Embeddings of Symmetric Varieties Nicolas Guay

Abstract

We generalize to the case of a symmetric variety the construction of the enveloping semigroup of a semisimple algebraic group due to E.B. Vinberg, and we establish a connection with the wonderful completion of the associated adjoint symmetric variety due to C. De Concini and C. Procesi.

Introduction

In [Vin], Vinberg classifies linear algebraic semigroups in characteristic zero which are equivariant, dominant, normal, affine embeddings of reductive algebraic groups, and studies some of their properties. Furthermore, to a semisimple algebraic group G_0 , he associates an affine algebraic monoid with certain nice properties, the enveloping semigroup $Env(G_0)$ and shows how the wonderful completion of the adjoint group of G_0 can be obtained from $Env(G_0)$.

We generalize this construction to the case of a symmetric variety of a semisimple algebraic group. We adopt the following definition: a homogeneous space G/H of the reductive group G is called symmetric if there exists an involution τ of G such that $G^{\tau} \subseteq H \subseteq N_G(G^{\tau}), G^{\tau}$ being the subgroup of fixed points. Every symmetric variety is isomorphic to one arising from a simply connected group ([Vust2]). A classification of equivariant normal embeddings of symmetric spaces can be found in [Vust2], and those which are affine can be identified using the affinity criterion for spherical varieties given in [Knop]. Let G_0 be a semisimple simply connected algebraic group of rank n over an algebraically closed field k of characteristic zero. Fix a non-trivial involution σ of G_0 with fixed-point subgroup K_0 , whose normalizer in G_0 is written H_0 . If Y is an affine G-variety, G a reductive algebraic group, $\Lambda(Y)$ will denote the group formed by the *B*-weights of the elements of the set $k(Y)^{(B)}$ of semi-invariants for the action of B, B a Borel subgroup of G. Let $G_1 = G_0 \times S_0$, with S_0 a maximal anisotropic torus of G_0 , and $H_1 = \Delta^{1,-1}(N_0)(K_0 \times S_0^{\sigma}), \Delta^{1,-1}(N_0) = \{(s,s^{-1}) | s \in N_0\}, N_0 = N_{S_0}(K_0)$. We define $\operatorname{Env}(G_0/K_0)$ to be the affine variety over k which is the spectrum of the ring $\bigoplus_{\nu \in \mathcal{L}} k[G_1/H_1]_{\nu}$, where $k[G_1/H_1]_{\nu}$ is the isotypic component of $k[G_1/H_1]$ corresponding to the integral dominant weight ν , and \mathcal{L} is the \mathbb{Q}^+ -cone in $(\Lambda(G_0/K_0) \oplus X^*(S_{0K_0}))^{\Delta^{1,-1}(N_0)} \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\{(\overline{\eta}_i, w_0\overline{\eta}_i), (0, -\overline{\alpha_i})\}_{i=1}^l$ S_{0K_0} being the group $S_0/S_0 \cap K_0$. Here, the $\overline{\alpha_i}$ are the simple roots of a root system in $X^*(S_0) \otimes_{\mathbb{Z}} \mathbb{Q}$, the $\overline{\eta}_i$ are the corresponding fundamental weights, and w_0 is the longuest element of its Weyl group. (See section 1.2 for more information on the restricted root system.) Note that since G_1/H_1 is G_1 -spherical, $k[G_1/H_1]$ is multiplicity free, so $k[G_1/H_1]_{\nu}$ is actually irreducible.

After some preliminary notions concerning symmetric varieties, the first section is devoted to the theory of spherical varieties developed by Brion, Luna and Vust ([BLV],[LuVu]); a concise exposition can be found in [Knop], but the main reference for us is [Vust2]. The language of colored cones developed there will be used throughout. Afterwards, we recall some properties of the wonderful compactification $\overline{G_{ad}/K_{ad}}$, constructed by De Concini and Procesi in [DP1], of the symmetric variety G_{ad}/K_{ad} of the adjoint group G_{ad} , and in section 3 we elaborate on the definition of $\text{Env}(G_0/K_0)$.

Section 4 is devoted to establishing a connection between $\operatorname{Env}(G_0/K_0)$ and $\overline{G_{ad}/K_{ad}}$ (cf. propositions 1,2,3): $\operatorname{Env}(G_0/K_0)$ is a fiber product, over an affine toric variety, of affine space with the normalization of a multicone over $\overline{G_{ad}/K_{ad}}$. The next one concerns properties of $\operatorname{Env}(G_0/K_0)$: we study its orbit decomposition (propositions 4,6), certain toric sub-varieties, and prove in section 5.3 that it enjoys a universal property (theorem 3) like Vinberg's enveloping semigroup. In the last section, we show how to construct $\overline{G_{ad}/K_{ad}}$ as a geometric quotient of an open subvariety Σ of $\operatorname{Env}(G_0/K_0)$; our approach is similar to Vinberg's, with one noticeable difference: we take the B_1 -stable cell \mathcal{B}_{Σ} in Σ (B_1 a Borel subgroup of G_1) to be the canonical affine B_1 -stable subset introduced in [Knop].

Remark 1. All embeddings of homogeneous varieties will be assumed normal or will be shown to be so, unless otherwise specified. All varieties will be defined over the algebraically closed field k of characteristic zero.

Acknowledgements The author gratefully acknowledges the financial support of the Fonds FCAR and thanks the referees and V. Ginzburg for their comments.

1 Preliminaries

1.1 Notation

Let's introduce the rest of the notation that we will need. If L, M < G, G any group, $L \cap M \triangleleft L$, then $L_M = L/L \cap M$. Z_0 is the center of G_0 , the adjoint group of which is $G_{ad} = G_0/Z_0$; note that σ descends to G_{ad} , so we can define similarly K_{ad} (= $(G_{ad})^{\sigma}$) and the symmetric variety G_{ad}/K_{ad} ($\cong G_0/H_0$). We fix a maximal σ -stable torus T_0 of G_0 containing S_0 . R_0 is the root system of G_0 with respect to T_0 , and $\alpha_1, \ldots, \alpha_n$ are a choice of simple roots, the α_i with i > m being exactly the simple roots which vanish on \mathfrak{s}_0 (=Lie(S_0)), i.e. those which are fixed by σ . (See the next subsection for more concerning our choice of basis of R_0 .) $T_0/T_0^{\sigma} \cong S_{0K_0}$, and the multiplication morphism $T_0^{\sigma} \times S_0 \longrightarrow T_0$ is an isogeny. $N_0 = N_{S_0}(K_0)$, and by lemma 1.7 in [DP1], N_0 is the subset of elements $s \in S_0$ such that $s^2 \in Z_0$, so N_0 is a finite group.

We will need to extend these notions to G_1 . H_1 was defined in the introduction and it is equal to $\{(ks, s^{-1}) \in G_1 | k \in K_0, s \in N_0\}$. σ gives rise to an involution of G_1 with $G_1^{\sigma} = K_1 = K_0 \times S_0^{\sigma}$. Let $T_1 = T_0 \times S_0$, $S_1 = S_0 \times S_0$. Furthermore, if $G_0 = \widetilde{G}_0 \times \widetilde{G}_0$ (\widetilde{G}_0 being any reductive algebraic group over k) and σ is the transposition $(x, y) \longrightarrow (y, x)$, then $K_0 = \Delta \widetilde{G}_0$, $G_0/K_0 \cong \widetilde{G}_0$, $S_0 = \Delta^{1,-1}(\widetilde{T}_0) = \{(t, t^{-1}) | t \in \widetilde{T}_0\}$, $T_0 = \widetilde{T}_0 \times \widetilde{T}_0$, $N_{G_0}(K_0) = (\widetilde{Z}_0 \times \widetilde{Z}_0) \Delta \widetilde{G}_0$, $N_0 = \{(s, s^{-1}) \in S_0 | s^2 \in \widetilde{Z}_0\}, S_0 \cap K_0 = \{(s, s^{-1}) \in S_0 | s^2 = 1\}.$ We claim that, in this case, $G_1/H_1 \cong \widetilde{G}_0 \times \widetilde{T}_0/\Delta^{1-1}(\widetilde{Z}_0)$. Consider the morphism $\varphi : \widetilde{G}_0 \times \widetilde{G}_0 \times \Delta^{1,-1}(\widetilde{T}_0)/M_0 \longrightarrow \widetilde{G}_0 \times \widetilde{T}_0/\Delta^{1,-1}(\widetilde{Z}_0)$, where $M_0 = \Delta^{1,-1}(N_0)(\Delta(\widetilde{G}_0) \times (\Delta^{1,-1}(\widetilde{T}_0) \cap \Delta(\widetilde{G}_0)))$, defined by $\varphi((g_1, g_2, t, t^{-1})M_0) = (g_1g_2^{-1}, t^2)\Delta^{1,-1}(\widetilde{Z}_0)$. φ is a bijective quotient morphism, hence an isomorphism.

1.2 Restricted roots and weights

For an arbitrary algebraic group G, let $X_*(G)$ be the set of its one parameter subgroups and $X^*(G)$ be its set of characters. According to [Vust1], $\exists \tilde{\lambda} \in X_*(S_0)$ such that $P_0(\tilde{\lambda})$ is a parabolic subgroup of G_0 with an open dense orbit in G_0/K_0 . Here $P_0(\tilde{\lambda})$ is defined as the parabolic subgroup of G_0 containing T_0 and corresponding to the roots $\{\alpha \in R_0 | \langle \tilde{\lambda}, \alpha \rangle \geq 0\}$. Set $P_0 = P_0(\tilde{\lambda})$; then $Z_{G_0}(S_0) = Z_{G_0}(\tilde{\lambda}) = P_0 \cap \sigma(P_0)$. Moreover, $\exists \tilde{\mu} \in X_*(T_0)$ such that $B_0 = P_0(\tilde{\mu})$ is a Borel subgroup of G_0 contained in P_0 and $B_0K_0 = P_0K_0$ is open in G_0 (similarly for K_0 replaced by H_0). We can assume that B_0 corresponds to our previous choice of simple roots $\alpha_1, \ldots, \alpha_n$. We will need the following lemma in order to be able to use our choice of B_0 (actually, B_0^-) in section 2.

Lemma 1. Our choice of root system satisfies the condition in lemma 1.2 of [DP1], that is, if α is a positive root which is not identically zero on \mathfrak{s}_0 , then $\sigma(\alpha)$ is a negative root.

Proof. If α is a positive root in $\{\alpha \in R_0 | \langle \lambda, \alpha \rangle > 0\}$, then $\sigma(\alpha)$ is negative because $\sigma(\tilde{\lambda}) = -\tilde{\lambda}$ ([Vust1], prop. 4) and $B_0 \subseteq P_0$. Therefore, it is enough to notice that $\{\alpha \in R_0 | \langle \lambda, \alpha \rangle > 0\}$ is $\{\alpha \in R_0^+ | \alpha \neq 0 \text{ on } \mathfrak{s}_0\}$. Indeed, if $\langle \lambda, \alpha \rangle = 0, \alpha \in R_0^+$, then $U_\alpha \subseteq Z_{G_0}(\lambda) = Z_{G_0}(S_0)$, hence $\alpha \equiv 0 \text{ on } \mathfrak{s}_0$. \Box

Set $\overline{R_0} = \{\overline{\alpha} = \alpha - \sigma(\alpha) | \alpha \in R_0\}$. Lemma 2.3 in [Vust2] says that $\overline{R_0}$ is a root system in $X^*(S_{0H_0}) \otimes_{\mathbb{Z}} \mathbb{Q}$, which is a \mathbb{Q} -vector space of dimension l, l being the rank of S_0 , which is also the rank of the symmetric variety G_0/K_0 . We can order the simple roots of R_0 in such a way that $\alpha_{m+1}, \ldots, \alpha_n$ are exactly those fixed by σ , and $\{\overline{\alpha_1}, \ldots, \overline{\alpha_l}\}$ is a set of simple roots for $\overline{R_0}$ $(l < m \leq n)$; furthermore, if i > l and $\sigma(\alpha_i) \neq \alpha_i$, there is an $s \leq l$ such that $\overline{\alpha_i} = \overline{\alpha_s}$. $\overline{\alpha_1}^{\vee}, \ldots, \overline{\alpha_l}^{\vee}$ are the simple dual coroots. The character group of S_{0K_0} is $\{\overline{\chi} = \chi - \sigma(\chi) | \chi \in X^*(T_0)\}$. We denote by $\overline{\eta}_i, i = 1, \ldots, l$, the fundamental weights of the root system $\overline{R_0}$; by lemma 3.1 in [Vust2], the weight lattice of $\overline{R_0}$ is $X^*(S_{0K_0})$ and the root lattice is $X^*(S_{0H_0})$.

We will need to know later how the weights $\overline{\eta}_i$ are related to the fundamental weights of R_0 . We can partition these into two sets

$$\{\omega_1,\ldots,\omega_m\},\{\zeta_1,\ldots,\zeta_k\},m+k=n$$

as in [DP1] §1.3, that is, such that $\langle \omega_i, \alpha_j^{\vee} \rangle = 0$ if $j > m, \langle \omega_i, \alpha_j^{\vee} \rangle = \delta_{ij}$ if $j \le m, \langle \zeta_i, \alpha_j^{\vee} \rangle = \delta_{(i+m)j}$ if $j > m, \langle \zeta_i, \alpha_j^{\vee} \rangle = 0$ if $j \le m$. It is proved in [DP1] that if $i \le m$ then $\sigma(\alpha_i) = -\alpha_j - \sum_{r > m} n_{ri}\alpha_r$ where the n_{ri} are non-negative

integers, $j \leq m$, and $\sigma(\omega_i) = -\omega_j$. In the same article, the authors argue that, for $i \leq m$, $\overline{\eta}_i = c\omega_i$ or $\overline{\eta}_i = c(\omega_i + \omega_j)$, where c = 1 or 2. We can be a little more precise. According to [Vust2], there are three possible cases for a simple root, although only the first two are of interest to us: $(i \leq l \leq m)$

- 1. $\sigma(\alpha_i) = -\alpha_i$, so $\sigma(\omega_i) = -\omega_i$, $\langle (\overline{\alpha_i})^{\vee}, \overline{\omega_i} \rangle = \frac{1}{2} \langle \alpha_i^{\vee}, \overline{\omega_i} \rangle = \langle \alpha_i^{\vee}, \omega_i \rangle = 1$ and $\langle (\overline{\alpha_j})^{\vee}, \overline{\omega_i} \rangle = 0$ if $j \neq i$. Hence $\overline{\eta}_i = 2\omega_i$.
- 2. $\langle \alpha_i^{\vee}, \sigma(\alpha_i) \rangle = 0$; then $\langle (\overline{\alpha_i})^{\vee}, \omega_i + \omega_j \rangle = \langle \alpha_i^{\vee}, \omega_i + \omega_j \rangle = 1$ or 2, $\langle (\overline{\alpha_t})^{\vee}, \omega_i + \omega_j \rangle = \langle \alpha_t^{\vee}, \omega_i + \omega_j \rangle = 0$ if $t \neq i, j$. It follows that $\overline{\eta}_i$ is either $\omega_i + \omega_j$ if $j \neq i$, or ω_i .
- 3. $\langle \alpha_i^{\vee}, \sigma(\alpha_i) \rangle = 1$. If this happens, then $\overline{R_0}$ is not reduced and any simple root $\overline{\alpha_i}$ of $\overline{R_0}$ comes from a root of the first two types.

 $\mathcal{W}_0(\overline{\mathcal{W}_0})$ denotes the Weyl group of $R_0(\overline{R_0})$, and w_0 is the longuest element of \mathcal{W}_0 . $\overline{\mathcal{W}_0}$ is isomorphic to $N_{K_0}(S_0)/Z_{K_0}(S_0)$ [Rich], and this is isomorphic to $N_{H_0}(S_0)/Z_{H_0}(S_0)$ because ([Vust2]) $H_0 = (S_0 \cap H_0)K_0 \implies N_{H_0}(S_0) =$ $(S_0 \cap H_0)N_{K_0}(S_0), Z_{H_0}(S_0) = (S_0 \cap H_0)Z_{K_0}(S_0).$

1.3 Regular functions on G_1/H_1

 $k[G_0] = \bigoplus_{\lambda} V_{\lambda} \otimes_k V_{\lambda}^*$, where λ runs over all the dominant integral weights of B_0 and V_{λ} is the irreducible representation of G_0 of highest weight λ with respect to B_0 . To obtain $k[G_0/K_0] = k[G_0]^{K_0}$, we have to take the sum over those λ such that V_{λ}^* contains a K_0 -fixed non-zero vector, which is unique up to a scalar because B_0K_0 is dense in G_0 . If this is the case, then $V_{\lambda} \cong V_{\lambda}^{*,\sigma}$ ([DP1] lemma 1.6), so V_{λ} contains also a K_0 -fixed non-zero vector, and vice-versa. (By $V_{\lambda}^{*,\sigma}$, we mean the G_0 -module V_{λ}^* with the action twisted by σ .) Therefore,

$$k[G_0/K_0] \cong \bigoplus_{V_{\lambda}^{K_0}=1} V_{\lambda}.$$

Suppose that dim $V_{\lambda}^{K_0} = 1$ and let $v \in V_{\lambda}^{K_0}$. We claim that N_0 acts on the line spanned by v by the character λ . Indeed, it follows from the analysis done in section 1.7 of [DP1] that $v \otimes v = v_{\lambda} \otimes v_{\lambda} + \sum_{i=1}^{m} u_i \otimes v_i$, where v_{λ} is a highest weight vector of V_{λ} and $u_i \otimes v_i$ is a weight vector of smaller weight. This implies that $v = v_{\lambda} + \sum \tilde{v}_i$, \tilde{v}_i being a weight vector of weight $\lambda - \sum_j a_i^j \alpha_j$, say. Let $s \in N_0$; then sv is a multiple of v, and $sv = \chi^{\lambda}(s)v + \sum_{i=1}^{m} \chi^{\lambda}(s) \prod_j \chi^{-a_i^j \alpha_j}(s)\tilde{v}_i = \chi^{\lambda}(s)(v_{\lambda} + \sum_{i=1}^{m} \prod_j \chi^{-a_i^j \alpha_j}(s)\tilde{v}_i)$; therefore $\prod_j \chi^{-a_i^j \alpha_j}(s) = 1 \quad \forall i. \quad (\chi^{\lambda} \text{ is the multiplicative character corresponding to <math>\lambda$.)

The isotypic component $k[G_0/K_0]_{\lambda}$ of $k[G_0/K_0]$ under left multiplication by G_0 is spanned by the functions $f \otimes_k f_{\lambda}^*$, where $f_{\lambda}^* \in V_{\lambda}^{*,K_0}$. The argument above shows that N_0 acts by right multiplication by the character $-w_0(\lambda)$ on $k[G_0/K_0]_{\lambda}$. If $k[G_0/K_0]_{\lambda} \otimes_k \chi^{\mu}$ is an irreducible component of $k[G_0/K_0 \times S_{0K_0}]$, then $\Delta^{1,-1}(N_0)$ acts on it (by multiplication on the right) by the character $-w_0(\lambda) - \mu$. Therefore,

$$k[G_1/H_1] = \bigoplus_{-w_0(\lambda) - \mu \in \mathbb{Z}\{\overline{\alpha_1}, \dots, \overline{\alpha_l}\}} k[G_0/K_0]_\lambda \otimes_k \chi^\mu$$
$$k[G_1/H_1]_{(\lambda, -\mu)} = k[G_0/K_0]_\lambda \otimes_k \chi^\mu.$$

(Note that S_0 -acts on the function χ^{μ} by the character $-\mu$ under the action given by $(s_1\chi^{\mu})(s_2) = \chi^{\mu}(s_1^{-1}s_2)$; this explains the minus sign.) By $(\Lambda(G_0/K_0) \oplus X^*(S_{0K_0}))^{\Delta^{1,-1}(N_0)}$, we mean the B_1 -weights of the rational functions on $G_0/K_0 \times S_{0K_0}$ which are also rational functions on G_1/H_1 , so they are all the weights (λ, μ) of $k[G_0/K_0] \otimes_k k[S_{0K_0}]$ such that $\mu - w_0(\lambda) \in \mathbb{Z}\{\overline{\alpha_1}, \ldots, \overline{\alpha_l}\}$. Note that $\Lambda(G_0/K_0)$ is a subgroup of $X^*(T_0)$ stable under $-w_0$, and $\chi^{-\lambda}|_{N_0} = \chi^{-w_0(\lambda)}|_{N_0}$, i.e. $\lambda - w_0(\lambda) \in \mathbb{Z}\overline{R_0}$.

Finally, if for any affine G-variety Y - G a reductive group - we denote by $\Lambda_+(Y)$ the set of highest weights of the G-module k[Y], then restriction of weights from T_0 to S_0 establishes an isomorphism between $\Lambda_+(G_0/K_0)$ and $X^+(S_{0K_0})$ ([Vust2]).

1.4 Classification of embeddings of symmetric varieties

We will be interested in normal embeddings of the varieties G_0/K_0 , G_1/H_1 and G_{ad}/K_{ad} , but only in the last two cases will we consider dominant ones, that is, embeddings containing the given symmetric variety as a dense subset. We present in this section the combinatorial data associated to these varieties. Since G_0 is semisimple and simply connected, we can apply directly the results of [Vust2]. However, this is not the case for G_1 , so we have to make some slight modifications.

Spherical varieties (i.e. normal, irreducible *G*-varieties which contain an open orbit under the action of a Borel subgroup of a reductive group *G*, e.g. symmetric varieties) can be classified in terms of certain combinatorial data (see e.g. [Knop]). Let $\mathcal{D}(G_0/H_0)$ denote the set of B_0 -stable irreducible divisors of G_0/H_0 ; these are the colors of G_0/H_0 . For a simple (i.e. having only one closed orbit) embedding E_0 of the homogeneous space G_0/H_0 , $\mathcal{D}(E_0)$ is just the set of B_0 -stable prime divisors of E_0 . The set of colors $\mathcal{F}(E_0)$ of E_0 consists of the B_0 -stable prime divisors D of G_0/H_0 whose closure \overline{D} in E_0 contains the (unique) closed orbit of E_0 . For $D \in \mathcal{D}(E_0)$, v_D denotes the normalized discrete valuation of $k(G_0/H_0)$ associated to D.

Let $\mathcal{V}(G_0/H_0)$ be the set of normalized G_0 -invariant discrete valuations of $k(G_0/H_0)$. Each G_0 -stable prime divisor in E_0 determines an element of $\mathcal{V}(G_0/H_0)$; the set of all valuations arising in this way is written $\mathcal{V}(E_0)$.

Theorem 1 (cf. [LuVu]). A simple normal embedding E_0 of G_0/H_0 is uniquely determined by the data $(\mathcal{F}(E_0), \mathcal{V}(E_0))$.

Denote by $\mathcal{P}_0^{H_0}$ the subgroup of $k(G_0/H_0)^{\times}$ consisting of the normalized eigenvectors for the action of P_0 (i.e. those taking the value 1 at $1 \cdot H_0$);

 $\mathcal{P}_0^{H_0} \cong \Lambda(G_0/H_0)$. Each valuation v gives us an element $\rho(v)$ in $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_0^{H_0}, \mathbb{Z})$. The map $\mathcal{V}(G_0/H_0) \xrightarrow{\rho} \operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_0^{H_0}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$ is injective, but not the one $\mathcal{D}(G_0/H_0) \xrightarrow{\rho} \operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_0^{H_0}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$ in general. (The latter is one-to-one when, for instance, the symmetric variety is an algebraic group.)

If E_0 is a simple embedding of G_0/H_0 , we let $\mathcal{C}(E_0)$ be the \mathbb{Q}^+ -cone inside $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_0^{H_0},\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{Q}$ generated by the finite sets $\rho(\mathcal{V}(E_0))$ and $\rho(\mathcal{F}(E_0))$. The pair $(\mathcal{C}(E_0),\mathcal{F}(E_0))$ is called the colored cone of E_0 . More generally, we can state the following definition.

Definition 1. A colored cone is a pair $(\mathcal{C}, \mathcal{F})$ with $\mathcal{C} \subseteq Hom_{\mathbb{Z}}(\mathcal{P}_0^{H_0}, \mathbb{Q})$ and $\mathcal{F} \subseteq \mathcal{D}(G_0/H_0)$, such that \mathcal{C} is a cone generated by $\rho(\mathcal{F})$ and a finite subset of $\mathbb{Q}^+\mathcal{V}(G_0/H_0)$, and $\mathcal{C}^\circ \cap \mathbb{Q}^+\mathcal{V}(G_0/H_0) \neq \phi$.

Note that $\mathcal{C}(E_0)$ is a fortiori generated also by $\rho(\mathcal{F}(E_0))$ and by $\mathcal{C}(E_0) \cap \mathbb{Z}^+ \mathcal{V}(G_0/H_0)$.

Theorem 2 (cf. [Knop] §4.1). There is a bijection between the set of simple normal embeddings of G_0/H_0 and the strongly convex rational polyhedral colored cones in the vector space $Hom_{\mathbb{Z}}(\mathcal{P}_0^{H_0}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$. This correspondence is the one described above.

As proved in [Vust2], $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z})$ is isomorphic to $X_{*}(S_{0H_{0}})$. An isomorphism is induced by the isomorphism $\phi : \mathcal{P}_{0}^{H_{0}} \longrightarrow X^{*}(S_{0H_{0}})$ given by $f \to -\omega$ if f is an eigenvector for P_{0} of weight ω . Therefore, we can view the colored cone of a simple embedding of G_{0}/H_{0} as a cone in $X_{*}(S_{0H_{0}}) \otimes_{\mathbb{Z}} \mathbb{Q} = X_{*}(S_{0}) \otimes_{\mathbb{Z}} \mathbb{Q}$. $(X_{*}(S_{0H_{0}})$ has finite index in $X_{*}(S_{0})$.) From the previous section, we know that $X^{*}(S_{0H_{0}})$ is stable under w_{0} . w_{0} thus induces an automorphism of $X_{*}(S_{0H_{0}})$ also.

Everything said so far (in particular theorem 1 and 2) is valid also for embeddings of the symmetric variety G_1/H_1 with P_0 replaced by $P_1 = P_0 \times S_0$, B_0 by $B_1 = B_0 \times S_0$, and the maximal anisotropic torus being $S_1 = S_0 \times S_0$. $\mathcal{P}_1^{H_1}$ is the subgroup of $k(G_1/K_1)^{\times}$ consisting of the normalized eigenvectors for the action of P_1 . We can define similarly $\mathcal{V}(G_1/H_1)$, $\mathcal{D}(G_1/H_1)$, and maps from these two sets to the lattice $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_1^{H_1},\mathbb{Z})$. The colored cone $\mathcal{C}(E)$ and the colors $\mathcal{F}(E)$ of a simple embedding E of G_1/H_1 are defined as before. We obtain also an isomorphism between $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_1^{H_1},\mathbb{Z})$ and $X_*(S_{1H_1})$ by sending a B_1 -weight vector of weight (w_1, w_2) to the character $(-w_1|_{S_0}, -w_2|_{S_0})$; this follows from results in [Vust1] §2.1, 2.2 which are valid for any reductive group.

Proposition 1 §2.4 in [Vust2] says that the $\rho(u_D), D \in \mathcal{D}(G_0/H_0)$, get identified, under the isomorphism $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{P}_0^{H_0}, \mathbb{Z}) \longrightarrow X_*(S_{0H_0})$, to the negative of the simple coroots of $\overline{R_0}$.

The B_1 -stable (or P_1 -stable) divisors of G_1/H_1 are exactly the images of $D \times S_0/S_0^{\sigma}$ under the quotient morphism $G_0/K_0 \times S_0/S_0^{\sigma} \longrightarrow G_1/H_1$, where D is a B_0 -stable (or P_0 -stable) divisor of G_0/K_0 . Therefore, the $\rho(u_D)$, with $D \in \mathcal{D}(G_1/H_1)$, can be identified with the subset $\{(-(\overline{\alpha_i})^{\vee}, 0)|1 \leq i \leq l\}$. We can reach this conclusion also by mimicking the proof in [Vust2] since $k[G_0 \times S_0]$ is also a UFD.

According to proposition 2, §2.4 in [Vust2], the set $\mathcal{V}(G_0/H_0)$ corresponds to the set of indecomposable elements in $\overline{C_0} \cap X_*(S_{0H_0})$, where $\overline{C_0}$ is the chamber determined by the choice of positive roots in R_0 (i.e. the one containing $\tilde{\lambda}$). As for $\mathcal{V}(G_1/H_1)$, it corresponds to the indecomposable elements in $\overline{C} \cap X_*(S_{1H_1})$, \overline{C} being again defined by our choice of positive roots $\{(\overline{\alpha_i}, 0)\}_{i=1}^l$; the proof in [Vust2] applies to this case too.

1.5 Valuations and one-parameter subgroups

The set $\mathcal{V}(E)$, E an embedding of G_1/H_1 , can be described in terms of certain one-parameter subgroups. Let λ be a one-parameter subgroup of G_1 . λ induces a valuation $v_{\lambda} \in \mathbb{Z}^+ \mathcal{V}(G_1/H_1)$ in the following way. Let $f \in k[G_1]$; then $f = \sum_{n \in \mathbb{Z}} f_n$ where $\lambda(t) f_n = t^n f_n$ for all $t \in k^*$; we set $v_{\lambda}(f) = \inf \{n \in \mathbb{Z} | f_n \neq 0\}$, extend v_{λ} to $k(G_1)$, and restrict it to $k(G_1)^{H_1}$.

An elementary embedding of G_1/H_1 is a normal (a fortiori smooth) embedding consisting of two orbits: G_1/H_1 and a closed orbit of codimension 1. It follows from the general theory of elementary embeddings in [LuVu] (§4.10, §7.5) that there exists a bijection (denoted $E' \leftrightarrow v_{E'}$, where $v_{E'}$ is the valuation associated to the unique closed orbit of E') between elementary embeddings and G_1 -invariant, discrete, normalized valuations of $k(G_1/H_1)$. If E' is such an embedding, $x \in E'$ a point with isotropy group equal to H_1 , then there exists a one-parameter subgroup $\lambda_{E'}$ of S_{1H_1} such that $\lim_{t\to 0} \lambda_{E'}(t)x$ belongs to the open P_1 -orbit in the unique closed G_1 -orbit of E' ([BLV] §4). Furthermore, $v_{\lambda_{E'}}$ is equivalent to $v_{E'}$, and we can choose $\lambda_{E'}$ in $X_+(S_{1H_1})$.

Now let E be an embedding of G_1/H_1 and \mathcal{O} a G_1 -orbit of codimension 1 in E. Then $G_1/H_1 \cup \mathcal{O}$ is an elementary embedding of G_1/H_1 . It follows from the previous paragraph that there exists a one-parameter subgroup $\lambda \in X_*(S_{1H_1})$ such that v_{λ} is equivalent to the G_1 -invariant, discrete, normalized valuation of $k(G_1/H_1)$ corresponding to \mathcal{O} . In conclusion, one way to find $\mathcal{V}(E)$ is to identify the one-parameter subgroups of S_{1H_1} for which $\lambda(t)x$ converges in E when $t \to 0$ to a point in the open P_1 -orbit of a G_1 -stable prime divisor.

Using the bijection $E' \leftrightarrow v_{E'}$, it is possible to give more information on the set $\mathcal{C}(E) \cap \mathbb{Z}^+ \mathcal{V}(G_1/H_1)$. If $v_{E'} \in \mathcal{C}(E) \cap \mathbb{Z}^+ \mathcal{V}(G_1/H_1)$, then we can find a morphism $E' \xrightarrow{\varphi} E(\varphi|_{G_1/H_1} = id)$, and $\lim_{t\to 0} \lambda_{E'}(t) \cdot H_1$ exists in E', hence $\lim_{t\to 0} \lambda_{E'}(t) \cdot H_1$ exists also in E via φ . Conversely, if $\lambda \in X^*(S_{1H_1})$ and, without lost of generality, λ lies in the positive Weyl chamber, and if $\lambda(t) \cdot H_1$ converges in E as $t \to 0$, then we can extend the identity map on G_1/H_1 to a morphism $E' \longrightarrow E$ (by [LuVu]§4.9), which implies that $v_{E'} \in \mathcal{C}(E)$, E' being the elementary embedding such that $v_{E'}$ is the normalized invariant valuation equivalent to v_{λ} .

2 The wonderful completion of G_{ad}/K_{ad}

In this section, we recall some of the properties of the wonderful compactification $\overline{G_{ad}/K_{ad}}$ of G_{ad}/K_{ad} ([DP1]). $\overline{G_{ad}/K_{ad}}$ is a smooth complete variety over

k containing G_{ad}/K_{ad} as a dense G_0 -orbit, and the complement of G_{ad}/K_{ad} consists of l smooth, normal crossing divisors X_i . Moreover, the G_0 -orbits of $\overline{G_{ad}/K_{ad}}$ are in a bijective correspondence with the subsets of $\{1, \ldots, l\}$, and the orbit closures are exactly the intersections $X_{\{i_1,\ldots,i_k\}} = X_{i_1} \cap \ldots \cap X_{i_k}$.

 $\overline{G_{ad}/K_{ad}}$ can be constructed as the closure of the G_0 -orbit in $\mathbb{P}(V_{2\lambda})$ of the class of the unique - up to a scalar multiple - vector h' in $V_{2\lambda}$ fixed by K_0 , where λ is a regular special weight, dominant with respect to B_0^- . (We choose B_0^- instead of B_0 for convenience.) The geometric analysis of $\overline{G_{ad}/K_{ad}}$ can be carried out by studying a certain affine cell (i.e. locally closed subvariety isomorphic to affine space), denoted \mathcal{B} , which enjoys the following properties: \mathcal{B} is B_0 -stable and isomorphic to $U_{S_0} \times \mathbb{A}^l$ where U_{S_0} is the unipotent group generated by the root subgroups corresponding to the positive roots in R_0 whose restrictions to \mathfrak{s}_0 are non-zero, the torus T_0 acts on it by multiplication by $\chi^{\overline{\alpha_i}}(t)$ on the i^{th} -coordinate of \mathbb{A}^l , and the intersection of the G_0 -orbit of [h'] with \mathcal{B} is the open set where the last l coordinates are non-zero. Furthermore, the unique closed G_0 -orbit Y in $\overline{G_{ad}/K_{ad}}$ is the closure of $U_{S_0} \times \{0\}$, and the intersection of \mathcal{B} with X_i is the variety of codimension one given by the vanishing of the i^{th} coordinate of \mathbb{A}^l .

Let's determine the combinatorial data of $\overline{G_{ad}/K_{ad}}$ as a G_0 -spherical variety with respect to the choice of B_0 as Borel subgroup. It follows from the description given in the previous paragraph that Y is not contained in the closure of any of the B_0 -stable divisors of G_{ad}/K_{ad} because these are in the complement of \mathcal{B} . This means that $\overline{G_{ad}/K_{ad}}$ has no colors, so $\overline{G_{ad}/K_{ad}}$ is an example of a toroidal spherical variety.

Let x_j be a local equation for $X_j \cap \mathcal{B}$ as in [DP1]. x_j is a rational function on G_{ad}/K_{ad} which is a B_0 -eigenvector and its weight is $w_0(\overline{\alpha_j}) = \overline{w_0(\alpha_{i_j})} = -\overline{\alpha_{w_0(i_j)}}$ (up to reordering the x_j). Here is what we mean by this. B_0^- is the Borel subgroup corresponding to the choice $\{w_0(\alpha_i)\}_{i=1}^n$ of simple roots. This basis satisfies also the condition of lemma 1.7 in [DP1]. w_0 induces a permutation, also denoted w_0 , of the set $\{1, \ldots, n\}$ by $w_0(\alpha_i) = -\alpha_{w_0(i)}$. If $\overline{w_0(\alpha_{j_1})}, \ldots, \overline{w_0(\alpha_{j_l})}$ are all independent (distinct and non-zero), then we can assume that $\{w_0(j_1), \ldots, w_0(j_l)\} = \{1, \ldots, l\}, \{\overline{w_0(\alpha_{j_1})}, \ldots, \overline{w_0(\alpha_{j_l})}\} = -\{\overline{\alpha_1}, \ldots, \overline{\alpha_l}\}$. In particular, $w_0(\overline{\alpha_j}) = -\overline{\alpha_k}$ (for some k) $= \overline{w_0(\alpha_{j_i})}$ for some $j_i, 1 \leq i \leq l$.

Let v_k be the G_0 -invariant valuation corresponding to X_k . Then

$$\rho(v_k)(-(\overline{w_0(\alpha_{i_j})})) = v_k(x_j) = \delta_{jk} \Longrightarrow \rho(v_k) = \widetilde{\eta}_{w_0(i_k)} \in X_*(S_{0H_0}).$$

Therefore, $\mathcal{C}(\overline{G_{ad}/K_{ad}}) = \mathbb{Q}^+ \{\rho(v_1), \dots, \rho(v_l)\} = \overline{C_0} = \mathbb{Q}^+ \mathcal{V}(G_0/H_0).$

We can also characterize $\overline{G_{ad}/K_{ad}}$ as the unique dominant equivariant embedding of G_{ad}/K_{ad} which is simple, complete, and without colors. This follows from the results in section 1.4 and the combinatorial criterion for completeness of spherical varieties (cf. [Knop]).

 $\overline{G_{ad}/K_{ad}}$ can be realized in many different ways. For $i = 1, \ldots, l$, let h_i be a non-zero K_0 -fixed vector in $V_{w_0(\overline{\eta}_i)}$; here $V_{w_0(\overline{\eta}_i)}$ is the irreducible G_0 -module

with highest weight $w_0(\overline{\eta}_i)$ with respect to B_0^- . h_i is unique up to a scalar. Set $h = h_1 + \ldots + h_l$. The wonderful completion of G_0/H_0 is the closure of the orbit of the line [h] in $\mathbb{P}(V_{w_0(\overline{\eta}_1)} \oplus \ldots \oplus V_{w_0(\overline{\eta}_l)})$.

 $V_{w_0(\overline{\eta}_1)} \otimes_k \cdots \otimes_k V_{w_0(\overline{\eta}_l)} = V_{w_0(\overline{\eta}_1 + \ldots + \overline{\eta}_l)} \oplus W \text{ where } W \text{ contains a } K_0\text{-fixed}$ $\underbrace{\text{vector } h_W; \text{ set } h_{1,\ldots,l} = h_1 \otimes \ldots \otimes h_l \text{ and } h' = h_{1,\ldots,l} + h_W. \text{ Then } \overline{G_{ad}/K_{ad}} \cong \overline{G_0[h']} \subseteq \mathbb{P}(V_{w_0(\overline{\eta}_1)} \otimes \ldots \otimes V_{w_0(\overline{\eta}_l)}), \text{ an isomorphism being given by the restriction}$ of the projection $\mathbb{P}(V_{w_0(\overline{\eta}_1 + \ldots + \overline{\eta}_l)} \oplus W) \longrightarrow \mathbb{P}(V_{w_0(\overline{\eta}_1 + \ldots + \overline{\eta}_l)}) \text{ along } \mathbb{P}(W) \text{ (see } [DP1]$ §4.1).

Furthermore, the Segre embedding mapping $\mathbb{P}(V_{w_0(\overline{\eta}_1)}) \times \cdots \times \mathbb{P}(V_{w_0(\overline{\eta}_l)})$ into $\mathbb{P}(V_{w_0(\overline{\eta}_1)} \otimes_k \cdots \otimes_k V_{w_0(\overline{\eta}_l)})$ provides an isomorphism between $\overline{G_0[h]}$ and $\overline{G_0([h_1], \ldots, [h_k])}$, whence $\overline{G_0([h_1], \ldots, [h_k])}$ is isomorphic to $\overline{G_{ad}/K_{ad}}$.

Fix an ordered basis of $V_{w_0(\overline{\eta}_1+\ldots+\overline{\eta}_l)}$ consisting, say, of weight vectors, the last one being a highest weight vector for B_0^- . Let \mathcal{A} be the affine subset of $\mathbb{P}(V_{w_0(\overline{\eta}_1+\ldots+\overline{\eta}_l)})$ where the last coordinate is non-zero; $\mathcal{A} \cap \overline{G_0[h']}$ is the affine cell \mathcal{B} . Using the isomorphism above, it follows that $\widetilde{\mathcal{A}} \cap \overline{G_0([h_1],\ldots,[h_l])} \cong \mathcal{B}$; here, $\widetilde{\mathcal{A}}$ is defined in a way similar to \mathcal{A} : for each $i = 1, \ldots, l$, choose an ordered basis Θ_i of $V_{w_0(\overline{\eta}_i)}$ whose last element is a highest weight vector, and let $\widetilde{\mathcal{A}}$ be the affine subvariety of $\mathbb{P}(V_{w_0(\overline{\eta}_1)}) \times \cdots \times \mathbb{P}(V_{w_0(\overline{\eta}_l)})$ defined by the non-vanishing of the last coordinate in each projective space.

3 Definition of $Env(G_0/K_0)$

3.1 First definition

Let $\operatorname{Env}(G_0/K_0)$ be the affine variety over k (see lemma 2 below) with coordinate ring $k[\operatorname{Env}(G_0/K_0)] = \bigoplus_{\nu \in \mathcal{L}} k[G_1/H_1]_{\nu}$, where \mathcal{L} is the \mathbb{Q}^+ -cone in $(\Lambda(G_0/K_0) \oplus X^*(S_{0K_0}))^{N_0} \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\{(\overline{\eta}_i, w_0 \overline{\eta}_i), (0, -\overline{\alpha_i})\}_{i=1}^l$, and $k[G_1/H_1]_{\nu}$ is the isotypic component of $k[G_1/H_1]$ corresponding to the dominant weight ν of B_1 . $\Lambda(G_0/K_0) \cong \mathcal{P}_0^{K_0} \cong X^*(S_{0K_0})$, and the highest weight semigroup of G_0/K_0 (i.e. the semigroup formed by the dominant integral weights of the isotypic components of G_0/K_0) is $X^+(S_{0K_0})$.

It is also possible to define its coordinate ring by using an idea from [Pop]. Let's put a polyfiltration on $k[G_0/K_0]$ by setting $k[G_0/K_0]_{\leq\lambda} = \bigoplus_{\mu \leq \lambda} k[G_0/K_0]_{\mu}$ for $\lambda \in X^*(S_{0K_0}) \cap (\mathbb{Q}^+\overline{R_0}^+)$, where $\mu \leq \lambda$ means that $\lambda + w_0(\mu) \in \mathbb{Z}^+\overline{R_0}^+$. The Rees algebra of this polyfiltration is a subalgebra of $k[G_0/K_0][s^{\pm \overline{\eta}_1}, \ldots, s^{\pm \overline{\eta}_l}]$, $s^{\overline{\eta}_1}, \ldots, s^{\overline{\eta}_l}$ being variables algebraically independent over $k[G_0/K_0]$. Then $k[\operatorname{Env}(G_0/K_0)]$ can be identified with this Rees algebra, i.e.

$$k[\operatorname{Env}(G_0/K_0)] \cong \bigoplus_{\lambda \in X^*(S_0|_{K_0}) \cap (\overline{R_0}^+ \otimes_{\mathbb{Z}} \mathbb{Q})} k[G_0/K_0]_{\leq \lambda} s^{\lambda},$$

if we think of s^{λ} as a character of S_0 .

Let A be the S_0/N_0 -toric variety $\operatorname{Spec} \bigoplus_{\mu \in \mathbb{Z}^+ \{\overline{\alpha}_1, \dots, \overline{\alpha}_l\}} k \cdot \chi^{\mu}$. A is isomorphic to affine space \mathbb{A}^l since the roots $\overline{\alpha}_i$ form a basis for the character lattice of

 S_0/N_0 ([Vust2] lemma 3.1).

Lemma 2. $k[Env(G_0/K_0)]$ is a finitely generated algebra.

Proof. By corollary 4 in ([Pop]), it is enough to show that $k[\operatorname{Env}(G_0/K_0)]^{U_1}$ is finitely generated, where $U_1 = U_0 \times 1$ (resp. U_0) is a maximal unipotent subgroup of G_1 (resp. G_0). $\oplus_{\overline{\eta} \in X^+(S_{0K_0})} k[G_1/H_1]_{(\overline{\eta},w_0(\overline{\eta}))}^{U_1}$ is isomorphic to $k[G_0/K_0]^{U_0}$, and $\oplus_{\overline{\alpha} \in \mathbb{Z} + \overline{R_0}^+} k[G_1/H_1]_{(0,-\overline{\alpha})} = k[A]$. Therefore we obtain that $k[\operatorname{Env}(G_0/K_0)]^{U_1} \cong k[A] \otimes_k k[G_0/K_0]^{U_0}$, which is finitely generated since the same holds for $k[G_0/K_0]^{U_0}$. Equivalently, we could have observed simply that $k[\operatorname{Env}(G_0/K_0)]^{U_1}$ is the semigroup algebra of the subsemigroup generated by $\{(\overline{\eta}_i, w_0 \overline{\eta}_i), (0, -\overline{\alpha_i})\}_{i=1}^l$. \Box

Lemma 3. $Env(G_0/K_0)$ is a normal variety.

Proof. According to a theorem of Popov ([Pop]), it is enough to check that $k[\operatorname{Env}(G_0/K_0)]^{U_1}$ is normal; but $k[\operatorname{Env}(G_0/K_0)]^{U_1} \cong k[A] \otimes_k k[G_0/K_0]^{U_0}$ (see lemma 2) and $k[G_0/K_0]^{U_0}$ is a polynomial ring of dimension l according to [Vust2] §3.2.

Lemma 4. $Env(G_0/K_0)$ is an affine embedding of G_1/H_1 .

Proof. It is enough to prove that the functions in $k[\operatorname{Env}(G_0/K_0)]$ separate the points of G_1/H_1 . If $(p_1, s_1)\Delta^{1,-1}(N_0)$ and $(p_2, s_2)\Delta^{1,-1}(N_0)$ are two distinct points of G_1/H_1 , $p_i \in G_0/K_0$, $s_i \in S_{0K_0}$, with $s_1s_2^{-1} \notin N_0$, then we can separate them using a character $\chi^{-\overline{\alpha}}$. Now if $s_1s_2^{-1} \in N_0$, it is possible to find a function $f \in k[G_0/K_0]_{\overline{\eta}}$ which separates $p_1s_1s_2^{-1}$ and p_2 . It follows that $f\chi^{-w_0(\overline{\eta})}((p_1, s_1)\Delta^{1,-1}(N_0)) \neq f\chi^{-w_0(\overline{\eta})}((p_2, s_2)\Delta^{1,-1}(N_0))$.

The three preceding lemmas show that $\operatorname{Env}(G_0/K_0)$ is a spherical variety for G_1 (see the second definition below for more on this).

If we consider G_0 as a symmetric variety of $G_0 \times G_0$ via the involution $(g_1, g_2) \longrightarrow (g_2, g_1)$, then we get the enveloping semigroup of G_0 . As a Borel subgroup of $G_0 \times G_0$, we choose $B_0 \times B_0^-$, and its maximal anisotropic torus is $\Delta^{1,-1}(T_0)$.

Let $\theta: T_0 \longrightarrow \Delta^{1,-1}(T_0)$ be the isomorphism $t \mapsto (t,t^{-1})$; θ induces an isomorphism $T_0/T_{0,2} \xrightarrow{\cong} \Delta^{1,-1}(T_0)/\Delta(T_0)$, where $T_{0,2}$ is the subgroup of elements of order 2 of T_0 . $X^*(T_0/T_{0,2}) = 2X^*(T_0)$, $X^*(\Delta^{1,-1}(T_0)/\Delta(T_0)) = \{(\nu,-\nu)|\nu \in X^*(T_0)\}$, and $\theta^*(\mu,-\mu) = 2\mu$.

Let τ be the $G_0 \times G_0$ -equivariant isomorphism $G_0 \longrightarrow G_0 \times G_0 / \Delta(G_0)$ given by $\tau(g) = (g, 1)\Delta(G_0)$. Then $\tau^*(k[G_0 \times G_0 / \Delta(G_0)]_{(\mu,-\mu)}) = V_{\mu} \otimes_k V_{-\mu}$.

According to our definition, $k[\operatorname{Env}(G_0 \times G_0/\Delta(G_0))]$ is equal to

$$\bigoplus_{\nu_2-\nu_1\in R_0^+} k[G_0\times G_0/\Delta(G_0)]_{(\nu_1,-\nu_1)} \otimes_k k[\Delta^{1,-1}(T_0)/\Delta(T_0)]_{(w_0(\nu_2),-w_0(\nu_2))}.$$

Under the isomorphism

$$\tau \times \theta : G_0 \times (T_0/T_{0,2}) \longrightarrow (G_0 \times G_0/\Delta(G_0)) \times (\Delta^{1,-1}(T_0)/\Delta(T_0)),$$

 $k[G_0 \times G_0/\Delta(G_0)]_{(\nu_1,-\nu_1)} \otimes_k k[\Delta^{1,-1}(T_0)/\Delta(T_0)]_{(w_0(\nu_2),-w_0(\nu_2))}$ corresponds to $V_{\nu_1} \otimes_k V_{-\nu_1} \otimes_k k[T_0/T_{0,2}]_{2w_0(\nu_2)}$. The isomorphism $T_0/T_{0,2} \longrightarrow T_0$ given by squaring identifies $k[T_0/T_{0,2}]_{2w_0(\nu_2)}$ with $k[T_0]_{w_0(\nu_2)}$. In conclusion, the decomposition of $k[\operatorname{Env}(G_0 \times G_0/\Delta(G_0))]$ as a $G_0 \times G_0 \times T_0$ -module is

$$\bigoplus_{1,\nu_2 \in X^+(T_0), \nu_2 - \nu_1 \in R_0^+} V_{\nu_1} \otimes_k V_{-\nu_1} \otimes_k \chi^{-w_0(\nu_2)},$$

which is how Vinberg had defined the coordinate ring of his enveloping semigroup since $V_{\nu_1} \otimes V_{-\nu_1}$ is isomorphic as a $G_0 \times G_0$ -representation to the space of matrix coefficients of the irreducible representation $V_{\nu_1}^* (= V_{-w_0(\nu_1)})$.

We will use later the categorical quotient $\operatorname{Env}(G_0/K_0)/G_0$, which is isomorphic to A. Indeed,

$$k[\operatorname{Env}(G_0/K_0)]^{G_0} = (k[G_0/K_0]^{G_0} \otimes_k k[S_{0K_0}])_{\mathcal{L}} = k \otimes_k k[S_{0K_0}]_{\mathcal{L}} = k[S_{0K_0}]_{\mathcal{L}}.$$

By $(\cdot)_{\mathcal{L}}$, we mean the sum of the isotypic components with highest weights belonging to \mathcal{L} .

Let $\pi : \operatorname{Env}(G_0/K_0) \longrightarrow A$ be the quotient morphism. Then the fiber of π over $(1, \ldots, 1)$ is G_0/K_0 : the same argument as in [Vin] proposition 3 applies, except that in our case we have to use a theorem of Luna ([Luna]) which asserts that a homogeneous space G/L, with G and L reductive, is affinely closed (i.e. it admits only one affine embedding, namely itself) if and only if $[N_G(L) : L]$ is finite.

3.2 Second definition

Env (G_0/K_0) can also be defined in an equivalent way using the language of section 1. Let E be the G_1 -spherical embedding of G_1/H_1 whose colors are all the colors of G_1/H_1 and whose colored cone is the \mathbb{Q}^+ -cone in $X_*(S_{1H_1}) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by

$$\{(-(\overline{\alpha_i})^{\vee}, 0)\}_{i=1}^l \cup \{(\widetilde{\eta}_i, -w_0(\widetilde{\eta}_i))\}_{i=1}^l$$

where the $\tilde{\eta}_i$ are the indecomposable elements in $\overline{C}_0 \cap X_*(S_{0H_0})$. By lemma 3.1 in [Vust2], the root lattice $\mathbb{Z}\overline{R_0}$ is $X^*(S_0/N_0)$ and its dual is the coweight lattice - the fundamental coweights are those indecomposable elements.

This definition is equivalent to the first one. E is affine because $\mathcal{F}(E) = \mathcal{D}(G_1/H_1)$ ([Knop] Theorem 7.7). $\mathcal{C}(E)^{\vee}$ denotes the cone dual to $\mathcal{C}(E)$ under the natural pairing $X^*(S_{1H_1}) \times X_*(S_{1H_1}) \longrightarrow k$, and, under the identification in section 1, it sits inside $X^*(S_{1H_1})$. $-\mathcal{C}(E)^{\vee} \cap X^+(S_{1H_1})$ is the highest weight semigroup of k[E]. Indeed, since E is normal, a regular function $f \in k[G_1/H_1]^{(B_1)}$ extends to all of E if and only if $v(f) \ge 0 \ \forall v \in \mathcal{V}(E)$. This means that $(\chi_f \text{ being the } B_1\text{-weight of } f)$

$$k[E]^{(B_1)} = \{ f \in k[G_1/H_1]^{(B_1)} | \chi_f \in -\mathcal{C}(E)^{\vee} \cap X^+(S_{1H_1}) \},\$$

hence

$$k[E] = \bigoplus_{\Lambda \in -\mathcal{C}(E)^{\vee} \cap X^+(S_{1H_1})} k[G_1/H_1]_{\Lambda}.$$

Notice that in this case $-\mathcal{C}(E)^{\vee} \subseteq \mathbb{Q}^+$ -span of $X^+(S_{1H_1}) \otimes_{\mathbb{Z}} \mathbb{Q}$. We just have to see now that $-\mathcal{C}(E)^{\vee}$ is equal to \mathcal{L} .

3.3 Action of $Env(G_0)$

The G_1 -action on $\text{Env}(G_0/K_0)$ extends to an action of $G_0 \times T_0$, T_0^{σ} acting trivially, which decends to an action of the group $G_0 \times T_0/\Delta^{1,-1}(Z_0)$, the group of units of $\text{Env}(G_0)$.

Furthermore, we can extend this to an action of $\operatorname{Env}(G_0)$, the enveloping semigroup of G_0 . Since $\mathcal{L} \subseteq \mathcal{L}(\operatorname{Env}(G_0))$, $\mathcal{L}(\operatorname{Env}(G_0))$ being the cone in $(\Lambda(G_0) \oplus X^*(T_0))^{\Delta^{1,-1}(Z_0)} \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\{(\omega_i, w_0(\omega_i)), (0, -\alpha_i)\}_{i=1}^n$, the action homomorphism $k[\operatorname{Env}(X_0)] \longrightarrow k[G_0 \times T_0/\Delta^{1,-1}(Z_0)] \otimes_k k[\operatorname{Env}(X_0)]$ factors through the algebra $k[\operatorname{Env}(G_0)] \otimes_k k[\operatorname{Env}(X_0)]$, which proves our claim.

This extension enjoys the following property. Let E be any affine variety with an action of $\operatorname{Env}(G_0)$, and suppose that we are given a morphism $\phi : G_1/H_1 \longrightarrow E$ which is equivariant with respect to the action of $G_0 \times T_0/\Delta^{1,-1}(Z_0)$; then we can extend ϕ to a morphism $\tilde{\phi} : \operatorname{Env}(G_0/K_0) \longrightarrow E$ which is $\operatorname{Env}(G_0)$ -equivariant. Indeed, the image of the algebra homomorphism $k[E] \longrightarrow k[G_1/H_1]$ must land inside the sum of the G_1 -submodules $k[G_1/H_1]_{\nu}$ with $\nu \in \mathcal{L}(\operatorname{Env}(G_0))$, so it factors through $k[\operatorname{Env}(X_0)]$.

4 Construction of $\operatorname{Env}(G_0/K_0)$ from $\overline{G_{ad}/K_{ad}}$

In this section, we give a geometric construction of $\operatorname{Env}(G_0/K_0)$ from the wonderful embedding $\overline{G_{ad}/K_{ad}}$ of G_{ad}/K_{ad} similar to the one given in [Ritt1] for $\operatorname{Env}(G_0)$. By pulling back the line bundle $\mathcal{O}(1)$ on $\mathbb{P}(V_{w_0(\overline{\eta}_i)})$, we obtain an ample line bundle L_i on $\overline{G_{ad}/K_{ad}} \subseteq \mathbb{P}(V_{w_0(\overline{\eta}_1)}) \times \cdots \times \mathbb{P}(V_{w_0(\overline{\eta}_l)})$.

Let E_0 be the smooth variety $\oplus_{i=1}^l L_i^{\vee}$. The line bundles L_i^{\vee} admit a G_0 linearization (it is a general fact, obvious in this specific case, that the action of a simply connected algebraic group on a variety can be lifted to line bundles over it), so we get an action of $G_0 \times S_0$ on E_0 by letting the torus $1 \times S_0$ act linearly on each fiber of L_i^{\vee} by the character $\overline{\eta}_i$. For $I, J \subseteq \{1, \ldots, l\}$, set $E_{I,J} = \bigoplus_{i \in I} L_i^{\vee}|_{X_J}$ $(E_{\phi,J} = X_J = \text{zero section of } E_{\{1,\ldots,l\},J})$; these are the closed $G_0 \times S_0$ -stable subvarieties of E_0 . Let $\mathcal{O}_{I,J}$ be the unique open $G_0 \times S_0$ -orbit in $E_{I,J}$. E_0 is a simple $G_0 \times S_0$ -spherical variety with unique closed orbit $\mathcal{O}_{\phi,\{1,\ldots,l\}}$.

Let us show that the open orbit $\mathcal{O}_{\{1,\ldots,l\},\phi}$ is isomorphic to G_1/H_1 . Over \mathcal{B} , the bundles L_i^{\vee} trivialize, so let f_i be a trivializing section for L_i^{\vee} over \mathcal{B} . Let $p = \sum_{i=1}^l f_i(1 \cdot H_0)$; we want to find the isotropy group of p under the action of $G_0 \times S_0$. Let $(g, s) \in Stab(p)$. Then $gH_0 = H_0 \Longrightarrow g \in H_0$; say $g = s_0k_0, s_0 \in N_0, k_0 \in K_0$ $(H_0 = (S_0 \cap H_0)K_0$ according to [Rich] §8). It follows that $\overline{\eta}_i(s \cdot s_0) = 1 \quad \forall i = 1, \ldots, l$, (note that K_0 acts trivially on the fiber of E_0 over $1 \cdot H_0$) hence $s \cdot s_0 \in S_0^{\sigma} \Longrightarrow s = s_0^{-1} \tilde{s}, \tilde{s} \in S_0^{\sigma}$. Therefore, $Stab(p) = \{(k_0 \cdot s_0, s_0^{-1} \tilde{s})\} = \Delta^{1,-1}(N_0)(K_0 \times S_0^{\sigma}) = H_1$, and $\mathcal{O}_{\{1,\ldots,l\},\phi} \cong G_1/H_1$, which proves our claim. E_0 doesn't have colors because the same is true for $\overline{G_{ad}/K_{ad}}$. The irreducible G_1 -stable divisors of E_0 are the $E_{\{1,\ldots,l\},j}$, $j = 1,\ldots,l$, and the $E_{\{\overline{j}\},\phi}$, $j = 1,\ldots,l$, where $\{\overline{j}\}$ is the complement of $\{j\}$ in $\{1,\ldots,l\}$. Let γ_j be the G_1 -invariant valuation associated to $E_{\{1,\ldots,l\},j}$, and let ϵ_j be the one corresponding to $E_{\{\overline{j}\},\phi}$. Let x_j be a local equation for $X_j \cap \mathcal{B}$ as in section 3. Set $\widetilde{X}_j = X_j \cap \mathcal{B}$; then x_j becomes a local equation for $E_0|_{\widetilde{X}_j}$. The B_1 -weight of x_i is $(w_0(\overline{\alpha_i}), 0)$ (up to reordering the rational functions x_i), hence $\rho(\gamma_j)(-w_0(\overline{\alpha_i}), 0) = \delta_{ij}$.

 $E_{\{j\},\phi}$ is the divisor of y_j , which is the restriction to E_0 of the regular function on $\mathbb{P}(V_{w_0(\overline{\eta}_1)}) \times \cdots \times \mathbb{P}(V_{w_0(\overline{\eta}_l)}) \times V_{w_0(\overline{\eta}_1)} \times \cdots \times V_{w_0(\overline{\eta}_l)})$ which sends $(q_1, \ldots, q_l, u_1, \ldots, u_l)$ to the last coordinate of u_j with respect to the basis Θ_j . It follows that the weight of the B_1 -eigenvector y_j is $(-w_0(\overline{\eta}_j), -\overline{\eta}_j)$. We conclude that $\rho(\epsilon_j)(w_0(\overline{\eta}_k), \overline{\eta}_k) = \delta_{jk}$.

Furthermore, $\rho(\gamma_j)(w_0(\overline{\eta}_i),\overline{\eta}_i) = 0, \rho(\epsilon_j)(-w_0(\overline{\alpha_i}),0) = 0 \quad \forall i$, so we may deduce that $\rho(\gamma_i) = (-w_0(\overline{\eta_i}),\overline{\eta_i})$ and $\rho(\epsilon_j) = (0,\overline{\alpha_j}^{\vee})$.

We have proved the following proposition.

Proposition 1. E_0 is a simple smooth embedding of G_1/H_1 without colors whose associated cone in $X_*(S_{1H_1})$ is generated by $\{(-w_0(\tilde{\eta}_i), \tilde{\eta}_i)\}_{i=1}^l$ and by $\{(0, \overline{\alpha_i}^{\vee})\}_{i=1}^l$.

Let us define \underline{E}_1 as the variety Spec $\Gamma(E_0, \mathcal{O}_{E_0})$, which is the same as $\operatorname{Spec} \oplus_{n_1, \dots, n_l \geq 0} \Gamma(\overline{G_{ad}/K_{ad}}, L_1^{\otimes n_1} \otimes \cdots \otimes L_l^{\otimes n_l})$.

Proposition 2. E_1 is a simple normal embedding of G_1/H_1 whose colors are all the colors of G_1/H_1 . The colored cone of E_1 is the \mathbb{Q}^+ -cone in $X_*(S_{1H_1})$ generated by $\{(\tilde{\eta}_i, -w_0(\tilde{\eta}_i)), (-(\overline{\alpha}_i)^{\vee}, 0), (0, (\overline{\alpha}_i)^{\vee})\}_{i=1}^l$.

Proof. E_1 is the normalization of the multi-cone G_{ad}/K_{ad} in $\prod_{i=1}^{l} V_{w_0(\overline{\eta}_i)}$ over $\overline{G_{ad}/K_{ad}}$ on which G_1 acts, and this action lifts to E_1 . The G_1 -morphism $\varphi : E_0 \longrightarrow E_1$ is birational (and proper because so is the morphism $E_1 \longrightarrow \widetilde{G_{ad}/K_{ad}}$), so E_1 is an embedding of G_1/H_1 . E_1 is a simple embedding (since integral invariants separate closed orbits, it is a general fact that an affine G_1 -variety with a dense G_1 -orbit has only one closed orbit), and its colors are all the colors of G_1/H_1 .

To find the colored cone of E_1 , we simply need the B_1 -highest weight semigroup of E_1 . By [DP1] §8.3, the decomposition of $k[E_1]$ under the action of G_0 is $k[E_1] = \bigoplus_{(\gamma,\lambda) \in \mathcal{Q}} V_{\gamma}^*$ where $\mathcal{Q} = \{(\gamma,\lambda) \in X^-(S_{0K_0}) \oplus X^-(S_{0K_0}) | \lambda - \gamma \in \mathbb{Z}^-\{\overline{\alpha_1}, \ldots, \overline{\alpha_l}\}\}$. Here, V_{γ} is the irreducible representation of G_0 whose highest weight with respect to B_0^- is γ . Therefore, $k[E_1] = \bigoplus_{(\gamma,\lambda) \in \mathcal{Q}} V_{-\gamma}$, where $V_{-\gamma}$ has highest weight $-\gamma$ with respect to B_0 , and thus $k[E_1] = \bigoplus_{(\mu,\nu) \in \mathcal{Q}} V_{\mu}$ where now $\mathcal{Q} = \{(\mu, \nu) \in X^+(S_{0K_0}) \oplus X^+(S_{0K_0}) | \nu - \mu \in \mathbb{Z}^+\{\overline{\alpha_1}, \ldots, \overline{\alpha_l}\}\}$. Let $\lambda \in X^-(S_{0K_0})$, say $\lambda = \sum_{i=1}^l n_i w_0(\overline{\eta}_i)$, and set $L_{\lambda} = L_1^{\otimes n_1} \otimes \cdots \otimes L_l^{\otimes n_l}$.

Let $\lambda \in X^{-}(S_{0K_{0}})$, say $\lambda = \sum_{i=1}^{l} n_{i}w_{0}(\overline{\eta}_{i})$, and set $L_{\lambda} = L_{1}^{\otimes n_{1}} \otimes \cdots \otimes L_{l}^{\otimes n_{l}}$. $1 \times S_{0}$ acts on $\Gamma(\overline{G_{ad}/K_{ad}}, L_{\lambda})$ by the character $-w_{0}(\lambda)$, so the decomposition of $k[E_{1}]$ under the action of G_{1} is

$$k[E_1] = \bigoplus_{(\mu,\nu)\in\mathcal{Q}} V_{\mu} \otimes_k \chi^{-w_0(\nu)}, \ k[E_1]_{(\mu,w_0(\nu))} = V_{\mu} \otimes_k \chi^{-w_0(\nu)}.$$

This means that the B_1 -highest weight semigroup of E_1 is the intersection of the semigroup generated by $\{(\overline{\eta}_i, w_0 \overline{\eta}_i\}_{i=1}^l \cup \{(0, -\overline{\alpha_i})\}_{i=1}^l$ with the semigroup $(\Lambda_+(G_0/K_0) \oplus X^-(S_{0K_0}))^{N_0}$. Dualizing, we get that the colored cone of E_1 inside $X_*(S_{1H_1})$ is the \mathbb{Q}^+ -cone generated by

$$\{(\widetilde{\eta}_i, -w_0(\widetilde{\eta}_i)), (-(\overline{\alpha_i})^{\vee}, 0), (0, (\overline{\alpha_i})^{\vee})\}_{i=1}^l.$$

Let A be as in section 3.1, so A is the S_0/N_0 -toric variety defined by the cone in $X_*(S_0/N_0)$ generated by $\{\tilde{\eta}_1, \ldots, \tilde{\eta}_l\}$ (= $\mathcal{V}(A)$). Let A_1 be the categorical quotient E_1/G_0 ;

$$A_1 = \text{Spec } k[E_1]^{G_0} = \text{Spec } \bigoplus_{\lambda \in X^+(S_0_{K_0}) \cap \mathbb{Z}\{\overline{\alpha_1}, \dots, \overline{\alpha_l}\}} k \cdot \chi^{\lambda},$$

so A_1 is the S_0/N_0 -toric variety associated to the cone in $X_*(S_0/N_0)$ consisting of all the coweights $\tilde{\eta}$ such that $\langle \tilde{\eta}, \overline{\alpha} \rangle \geq 0$ for all $\overline{\alpha}$ in the intersection of the root lattice with the positive Weyl chamber. The inclusion of the first cone into the second one induces an equivariant morphism $\psi : A \longrightarrow A_1$. Combining this with the quotient $\varphi : E_1 \longrightarrow A_1$, we can consider the fiber product $E_2 = E_1 \times_{A_1} A$.

Proposition 3. E_2 is an embedding of G_1/H_1 isomorphic to $Env(G_0/K_0)$.

Proof. The action of G_1 on E_2 is described by $(g, s) \cdot (e, a) = ((g, s)e, sa)$, and the isotropy group of $(1 \cdot H_1, p)$, where $\psi(p) = \varphi(1 \cdot H_1)$, is H_1 , so E_2 is an embedding of G_1/H_1 .

 E_2 is simple because it is affine and contains an open dense orbit under the action of G_1 , and the only closed G_1 -orbit is $\theta \times_{A_1} 0$, θ being the closed orbit of E_1 . It is also normal since, as one can easily check directly, $k[E_2] = k[\operatorname{Env}(G_0/K_0)]$. Of course, this shows that E_2 and $\operatorname{Env}(G_0/K_0)$ are isomorphic affine varieties, but we want to give a different proof which is more instructive and uses results from section 1.

We would like to show that the two varieties E_2 and $\operatorname{Env}(G_0/K_0)$ share the same combinatorial data. To find $\mathcal{C}(E_2) \cap \mathbb{Z}^+ \mathcal{V}(G_1/H_1)$, we apply the result of section 1.5. Let (λ, μ) be a one-parameter subgroup in $X_*(S_{1H_1})$ which is in $\mathcal{V}(G_1/H_1)$. Then $\lim_{t\to 0} (\lambda, \mu)(t)1 \cdot H_1$ exists in E_2 if and only if the limits $\lim_{t\to 0} \pi_j((\lambda, \mu)(t)1 \cdot H_1)$ exist in $\pi_j(E_2)$, where π_j is the projection morphism onto the j^{th} factor. Now $\lim_{t\to 0} \pi_1((\lambda, \mu)(t)1 \cdot H_1)$ exists if and only if $(\lambda, \mu) \in \mathcal{C}(E_1) \cap \overline{C} \cap X_*(S_{1H_1}) = \mathbb{Z}^+\{(\widetilde{\eta}_i, -w_0(\widetilde{\eta}_i)), (-(\overline{\alpha}_i)^{\vee}, 0)\}_{i=1}^l \cap \overline{C} \cap$ $X_*(S_{1H_1}) + \mathbb{Z}^+\{(0, (\overline{\alpha}_i)^{\vee})\}_{i=1}^l$, and $\lim_{t\to 0} \pi_2((\lambda, \mu)(t)1 \cdot H_1)$ exists if and only if $\mu \in \mathbb{Z}^+\{\widetilde{\eta}_1, \ldots, \widetilde{\eta}_l\}$; the condition $\psi(\pi_1((\lambda, \mu)(t)1 \cdot H_1)) = \varphi(\pi_2((\lambda, \mu)(t)1 \cdot H_1)))$ is automatically satisfied since all the morphisms involved are equivariant and equality holds for t = 1. Therefore,

$$\mathcal{C}(E_2) \cap \mathbb{Z}^+ \mathcal{V}(G_1/H_1) = \mathbb{Z}^+ \{ (\widetilde{\eta}_i, -w_0(\widetilde{\eta}_i)), (-(\overline{\alpha}_i)^{\vee}, 0) \}_{i=1}^l \cap \overline{C},$$

which is equal to $\mathcal{C}(\operatorname{Env}(G_0/K_0)) \cap \mathbb{Z}^+ \mathcal{V}(G_1/H_1)$.

We claim now that the colors of E_2 are all those of G_1/H_1 . Let λ_1 be a one-parameter subgroup of $1 \times S_0$ such that $\langle \lambda_1, \overline{\alpha_i} \rangle > 0 \ \forall i$. Then, if \tilde{q} is a point on the fiber of L_i^{\vee} over $q \in \overline{G_{ad}/K_{ad}}$, $\lim_{t\to 0} \lambda_1(t)\tilde{q} = \lim_{t\to 0} \overline{\eta}_i(\lambda_1(t))\tilde{q} = q$, q being the projection of \tilde{q} on the zero section of L_i^{\vee} . Therefore, if \tilde{q} is now a point on the multicone $\widetilde{G_{ad}/K_{ad}}$, then $\lim_{t\to 0} \lambda_1(t)\tilde{q} = 0$. It follows that if $D \in \mathcal{D}(G_1/H_1)$ and \tilde{q} is a point on D, we can find a one-parameter subgroup λ_1 of $1 \times S_0$ such that $\lim_{t\to 0} \lambda_1(t)\tilde{q} = \theta$ and $\lambda_1(t)\tilde{q} \in D \ \forall t$.

 $\varphi \circ \lambda_1$ has image in the open orbit S_0/N_0 of A_1 , and we have $\psi(\lambda_1(t)1 \cdot N_0) = \varphi(\lambda_1(t)1 \cdot H_1) \forall t$. $(A \cong \mathbb{A}^l \text{ and } 1 \cdot N_0 \text{ is just the point } (1, \ldots, 1))$. $\langle \lambda_1, \overline{\alpha_i} \rangle > 0 \forall i$ implies that $\lim_{t \to 0} \lambda_1(t)(1, \ldots, 1) = (0, \ldots, 0)$, so

$$\lim_{t \to 0} (1, \lambda_1(t))(\tilde{q}, (1, \dots, 1)) = \theta \times \{0\}$$

Moreover, $(1, \lambda_1(t))(\tilde{q}, (1, \ldots, 1)) \in D \ \forall t$, so $\theta \times \{0\}$ is in the closure of D inside E_2 . In conclusion, the colors of E_2 are the closures of those of G_1/H_1 . \Box

5 Properties of $Env(G_0/K_0)$

The goal of this section is to establish some properties of $\text{Env}(G_0/K_0)$, generalizing those of the enveloping semigroup of a semisimple group.

5.1 Orbit structure of $Env(G_0/K_0)$

The orbit structure of $\operatorname{Env}(G_0/K_0)$ under the action of G_1 is exactly the same as the decomposition of $\operatorname{Env}(G_0)$ under the action of $G_0 \times T_0/\Delta^{1,-1}(Z_0)$ (or $G_0 \times T_0$). Let Σ be the Dynkin diagram of the root system $\overline{R_0}$. For a subset $I \subseteq \{1, \ldots, l\}, \Sigma_I$ denotes the subdiagram corresponding to the roots $\overline{\alpha_i}$ with $i \in I$.

Definition 2 (cf. [Vin]). A pair (I, J) of subsets $I, J \subseteq \{1, ..., l\}$ is said to be essential if no connected component of the complement of J is entirely contained in I.

Proposition 4. There exists a bijection between G_1 -orbit closures inside the variety $Env(G_0/K_0)$ and essential pairs (I, J) of subsets $I, J \subseteq \{1, \ldots, l\}$.

Proof. For a simple spherical variety, there exists a bijection between orbit closures and colored faces of its colored cone (see [Knop] for a definition of colored face); therefore, to retrieve Vinberg's parametrization in terms of essential pairs, we simply have to establish a bijection between colored faces of $C(\text{Env}(G_0/K_0))$ and such pairs exactly as in [Ritt1] §5.3.

5.2 Toric subvarieties

In [Vin], Vinberg considers the closure of the center and of a maximal torus of G inside a given reductive algebraic monoid with group of units G. On the other

hand, in [DP2], DeConcini and Procesi use in an essential way the closure of a maximal anisotropic torus inside the wonderful completion of G_{ad}/K_{ad} . Our intention now is to relate this second toric variety to the closure of S_{1H_1} inside $\text{Env}(G_0/K_0)$.

Let $\overline{S_0/N_0}$ be the closure of the embedding of S_0/N_0 in G_{ad}/K_{ad} given by the morphism $s \mapsto s \cdot H_0$, $s \in S_0$. $\overline{S_0/N_0}$ is the complete toric variety associated to the fan in $X_*(S_0/N_0) \otimes_{\mathbb{Z}} \mathbb{Q}$ given by the decomposition into Weyl chambers ([DP2] §5.3); in particular, it is non-singular. In fact, the Weyl chamber spanned by our choice of fundamental coweights $\tilde{\eta}_i$ is just the affine cell $S_0 = 1 \times \mathbb{A}^l \subseteq$ \mathcal{B} . Furthermore, since $\overline{S_0/N_0}$ contains the affine cell \mathcal{S}_0 , it follows from the description given in section 4 that $\overline{S_0/N_0}$ intersects every G_0 -orbit of $\overline{G_{ad}/K_{ad}}$.

We follow the same procedure as in section 4. Let F_0 be the vector bundle $\bigoplus_{i=1}^{l} L_i^{\vee}|_{\overline{S_0/N_0}}$, and let $F_1 = \operatorname{Spec} \Gamma(F_0, \mathcal{O}_{F_0})$. That F_0 is an embedding of S_{1H_1} is clear because the stabilizer of p (see the proof of proposition 1) under the action of S_1 is $S_1 \cap H_1$; since the natural equivariant morphism $F_0 \longrightarrow F_1$ is birationnal, F_1 is also an S_{1H_1} -toric variety.

 F_0 is a closed subvariety of E_0 , and the proper morphism $\varphi : E_0 \longrightarrow E_1$ maps F_0 onto F_1 . In fact, the restriction homomorphism $\Gamma(\overline{G_{ad}/K_{ad}}, L) \longrightarrow \Gamma(\overline{S_0/N_0}, L)$ is surjective for L as in the next paragraph. Therefore, $F_2 = F_1 \times_{A_1} A$ is closed in $\operatorname{Env}(G_0/K_0)$, and it corresponds to the closure of S_{1H_1} inside $\operatorname{Env}(G_0/K_0)$. The next lemma shows that it is a toric variety.

Lemma 5. F_2 is a normal variety.

Proof. Fix n_1, \ldots, n_l , and set $L = L_1^{\otimes n_1} \otimes \cdots \otimes L_l^{\otimes n_l}$; let's find the decomposition of $\Gamma(\overline{S_0/N_0}, L)$ under the action of $S_{0K_0} \times 1$. $\overline{S_0/N_0}$ is covered by affine cells $\mathcal{B}_1, \ldots, \mathcal{B}_r$, \mathcal{B}_i corresponding to the i^{th} Weyl chamber inside $X^*(S_0/N_0) \otimes_{\mathbb{Z}} \mathbb{Q}$. (Fix an arbitrary ordering of these chambers so that \mathcal{B}_1 corresponds to $\overline{C_0}$, the positive Weyl chamber.) For each i, let $\{\overline{\eta}_i^1, \ldots, \overline{\eta}_i^r\}$ be the orbit of $\overline{\eta}_i$ under the action of $\overline{\mathcal{W}_0}$, ordered in such a way that $\overline{\eta}_i^j$ is in the j^{th} Weyl chamber.

L trivializes over \mathcal{B}_1 , so $\Gamma(\mathcal{B}_1, L) = \bigoplus_{u \in S} \chi^u$ where S is defined as the set $\{u \in X^*(S_{0K_0}) | u = w_0(\sum_{i=1}^l n_i \overline{\eta}_i - \overline{\alpha}), \overline{\alpha} \in \mathbb{Z}^+ \overline{R_0}^+, n_i \ge 0\}$. This follows from the fact that there exists a non-vanishing section over \mathcal{B}_1 of weight $-w_0(\sum_{i=1}^l n_i \overline{\eta}_i),$ and the others are obtained by multiplying it by the functions $x_j, j = 1, \ldots, l$.

Let w_1, \ldots, w_r be the elements of \overline{W}_0 such that w_i takes C_0 to the i^{th} Weyl chamber. Then

$$\Gamma(\overline{S_0/N_0}, L) = \bigcap_{i=1}^r \Gamma(L, \mathcal{B}_i) = \bigoplus_{u \in \bigcap_{i=1}^r w_i(S)} k \cdot \chi^u.$$

 $\cap_{i=1}^{r} w_i(S)$ consists of the integral points inside a polyhedron in the vector space $X^*(S_{0K_0}) \otimes_{\mathbb{Z}} \mathbb{Q}$. Set $S_{n_1,\dots,n_l} = \cap_{i=1}^{r} w_i(S)$. Then

$$k[F_1] = \bigoplus_{\substack{n_1, \dots, n_l \ge 0\\ u \in S_{n_1, \dots, n_l}}} k \cdot \chi^u.$$

As an $S_{0K_0} \times S_{0K_0}$ -module, the decomposition of $k[F_1]$ is

$$k[F_1] = \bigoplus_{\substack{n_1, \dots, n_l \ge 0\\ u \in S_{n_1, \dots, n_l}}} k \cdot \chi^u \otimes_k \chi^{n_1 \overline{\eta}_1 + \dots + n_l \overline{\eta}_l}.$$

Notice that the weight semigroup of F_1 contains $\{(-w_j\overline{\eta}_i, -\overline{\eta}_i)\}_{i,j=1}^{l,r}$. Moreover it contains also $(0, -\overline{\alpha})$ for $\overline{\alpha} \in \mathbb{Z}\overline{R_0} \cap \overline{C_0}$: if $-\overline{\alpha} = \sum_{k_i > 0} -k_i\overline{\eta}_i$; then

$$r(0, -\overline{\alpha}) = \sum_{j=1}^{r} \sum_{i=1}^{l} k_i(-w_j(\overline{\eta}_i), -\overline{\eta}_i)$$

is in the weight semigroup of F_1 . But this semigroup is a saturated subsemigroup of the lattice $X^*(S_{1H_1})$ since F_1 is normal, so it contains $(0, -\overline{\alpha})$.

The weight semigroup of $k[F_2]$ is generated by

$$\{(-w_j(\overline{\eta}_i), -\overline{\eta}_i), (0, -\overline{\alpha}_i)\}_{i,j=1}^{l,r}.$$

Indeed, if $\kappa = (\kappa', \kappa'')$ belongs to that semigroup, then $\kappa' \in \mathbb{Z}^+ \{w_j(\overline{\eta}_i)\}_i^l$ for some (fixed) j, and $\kappa'' - w_j^{-1}(\kappa') \in \mathbb{Z}^+ \overline{R_0}^+$.

Set $\Xi_i^j = (w_j(\overline{\eta}_i), \overline{\eta}_i)$, so that $k[F_2] = k[\chi^{\Xi_i^j}, \chi^{(0,\overline{\alpha_i})}]_{i,j=1}^{l,r}$. We claim that the weight semigroup of F_2 is a saturated subsemigroup of $X^*(S_{1H_1})$, which implies that F_2 is normal. Indeed, suppose that $(\lambda, \mu) \in X^*(S_{1H_1})$ and $r(\lambda, \mu) \in \mathbb{Z}^+\{-\Xi_i^j, (0, -\overline{\alpha_i})\}_{i,j=1}^{l,r}$ for some $r \in \mathbb{Z}^+$; then $r\lambda = -w_j\overline{\eta}, r\mu = -\overline{\eta} - \overline{\alpha}$ for some $\overline{\eta} \in X^+(S_{0K_0}), \overline{\alpha} \in \mathbb{Z}^+\overline{R_0}^+$. It follows that $\overline{\eta} = r\overline{\eta}', \lambda = -w_j(\overline{\eta}')$, and $r\mu = -r\overline{\eta}' - \overline{\alpha}$, so $\overline{\alpha} = r(-\mu + \lambda - \lambda - \overline{\eta}')$. $\mu - \lambda \in \mathbb{Z}R_0$, and $-\lambda - \overline{\eta}' = w_j(\overline{\eta}') - \overline{\eta}' \in \mathbb{Z}R_0$, hence $\overline{\alpha} \in r\overline{R_0}, \ \overline{\alpha} = r\overline{\alpha}'$. We deduce that $\mu = -\overline{\eta}' - \overline{\alpha}'$, so (λ, μ) belongs to the weight semigroup of $k[F_2]$.

From the theory of toric varieties, we know that to each face τ of the cone of F_2 corresponds a distinguished idempotent element x_{τ} , which is the unique one in the orbit associated to τ . For an arbitrary toric variety \mathcal{Z} , we call a point x an idempotent if x is an idempotent for one (hence any) affine toric subvariety of \mathcal{Z} containing x.

Proposition 5. Any two idempotents of F_2 which are in the same G_1 -orbit are conjugate under the action of $\overline{W_0}$.

Proof. $\overline{W_0}$ acts on $\overline{S_0/N_0}$, and combinatorially this action is described by the action of $\overline{W_0}$ on the Weyl chambers. This action lifts to F_0 , hence also to F_1 and F_2 . (In the latter case, $\overline{W_0}$ acts trivially on A and A_1 .) Furthermore, $\overline{W_0}$ permutes the idempotents of $\overline{S_0/N_0}$ in the sense that if $C_1, C_2 = w(C_1), w \in \overline{W_0}$, are two Weyl chambers corresponding to the affine cells A_{C_1}, A_{C_2} inside $\overline{S_0/N_0}$, and if $x \in A_{C_1}$ is an idempotent, then so is $\omega(x)$.

 F_0 is covered by the affine cells $A_C \times \mathbb{A}^l = F_0|_{A_C}$ and $\overline{\mathcal{W}}_0$ permutes these; therefore, the idempotents in F_0 which are in the same orbit under the action of G_1 are conjugate under the action of $\overline{\mathcal{W}_0}$. $\bigoplus_{i=1}^l (L_i^{\vee}|_{\overline{S_0/N_0}} \setminus \{\text{zero section}\})$ is isomorphic to $F_1 \setminus \{0\}$, so the same is true about idempotents in F_1 .

Now suppose $(p_1, q_1), (p_2, q_2) \in F_1 \times A$ are idempotents in the same G_1 -orbit. Then q_1 and q_2 are in the same S_0 -orbit, so $q_1 = q_2$. From what we know about F_1 , it follows that p_1 and p_2 are conjugate under the action of $\overline{W_0}$. Therefore, the same assertion holds for F_2 .

Proposition 6. Every G_1 -orbit of $Env(G_0/K_0)$ meets F_2 .

Proof. Every G_0 -orbit of E_0 meets F_0 : this follows from the fact that S_0/N_0 intersects all the G_0 -orbit of $\overline{G_{ad}/K_{ad}}$. Since the morphism $E_0 \longrightarrow E_1$ is surjective and it is compatible with $F_0 \longrightarrow F_1$ under the immersions $F_0 \longrightarrow E_0$ and $F_1 \longrightarrow E_1$, the same is true for E_1 and F_1 , hence also for E_2 and F_2 . \Box

Remark 2. It is a general result, due to M. Putcha, that in a reductive algebraic monoid M with unit group G any $G \times G$ -orbit contains an idempotent which can, furthermore, be chosen in the closure of a maximal torus of G and is then unique up to the action of the Weyl group.

From the two previous propositions, we conclude that we can retrieve the orbit decomposition of $\text{Env}(G_0/K_0)$ from the orbit structure of F_2 :

 $\{G_1 - \text{orbits in Env}(G_0/K_0)\} = \{S_1 - \text{orbits of } F_2\}/\overline{\mathcal{W}_0}.$

5.3 Abelianization

In [Vin], Vinberg characterizes the enveloping semigroup in terms of a certain universal property among a family of reductive monoids. We want to give a similar characterization of $\operatorname{Env}(G_0/K_0)$ following the same steps. If \mathcal{X} is a *G*-equivariant affine embedding of a homogeneous space G/L of the reductive group G, G' = [G, G], we call the categorical quotient \mathcal{X}/G' the abelianization of \mathcal{X} ; it is a toric variety endowed with an action of the torus G/G'. We will generalize this definition to arbitrary simple embeddings, and then will study the properties of the abelianization map in the affine case and determine when it is a flat integral submersion, i.e. when it is dominant, flat, with reduced and irreducible fibers. Such an embedding of G/L is simply called flat. We will consider dominant embeddings of varieties other than G_0/H_0 and G_1/H_1 ; their classification is similar to the one given in section 1.4, and the reader is refered to [Vust2] for all the general results.

Let $G = G_0 \times T_0$ be a reductive group with Borel subgroup $B = B_0 \times T_0$ and maximal torus $T = T_0 \times \widetilde{T}_0$, and let L be a closed subgroup. Let $p_2 : G \longrightarrow \widetilde{T}_0$ be the projection onto the second component(similarly for p_1). The submersion $\varrho : G/L \longrightarrow G_0 \setminus G/L \cong \widetilde{T}_0/p_2(L)$ induces an injection $\varrho^* : X^*(\widetilde{T}_0/p_2(L)) \hookrightarrow$ $\Lambda_+(G/L)$ and a linear map $\varrho_* : \mathcal{Q}(G/L) \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow X_*(\widetilde{T}_0/p_2(L)) \otimes_{\mathbb{Z}} \mathbb{Q}$ where $\mathcal{Q}(G/L) = \operatorname{Hom}_{\mathbb{Z}}(\Lambda(G/L),\mathbb{Z}).$ **Definition 3.** The abelianization Ab(E) of E is the $\widetilde{T}_0/p_2(L)$ -toric variety whose cone in $X_*(\widetilde{T}_0/p_2(L)) \otimes_{\mathbb{Z}} \mathbb{Q}$ is the image of $\mathcal{C}(E)$ under ϱ_* , and the abelianization morphism is the one determined by ϱ_* .

If E is affine, Ab(E) is just the categorical quotient under the action of G_0 , i.e. $Ab(E) = E/G_0$. Indeed, $\varrho_* : \mathcal{C}(E) \longrightarrow \mathcal{C}(Ab(E))$ induces a homomorphism $\varrho^* : \mathcal{C}(Ab(E))^{\vee} \hookrightarrow \mathcal{C}(E)^{\vee}$ and $\rho^*(-\mathcal{C}(Ab(E))^{\vee}) = -\mathcal{C}(E)^{\vee} \cap (0 \oplus X^*(\widetilde{T}_0/p_2(L)))$, which is the weight semigroup of $k[E]^{G_0}$. Therefore, $k[Ab(E)] \cong k[E]^{G_0}$, and the homomorphism of rings induced by $\varrho_* : \mathcal{C}(E) \longrightarrow \mathcal{C}(Ab(E))$ is the inclusion $k[E]^{G_0} \hookrightarrow k[E]$.

Any symmetric variety arising from an involution of a reductive group with semisimple part G_0 is isomorphic to one coming from a group $G_0 \times \widetilde{T}$, \widetilde{T} a torus, and an involution ς such that $\varsigma(G_0) = G_0$ and $\varsigma(1, t) = (1, t^{-1}) \ \forall t \in \widetilde{T}$. We call such a symmetric variety unmixed.

Let \mathcal{E}' be the set of unmixed symmetric varieties whose semisimple part is G_0/K_0 and which come from an involution of a reductive algebraic group with semisimple part equal to G_0 . The semisimple part of $G_0 \times \widetilde{T}_0/L, G_0^{\varsigma} \times \widetilde{T}_{0,2} \subset L \subset N_{G_0 \times \widetilde{T}_0}(G_0^{\varsigma} \times \widetilde{T}_{0,2})$, is $G_0/L_0, L_0 = L \cap (G_0 \times 1)$. Let \mathcal{E} be the set of flat embeddings of symmetric varieties isomorphic to elements of \mathcal{E}' .

Theorem 3 (cf. [Vin] prop.5)). For any $E \in \mathcal{E}$ which is an embedding of the symmetric variety G/L, and if m = n (§1.2), any isomorphism φ_0 of the semisimple part of G/L with G_0/K_0 can be extended to an equivariant morphism $\varphi : E \longrightarrow Env(G_0/K_0)$ which is excellent with respect to the abelianization maps.

(Excellent means that the canonical morphism $E \longrightarrow \operatorname{Env}(X_0) \times_A Ab(E)$ is an isomorphism, $A = Ab(\operatorname{Env}(X_0))$.)

The proof of this proposition will occupy the rest of this subsection. First, we have to find a criterion in terms of colored cones which characterizes flat, simple embeddings. E will denote an embedding of an unmixed symmetric variety $G/L \in \mathcal{E}'$ for $G = G_0 \times \widetilde{T}_0$ arising from an involution ς , $K = G^{\varsigma} = K_0 \times \widetilde{T}_{0,2}$, and $S = S_0 \times \widetilde{T}_0$ will be a maximal anisotropic torus of G inside the ς -stable maximal torus $T = T_0 \times \widetilde{T}_0$, so that $\mathcal{C}(E) \subseteq X_*(S_L)$. Let L_1 be the finite group $L \cap S/K \cap S$, so that $S_L \cong (S_{0K_0} \times \widetilde{T}_0/\widetilde{T}_{0,2})/L_1$ and $X^*(S_L) \cong (X^*(S_{0K_0}) \oplus X^*(\widetilde{T}_0/\widetilde{T}_{0,2}))^{L_1}$.

As suggested by Vinberg, we define a preorder on $-\mathcal{C}(E)^{\vee} \cap X^+(S_L)$ by $\nu_1 \geq \nu_2$ if $\nu_1 - \nu_2 \in (0 \oplus X^*(\widetilde{T}_0/p_2(L))) \cap (\mathcal{C}(E)^{\vee})$. (We cannot obtain a partial order because, unlike in the case of toric varieties, it does not seem possible in general to reduce to the case when $\mathcal{C}(E)^{\vee} \cap (X^*(\widetilde{T}_0/p_2(L)) \otimes_{\mathbb{Z}} \mathbb{Q})$ contains no linear subspaces.) Let \mathcal{M} be the set of minimal elements, ν_1 being minimal if $\nu_2 \leq \nu_1 \Longrightarrow \nu_1 \leq \nu_2$.

Proposition 7. $Ab : E \longrightarrow Ab(E)$ is flat and its fibers are reduced and irreducible if and only if there exists a homomorphism $h_* : X_*(\widetilde{T}_0/\widetilde{T}_{0,2}) \longrightarrow X_*(S_0 \times 1_L)$ and a cone $\Delta \subseteq X_*(\widetilde{T}_0) \otimes_{\mathbb{Z}} \mathbb{Q}$ such that $\mathcal{C}(E)$ is of the form

 $\begin{array}{l} \{(\lambda_1,\lambda_2) \in X_*(S_L) | \lambda_1 + h_*(\lambda_2) \in \text{ span of } \mathcal{F}(E), \lambda_2 \in \Delta\}, \text{ and } h^* \text{ satisfies } \\ \chi^{h^*(\nu)}(p_2(x)) = \chi^{-\nu}(p_1(x)) \ \forall x \in L \cap S, \forall \nu \in X^*(S_0 \times 1_L). \end{array}$

Corollary 1. The abelianization morphism of $Env(X_0)$ is a flat integral submersion.

Proof. In this case, Δ is the cone generated by $-w_0(\tilde{\eta}_i), i = 1, \ldots, l$ and $h_* : X_*(S_{0K_0}) \longrightarrow X_*(S_{0K_0})$ is w_0 . \Box

The previous proposition is a consequence of the next three results.

Lemma 6. The following statements are equivalent:

- 1. $Ab: E \longrightarrow Ab(E)$ is flat.
- 2. $k[E] \cong k[Ab(E)] \otimes_k k[G/L]_{\mathcal{M}_1}$, where $k[G/L]_{\mathcal{M}_1} = \bigoplus_{\mu \in \mathcal{M}_1} k[G/L]_{\mu}$ and \mathcal{M}_1 is a set of representatives of the cosets in \mathcal{M} of the group $(-\mathcal{C}(E)^{\vee}) \cap \mathcal{C}(E)^{\vee} \cap X^*(\widetilde{T}_0/p_2(L)).$

Proof. 2) \implies 1)is clear, so let us turn to the other implication. The essential point here is that the k[Ab(E)]-submodule $k[E]^{U_2}$ of k[E] admits a complement which is also a k[Ab(E)]-module. The rest of the proof is as in [Vin]; it consists of showing that if $\nu_1, \nu_2 \in \mathcal{M}, \chi_1, \chi_2 \in (-\mathcal{C}(E)^{\vee}) \cap X^*(\widetilde{T}_0/p_2(L))$ and $\nu_1 + \chi_1 = \nu_2 + \chi_2$, then $\nu_1 \geq \nu_2$ and $\nu_2 \geq \nu_1$.

Lemma 7. The fibers of $Ab : E \longrightarrow Ab(E)$ are reduced and irreducible if and only if \mathcal{M} is a subsemigroup of $(-\mathcal{C}(E)^{\vee}) \cap X^+(S_L)$.

Proof. Let e be the distinguished idempotent in the unique closed orbit in Ab(E). It is sufficient to determine when the fiber $Ab^{-1}(e)$ is reduced and irreducible, and for this we can argue as in [Vin] §4. \Box

We will need also the following lemma whose proof is similar to the one of proposition 12 in [Ritt2].

Lemma 8. Let G/L be a symmetric variety. Let τ be a polyhedral cone contained in $\mathbb{Q}^+\mathcal{V}(G/L)$ such that $\tau + \mathbb{Q}^+\rho(\mathcal{D}(G/L))$ is strictly convex. Then there exists a unique subset $\widetilde{\mathcal{F}} \subset \rho(\mathcal{D}(G/L))$ and a set of colors $\mathcal{F} \subset \mathcal{D}(G/L)$ such that $\widetilde{\mathcal{F}} = \rho(\mathcal{F})$ and the colored cone $(\tau + \mathbb{Q}^+\widetilde{\mathcal{F}}, \mathcal{F})$ corresponds to an affine embedding of G/L.

Proof of proposition 7. Let us translate the results above into the language of colored cones. We assume first that E is flat. Then we get a group epimorphism $\mathcal{M} - \mathcal{M} \longrightarrow X^*(S_0 \times 1_L)$ (it is surjective since the dominant morphism $G/L \longrightarrow E$ is an embedding), so we can find a homomorphism $X^*(S_0 \times 1_L) \longrightarrow \mathcal{M} - \mathcal{M}$ which is a right inverse. This inverse is of the form $\nu \longrightarrow (\nu, h^*(\nu))$, where h^* is a group homomorphism $X^*(S_0 \times 1_L) \longrightarrow X^*(\widetilde{T}_0/\widetilde{T}_{0,2})$, and $\nu \in X^+(S_0 \times 1_L) \implies h^*(\nu) \in \mathcal{M}$; since $(\nu, h^*(\nu)) \in X^*(S_L), \chi^{h^*(\nu)}(p_2(x))$ and $\chi^{-\nu}(p_1(x))$ are equal for all $x \in L \cap S$. Setting $\Delta^{\vee} = -\mathcal{C}(E)^{\vee} \cap (X^*(\widetilde{T}_0) \otimes_{\mathbb{Z}} \mathbb{Q})$,

we conclude that $-(\mathcal{C}(E) + \rho(\mathcal{D}(G/L)))^{\vee} = \{(\nu, \mu) \in X^*(S_L) | \mu - h^*(\nu) \in -\Delta^{\vee}, \nu \in X^+(S_0 \times 1_L)\}.$

Consider the \mathbb{Q}^+ -cone $\tau = \{(-h_*(\tilde{\eta}), \tilde{\eta}) | \tilde{\eta} \in \Delta\}$ in $\mathbb{Q}^+ \mathcal{V}(G/L), \Delta$ being the dual of Δ^{\vee} in $X_*(\tilde{T}_0/\tilde{T}_{0,2})$. Then $(\mathcal{C}(E) + \mathbb{Q}^+\rho(\mathcal{D}(G/L)))^{\vee} = (\tau + \mathbb{Q}^+\rho(\mathcal{D}(G/L)))^{\vee}$, hence $\mathcal{C}(E) + \mathbb{Q}^+\rho(\mathcal{D}(G/L)) = \tau + \mathbb{Q}^+\rho(\mathcal{D}(G/L))$. $\mathcal{C}(E) + \mathbb{Q}^+\rho(\mathcal{D}(G/L))$ is strictly convex since its dual is the highest weight semigroup of E, which generates $X^*(S_L)$ as a group. According to lemma 8, there exists $\mathcal{F} \subseteq \mathcal{D}(G/L)$ such that $(\tau + \mathbb{Q}^+\rho(\mathcal{F}), \mathcal{F})$ is the colored cone of an affine embedding \tilde{E} of G/L. The \mathbb{Q}^+ -span of the highest weight semigroup of \tilde{E} is $-(\tau + \mathbb{Q}^+\rho(\mathcal{D}(G/L)))^{\vee}$, so $\tilde{E} \cong E$ and $\mathcal{F} = \mathcal{F}(E)$.

Conversely, if $\mathcal{C}(E)$ is of the form given in proposition 7, then the second of the two equivalent statements in each of lemma 6 and 7 holds. \Box

We are now in a position to prove theorem 3.

Proof. Let $E \in \mathcal{E}$. The notation related to E is borrowed from the proof of proposition 7. We can assume that φ_0 is the identity. The homomorphism h_* can be extended to a homomorphism $\widetilde{h_*}: X_*(S_L) \longrightarrow X_*(S_{1H_1})$: indeed, by our assumption on h^* and the fact that $\chi^{\nu}|_{N_0} = \chi^{w_0(\nu)}|_{N_0}$, the composite of $id \times (h^* \circ w_0)$ with the homomorphism $X^*(S_{1H_1}) \longrightarrow X^*(S_{1K_1})$ maps to $X^*(S_L)$, and we let $\widetilde{h_*}$ be its adjoint.

We claim that $h_*(\mathcal{C}(E)) \subseteq \mathcal{C}(\operatorname{Env}(G_0/K_0))$. Combined with the fact that $\widetilde{h_*}(\mathcal{F}(E)) \subseteq \mathcal{F}(\operatorname{Env}(G_0/K_0))$, this shows that E admits a morphism to the variety $\operatorname{Env}(G_0/K_0)$ (see [Knop]); that this morphism is excellent can be deduced as in [Vin]. From the proof of lemma 11, we know that $V_{\overline{\eta}_i}^2$ contains $V_{2\overline{\eta}_i-\overline{\alpha_i}}$ as an irreducible component. Therefore, $(2\overline{\eta}_i, h^*(2\overline{\eta}_i))$ and $(2\overline{\eta}_i - \overline{\alpha_i}, h^*(2\overline{\eta}_i))$ both belong to the highest weight semigroup of k[E]. It follows that $\widetilde{h_*}(\overline{\alpha_i}) \in -\Delta^{\vee}$.

If $\tilde{\eta} \in \Delta$, then $\langle \tilde{\eta}, -h^*(\overline{\alpha_i}) \rangle \geq 0 \implies \langle -h_*(\tilde{\eta}), \overline{\alpha_i} \rangle \geq 0$, so $-h_*(\tilde{\eta}) \in X_+(S_{0K_0})$. As a consequence, we conclude that $\tilde{h}_*(-h_*(\tilde{\eta}), \tilde{\eta})$, which equals $(-h_*(\tilde{\eta}), w_0(h_*(\tilde{\eta})))$, is in the \mathbb{Z}^+ -span of $\{(\tilde{\eta}_i, -w_0(\tilde{\eta}_i))\}_{i=1}^l$; this proves our claim. \Box

6 Construction of $\overline{G_{ad}/K_{ad}}$ from $\operatorname{Env}(G_0/K_0)$

The wonderful completion of G_{ad}/K_{ad} can be realized as a geometric quotient of an open subvariety of $\text{Env}(G_0/K_0)$ when m = n (§1.2), which we will assume throughout this section; in the case when G_0/K_0 is a semisimple algebraic group, this was done by Vinberg ([Vin]) and our approach his similar to his.

The S_0/N_0 -orbits of $A \ (\cong \mathbb{A}^l)$ are parametrized by subsets of $\{1, \ldots, l\}$ in the obvious way. We denote by S_I the orbit corresponding to $I \subseteq \{1, \ldots, l\}$. More precisely, $S_{\{1,\ldots,\hat{j},\ldots,l\}}$ has codimension one, and S_I is the open orbit in $\bigcap_{j \notin I} \overline{S_{\{1,\ldots,\hat{j},\ldots,l\}}}$. For $I \subseteq \{1,\ldots,l\}$, let \mathcal{O}_I be the unique G_1 -orbit in $Ab^{-1}(\overline{S_I})$ which is open in $Ab^{-1}(\overline{S_I})$. **Theorem 4.** Let Σ be the open G_1 -stable subvariety $\cup_I \mathcal{O}_I$ of $Env(G_0/K_0)$. Then there exists a geometric quotient $\Sigma/1 \times S_0$, and it is isomorphic to the wonderful completion of G_{ad}/K_{ad} .

Lemma 9. Σ is simple.

Proof. If $I \neq \phi$, consider $S_I \subset \overline{S_I} \subset A$ and $Ab^{-1}(\overline{S_I})$. (\subset denotes a strict inclusion.) \mathcal{O}_I is open in $Ab^{-1}(S_I)$, and $\overline{\mathcal{O}_I} = Ab^{-1}(\overline{S_I}) \supset \mathcal{O}_I$. Choose $k \in I$; then $S_{I \setminus \{k\}} \subseteq \overline{S_I}$, so $\mathcal{O}_{I \setminus \{k\}} \subseteq \overline{\mathcal{O}_I} \cap \Sigma$, whence $\mathcal{O}_{I \setminus \{k\}}$ is in the closure of \mathcal{O}_I inside Σ . Therefore, \mathcal{O}_{ϕ} is the only closed orbit in Σ . \Box

Lemma 10. Σ has no colors.

Proof. $\overline{\mathcal{O}}_{\phi} = Ab^{-1}(0)$ and the ideal of functions vanishing on this fiber is

$$\bigoplus_{\nu \in \Lambda_+(G_1/H_1) \setminus \mathcal{M}} k[\operatorname{Env}(G_0/K_0)]_{\nu}.$$

 \mathcal{M} is the subsemigroup of $\Lambda_+(G_1/H_1)$ generated by $\{(\overline{\eta}_i, w_0(\overline{\eta}_i))\}_{i=1}^l$. In particular, since $(\overline{\eta}_i, w_0(\overline{\eta}_i)) \in \mathcal{M}, f_i^1 \neq 0$ on \mathcal{O}_{ϕ} , where f_i^1 is a (fixed) choice of a highest weight vector in $k[\operatorname{Env}(G_0/K_0)]_{(\overline{\eta}_i, w_0(\overline{\eta}_i))}$ with respect to B_1 . However, we claim that each f_i^1 is identically zero on (at least) one color of G_1/H_1 , which will complete the proof.

Let $\pi : G_0 \longrightarrow G_0/K_0$ be the quotient morphism, and let \tilde{D}_i be a color of G_0/K_0 . According to lemma 3.4 in [Vust2], if we let \tilde{f}_i be a generator of the ideal of $\pi^{-1}(\tilde{D}_i)$ in $k[G_0]$ (G_0 is simply connected, so its divisor class group is trivial), $1 \leq i \leq q$, q being the cardinality of $\mathcal{D}(G_0/K_0)$, then we can divide these \tilde{f}_i in such a way that, up to reordering, $\tilde{f}_i \in k[G_0/K_0]$ for $1 \leq i \leq q - 2r(K_0)$ ($r(K_0)$ being the rank of the character group of K_0), and for each $q - 2r(K_0) < i \leq q - r(K_0)$, \tilde{f}_i is an eigenvector under right multiplication by K_0 , and there exists $\tilde{f}_{i+r(K_0)}$ such that $\tilde{f}_i \tilde{f}_{i+r(K_0)}$ is invariant under K_0 ; furthermore, we can take f_i^1 to be \tilde{f}_i if $1 \leq i \leq q - 2r(K_0)$ and to be $\tilde{f}_i \tilde{f}_{i+r(K_0)}$ if $q - 2r(K_0) < i \leq q - r(K_0)$. $f_i^1 = \tilde{f}_i \otimes_k \chi^{-w_0(\bar{\eta}_i)}$ is a regular function on $G_0/K_0 \times S_{0K_0}$ and it vanishes

 $f_i^1 = f_i \otimes_k \chi^{-w_0(\overline{\eta}_i)}$ is a regular function on $G_0/K_0 \times S_{0K_0}$ and it vanishes on the divisor $D_i = \widetilde{D_i} \times S_{0K_0}$. Furthermore, f_i^1 descends to a regular function on G_1/H_1 , and its divisor of zeros contains a color of G_1/H_1 . \Box

Consider the B_1 -stable affine subvariety $\mathcal{B}_{\Sigma} = \Sigma \setminus \bigcup_{D \in \mathcal{D}(G_1/H_1)} \overline{D}$ [Knop]. Let $\Omega_i = k[G_1/H_1]^*_{(\overline{\eta}_i, w_0(\overline{\eta}_i))}, \ \Omega = \bigoplus_{i=1}^l \Omega_i$. For each i, choose a basis $f_i^1, \ldots, f_i^{n_i}$ of the irreducible G_1 -module $k[G_1/H_1]_{(\overline{\eta}_i, w_0(\overline{\eta}_i))}$ consisting of eigenvectors of T_1 with f_i^1 as above. Let $\{f_i^{j,*}\}_{j=1}^{n_i}$ be the dual basis. We consider the equivariant morphism ψ : $\operatorname{Env}(G_0/K_0) \longrightarrow \Omega$ given by $\psi(x) = \sum_{i,j} f_i^j(x) f_i^{j,*}$ for $x \in \operatorname{Env}(G_0/K_0)$. Set $\Omega'_i = \Omega_i \setminus \{0\}, \Omega' = \bigoplus_{i=1}^l \Omega'_i$, and $\Omega''_i = \{\sum_{j=1}^{n_i} a_i^j f_i^{j,*} \in \Omega_i | a_i^1 \neq 0\} = \{v \in \Omega_i | f_i^1(v) \neq 0\}, \Omega'' = \bigoplus_{i=1}^l \Omega''_i$.

Lemma 11. $\psi|_{\mathcal{B}_{\Sigma}}$ is a closed immersion into Ω'' .

Proof. The complement of \mathcal{B}_{Σ} in $\operatorname{Env}(G_0/K_0)$ consists of the closures inside $\operatorname{Env}(G_0/K_0)$ of the colors of G_1/H_1 because \mathcal{B}_{Σ} meets every G_1 -stable prime divisor. Therefore $k[\mathcal{B}_{\Sigma}] = k[\operatorname{Env}(G_0/K_0)][(f_1^1)^{-1}, \ldots, (f_l^1)^{-1}]$. We only have to verify that the characters $\chi^{-w_0(\overline{\alpha_i})}$ of S_0 are in the algebra generated by the f_i^j and the $(f_i^1)^{-1}$.

Let $V_{\overline{\eta}}$ be the irreducible representation of G_0 with highest weight $\overline{\eta}$. Under our assumptions, $\overline{\eta}_i = (\omega_i - \sigma(\omega_i))$, and $\sigma(\omega_i) = -\omega_k$ for some k. (We assume here that i and k are fixed, $i, k \leq m$, and we do not exclude the case i = k.) The square of $V_{\overline{\eta}_i}$ contains the irreducible representation $V_{2\overline{\eta}_i - \overline{\alpha_i}}$: this can be proved after reducing to a similar problem for a reductive group of rank ≤ 2 , namely the reductive subgroup of G corresponding to the roots in $\mathbb{Z}\{\alpha_i, \alpha_k\}$. It follows that $k[G_0/K_0]_{(2\overline{\eta}_i - \overline{\alpha_i})}$ is a submodule of the product $k[G_0/K_0]_{\overline{\eta}_i}k[G_0/K_0]_{\overline{\eta}_i}$. Note that $2\overline{\eta}_i - \overline{\alpha_i}$ is a dominant weight, so we can write $2\overline{\eta}_i - \overline{\alpha_i} = \sum_{j=1}^l c_j \overline{\eta}_j$. Therefore the highest weight vector $(f_1^1)^{c_1} \cdots (f_l^1)^{c_l} \chi^{-w_0(\overline{\alpha_i})}$ of $V_{2\overline{\eta}_i - \overline{\alpha_i}} \otimes_k \chi^{-2w_0(\overline{\eta_i})}$ is contained in the subalgebra of $k[G_1/H_1]$ which is generated by the functions in $k[G_1/H_1]_{(\overline{\eta}_i,w_0(\overline{\eta_i}))}$.

We are now able to prove the following proposition.

Proposition 8. $\psi|_{\Sigma}$ is a closed immersion into Ω' .

Proof. Since ψ is equivariant, it maps Σ isomorphically onto a closed subvariety of $G_1 \cdot \Omega''$. Let's prove that $G_1 \cdot \Omega'' = \Omega'$. Fix *i*, and let $\xi \in \Omega'_i$. Since f_i^1 is a highest weight vector, the span of the vectors in its G_1 -orbit is Ω^*_i , so $\exists g \in G_1$ such that $(g \cdot f_i^1)(\xi) \neq 0$. Thus $f_i^1(g^{-1}\xi) \neq 0$ and $\xi \in g\Omega''_i$. Now if $(\xi_1, \ldots, \xi_l) \in \Omega'$, we can pick a $g \in G_1$ such that $(\xi_1, \ldots, \xi_l) \in g\Omega''$. \Box

Finally, we can prove the main result of this section.

Proof of theorem 4. $\psi(sx) = \sum_{i=1}^{l} (w_0(\overline{\eta}_i)(s) \sum_j f_i^j(x)(f_i^j)^*)$ where $s \in 1 \times S_0$, $x \in \Sigma$; this means that via ψ the action of $1 \times S_0$ on Σ becomes simply the restriction of the linear action on Ω' given by multiplication by $w_0(\overline{\eta}_i)(s)$ on the *i*th-direct summand, and a geometric quotient for this action is $\mathbb{P}(\Omega_1) \times \cdots \times \mathbb{P}(\Omega_l)$. Hence $\Sigma/1 \times S_0$ is a projective variety. Moreover, $G_1/H_1/1 \times S_0 = G_0/N_0K_0 = G_{ad}/K_{ad}$ since $H_0 = N_0K_0$ ([Rich]).

To see that $\Sigma/1 \times S_0$ is the wonderful completion of G_{ad}/K_{ad} , notice that only one orbit is closed because Σ is simple (lemma 9), and $\Sigma/1 \times S_0$ has no colors since the same is true for Σ (lemma 10) and $1 \times S_0 \subseteq B_1$.

References

- [BLV] M.Brion, D. Luna, T. Vust, Espaces homogènes sphériques, Invent. math. 84 (1986), 617-632.
- [DP1] C. De Concini, C. Procesi, Complete Symmetric Varieties I, LNM 996 (1983), 1-44.

- [DP2] C. De Concini, C. Procesi, Complete Symmetric Varieties II, Advanced Studies in Pure Mathematics 6, Algebraic Groups and Related Topics, 1985, 481-513.
- [Ful] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, 1993.
- [Knop] F. Knop, The Luna-Vust Theory of Spherical Embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups, 1991, 225-249.
- [Luna] D. Luna, Adhérences d'orbites et invariants, Invent. math. 29 (1975), 231-238.
- [LuVu] D. Luna, T. Vust, Plongements d'espaces homogènes, Comment. Math. Helvetici 58 (1983), 186-245.
- [Pop] V.L. Popov Contraction of the Actions of Algebraic Groups, Math. USSR Sbornik 58 (1987), 311-335.
- [PV] V.L. Popov, E.B. Vinberg, *Invariant Theory* in Algebraic Geometry IV, Encyclopedia of the Mathematical Sciences 55, Springer-Verlag, 1994.
- [Rich] R.W. Richardson, Orbits, Invariants, and Representations associated to Involutions of Reductive Groups, Invent. math. 66 (1982), 287-312.
- [Ritt1] A. Rittatore, Monoïdes algébriques et plongements de groupes, Ph.D. Thesis, Institut Fourier, Grenoble, 1997.
- [Ritt2] A. Rittatore, Algebraic Monoids and Group Embeddings, Transform. Groups 3 (1998), no. 4, 375-396.
- [St] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Memoirs of the AMS 80 (1968).
- [Vin] E. Vinberg, On Reductive Algebraic Semigroups, Amer. Math. Soc. Transl. 169 (1995), 145-182.
- [Vust1] T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. math. France 102 (1974), 317-333.
- [Vust2] T. Vust, Plongement d'espaces symétriques algébriques: une classification, Ann. della Sc. Norm. Sup. di Pisa XVII (1990), 165-194.