) with the unit
dimensions width, length and height.

h

l=1/2

�

Figure 2.27.

Assume that the rate of inflow water into the tank is Qi= sin(2�) and that h(0)= 0.

i. Find the time when h= 3

4
m.

ii. If there is a hole in the bottom of the tank with the area Ao = 0.01, find the final water level.
Assume that k= 0.5.

Problem 2.78. For the water tank shown in the figure (2.27), let L=W = 1m and H = 2m and that
Qi= k sin(�). Assume that an outlet with the area Ao= 0.1m2 is placed at the height h=1m. For the
simplicity, let us assume � 2g

p
= 2.5.

i. Find k such that the water level function has an equilibrium at h�= 3/2m

ii. With this value of k solve the equation and find h(t) if tank is initially empty.

Problem 2.79. Consider a water tank in the shape of a cylinder with the height H=5m and the radius
R=1m as shown in the figure (2.28)

5m

Qo

1m

Qi

Figure 2.28.

Let a current of Qi=0.5m3/s water runs into the tank. Furthermore, assume that a hole of the area
Ao= 0.1m2 is placed at the bottom of the tank. According to the Torricelli's law, we know a flow of
Qo=�Ao h

p
m3/s runs out of the tank. For the simplicity, take �= 2.65.

i. Find the final water level in the tank.

ii. Find the time when the water level reaches half of the final level if the tank is initially empty.
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Problem 2.80. A 10 liter container is filled with the %5 salty water (5gr salt per litter). Calculate the
time when the salt concentration decrease to %1 if a constant rate 0.1 litter/s of pure water runs into
the container and the same amount is simultaneously runs out the container.

Problem 2.81. In the above problem, assume that the inflow water is %1 salty. How long does it take
that the total amount of salt reduces to the half of its initial value?

Problem 2.82. Consider a water tank in the shape of cube with sides L=W =1m and H =100m and
assume the tank contains initially a volume of 10m3 salty water of%5 concentration. Let a%1 salty water
with the constant rate 1m3/h runs into the container. If a small hole of radius r=0.05m is placed at the
bottom of the container, draw c(t), the salt concentration of the water in the tank. Calculate the time
when the concentration reduces to c=%3. What is the concentration when the volume reaches V =15m3?

Problem 2.83. Repeat the problem for a cylinder tank with radius R=2m and H =8m.

Problem 2.84. Assume that V0m3 of a certain liquid is saturated with P0 gr of a solid substance. This
means that the saturation level of the liquid is c�= P0

V0
. For c(t), the concentration of the substance, the

dissolution rate is proportional to c�¡ c(t) with a positive proportionality factor k > 0. If you put P0 gr
of the substance into the V0m3 of the liquid, write down the differential equation describing P (t), the
amount of the substance dissolved into the liquid.

2.6.4 Geometric curves
Techniques of differential equations are employed to derive equations of curves with some
required properties. Let us solve a few examples.

Example 2.35. Find a curves passing through the point (0; 1) with the following property:
the projection of the tangent line segment on the x-axis has the fixed length k; see the figure
(2.29).

tangent

y= �(x)

k= projection of tangenet

(�; �(�))

x1

Figure 2.29.

Let y=�(x) be the desired curve. The equation of tangent line at arbitrary point (�; �(�))
is

y¡ �(�)= �0(�)(x¡ �): (2.125)

The x-intercept x1 of the tangent line satisfies the equation

¡�(�)= �0(�)(x1¡ �): (2.126)

Since jx1¡ � j= k, we derive the differential equation ¡�(�) =�k�0(�) for �. This in turn
gives �(�) = ce��/k. Since the curve passes through (0; 1), the constant c is 1 and thus
�(x)= e�x/k.
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Example 2.36. Find the equation of a curve passing through the origin that satisfies the
following property: the area under the curve in the segment [0; x] is equal to 1

3
of the area

of the rectangle constructed on the points (0;0), (x;0), (x; y) and (0; y); see the figure (2.30)

(x; y)

y= y(x)

Area

x

y

Figure 2.30.

For the desired curve y= �(x), we haveZ
0

x

�(s) ds=
1
3
x�(x): (2.127)

Differentiating the above equation leads to the equation

3�(x)= �(x)+x�0(x); (2.128)

and thus the solution is �= cx2 for arbitrary constant c. Notice that the obtained solution
is a family of parabola passing through the origin.

Differential equation of family of curves.

As we saw, the general solutions to a first order equation is a one parameter family of curves
like  (x; y)= c. Conversely, if a one-parameter family of curves  (x; y)= c is given, we can
derive a first order differential equation having  = c as its solution. The procedure is as
follows. We eliminate the parameter c from the equations  = c and its derivative, i.e.,

@ 

@x
+
@ 

@y
y 0=0: (2.129)

Note that the later equation is just the implicit derivative of  = c. Let us show the method
by solving following examples.

Example 2.37. Let us construct a first order differential equation for the family of ellipses

x2+ c2 y2=1:

For this, we eliminate the parameter c from the equation and its implicit derivative

x+ c2 yy 0=0:

By this, we obtain the desired differential equation

(1¡x2) y 0+ xy=0:
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Example 2.38. Let us find a differential equation describing the family of circles in the
first quadrant that are tangent to both x and y axis, see the figure (2.31)

r

y

x

Figure 2.31.

Clearly, the family of curves has the following algebraic equation

(x¡ r)2+(y¡ r)2= r2; (2.130)

for a parameter r. Implicit derivative of the equation is

(x¡ r)+ (y¡ r)y 0=0; (2.131)

and thus eliminating r from above equation gives the desired differential equation as

(x+ yy 0)2=(1+ y 02)(y¡x)2: (2.132)

Orthogonal trajectories.

Assume �(x; y) = c1 is a given family of curves. We would like to determine a family of
curves  (x; y)= c2 such that �= c1 and  = c2 are orthogonal at all their intersection points.
Recall that the angel between two curves is defined by the angle between their tangent lines
at the intersection point. If two curves f(x; y)= 0 and g(x; y)= 0 intersect at p0=(x0; y0),
their slopes at p0 are respectively m1=¡@x f(x0; y0)

@y f(x0; y0)
and m2=¡@x g(x0; y0)

@y g(x0; y0)
, and thus the angle

' between these two curves is

'= tan¡1(m1)¡ tan¡1(m2)= tan¡1
�
m1¡m2

1+m1m2

�
: (2.133)

Note that if m1m2=¡1 then '= �

2
which means f and g are orthogonal at the intersection

point p0.
The procedure for finding an orthogonal trajectories  = c2 for a given family of curves

�= c1 is as follows.

i. Find the differential equation y 0= f(x; y) describing the family �(x; y)= c1.

ii. Since  is orthogonal to �, then the differential equation describing  must have the
form y 0=¡ 1

f(x; y)
.

iii. Solving the obtained differential equation determines the desired orthogonal trajec-
tories  (x; y)= c2.
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Example 2.39. Let us find the orthogonal trajectories of the parabola y = c1x
2. The

describing differential equation of the given parabola is y 0 = 2y

x
. The slope of the normal

trajectories is y 0=¡ x

2y
. The solution to the latter equation is

y2+
1
2
x2= c2

2: (2.134)

Observe that the obtained curves are ellipses. The figure (2.32) shows two family of curves
in a same coordinate.

Figure 2.32.

Problems

Problem 2.85. Find the differential equation describing the following family of curves

i. y= sin(cx)

ii. y=(x¡ c)2

iii. c1x2+ c2 y
2=1. (Hint: you need second derivative in addition to the first derivative of the given

family of curves)

Problem 2.86. Find the differential equation describing the family of circle contained in the sector
0� y�x which are tangent to both lines y=0 and y=x.

Problem 2.87. Obtain the differential equation describing the family of curves y = cxn, n a positive
integer. Conclude that the initial value problem xy 0 ¡ ny = 0 with y(0) =/ 0 has no solution and with
y 0(0)= 0 has infinitely many solutions.

Problem 2.88. Find orthogonal trajectories of the family of curves y= cex.

Problem 2.89. Find the orthogonal trajectories of the ellipses x2+ c2y2=1.

Problem 2.90. Find orthogonal trajectories of the family of curves (x¡ c)2+ y2= c2.

Problem 2.91. Find the equation of curves that make angel �=�/4 with the curves y= cx4.

Problem 2.92. Find the equation of a curve possessing the property: all normal lines to the curve pass
through a common point.

Problem 2.93. Find a family of curves with the property that the y-axes bisects the tangent segment
between the x-axes and the point (x; y) on the curves.
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