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Abstract

We generalize to the case of a symmetric variety the construction of
the enveloping semigroup of a semisimple algebraic group due to E.B.
Vinberg, and we establish a connection with the wonderful completion
of the associated adjoint symmetric variety due to C. De Concini and C.
Procesi.

Introduction

In [Vin], Vinberg classifies linear algebraic semigroups in characteristic zero
which are equivariant, dominant,normal, affine embeddings of reductive alge-
braic groups, and studies some of their properties. Furthermore, to a semisimple
algebraic group G0, he associates an affine algebraic monoid with certain nice
properties, the enveloping semigroup Env(G0) and shows how the wonderful
completion of the adjoint group of G0 can be obtained from Env(G0).

We generalize this construction to the case of a symmetric variety of a
semisimple algebraic group. We adopt the following definition: a homoge-
neous space G/H of the reductive group G is called symmetric if there ex-
ists an involution τ of G such that Gτ ⊆ H ⊆ NG(Gτ ), Gτ being the sub-
group of fixed points. Every symmetric variety is isomorphic to one arising
from a simply connected group ([Vust2]). A classification of equivariant nor-
mal embeddings of symmetric spaces can be found in [Vust2], and those which
are affine can be identified using the affinity criterion for spherical varieties
given in [Knop]. Let G0 be a semisimple simply connected algebraic group
of rank n over an algebraically closed field k of characteristic zero. Fix a
non-trivial involution σ of G0 with fixed-point subgroup K0, whose normal-
izer in G0 is written H0. If Y is an affine G-variety, G a reductive algebraic
group, Λ(Y ) will denote the group formed by the B-weights of the elements
of the set k(Y )(B) of semi-invariants for the action of B, B a Borel subgroup
of G. Let G1 = G0 × S0, with S0 a maximal anisotropic torus of G0, and
H1 = ∆1,−1(N0)(K0×S0

σ),∆1,−1(N0) = {(s, s−1)|s ∈ N0}, N0 = NS0(K0). We
define Env(G0/K0) to be the affine variety over k which is the spectrum of the
ring ⊕ν∈Lk[G1/H1]ν , where k[G1/H1]ν is the isotypic component of k[G1/H1]
corresponding to the integral dominant weight ν, and L is the Q+-cone in
(Λ(G0/K0) ⊕ X∗(S0K0))

∆1,−1(N0) ⊗Z Q generated by {(ηi, w0ηi), (0,−αi)}l
i=1,

S0K0 being the group S0/S0 ∩K0. Here, the αi are the simple roots of a root
system in X∗(S0)⊗Z Q, the ηi are the corresponding fundamental weights, and
w0 is the longuest element of its Weyl group. (See section 1.2 for more infor-
mation on the restricted root system.) Note that since G1/H1 is G1-spherical,
k[G1/H1] is multiplicity free, so k[G1/H1]ν is actually irreducible.

After some preliminary notions concerning symmetric varieties, the first sec-
tion is devoted to the theory of spherical varieties developed by Brion, Luna
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and Vust ([BLV],[LuVu]); a concise exposition can be found in [Knop], but the
main reference for us is [Vust2]. The language of colored cones developed there
will be used throughout. Afterwards, we recall some properties of the wonderful
compactification Gad/Kad, constructed by De Concini and Procesi in [DP1], of
the symmetric variety Gad/Kad of the adjoint group Gad, and in section 3 we
elaborate on the definition of Env(G0/K0).

Section 4 is devoted to establishing a connection between Env(G0/K0) and
Gad/Kad (cf. propositions 1,2,3): Env(G0/K0) is a fiber product, over an affine
toric variety, of affine space with the normalization of a multicone over Gad/Kad.
The next one concerns properties of Env(G0/K0): we study its orbit decomposi-
tion (propositions 4,6), certain toric sub-varieties, and prove in section 5.3 that
it enjoys a universal property (theorem 3) like Vinberg’s enveloping semigroup.
In the last section, we show how to construct Gad/Kad as a geometric quotient
of an open subvariety Σ of Env(G0/K0); our approach is similar to Vinberg’s,
with one noticeable difference: we take the B1-stable cell BΣ in Σ (B1 a Borel
subgroup ofG1) to be the canonical affine B1-stable subset introduced in [Knop].

Remark 1. All embeddings of homogeneous varieties will be assumed normal
or will be shown to be so, unless otherwise specified. All varieties will be defined
over the algebraically closed field k of characteristic zero.

Acknowledgements The author gratefully acknowledges the financial sup-
port of the Fonds FCAR and thanks the referees and V. Ginzburg for their
comments.

1 Preliminaries

1.1 Notation

Let’s introduce the rest of the notation that we will need. If L,M < G, G any
group, L ∩M / L, then LM = L/L ∩M . Z0 is the center of G0, the adjoint
group of which is Gad = G0/Z0; note that σ descends to Gad, so we can define
similarly Kad (= (Gad)σ) and the symmetric variety Gad/Kad (∼= G0/H0). We
fix a maximal σ-stable torus T0 of G0 containing S0. R0 is the root system of
G0 with respect to T0, and α1, . . . , αn are a choice of simple roots, the αi with
i > m being exactly the simple roots which vanish on s0 (=Lie(S0)), i.e. those
which are fixed by σ. (See the next subsection for more concerning our choice of
basis of R0.) T0/T

σ
0
∼= S0K0 , and the multiplication morphism T σ

0 × S0 −→ T0

is an isogeny. N0 = NS0(K0), and by lemma 1.7 in [DP1], N0 is the subset of
elements s ∈ S0 such that s2 ∈ Z0, so N0 is a finite group.

We will need to extend these notions to G1. H1 was defined in the intro-
duction and it is equal to {(ks, s−1) ∈ G1|k ∈ K0, s ∈ N0}. σ gives rise to an
involution of G1 with Gσ

1 = K1 = K0 × Sσ
0 . Let T1 = T0 × S0, S1 = S0 × S0.

Furthermore, if G0 = G̃0 × G̃0 (G̃0 being any reductive algebraic group over
k) and σ is the transposition (x, y) −→ (y, x), then K0 = ∆G̃0, G0/K0

∼= G̃0,
S0 = ∆1,−1(T̃0) = {(t, t−1)|t ∈ T̃0}, T0 = T̃0 × T̃0, NG0(K0) = (Z̃0 × Z̃0)∆G̃0,
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N0 = {(s, s−1) ∈ S0|s2 ∈ Z̃0}, S0 ∩ K0 = {(s, s−1) ∈ S0|s2 = 1}. We
claim that, in this case, G1/H1

∼= G̃0 × T̃0/∆1−1(Z̃0). Consider the mor-
phism ϕ : G̃0 × G̃0 × ∆1,−1(T̃0)/M0 −→ G̃0 × T̃0/∆1,−1(Z̃0), where M0 =
∆1,−1(N0)(∆(G̃0) × (∆1,−1(T̃0) ∩ ∆(G̃0))), defined by ϕ((g1, g2, t, t−1)M0) =
(g1g−1

2 , t2)∆1,−1(Z̃0). ϕ is a bijective quotient morphism, hence an isomor-
phism.

1.2 Restricted roots and weights

For an arbitrary algebraic group G, let X∗(G) be the set of its one parameter
subgroups and X∗(G) be its set of characters. According to [Vust1], ∃λ̃ ∈
X∗(S0) such that P0(λ̃) is a parabolic subgroup of G0 with an open dense orbit
in G0/K0. Here P0(λ̃) is defined as the parabolic subgroup of G0 containing
T0 and corresponding to the roots {α ∈ R0|〈λ̃, α〉 ≥ 0}. Set P0 = P0(λ̃); then
ZG0(S0) = ZG0(λ̃) = P0 ∩ σ(P0). Moreover, ∃µ̃ ∈ X∗(T0) such that B0 = P0(µ̃)
is a Borel subgroup of G0 contained in P0 and B0K0 = P0K0 is open in G0

(similarly for K0 replaced by H0). We can assume that B0 corresponds to our
previous choice of simple roots α1, . . . , αn. We will need the following lemma in
order to be able to use our choice of B0 (actually, B−0 ) in section 2.

Lemma 1. Our choice of root system satisfies the condition in lemma 1.2 of
[DP1], that is, if α is a positive root which is not identically zero on s0, then
σ(α) is a negative root.

Proof. If α is a positive root in {α ∈ R0|〈λ̃, α〉 > 0}, then σ(α) is negative
because σ(λ̃) = −λ̃ ([Vust1], prop. 4) and B0 ⊆ P0. Therefore,it is enough
to notice that {α ∈ R0|〈λ̃, α〉 > 0} is {α ∈ R+

0 |α 6≡ 0 on s0}. Indeed, if
〈λ̃, α〉 = 0, α ∈ R+

0 , then Uα ⊆ ZG0(λ̃) = ZG0(S0), hence α ≡ 0 on s0.

Set R0 = {α = α−σ(α)|α ∈ R0}. Lemma 2.3 in [Vust2] says that R0 is a root
system in X∗(S0H0)⊗Z Q, which is a Q-vector space of dimension l, l being the
rank of S0, which is also the rank of the symmetric variety G0/K0. We can order
the simple roots of R0 in such a way that αm+1, . . . , αn are exactly those fixed
by σ, and {α1, . . . , αl} is a set of simple roots for R0 (l < m ≤ n); furthermore,
if i > l and σ(αi) 6= αi, there is an s ≤ l such that αi = αs. α1

∨, . . . , αl
∨ are the

simple dual coroots. The character group of S0K0 is {χ = χ−σ(χ)|χ ∈ X∗(T0)}.
We denote by ηi, i = 1, . . . , l, the fundamental weights of the root system R0; by
lemma 3.1 in [Vust2], the weight lattice of R0 is X∗(S0K0) and the root lattice
is X∗(S0H0).

We will need to know later how the weights ηi are related to the fundamental
weights of R0. We can partition these into two sets

{ω1, . . . , ωm}, {ζ1, . . . , ζk},m+ k = n

as in [DP1] §1.3, that is, such that 〈ωi, α
∨
j 〉 = 0 if j > m, 〈ωi, α

∨
j 〉 = δij if j ≤

m, 〈ζi, α∨j 〉 = δ(i+m)j if j > m, 〈ζi, α∨j 〉 = 0 if j ≤ m. It is proved in [DP1]
that if i ≤ m then σ(αi) = −αj −

∑
r>m nriαr where the nri are non-negative
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integers, j ≤ m, and σ(ωi) = −ωj . In the same article, the authors argue that,
for i ≤ m, ηi = cωi or ηi = c(ωi + ωj), where c = 1 or 2. We can be a little
more precise. According to [Vust2], there are three possible cases for a simple
root, although only the first two are of interest to us: (i ≤ l ≤ m)

1. σ(αi) = −αi, so σ(ωi) = −ωi, 〈(αi)∨, ωi〉 = 1
2 〈α

∨
i , ωi〉 = 〈α∨i , ωi〉 = 1 and

〈(αj)∨, ωi〉 = 0 if j 6= i. Hence ηi = 2ωi.

2. 〈α∨i , σ(αi)〉 = 0; then 〈(αi)∨, ωi+ωj〉 = 〈α∨i , ωi+ωj〉 = 1 or 2, 〈(αt)∨, ωi+
ωj〉 = 〈α∨t , ωi + ωj〉 = 0 if t 6= i, j. It follows that ηi is either ωi + ωj if
j 6= i, or ωi.

3. 〈α∨i , σ(αi)〉 = 1. If this happens, then R0 is not reduced and any simple
root αi of R0 comes from a root of the first two types.

W0 (W0) denotes the Weyl group of R0 (R0), and w0 is the longuest element
of W0. W0 is isomorphic to NK0(S0)/ZK0(S0) [Rich], and this is isomorphic
to NH0(S0)/ZH0(S0) because ([Vust2]) H0 = (S0 ∩ H0)K0 =⇒ NH0(S0) =
(S0 ∩H0)NK0(S0), ZH0(S0) = (S0 ∩H0)ZK0(S0).

1.3 Regular functions on G1/H1

k[G0] = ⊕λVλ⊗k V
∗
λ , where λ runs over all the dominant integral weights of B0

and Vλ is the irreducible representation of G0 of highest weight λ with respect
to B0. To obtain k[G0/K0] = k[G0]K0 , we have to take the sum over those λ
such that V ∗λ contains a K0-fixed non-zero vector, which is unique up to a scalar
because B0K0 is dense in G0. If this is the case, then Vλ

∼= V ∗,σλ ([DP1] lemma
1.6), so Vλ contains also a K0-fixed non-zero vector, and vice-versa. (By V ∗,σλ ,
we mean the G0-module V ∗λ with the action twisted by σ.) Therefore,

k[G0/K0] ∼=
⊕

dim V
K0

λ =1

Vλ.

Suppose that dim V K0
λ = 1 and let v ∈ V K0

λ . We claim that N0 acts on the
line spanned by v by the character λ. Indeed, it follows from the analysis done
in section 1.7 of [DP1] that v⊗v = vλ⊗vλ +

∑m
i=1 ui⊗vi, where vλ is a highest

weight vector of Vλ and ui⊗vi is a weight vector of smaller weight. This implies
that v = vλ +

∑
ṽi, ṽi being a weight vector of weight λ−

∑
j a

j
iαj , say. Let s ∈

N0; then sv is a multiple of v, and sv = χλ(s)v+
∑m

i=1 χ
λ(s)

∏
j χ

−aj
i αj (s)ṽi =

χλ(s)(vλ +
∑m

i=1

∏
j χ

−aj
i αj (s)ṽi); therefore

∏
j χ

−aj
i αj (s) = 1 ∀i. (χλ is the

multiplicative character corresponding to λ.)
The isotypic component k[G0/K0]λ of k[G0/K0] under left multiplication

by G0 is spanned by the functions f ⊗k f
∗
λ , where f∗λ ∈ V ∗,K0

λ . The argument
above shows that N0 acts by right multiplication by the character −w0(λ) on
k[G0/K0]λ. If k[G0/K0]λ⊗kχ

µ is an irreducible component of k[G0/K0×S0K0 ],
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then ∆1,−1(N0) acts on it (by multiplication on the right) by the character
−w0(λ)− µ. Therefore,

k[G1/H1] =
⊕

−w0(λ)−µ∈Z{α1,...,αl}

k[G0/K0]λ ⊗k χ
µ

k[G1/H1](λ,−µ) = k[G0/K0]λ ⊗k χ
µ.

(Note that S0-acts on the function χµ by the character −µ under the ac-
tion given by (s1χµ)(s2) = χµ(s−1

1 s2); this explains the minus sign.) By
(Λ(G0/K0)⊕X∗(S0K0))

∆1,−1(N0), we mean the B1-weights of the rational func-
tions on G0/K0×S0K0 which are also rational functions on G1/H1, so they are
all the weights (λ, µ) of k[G0/K0]⊗kk[S0K0 ] such that µ−w0(λ) ∈ Z{α1, . . . , αl}.
Note that Λ(G0/K0) is a subgroup of X∗(T0) stable under −w0, and χ−λ|N0 =
χ−w0(λ)|N0 , i.e. λ− w0(λ) ∈ ZR0.

Finally, if for any affine G-variety Y - G a reductive group - we denote
by Λ+(Y ) the set of highest weights of the G-module k[Y ], then restriction
of weights from T0 to S0 establishes an isomorphism between Λ+(G0/K0) and
X+(S0K0) ([Vust2]).

1.4 Classification of embeddings of symmetric varieties

We will be interested in normal embeddings of the varieties G0/K0, G1/H1

and Gad/Kad, but only in the last two cases will we consider dominant ones,
that is, embeddings containing the given symmetric variety as a dense subset.
We present in this section the combinatorial data associated to these varieties.
Since G0 is semisimple and simply connected, we can apply directly the results
of [Vust2]. However, this is not the case for G1, so we have to make some slight
modifications.

Spherical varieties (i.e. normal, irreducible G-varieties which contain an
open orbit under the action of a Borel subgroup of a reductive group G, e.g.
symmetric varieties) can be classified in terms of certain combinatorial data (see
e.g. [Knop]). Let D(G0/H0) denote the set of B0-stable irreducible divisors of
G0/H0; these are the colors of G0/H0. For a simple (i.e. having only one closed
orbit) embedding E0 of the homogeneous space G0/H0, D(E0) is just the set
of B0-stable prime divisors of E0. The set of colors F(E0) of E0 consists of
the B0-stable prime divisors D of G0/H0 whose closure D in E0 contains the
(unique) closed orbit of E0. For D ∈ D(E0), vD denotes the normalized discrete
valuation of k(G0/H0) associated to D.

Let V(G0/H0) be the set of normalized G0-invariant discrete valuations
of k(G0/H0). Each G0-stable prime divisor in E0 determines an element of
V(G0/H0); the set of all valuations arising in this way is written V(E0).

Theorem 1 (cf. [LuVu]). A simple normal embedding E0 of G0/H0 is uni-
quely determined by the data (F(E0),V(E0)).

Denote by PH0
0 the subgroup of k(G0/H0)× consisting of the normalized

eigenvectors for the action of P0 (i.e. those taking the value 1 at 1 · H0);
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PH0
0

∼= Λ(G0/H0). Each valuation v gives us an element ρ(v) in HomZ(PH0
0 ,Z).

The map V(G0/H0)
ρ−→ HomZ(PH0

0 ,Z) ⊗Z Q is injective, but not the one
D(G0/H0)

ρ−→ HomZ(PH0
0 ,Z)⊗Z Q in general. (The latter is one-to-one when,

for instance, the symmetric variety is an algebraic group.)
If E0 is a simple embedding of G0/H0, we let C(E0) be the Q+-cone inside

HomZ(PH0
0 ,Z) ⊗Z Q generated by the finite sets ρ(V(E0)) and ρ(F(E0)).The

pair (C(E0),F(E0)) is called the colored cone of E0. More generally, we can
state the following definition.

Definition 1. A colored cone is a pair (C,F) with C ⊆ HomZ(PH0
0 ,Q) and

F ⊆ D(G0/H0), such that C is a cone generated by ρ(F) and a finite subset of
Q+V(G0/H0), and C◦ ∩Q+V(G0/H0) 6= φ.

Note that C(E0) is a fortiori generated also by ρ(F(E0)) and by C(E0) ∩
Z+V(G0/H0).

Theorem 2 (cf. [Knop] §4.1). There is a bijection between the set of simple
normal embeddings of G0/H0 and the strongly convex rational polyhedral colored
cones in the vector space HomZ(PH0

0 ,Z) ⊗Z Q. This correspondence is the one
described above.

As proved in [Vust2], HomZ(PH0
0 ,Z) is isomorphic to X∗(S0H0). An isomor-

phism is induced by the isomorphism φ : PH0
0 −→ X∗(S0H0) given by f → −ω

if f is an eigenvector for P0 of weight ω. Therefore, we can view the colored cone
of a simple embedding of G0/H0 as a cone in X∗(S0H0) ⊗Z Q = X∗(S0) ⊗Z Q.
(X∗(S0H0) has finite index in X∗(S0).) From the previous section, we know that
X∗(S0H0) is stable under w0. w0 thus induces an automorphism of X∗(S0H0)
also.

Everything said so far (in particular theorem 1 and 2) is valid also for em-
beddings of the symmetric variety G1/H1 with P0 replaced by P1 = P0 × S0,
B0 by B1 = B0 × S0, and the maximal anisotropic torus being S1 = S0 × S0.
PH1

1 is the subgroup of k(G1/K1)× consisting of the normalized eigenvectors
for the action of P1. We can define similarly V(G1/H1), D(G1/H1), and maps
from these two sets to the lattice HomZ(PH1

1 ,Z). The colored cone C(E) and
the colors F(E) of a simple embedding E of G1/H1 are defined as before. We
obtain also an isomorphism between HomZ(PH1

1 ,Z) and X∗(S1H1) by sending
a B1-weight vector of weight (w1, w2) to the character (−w1|S0 ,−w2|S0) ; this
follows from results in [Vust1] §2.1, 2.2 which are valid for any reductive group.

Proposition 1 §2.4 in [Vust2] says that the ρ(uD), D ∈ D(G0/H0), get iden-
tified, under the isomorphism HomZ(PH0

0 ,Z) −→ X∗(S0H0), to the negative of
the simple coroots of R0.

The B1-stable (or P1-stable) divisors of G1/H1 are exactly the images of
D × S0/S

σ
0 under the quotient morphism G0/K0 × S0/S

σ
0 −→ G1/H1, where

D is a B0-stable (or P0-stable) divisor of G0/K0. Therefore, the ρ(uD), with
D ∈ D(G1/H1), can be identified with the subset {(−(αi)∨, 0)|1 ≤ i ≤ l}. We
can reach this conclusion also by mimicking the proof in [Vust2] since k[G0×S0]
is also a UFD.

6



According to proposition 2, §2.4 in [Vust2], the set V(G0/H0) corresponds to
the set of indecomposable elements in C0 ∩X∗(S0H0), where C0 is the chamber
determined by the choice of positive roots in R0 (i.e. the one containing λ̃). As
for V(G1/H1), it corresponds to the indecomposable elements in C ∩X∗(S1H1),
C being again defined by our choice of positive roots {(αi, 0)}l

i=1; the proof in
[Vust2] applies to this case too.

1.5 Valuations and one-parameter subgroups

The set V(E), E an embedding of G1/H1, can be described in terms of certain
one-parameter subgroups. Let λ be a one-parameter subgroup of G1. λ induces
a valuation vλ ∈ Z+V(G1/H1) in the following way. Let f ∈ k[G1]; then f =∑

n∈Z fn where λ(t)fn = tnfn for all t ∈ k∗; we set vλ(f) = inf {n ∈ Z|fn 6= 0},
extend vλ to k(G1), and restrict it to k(G1)H1 .

An elementary embedding of G1/H1 is a normal (a fortiori smooth) em-
bedding consisting of two orbits: G1/H1 and a closed orbit of codimension 1.
It follows from the general theory of elementary embeddings in [LuVu] (§4.10,
§7.5) that there exists a bijection (denoted E′ ↔ vE′ , where vE′ is the valuation
associated to the unique closed orbit of E′) between elementary embeddings
and G1-invariant, discrete, normalized valuations of k(G1/H1). If E′ is such an
embedding, x ∈ E′ a point with isotropy group equal to H1, then there exists
a one-parameter subgroup λE′ of S1H1 such that limt→0 λE′(t)x belongs to the
open P1-orbit in the unique closed G1-orbit of E′ ([BLV] §4). Furthermore, vλE′

is equivalent to vE′ , and we can choose λE′ in X+(S1H1).
Now let E be an embedding of G1/H1 and O a G1-orbit of codimension 1 in

E. Then G1/H1 ∪O is an elementary embedding of G1/H1. It follows from the
previous paragraph that there exists a one-parameter subgroup λ ∈ X∗(S1H1)
such that vλ is equivalent to the G1-invariant, discrete, normalized valuation
of k(G1/H1) corresponding to O. In conclusion, one way to find V(E) is to
identify the one-parameter subgroups of S1H1 for which λ(t)x converges in E
when t→ 0 to a point in the open P1-orbit of a G1-stable prime divisor.

Using the bijection E′ ↔ vE′ , it is possible to give more information on the
set C(E) ∩ Z+V(G1/H1). If vE′ ∈ C(E) ∩ Z+V(G1/H1), then we can find a
morphism E′

ϕ−→ E (ϕ|G1/H1 = id), and limt→0 λE′(t)1 ·H1 exists in E′, hence
limt→0 λE′(t)1 · H1 exists also in E via ϕ. Conversely, if λ ∈ X∗(S1H1) and,
without lost of generality, λ lies in the positive Weyl chamber, and if λ(t)1 ·H1

converges in E as t → 0, then we can extend the identity map on G1/H1 to a
morphism E′ −→ E (by [LuVu]§4.9), which implies that vE′ ∈ C(E), E′ being
the elementary embedding such that vE′ is the normalized invariant valuation
equivalent to vλ.

2 The wonderful completion of Gad/Kad

In this section, we recall some of the properties of the wonderful compactification
Gad/Kad of Gad/Kad ([DP1]). Gad/Kad is a smooth complete variety over
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k containing Gad/Kad as a dense G0-orbit, and the complement of Gad/Kad

consists of l smooth, normal crossing divisors Xi. Moreover, the G0-orbits of
Gad/Kad are in a bijective correspondence with the subsets of {1, . . . , l}, and
the orbit closures are exactly the intersections X{i1,...,ik} = Xi1 ∩ . . . ∩Xik

.
Gad/Kad can be constructed as the closure of the G0-orbit in P(V2λ) of the

class of the unique - up to a scalar multiple - vector h′ in V2λ fixed by K0,
where λ is a regular special weight, dominant with respect to B−0 . (We choose
B−0 instead of B0 for convenience.) The geometric analysis of Gad/Kad can
be carried out by studying a certain affine cell (i.e. locally closed subvariety
isomorphic to affine space), denoted B, which enjoys the following properties:
B is B0-stable and isomorphic to US0 × Al where US0 is the unipotent group
generated by the root subgroups corresponding to the positive roots in R0 whose
restrictions to s0 are non-zero, the torus T0 acts on it by multiplication by χαi(t)
on the ith-coordinate of Al, and the intersection of the G0-orbit of [h′] with B is
the open set where the last l coordinates are non-zero. Furthermore, the unique
closed G0-orbit Y in Gad/Kad is the closure of US0 × {0}, and the intersection
of B with Xi is the variety of codimension one given by the vanishing of the ith

coordinate of Al.
Let’s determine the combinatorial data of Gad/Kad as a G0-spherical variety

with respect to the choice of B0 as Borel subgroup. It follows from the descrip-
tion given in the previous paragraph that Y is not contained in the closure of
any of the B0-stable divisors of Gad/Kad because these are in the complement
of B. This means that Gad/Kad has no colors, so Gad/Kad is an example of a
toroidal spherical variety.

Let xj be a local equation for Xj ∩ B as in [DP1]. xj is a rational function
on Gad/Kad which is a B0-eigenvector and its weight is w0(αj) = w0(αij ) =
−αw0(ij) (up to reordering the xj). Here is what we mean by this. B−0 is
the Borel subgroup corresponding to the choice {w0(αi)}n

i=1 of simple roots.
This basis satisfies also the condition of lemma 1.7 in [DP1]. w0 induces a
permutation, also denoted w0, of the set {1, . . . , n} by w0(αi) = −αw0(i).
If w0(αj1), . . . , w0(αjl

) are all independent (distinct and non-zero), then we
can assume that {w0(j1), . . . , w0(jl)} = {1, . . . , l}, {w0(αj1), . . . , w0(αjl

)} =
−{α1, . . . , αl}. In particular, w0(αj) = −αk (for some k) = w0(αji) for some
ji, 1 ≤ i ≤ l.

Let vk be the G0-invariant valuation corresponding to Xk. Then

ρ(vk)(−(w0(αij
))) = vk(xj) = δjk =⇒ ρ(vk) = η̃w0(ik) ∈ X∗(S0H0).

Therefore, C(Gad/Kad) = Q+{ρ(v1), . . . , ρ(vl)} = C0 = Q+V(G0/H0).
We can also characterize Gad/Kad as the unique dominant equivariant em-

bedding of Gad/Kad which is simple, complete, and without colors. This follows
from the results in section 1.4 and the combinatorial criterion for completeness
of spherical varieties (cf. [Knop]).

Gad/Kad can be realized in many different ways. For i = 1, . . . , l, let hi be
a non-zero K0-fixed vector in Vw0(ηi)

; here Vw0(ηi)
is the irreducible G0-module
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with highest weight w0(ηi) with respect to B−0 . hi is unique up to a scalar. Set
h = h1 + . . .+hl. The wonderful completion of G0/H0 is the closure of the orbit
of the line [h] in P(Vw0(η1)

⊕ . . .⊕ Vw0(ηl)
).

Vw0(η1)
⊗k · · · ⊗k Vw0(ηl)

= Vw0(η1+...+ηl)
⊕W where W contains a K0-fixed

vector hW ; set h1,...,l = h1 ⊗ . . . ⊗ hl and h′ = h1,...,l + hW . Then Gad/Kad
∼=

G0[h′] ⊆ P(Vw0(η1)
⊗. . .⊗Vw0(ηl)

), an isomorphism being given by the restriction
of the projection P(Vw0(η1+...+ηl)

⊕W ) −→ P(Vw0(η1+...+ηl)
) along P(W ) (see

[DP1] §4.1).
Furthermore, the Segre embedding mapping P(Vw0(η1)

) × · · · × P(Vw0(ηl)
)

into P(Vw0(η1)
⊗k · · · ⊗k Vw0(ηl)

) provides an isomorphism between G0[h′] and
G0([h1], . . . , [hk]), whence G0([h1], . . . , [hk]) is isomorphic to Gad/Kad.

Fix an ordered basis of Vw0(η1+...+ηl)
consisting, say, of weight vectors, the

last one being a highest weight vector for B−0 . Let A be the affine subset of
P(Vw0(η1+...+ηl)

) where the last coordinate is non-zero; A ∩ G0[h′] is the affine
cell B. Using the isomorphism above, it follows that Ã ∩G0([h1], . . . , [hl]) ∼= B;
here, Ã is defined in a way similar to A: for each i = 1, . . . , l, choose an ordered
basis Θi of Vw0(ηi)

whose last element is a highest weight vector, and let Ã be
the affine subvariety of P(Vw0(η1)

)×· · ·×P(Vw0(ηl)
) defined by the non-vanishing

of the last coordinate in each projective space.

3 Definition of Env(G0/K0)

3.1 First definition

Let Env(G0/K0) be the affine variety over k (see lemma 2 below) with coordinate
ring k[Env(G0/K0)] = ⊕ν∈Lk[G1/H1]ν , where L is the Q+-cone in (Λ(G0/K0)⊕
X∗(S0K0))

N0 ⊗Z Q generated by {(ηi, w0ηi), (0,−αi)}l
i=1, and k[G1/H1]ν is the

isotypic component of k[G1/H1] corresponding to the dominant weight ν of B1.
Λ(G0/K0) ∼= P0

K0 ∼= X∗(S0K0), and the highest weight semigroup of G0/K0

(i.e. the semigroup formed by the dominant integral weights of the isotypic
components of G0/K0) is X+(S0K0) .

It is also possible to define its coordinate ring by using an idea from [Pop].
Let’s put a polyfiltration on k[G0/K0] by setting k[G0/K0]≤λ = ⊕µ≤λk[G0/K0]µ
for λ ∈ X∗(S0K0)∩(Q+R0

+
), where µ ≤ λ means that λ+w0(µ) ∈ Z+R0

+
. The

Rees algebra of this polyfiltration is a subalgebra of k[G0/K0][s±η1 , . . . , s±ηl ],
sη1 , . . . , sηl being variables algebraically independent over k[G0/K0]. Then
k[Env(G0/K0)] can be identified with this Rees algebra, i.e.

k[Env(G0/K0)] ∼=
⊕

λ∈X∗(S0K0 )∩(R0
+⊗ZQ)

k[G0/K0]≤λs
λ,

if we think of sλ as a character of S0.
Let A be the S0/N0-toric variety Spec⊕µ∈Z+{α1,...,αl} k ·χµ. A is isomorphic

to affine space Al since the roots αi form a basis for the character lattice of
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S0/N0 ([Vust2] lemma 3.1).

Lemma 2. k[Env(G0/K0)] is a finitely generated algebra.

Proof. By corollary 4 in ([Pop]), it is enough to show that k[Env(G0/K0)]U1

is finitely generated, where U1 = U0 × 1 (resp. U0) is a maximal unipotent
subgroup of G1 (resp. G0). ⊕η∈X+(S0K0 )k[G1/H1]U1

(η,w0(η)) is isomorphic to
k[G0/K0]U0 , and ⊕

α∈Z+R0
+k[G1/H1](0,−α) = k[A]. Therefore we obtain that

k[Env(G0/K0)]U1 ∼= k[A] ⊗k k[G0/K0]U0 , which is finitely generated since the
same holds for k[G0/K0]U0 . Equivalently, we could have observed simply that
k[Env(G0/K0)]U1 is the semigroup algebra of the subsemigroup generated by
{(ηi, w0ηi), (0,−αi)}l

i=1.

Lemma 3. Env(G0/K0) is a normal variety.

Proof. According to a theorem of Popov ([Pop]), it is enough to check that
k[Env(G0/K0)]U1 is normal; but k[Env(G0/K0)]U1 ∼= k[A] ⊗k k[G0/K0]U0 (see
lemma 2) and k[G0/K0]U0 is a polynomial ring of dimension l according to
[Vust2] §3.2.

Lemma 4. Env(G0/K0) is an affine embedding of G1/H1.

Proof. It is enough to prove that the functions in k[Env(G0/K0)] separate the
points of G1/H1. If (p1, s1)∆1,−1(N0) and (p2, s2)∆1,−1(N0) are two distinct
points of G1/H1, pi ∈ G0/K0, si ∈ S0K0 , with s1s

−1
2 6∈ N0, then we can sep-

arate them using a character χ−α. Now if s1s−1
2 ∈ N0, it is possible to find

a function f ∈ k[G0/K0]η which separates p1s1s
−1
2 and p2. It follows that

fχ−w0(η)((p1, s1)∆1,−1(N0)) 6= fχ−w0(η)((p2, s2)∆1,−1(N0)).

The three preceding lemmas show that Env(G0/K0) is a spherical variety
for G1 (see the second definition below for more on this).

If we consider G0 as a symmetric variety of G0 × G0 via the involution
(g1, g2) −→ (g2, g1), then we get the enveloping semigroup of G0. As a Borel
subgroup of G0 ×G0, we choose B0 ×B−0 , and its maximal anisotropic torus is
∆1,−1(T0).

Let θ : T0 −→ ∆1,−1(T0) be the isomorphism t 7→ (t, t−1); θ induces an iso-
morphism T0/T0,2

∼=−→ ∆1,−1(T0)/∆(T0), where T0,2 is the subgroup of elements
of order 2 of T0. X∗(T0/T0,2) = 2X∗(T0), X∗(∆1,−1(T0)/∆(T0)) = {(ν,−ν)|ν ∈
X∗(T0)}, and θ∗(µ,−µ) = 2µ.

Let τ be the G0×G0-equivariant isomorphism G0 −→ G0×G0/∆(G0) given
by τ(g) = (g, 1)∆(G0). Then τ∗(k[G0 ×G0/∆(G0)](µ,−µ)) = Vµ ⊗k V−µ.

According to our definition, k[Env(G0 ×G0/∆(G0))] is equal to⊕
ν2−ν1∈R+

0

k[G0 ×G0/∆(G0)](ν1,−ν1) ⊗k k[∆1,−1(T0)/∆(T0)](w0(ν2),−w0(ν2)).

Under the isomorphism

τ × θ : G0 × (T0/T0,2) −→ (G0 ×G0/∆(G0))× (∆1,−1(T0)/∆(T0)),
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k[G0 ×G0/∆(G0)](ν1,−ν1) ⊗k k[∆1,−1(T0)/∆(T0)](w0(ν2),−w0(ν2)) corresponds to
Vν1 ⊗k V−ν1 ⊗k k[T0/T0,2]2w0(ν2). The isomorphism T0/T0,2 −→ T0 given by
squaring identifies k[T0/T0,2]2w0(ν2) with k[T0]w0(ν2). In conclusion, the decom-
position of k[Env(G0 ×G0/∆(G0))] as a G0 ×G0 × T0-module is⊕

ν1,ν2∈X+(T0),ν2−ν1∈R+
0

Vν1 ⊗k V−ν1 ⊗k χ
−w0(ν2),

which is how Vinberg had defined the coordinate ring of his enveloping semi-
group since Vν1 ⊗ V−ν1 is isomorphic as a G0 ×G0-representation to the space
of matrix coefficients of the irreducible representation V ∗ν1

(= V−w0(ν1)).
We will use later the categorical quotient Env(G0/K0)/G0, which is isomor-

phic to A. Indeed,

k[Env(G0/K0)]G0 = (k[G0/K0]G0 ⊗k k[S0K0 ])L = k ⊗k k[S0K0 ]L = k[S0K0 ]L.

By (·)L, we mean the sum of the isotypic components with highest weights
belonging to L.

Let π : Env(G0/K0) −→ A be the quotient morphism. Then the fiber of π
over (1, . . . , 1) is G0/K0: the same argument as in [Vin] proposition 3 applies,
except that in our case we have to use a theorem of Luna ([Luna]) which asserts
that a homogeneous space G/L, with G and L reductive, is affinely closed (i.e.
it admits only one affine embedding, namely itself) if and only if [NG(L) : L] is
finite.

3.2 Second definition

Env(G0/K0) can also be defined in an equivalent way using the language of
section 1. Let E be the G1-spherical embedding of G1/H1 whose colors are all
the colors of G1/H1 and whose colored cone is the Q+-cone in X∗(S1H1)⊗Z Q
generated by

{(−(αi)∨, 0)}l
i=1 ∪ {(η̃i,−w0(η̃i))}l

i=1,

where the η̃i are the indecomposable elements in C0 ∩ X∗(S0H0). By lemma
3.1 in [Vust2], the root lattice ZR0 is X∗(S0/N0) and its dual is the coweight
lattice - the fundamental coweights are those indecomposable elements.

This definition is equivalent to the first one. E is affine because F(E) =
D(G1/H1) ([Knop] Theorem 7.7). C(E)∨ denotes the cone dual to C(E) under
the natural pairing X∗(S1H1) × X∗(S1H1) −→ k, and, under the identifica-
tion in section 1, it sits inside X∗(S1H1). −C(E)∨ ∩ X+(S1H1) is the high-
est weight semigroup of k[E]. Indeed, since E is normal, a regular function
f ∈ k[G1/H1](B1) extends to all of E if and only if v(f) ≥ 0 ∀v ∈ V(E). This
means that (χf being the B1-weight of f)

k[E](B1) = {f ∈ k[G1/H1](B1)|χf ∈ −C(E)∨ ∩X+(S1H1)},

hence
k[E] =

⊕
Λ∈−C(E)∨∩X+(S1H1 )

k[G1/H1]Λ.
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Notice that in this case −C(E)∨ ⊆ Q+-span of X+(S1H1) ⊗Z Q. We just have
to see now that −C(E)∨ is equal to L.

3.3 Action of Env(G0)

The G1-action on Env(G0/K0) extends to an action of G0 × T0, T σ
0 acting

trivially, which decends to an action of the group G0×T0/∆1,−1(Z0), the group
of units of Env(G0).

Furthermore, we can extend this to an action of Env(G0), the envelop-
ing semigroup of G0. Since L ⊆ L(Env(G0)), L(Env(G0)) being the cone in
(Λ(G0) ⊕ X∗(T0))∆

1,−1(Z0) ⊗Z Q generated by {(ωi, w0(ωi)), (0,−αi)}n
i=1, the

action homomorphism k[Env(X0)] −→ k[G0 × T0/∆1,−1(Z0)] ⊗k k[Env(X0)]
factors through the algebra k[Env(G0)]⊗k k[Env(X0)], which proves our claim.

This extension enjoys the following property. Let E be any affine vari-
ety with an action of Env(G0), and suppose that we are given a morphism
φ : G1/H1 −→ E which is equivariant with respect to the action of G0 ×
T0/∆1,−1(Z0); then we can extend φ to a morphism φ̃ : Env(G0/K0) −→ E
which is Env(G0)-equivariant. Indeed, the image of the algebra homomorphism
k[E] −→ k[G1/H1] must land inside the sum of the G1-submodules k[G1/H1]ν
with ν ∈ L(Env(G0)), so it factors through k[Env(X0)].

4 Construction of Env(G0/K0) from Gad/Kad

In this section, we give a geometric construction of Env(G0/K0) from the won-
derful embedding Gad/Kad of Gad/Kad similar to the one given in [Ritt1] for
Env(G0). By pulling back the line bundle O(1) on P(Vw0(ηi)

), we obtain an
ample line bundle Li on Gad/Kad ⊆ P(Vw0(η1)

)× · · · × P(Vw0(ηl)
).

Let E0 be the smooth variety ⊕l
i=1L

∨
i . The line bundles L∨i admit a G0-

linearization (it is a general fact, obvious in this specific case, that the action of
a simply connected algebraic group on a variety can be lifted to line bundles over
it), so we get an action of G0×S0 on E0 by letting the torus 1×S0 act linearly on
each fiber of L∨i by the character ηi. For I, J ⊆ {1, . . . , l}, set EI,J = ⊕i∈IL

∨
i |XJ

(Eφ,J = XJ = zero section of E{1,...,l},J); these are the closed G0 × S0-stable
subvarieties of E0. Let OI,J be the unique open G0 × S0-orbit in EI,J . E0 is a
simple G0 × S0-spherical variety with unique closed orbit Oφ,{1,...,l}.

Let us show that the open orbit O{1,...,l},φ is isomorphic to G1/H1. Over
B, the bundles L∨i trivialize, so let fi be a trivializing section for L∨i over B.
Let p =

∑l
i=1 fi(1 · H0); we want to find the isotropy group of p under the

action of G0 × S0. Let (g, s) ∈ Stab(p). Then gH0 = H0 =⇒ g ∈ H0; say
g = s0k0, s0 ∈ N0, k0 ∈ K0 (H0 = (S0 ∩ H0)K0 according to [Rich] §8). It
follows that ηi(s · s0) = 1 ∀i = 1, . . . , l, (note that K0 acts trivially on the fiber
of E0 over 1 ·H0) hence s · s0 ∈ Sσ

0 . =⇒ s = s−1
0 s̃, s̃ ∈ Sσ

0 . Therefore, Stab(p) =
{(k0 · s0, s−1

0 s̃)} = ∆1,−1(N0)(K0 × Sσ
0 ) = H1, and O{1,...,l},φ ∼= G1/H1, which

proves our claim.
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E0 doesn’t have colors because the same is true for Gad/Kad. The irre-
ducibleG1-stable divisors of E0 are the E{1,...,l},j , j = 1, . . . l, and the Ed{j},φ, j =

1, . . . , l, where {̂j} is the complement of {j} in {1, . . . , l}. Let γj be the G1-
invariant valuation associated to E{1,...,l},j , and let εj be the one corresponding
to Ed{j},φ.Let xj be a local equation for Xj ∩B as in section 3. Set X̃j = Xj ∩B;
then xj becomes a local equation for E0| eXj

. The B1-weight of xi is (w0(αi), 0)
(up to reordering the rational functions xi), hence ρ(γj)(−w0(αi), 0) = δij .

Ed{j},φ is the divisor of yj , which is the restriction to E0 of the regular
function on P(Vw0(η1)

) × · · · × P(Vw0(ηl)
) × Vw0(η1)

× · · · × Vw0(ηl)
which sends

(q1, . . . , ql, u1, . . . , ul) to the last coordinate of uj with respect to the basis Θj . It
follows that the weight of the B1-eigenvector yj is (−w0(ηj),−ηj). We conclude
that ρ(εj)(w0(ηk), ηk) = δjk.

Furthermore, ρ(γj)(w0(ηi), ηi) = 0, ρ(εj)(−w0(αi), 0) = 0 ∀i, so we may
deduce that ρ(γi) = (−w0(η̃i), η̃i) and ρ(εj) = (0, αj

∨).
We have proved the following proposition.

Proposition 1. E0 is a simple smooth embedding of G1/H1 without colors
whose associated cone in X∗(S1H1) is generated by {(−w0(η̃i), η̃i)}l

i=1 and by
{(0, αi

∨)}l
i=1.

Let us define E1 as the variety Spec Γ(E0,OE0), which is the same as
Spec⊕n1,...,nl≥0 Γ(Gad/Kad, L

⊗n1
1 ⊗ · · · ⊗ L⊗nl

l ).

Proposition 2. E1 is a simple normal embedding of G1/H1 whose colors are
all the colors of G1/H1. The colored cone of E1 is the Q+-cone in X∗(S1H1)
generated by {(η̃i,−w0(η̃i)), (−(αi)∨, 0), (0, (αi)∨)}l

i=1.

Proof. E1 is the normalization of the multi-cone ˜Gad/Kad in
∏l

i=1 Vw0(ηi)
over

Gad/Kad on which G1 acts, and this action lifts to E1. The G1-morphism
ϕ : E0 −→ E1 is birational (and proper because so is the morphism E1 −→

˜Gad/Kad), so E1 is an embedding of G1/H1. E1 is a simple embedding (since
integral invariants separate closed orbits, it is a general fact that an affine G1-
variety with a dense G1-orbit has only one closed orbit), and its colors are all
the colors of G1/H1.

To find the colored cone of E1, we simply need the B1-highest weight semi-
group of E1. By [DP1] §8.3, the decomposition of k[E1] under the action of G0

is k[E1] = ⊕(γ,λ)∈QV
∗
γ where Q = {(γ, λ) ∈ X−(S0K0) ⊕ X−(S0K0)|λ − γ ∈

Z−{α1, . . . , αl}}. Here, Vγ is the irreducible representation of G0 whose highest
weight with respect to B−0 is γ. Therefore, k[E1] = ⊕(γ,λ)∈QV−γ , where V−γ

has highest weight −γ with respect to B0, and thus k[E1] = ⊕(µ,ν)∈QVµ where
now Q = {(µ, ν) ∈ X+(S0K0)⊕X+(S0K0)|ν − µ ∈ Z+{α1, . . . , αl}}.

Let λ ∈ X−(S0K0), say λ =
∑l

i=1 niw0(ηi), and set Lλ = L⊗n1
1 ⊗· · ·⊗L⊗nl

l .
1× S0 acts on Γ(Gad/Kad, Lλ) by the character −w0(λ), so the decomposition
of k[E1] under the action of G1 is

k[E1] =
⊕

(µ,ν)∈Q

Vµ ⊗k χ
−w0(ν), k[E1](µ,w0(ν)) = Vµ ⊗k χ

−w0(ν).
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This means that the B1-highest weight semigroup of E1 is the intersection of
the semigroup generated by {(ηi, w0ηi}l

i=1 ∪ {(0,−αi)}l
i=1 with the semigroup

(Λ+(G0/K0) ⊕ X−(S0K0))
N0 . Dualizing, we get that the colored cone of E1

inside X∗(S1H1) is the Q+-cone generated by

{(η̃i,−w0(η̃i)), (−(αi)∨, 0), (0, (αi)∨)}l
i=1.

Let A be as in section 3.1, so A is the S0/N0-toric variety defined by the cone
in X∗(S0/N0) generated by {η̃1, . . . , η̃l} (= V(A)). Let A1 be the categorical
quotient E1/G0;

A1 = Spec k[E1]G0 = Spec
⊕

λ∈X+(S0K0 )∩Z{α1,...,αl}

k · χλ,

so A1 is the S0/N0-toric variety associated to the cone in X∗(S0/N0) consisting
of all the coweights η̃ such that 〈η̃, α〉 ≥ 0 for all α in the intersection of the root
lattice with the positive Weyl chamber. The inclusion of the first cone into the
second one induces an equivariant morphism ψ : A −→ A1. Combining this with
the quotient ϕ : E1 −→ A1, we can consider the fiber product E2 = E1 ×A1 A.

Proposition 3. E2 is an embedding of G1/H1 isomorphic to Env(G0/K0).

Proof. The action of G1 on E2 is described by (g, s) · (e, a) = ((g, s)e, sa), and
the isotropy group of (1 · H1, p), where ψ(p) = ϕ(1 · H1), is H1, so E2 is an
embedding of G1/H1.

E2 is simple because it is affine and contains an open dense orbit under
the action of G1, and the only closed G1-orbit is θ ×A1 0, θ being the closed
orbit of E1. It is also normal since, as one can easily check directly, k[E2] =
k[Env(G0/K0)]. Of course, this shows that E2 and Env(G0/K0) are isomorphic
affine varieties, but we want to give a different proof which is more instructive
and uses results from section 1.

We would like to show that the two varieties E2 and Env(G0/K0) share
the same combinatorial data. To find C(E2) ∩ Z+V(G1/H1), we apply the re-
sult of section 1.5. Let (λ, µ) be a one-parameter subgroup in X∗(S1H1) which
is in V(G1/H1). Then limt→0(λ, µ)(t)1 · H1 exists in E2 if and only if the
limits limt→0 πj((λ, µ)(t)1 ·H1) exist in πj(E2), where πj is the projection mor-
phism onto the jth factor. Now limt→0 π1((λ, µ)(t)1 · H1) exists if and only
if (λ, µ) ∈ C(E1) ∩ C ∩ X∗(S1H1) = Z+{(η̃i,−w0(η̃i)), (−(αi)∨, 0)}l

i=1 ∩ C ∩
X∗(S1H1) + Z+{(0, (αi)∨)}l

i=1, and limt→0 π2((λ, µ)(t)1 ·H1) exists if and only
if µ ∈ Z+{η̃1, . . . , η̃l}; the condition ψ(π1((λ, µ)(t)1·H1)) = ϕ(π2((λ, µ)(t)1·H1))
is automatically satisfied since all the morphisms involved are equivariant and
equality holds for t = 1. Therefore,

C(E2) ∩ Z+V(G1/H1) = Z+{(η̃i,−w0(η̃i)), (−(αi)∨, 0)}l
i=1 ∩ C,

which is equal to C(Env(G0/K0)) ∩ Z+V(G1/H1).
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We claim now that the colors of E2 are all those of G1/H1. Let λ1 be a
one-parameter subgroup of 1×S0 such that 〈λ1, αi〉 > 0 ∀i. Then, if q̃ is a point
on the fiber of L∨i over q ∈ Gad/Kad, limt→0 λ1(t)q̃ = limt→0 ηi(λ1(t))q̃ = q,
q being the projection of q̃ on the zero section of L∨i . Therefore, if q̃ is now

a point on the multicone ˜Gad/Kad, then limt→0 λ1(t)q̃ = 0. It follows that if
D ∈ D(G1/H1) and q̃ is a point on D, we can find a one-parameter subgroup
λ1 of 1× S0 such that limt→0 λ1(t)q̃ = θ and λ1(t)q̃ ∈ D ∀t.

ϕ◦λ1 has image in the open orbit S0/N0 of A1, and we have ψ(λ1(t)1 ·N0) =
ϕ(λ1(t)1 ·H1)∀t. (A ∼= Al and 1 ·N0 is just the point (1, . . . , 1)). 〈λ1, αi〉 > 0 ∀i
implies that limt→0 λ1(t)(1, . . . , 1) = (0, . . . , 0), so

lim
t→0

(1, λ1(t))(q̃, (1, . . . , 1)) = θ × {0}.

Moreover, (1, λ1(t))(q̃, (1, . . . , 1)) ∈ D ∀t, so θ×{0} is in the closure of D inside
E2. In conclusion, the colors of E2 are the closures of those of G1/H1.

5 Properties of Env(G0/K0)

The goal of this section is to establish some properties of Env(G0/K0), gener-
alizing those of the enveloping semigroup of a semisimple group.

5.1 Orbit structure of Env(G0/K0)

The orbit structure of Env(G0/K0) under the action of G1 is exactly the same
as the decomposition of Env(G0) under the action of G0 × T0/∆1,−1(Z0) (or
G0 × T0). Let Σ be the Dynkin diagram of the root system R0. For a subset
I ⊆ {1, . . . , l}, ΣI denotes the subdiagram corresponding to the roots αi with
i ∈ I.

Definition 2 (cf. [Vin]). A pair (I, J) of subsets I, J ⊆ {1, . . . , l} is said to be
essential if no connected component of the complement of J is entirely contained
in I.

Proposition 4. There exists a bijection between G1-orbit closures inside the
variety Env(G0/K0) and essential pairs (I, J) of subsets I, J ⊆ {1, . . . , l}.

Proof. For a simple spherical variety, there exists a bijection between orbit clo-
sures and colored faces of its colored cone (see [Knop] for a definition of colored
face); therefore, to retrieve Vinberg’s parametrization in terms of essential pairs,
we simply have to establish a bijection between colored faces of C(Env(G0/K0))
and such pairs exactly as in [Ritt1] §5.3.

5.2 Toric subvarieties

In [Vin], Vinberg considers the closure of the center and of a maximal torus of G
inside a given reductive algebraic monoid with group of units G. On the other
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hand, in [DP2], DeConcini and Procesi use in an essential way the closure of
a maximal anisotropic torus inside the wonderful completion of Gad/Kad. Our
intention now is to relate this second toric variety to the closure of S1H1 inside
Env(G0/K0).

Let S0/N0 be the closure of the embedding of S0/N0 in Gad/Kad given by
the morphism s 7→ s ·H0, s ∈ S0. S0/N0 is the complete toric variety associated
to the fan in X∗(S0/N0)⊗Z Q given by the decomposition into Weyl chambers
([DP2] §5.3); in particular, it is non-singular. In fact, the Weyl chamber spanned
by our choice of fundamental coweights η̃i is just the affine cell S0 = 1 × Al ⊆
B. Furthermore, since S0/N0 contains the affine cell S0, it follows from the
description given in section 4 that S0/N0 intersects every G0-orbit of Gad/Kad.

We follow the same procedure as in section 4. Let F0 be the vector bundle
⊕l

i=1L
∨
i |S0/N0

, and let F1 = Spec Γ(F0,OF0). That F0 is an embedding of S1H1

is clear because the stabilizer of p (see the proof of proposition 1) under the
action of S1 is S1 ∩ H1; since the natural equivariant morphism F0 −→ F1 is
birationnal, F1 is also an S1H1-toric variety.

F0 is a closed subvariety of E0, and the proper morphism ϕ : E0 −→ E1

maps F0 onto F1. In fact, the restriction homomorphism Γ(Gad/Kad, L) −→
Γ(S0/N0, L) is surjective for L as in the next paragraph. Therefore, F2 =
F1 ×A1 A is closed in Env(G0/K0), and it corresponds to the closure of S1H1

inside Env(G0/K0). The next lemma shows that it is a toric variety.

Lemma 5. F2 is a normal variety.

Proof. Fix n1, . . . , nl, and set L = L⊗n1
1 ⊗· · ·⊗L⊗nl

l ; let’s find the decomposition
of Γ(S0/N0, L) under the action of S0K0 × 1. S0/N0 is covered by affine cells
B1, . . . ,Br, Bi corresponding to the ith Weyl chamber inside X∗(S0/N0)⊗Z Q.
(Fix an arbitrary ordering of these chambers so that B1 corresponds to C0, the
positive Weyl chamber.) For each i, let {η1

i , . . . , η
r
i } be the orbit of ηi under the

action of W0, ordered in such a way that ηj
i is in the jth Weyl chamber.

L trivializes over B1, so Γ(B1, L) = ⊕u∈Sχ
u where S is defined as the set {u ∈

X∗(S0K0)|u = w0(
∑l

i=1 niηi − α), α ∈ Z+R0
+
, ni ≥ 0}. This follows from the

fact that there exists a non-vanishing section over B1 of weight −w0(
∑l

i=1 niηi),
and the others are obtained by multiplying it by the functions xj , j = 1, . . . , l.

Let w1, . . . , wr be the elements of W0 such that wi takes C0 to the ith Weyl
chamber. Then

Γ(S0/N0, L) = ∩r
i=1Γ(L,Bi) =

⊕
u∈∩r

i=1wi(S)

k · χu.

∩r
i=1wi(S) consists of the integral points inside a polyhedron in the vector space

X∗(S0K0)⊗Z Q. Set Sn1,...,nl
= ∩r

i=1wi(S). Then

k[F1] =
⊕

n1,...,nl≥0
u∈Sn1,...,nl

k · χu.

16



As an S0K0 × S0K0-module, the decomposition of k[F1] is

k[F1] =
⊕

n1,...,nl≥0
u∈Sn1,...,nl

k · χu ⊗k χ
n1η1+...+nlηl .

Notice that the weight semigroup of F1 contains {(−wjηi,−ηi)}
l,r
i,j=1. Moreover

it contains also (0,−α) for α ∈ ZR0 ∩ C0: if −α =
∑

ki≥0−kiηi; then

r(0,−α) =
r∑

j=1

l∑
i=1

ki(−wj(ηi),−ηi)

is in the weight semigroup of F1. But this semigroup is a saturated subsemigroup
of the lattice X∗(S1H1) since F1 is normal, so it contains (0,−α).

The weight semigroup of k[F2] is generated by

{(−wj(ηi),−ηi), (0,−αi)}l,r
i,j=1.

Indeed, if κ = (κ′, κ′′) belongs to that semigroup, then κ′ ∈ Z+{wj(ηi)}l
i for

some (fixed) j, and κ′′ − w−1
j (κ′) ∈ Z+R0

+
.

Set Ξj
i = (wj(ηi), ηi), so that k[F2] = k[χΞj

i , χ(0,αi)]l,ri,j=1. We claim that the
weight semigroup of F2 is a saturated subsemigroup of X∗(S1H1), which implies
that F2 is normal. Indeed, suppose that (λ, µ) ∈ X∗(S1H1) and r(λ, µ) ∈
Z+{−Ξj

i , (0,−αi)}l,r
i,j=1 for some r ∈ Z+; then rλ = −wjη, rµ = −η − α for

some η ∈ X+(S0K0), α ∈ Z+R0
+
. It follows that η = rη′, λ = −wj(η′), and

rµ = −rη′ − α, so α = r(−µ + λ − λ − η′). µ − λ ∈ ZR0, and −λ − η′ =
wj(η′)− η′ ∈ ZR0, hence α ∈ rR0, α = rα′. We deduce that µ = −η′ − α′, so
(λ, µ) belongs to the weight semigroup of k[F2].

From the theory of toric varieties, we know that to each face τ of the cone of
F2 corresponds a distinguished idempotent element xτ , which is the unique one
in the orbit associated to τ . For an arbitrary toric variety Z, we call a point x
an idempotent if x is an idempotent for one (hence any) affine toric subvariety
of Z containing x.

Proposition 5. Any two idempotents of F2 which are in the same G1-orbit are
conjugate under the action of W0.

Proof. W0 acts on S0/N0, and combinatorially this action is described by the
action of W0 on the Weyl chambers. This action lifts to F0, hence also to F1

and F2. (In the latter case, W0 acts trivially on A and A1.) Furthermore, W0

permutes the idempotents of S0/N0 in the sense that if C1, C2 = w(C1), w ∈ W0,
are two Weyl chambers corresponding to the affine cells AC1 , AC2 inside S0/N0,
and if x ∈ AC1 is an idempotent, then so is ω(x).

F0 is covered by the affine cells AC × Al = F0|AC
and W0 permutes these;

therefore, the idempotents in F0 which are in the same orbit under the action
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of G1 are conjugate under the action of W0. ⊕l
i=1(L

∨
i |S0/N0

\ {zero section}) is
isomorphic to F1 \ {0}, so the same is true about idempotents in F1.

Now suppose (p1, q1), (p2, q2) ∈ F1×A are idempotents in the same G1-orbit.
Then q1 and q2 are in the same S0-orbit, so q1 = q2. From what we know about
F1, it follows that p1 and p2 are conjugate under the action of W0. Therefore,
the same assertion holds for F2.

Proposition 6. Every G1-orbit of Env(G0/K0) meets F2.

Proof. Every G0-orbit of E0 meets F0: this follows from the fact that S0/N0

intersects all the G0-orbit of Gad/Kad. Since the morphism E0 −→ E1 is surjec-
tive and it is compatible with F0 −→ F1 under the immersions F0 −→ E0 and
F1 −→ E1, the same is true for E1 and F1, hence also for E2 and F2.

Remark 2. It is a general result, due to M. Putcha, that in a reductive algebraic
monoid M with unit group G any G × G-orbit contains an idempotent which
can, furthermore, be chosen in the closure of a maximal torus of G and is then
unique up to the action of the Weyl group.

From the two previous propositions, we conclude that we can retrieve the
orbit decomposition of Env(G0/K0) from the orbit structure of F2:

{G1 − orbits in Env(G0/K0)} = {S1 − orbits of F2}/W0.

5.3 Abelianization

In [Vin], Vinberg characterizes the enveloping semigroup in terms of a certain
universal property among a family of reductive monoids. We want to give a
similar characterization of Env(G0/K0) following the same steps. If X is a
G-equivariant affine embedding of a homogeneous space G/L of the reductive
group G, G′ = [G,G], we call the categorical quotient X/G′ the abelianization
of X ; it is a toric variety endowed with an action of the torus G/G′. We will
generalize this definition to arbitrary simple embeddings, and then will study
the properties of the abelianization map in the affine case and determine when
it is a flat integral submersion, i.e. when it is dominant, flat, with reduced and
irreducible fibers. Such an embedding of G/L is simply called flat. We will
consider dominant embeddings of varieties other than G0/H0 and G1/H1; their
classification is similar to the one given in section 1.4, and the reader is refered
to [Vust2] for all the general results.

Let G = G0× T̃0 be a reductive group with Borel subgroup B = B0× T̃0 and
maximal torus T = T0 × T̃0, and let L be a closed subgroup. Let p2 : G −→ T̃0

be the projection onto the second component(similarly for p1). The submersion
% : G/L −→ G0 \ G/L ∼= T̃0/p2(L) induces an injection %∗ : X∗(T̃0/p2(L)) ↪→
Λ+(G/L) and a linear map %∗ : Q(G/L) ⊗Z Q −→ X∗(T̃0/p2(L)) ⊗Z Q where
Q(G/L) = HomZ(Λ(G/L),Z).
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Definition 3. The abelianization Ab(E) of E is the T̃0/p2(L)-toric variety
whose cone in X∗(T̃0/p2(L)) ⊗Z Q is the image of C(E) under %∗, and the
abelianization morphism is the one determined by %∗.

If E is affine, Ab(E) is just the categorical quotient under the action of G0,
i.e. Ab(E) = E/G0. Indeed, %∗ : C(E) −→ C(Ab(E)) induces a homomorphism
%∗ : C(Ab(E))∨ ↪→ C(E)∨ and ρ∗(−C(Ab(E))∨) = −C(E)∨∩(0⊕X∗(T̃0/p2(L))),
which is the weight semigroup of k[E]G0 . Therefore, k[Ab(E)] ∼= k[E]G0 , and
the homomorphism of rings induced by %∗ : C(E) −→ C(Ab(E)) is the inclusion
k[E]G0 ↪→ k[E].

Any symmetric variety arising from an involution of a reductive group with
semisimple part G0 is isomorphic to one coming from a group G0× T̃ , T̃ a torus,
and an involution ς such that ς(G0) = G0 and ς(1, t) = (1, t−1) ∀t ∈ T̃ . We call
such a symmetric variety unmixed.

Let E ′ be the set of unmixed symmetric varieties whose semisimple part is
G0/K0 and which come from an involution of a reductive algebraic group with
semisimple part equal to G0. The semisimple part of G0 × T̃0/L,G

ς
0 × T̃0,2 ⊂

L ⊂ NG0×eT0
(Gς

0 × T̃0,2), is G0/L0, L0 = L ∩ (G0 × 1). Let E be the set of flat
embeddings of symmetric varieties isomorphic to elements of E ′.

Theorem 3 (cf. [Vin] prop.5)). For any E ∈ E which is an embedding of
the symmetric variety G/L, and if m = n (§1.2), any isomorphism ϕ0 of the
semisimple part of G/L with G0/K0 can be extended to an equivariant morphism
ϕ : E −→ Env(G0/K0) which is excellent with respect to the abelianization
maps.

(Excellent means that the canonical morphism E −→ Env(X0)×A Ab(E) is
an isomorphism, A = Ab(Env(X0)).)

The proof of this proposition will occupy the rest of this subsection. First, we
have to find a criterion in terms of colored cones which characterizes flat, simple
embeddings. E will denote an embedding of an unmixed symmetric variety
G/L ∈ E ′ for G = G0 × T̃0 arising from an involution ς, K = Gς = K0 × T̃0,2,
and S = S0 × T̃0 will be a maximal anisotropic torus of G inside the ς-stable
maximal torus T = T0× T̃0, so that C(E) ⊆ X∗(SL). Let L1 be the finite group
L ∩ S/K ∩ S, so that SL

∼= (S0K0 × T̃0/T̃0,2)/L1 and X∗(SL) ∼= (X∗(S0K0) ⊕
X∗(T̃0/T̃0,2))L1 .

As suggested by Vinberg, we define a preorder on −C(E)∨ ∩ X+(SL) by
ν1 ≥ ν2 if ν1− ν2 ∈ (0⊕X∗(T̃0/p2(L)))∩ (C(E)∨). (We cannot obtain a partial
order because, unlike in the case of toric varieties, it does not seem possible in
general to reduce to the case when C(E)∨ ∩ (X∗(T̃0/p2(L)) ⊗Z Q) contains no
linear subspaces.) Let M be the set of minimal elements, ν1 being minimal if
ν2 ≤ ν1 =⇒ ν1 ≤ ν2.

Proposition 7. Ab : E −→ Ab(E) is flat and its fibers are reduced and ir-
reducible if and only if there exists a homomorphism h∗ : X∗(T̃0/T̃0,2) −→
X∗(S0 × 1L) and a cone ∆ ⊆ X∗(T̃0) ⊗Z Q such that C(E) is of the form
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{(λ1, λ2) ∈ X∗(SL)|λ1 + h∗(λ2) ∈ span of F(E), λ2 ∈ ∆}, and h∗ satisfies
χh∗(ν)(p2(x)) = χ−ν(p1(x)) ∀x ∈ L ∩ S,∀ν ∈ X∗(S0 × 1L).

Corollary 1. The abelianization morphism of Env(X0) is a flat integral sub-
mersion.

Proof. In this case, ∆ is the cone generated by −w0(η̃i), i = 1, . . . , l and h∗ :
X∗(S0K0) −→ X∗(S0K0) is w0.

The previous proposition is a consequence of the next three results.

Lemma 6. The following statements are equivalent:

1. Ab : E −→ Ab(E) is flat.

2. k[E] ∼= k[Ab(E)] ⊗k k[G/L]M1 , where k[G/L]M1 = ⊕µ∈M1k[G/L]µ and
M1 is a set of representatives of the cosets in M of the group (−C(E)∨)∩
C(E)∨ ∩X∗(T̃0/p2(L)).

Proof. 2) =⇒ 1)is clear, so let us turn to the other implication. The essential
point here is that the k[Ab(E)]-submodule k[E]U2 of k[E] admits a complement
which is also a k[Ab(E)]-module. The rest of the proof is as in [Vin]; it consists
of showing that if ν1, ν2 ∈M, χ1, χ2 ∈ (−C(E)∨)∩X∗(T̃0/p2(L)) and ν1 +χ1 =
ν2 + χ2, then ν1 ≥ ν2 and ν2 ≥ ν1.

Lemma 7. The fibers of Ab : E −→ Ab(E) are reduced and irreducible if and
only if M is a subsemigroup of (−C(E)∨) ∩X+(SL).

Proof. Let e be the distinguished idempotent in the unique closed orbit in
Ab(E). It is sufficient to determine when the fiber Ab−1(e) is reduced and
irreducible, and for this we can argue as in [Vin] §4.

We will need also the following lemma whose proof is similar to the one of
proposition 12 in [Ritt2].

Lemma 8. Let G/L be a symmetric variety. Let τ be a polyhedral cone con-
tained in Q+V(G/L) such that τ +Q+ρ(D(G/L)) is strictly convex. Then there
exists a unique subset F̃ ⊂ ρ(D(G/L)) and a set of colors F ⊂ D(G/L) such
that F̃ = ρ(F) and the colored cone (τ + Q+F̃ ,F) corresponds to an affine
embedding of G/L.

Proof of proposition 7. Let us translate the results above into the language of
colored cones. We assume first that E is flat. Then we get a group epimor-
phism M−M −→ X∗(S0 × 1L) (it is surjective since the dominant morphism
G/L −→ E is an embedding), so we can find a homomorphism X∗(S0 × 1L) −→
M−M which is a right inverse. This inverse is of the form ν −→ (ν, h∗(ν)),
where h∗ is a group homomorphism X∗(S0 × 1L) −→ X∗(T̃0/T̃0,2), and ν ∈
X+(S0 × 1L) =⇒ h∗(ν) ∈ M; since (ν, h∗(ν)) ∈ X∗(SL), χh∗(ν)(p2(x)) and
χ−ν(p1(x)) are equal for all x ∈ L∩S. Setting ∆∨ = −C(E)∨ ∩ (X∗(T̃0)⊗Z Q),
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we conclude that −(C(E) + ρ(D(G/L)))∨ = {(ν, µ) ∈ X∗(SL)|µ − h∗(ν) ∈
−∆∨, ν ∈ X+(S0 × 1L)}.

Consider the Q+-cone τ = {(−h∗(η̃), η̃)|η̃ ∈ ∆} in Q+V(G/L), ∆ be-
ing the dual of ∆∨ in X∗(T̃0/T̃0,2). Then (C(E) + Q+ρ(D(G/L)))∨ = (τ +
Q+ρ(D(G/L)))∨, hence C(E) + Q+ρ(D(G/L)) = τ + Q+ρ(D(G/L)). C(E) +
Q+ρ(D(G/L)) is strictly convex since its dual is the highest weight semigroup
of E, which generates X∗(SL) as a group. According to lemma 8, there ex-
ists F ⊆ D(G/L) such that (τ + Q+ρ(F),F) is the colored cone of an affine
embedding Ẽ of G/L. The Q+-span of the highest weight semigroup of Ẽ is
−(τ + Q+ρ(D(G/L)))∨, so Ẽ ∼= E and F = F(E).

Conversely, if C(E) is of the form given in proposition 7, then the second of
the two equivalent statements in each of lemma 6 and 7 holds.

We are now in a position to prove theorem 3.

Proof. Let E ∈ E . The notation related to E is borrowed from the proof of
proposition 7. We can assume that ϕ0 is the identity. The homomorphism
h∗ can be extended to a homomorphism h̃∗ : X∗(SL) −→ X∗(S1H1): indeed,
by our assumption on h∗ and the fact that χν |N0 = χw0(ν)|N0 , the composite
of id × (h∗ ◦ w0) with the homomorphism X∗(S1H1) −→ X∗(S1K1) maps to
X∗(SL), and we let h̃∗ be its adjoint.

We claim that h̃∗(C(E)) ⊆ C(Env(G0/K0)). Combined with the fact that
h̃∗(F(E)) ⊆ F(Env(G0/K0)), this shows that E admits a morphism to the va-
riety Env(G0/K0) (see [Knop]); that this morphism is excellent can be deduced
as in [Vin]. From the proof of lemma 11, we know that V 2

ηi
contains V2ηi−αi

as
an irreducible component. Therefore, (2ηi, h

∗(2ηi)) and (2ηi−αi, h
∗(2ηi)) both

belong to the highest weight semigroup of k[E]. It follows that h̃∗(αi) ∈ −∆∨.
If η̃ ∈ ∆, then 〈η̃,−h∗(αi)〉 ≥ 0 =⇒ 〈−h∗(η̃), αi〉 ≥ 0, so −h∗(η̃) ∈

X+(S0K0). As a consequence, we conclude that h̃∗(−h∗(η̃), η̃), which equals
(−h∗(η̃), w0(h∗(η̃))), is in the Z+-span of {(η̃i,−w0(η̃i))}l

i=1; this proves our
claim.

6 Construction of Gad/Kad from Env(G0/K0)

The wonderful completion of Gad/Kad can be realized as a geometric quotient
of an open subvariety of Env(G0/K0) when m = n (§1.2), which we will assume
throughout this section; in the case whenG0/K0 is a semisimple algebraic group,
this was done by Vinberg ([Vin]) and our approach his similar to his.

The S0/N0-orbits of A (∼= Al) are parametrized by subsets of {1, . . . , l} in
the obvious way. We denote by SI the orbit corresponding to I ⊆ {1, . . . , l}.
More precisely, S{1,...,̂,...,l} has codimension one, and SI is the open orbit in
∩j 6∈IS{1,...,̂,...,l}. For I ⊆ {1, . . . , l}, let OI be the unique G1-orbit in Ab−1(SI)
which is open in Ab−1(SI).
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Theorem 4. Let Σ be the open G1-stable subvariety ∪IOI of Env(G0/K0).
Then there exists a geometric quotient Σ/1 × S0, and it is isomorphic to the
wonderful completion of Gad/Kad.

Lemma 9. Σ is simple.

Proof. If I 6= φ, consider SI ⊂ SI ⊂ A and Ab−1(SI). (⊂ denotes a strict
inclusion.) OI is open in Ab−1(SI), and OI = Ab−1(SI) ⊃ OI . Choose k ∈ I;
then SI\{k} ⊆ SI , so OI\{k} ⊆ OI ∩ Σ, whence OI\{k} is in the closure of OI

inside Σ. Therefore, Oφ is the only closed orbit in Σ.

Lemma 10. Σ has no colors.

Proof. Oφ = Ab−1(0) and the ideal of functions vanishing on this fiber is⊕
ν∈Λ+(G1/H1)\M

k[Env(G0/K0)]ν .

M is the subsemigroup of Λ+(G1/H1) generated by {(ηi, w0(ηi))}l
i=1. In par-

ticular, since (ηi, w0(ηi)) ∈ M, f1
i 6≡ 0 on Oφ, where f1

i is a (fixed) choice of a
highest weight vector in k[Env(G0/K0)](ηi,w0(ηi))

with respect to B1. However,
we claim that each f1

i is identically zero on (at least) one color of G1/H1, which
will complete the proof.

Let π : G0 −→ G0/K0 be the quotient morphism, and let D̃i be a color
of G0/K0. According to lemma 3.4 in [Vust2], if we let f̃i be a generator
of the ideal of π−1(D̃i) in k[G0] (G0 is simply connected, so its divisor class
group is trivial), 1 ≤ i ≤ q, q being the cardinality of D(G0/K0), then we
can divide these f̃i in such a way that, up to reordering, f̃i ∈ k[G0/K0] for
1 ≤ i ≤ q−2r(K0) (r(K0) being the rank of the character group of K0), and for
each q− 2r(K0) < i ≤ q− r(K0), f̃i is an eigenvector under right multiplication
by K0, and there exists f̃i+r(K0) such that f̃if̃i+r(K0) is invariant under K0;
furthermore, we can take f1

i to be f̃i if 1 ≤ i ≤ q− 2r(K0) and to be f̃if̃i+r(K0)

if q − 2r(K0) < i ≤ q − r(K0).
f1

i = f̃i ⊗k χ
−w0(ηi) is a regular function on G0/K0 × S0K0 and it vanishes

on the divisor Di = D̃i ×S0K0 . Furthermore, f1
i descends to a regular function

on G1/H1, and its divisor of zeros contains a color of G1/H1.

Consider the B1-stable affine subvariety BΣ = Σ \ ∪D∈D(G1/H1)D [Knop].
Let Ωi = k[G1/H1]∗(ηi,w0(ηi))

, Ω = ⊕l
i=1Ωi. For each i, choose a basis f1

i , . . . , f
ni
i

of the irreducible G1-module k[G1/H1](ηi,w0(ηi))
consisting of eigenvectors of T1

with f1
i as above. Let {f j,∗

i }ni
j=1 be the dual basis. We consider the equivariant

morphism ψ : Env(G0/K0) −→ Ω given by ψ(x) =
∑

i,j f
j
i (x)f j,∗

i for x ∈
Env(G0/K0). Set Ω′i = Ωi \ {0},Ω′ = ⊕l

i=1Ω
′
i, and Ω′′i = {

∑ni

j=1 a
j
if

j,∗
i ∈

Ωi|a1
i 6= 0} = {v ∈ Ωi|f1

i (v) 6= 0},Ω′′ = ⊕l
i=1Ω

′′
i .

Lemma 11. ψ|BΣ is a closed immersion into Ω′′.
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Proof. The complement of BΣ in Env(G0/K0) consists of the closures inside
Env(G0/K0) of the colors of G1/H1 because BΣ meets every G1-stable prime
divisor. Therefore k[BΣ] = k[Env(G0/K0)][(f1

1 )−1, . . . , (f1
l )−1]. We only have

to verify that the characters χ−w0(αi) of S0 are in the algebra generated by the
f j

i and the (f1
i )−1.

Let Vη be the irreducible representation of G0 with highest weight η. Under
our assumptions, ηi = (ωi − σ(ωi)), and σ(ωi) = −ωk for some k. (We assume
here that i and k are fixed, i, k ≤ m, and we do not exclude the case i = k.) The
square of Vηi

contains the irreducible representation V2ηi−αi
: this can be proved

after reducing to a similar problem for a reductive group of rank ≤ 2, namely the
reductive subgroup of G corresponding to the roots in Z{αi, αk}. It follows that
k[G0/K0](2ηi−αi) is a submodule of the product k[G0/K0]ηi

k[G0/K0]ηi
. Note

that 2ηi−αi is a dominant weight, so we can write 2ηi−αi =
∑l

j=1 cjηj . There-
fore the highest weight vector (f1

1 )c1 · · · (f1
l )clχ−w0(αi) of V2ηi−αi ⊗k χ

−2w0(ηi)

is contained in the subalgebra of k[G1/H1] which is generated by the functions
in k[G1/H1](ηi,w0(ηi))

.

We are now able to prove the following proposition.

Proposition 8. ψ|Σ is a closed immersion into Ω′.

Proof. Since ψ is equivariant, it maps Σ isomorphically onto a closed subvariety
of G1 · Ω′′. Let’s prove that G1 · Ω′′ = Ω′. Fix i, and let ξ ∈ Ω′i. Since f1

i

is a highest weight vector, the span of the vectors in its G1-orbit is Ω∗i , so
∃g ∈ G1 such that (g · f1

i )(ξ) 6= 0. Thus f1
i (g−1ξ) 6= 0 and ξ ∈ gΩ′′i . Now if

(ξ1, . . . , ξl) ∈ Ω′, we can pick a g ∈ G1 such that (ξ1, . . . , ξl) ∈ gΩ′′.

Finally, we can prove the main result of this section.

Proof of theorem 4. ψ(sx) =
∑l

i=1(w0(ηi)(s)
∑

j f
j
i (x)(f j

i )∗) where s ∈ 1× S0,
x ∈ Σ; this means that via ψ the action of 1 × S0 on Σ becomes simply the
restriction of the linear action on Ω′ given by multiplication by w0(ηi)(s) on
the ith-direct summand, and a geometric quotient for this action is P(Ω1) ×
· · · ×P(Ωl). Hence Σ/1×S0 is a projective variety. Moreover, G1/H1/1×S0 =
G0/N0K0 = Gad/Kad since H0 = N0K0 ([Rich]).

To see that Σ/1 × S0 is the wonderful completion of Gad/Kad, notice that
only one orbit is closed because Σ is simple (lemma 9), and Σ/1 × S0 has no
colors since the same is true for Σ (lemma 10) and 1× S0 ⊆ B1.
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