Embeddings of Symmetric Varieties Nicolas Guay

Abstract

We generalize to the case of a symmetric variety the construction of the enveloping semigroup of a semisimple algebraic group due to E.B. Vinberg, and we establish a connection with the wonderful completion of the associated adjoint symmetric variety due to C. De Concini and C. Procesi.

Introduction

In [Vin], Vinberg classifies linear algebraic semigroups in characteristic zero which are equivariant, dominant,normal, affine embeddings of reductive algebraic groups, and studies some of their properties. Furthermore, to a semisimple algebraic group G_{0}, he associates an affine algebraic monoid with certain nice properties, the enveloping semigroup $\operatorname{Env}\left(G_{0}\right)$ and shows how the wonderful completion of the adjoint group of G_{0} can be obtained from $\operatorname{Env}\left(G_{0}\right)$.

We generalize this construction to the case of a symmetric variety of a semisimple algebraic group. We adopt the following definition: a homogeneous space G / H of the reductive group G is called symmetric if there exists an involution τ of G such that $G^{\tau} \subseteq H \subseteq N_{G}\left(G^{\tau}\right), G^{\tau}$ being the subgroup of fixed points. Every symmetric variety is isomorphic to one arising from a simply connected group ([Vust2]). A classification of equivariant normal embeddings of symmetric spaces can be found in [Vust2], and those which are affine can be identified using the affinity criterion for spherical varieties given in [Knop]. Let G_{0} be a semisimple simply connected algebraic group of rank n over an algebraically closed field k of characteristic zero. Fix a non-trivial involution σ of G_{0} with fixed-point subgroup K_{0}, whose normalizer in G_{0} is written H_{0}. If Y is an affine G-variety, G a reductive algebraic group, $\Lambda(Y)$ will denote the group formed by the B-weights of the elements of the set $k(Y)^{(B)}$ of semi-invariants for the action of B, B a Borel subgroup of G. Let $G_{1}=G_{0} \times S_{0}$, with S_{0} a maximal anisotropic torus of G_{0}, and $H_{1}=\Delta^{1,-1}\left(N_{0}\right)\left(K_{0} \times S_{0}{ }^{\sigma}\right), \Delta^{1,-1}\left(N_{0}\right)=\left\{\left(s, s^{-1}\right) \mid s \in N_{0}\right\}, N_{0}=N_{S_{0}}\left(K_{0}\right)$. We define $\operatorname{Env}\left(G_{0} / K_{0}\right)$ to be the affine variety over k which is the spectrum of the ring $\oplus_{\nu \in \mathcal{L}} k\left[G_{1} / H_{1}\right]_{\nu}$, where $k\left[G_{1} / H_{1}\right]_{\nu}$ is the isotypic component of $k\left[G_{1} / H_{1}\right]$ corresponding to the integral dominant weight ν, and \mathcal{L} is the \mathbb{Q}^{+}-cone in $\left(\Lambda\left(G_{0} / K_{0}\right) \oplus X^{*}\left(S_{0 K_{0}}\right)\right)^{\Delta^{\mathrm{P},-1}\left(N_{0}\right)} \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\left\{\left(\bar{\eta}_{i}, w_{0} \bar{\eta}_{i}\right),\left(0,-\overline{\alpha_{i}}\right)\right\}_{i=1}^{l}$, $S_{0 K_{0}}$ being the group $S_{0} / S_{0} \cap K_{0}$. Here, the $\overline{\alpha_{i}}$ are the simple roots of a root system in $X^{*}\left(S_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$, the $\bar{\eta}_{i}$ are the corresponding fundamental weights, and w_{0} is the longuest element of its Weyl group. (See section 1.2 for more information on the restricted root system.) Note that since G_{1} / H_{1} is G_{1}-spherical, $k\left[G_{1} / H_{1}\right]$ is multiplicity free, so $k\left[G_{1} / H_{1}\right]_{\nu}$ is actually irreducible.

After some preliminary notions concerning symmetric varieties, the first section is devoted to the theory of spherical varieties developed by Brion, Luna
and Vust ([BLV], $[\mathrm{LuVu}]$); a concise exposition can be found in [Knop], but the main reference for us is [Vust2]. The language of colored cones developed there will be used throughout. Afterwards, we recall some properties of the wonderful compactification $\overline{G_{a d} / K_{a d}}$, constructed by De Concini and Procesi in [DP1], of the symmetric variety $G_{a d} / K_{a d}$ of the adjoint group $G_{a d}$, and in section 3 we elaborate on the definition of $\operatorname{Env}\left(G_{0} / K_{0}\right)$.

Section 4 is devoted to establishing a connection between $\operatorname{Env}\left(G_{0} / K_{0}\right)$ and $\overline{G_{a d} / K_{a d}}$ (cf. propositions 1,2,3): $\operatorname{Env}\left(G_{0} / K_{0}\right)$ is a fiber product, over an affine toric variety, of affine space with the normalization of a multicone over $\overline{G_{a d} / K_{a d}}$. The next one concerns properties of $\operatorname{Env}\left(G_{0} / K_{0}\right)$: we study its orbit decomposition (propositions 4,6), certain toric sub-varieties, and prove in section 5.3 that it enjoys a universal property (theorem 3) like Vinberg's enveloping semigroup. In the last section, we show how to construct $\overline{G_{a d} / K_{a d}}$ as a geometric quotient of an open subvariety Σ of $\operatorname{Env}\left(G_{0} / K_{0}\right)$; our approach is similar to Vinberg's, with one noticeable difference: we take the B_{1}-stable cell \mathcal{B}_{Σ} in Σ (B_{1} a Borel subgroup of G_{1}) to be the canonical affine B_{1}-stable subset introduced in [Knop].

Remark 1. All embeddings of homogeneous varieties will be assumed normal or will be shown to be so, unless otherwise specified. All varieties will be defined over the algebraically closed field k of characteristic zero.

Acknowledgements The author gratefully acknowledges the financial support of the Fonds FCAR and thanks the referees and V. Ginzburg for their comments.

1 Preliminaries

1.1 Notation

Let's introduce the rest of the notation that we will need. If $L, M<G, G$ any group, $L \cap M \triangleleft L$, then $L_{M}=L / L \cap M . Z_{0}$ is the center of G_{0}, the adjoint group of which is $G_{a d}=G_{0} / Z_{0}$; note that σ descends to $G_{a d}$, so we can define similarly $K_{a d}\left(=\left(G_{a d}\right)^{\sigma}\right)$ and the symmetric variety $G_{a d} / K_{a d}\left(\cong G_{0} / H_{0}\right)$. We fix a maximal σ-stable torus T_{0} of G_{0} containing $S_{0} . R_{0}$ is the root system of G_{0} with respect to T_{0}, and $\alpha_{1}, \ldots, \alpha_{n}$ are a choice of simple roots, the α_{i} with $i>m$ being exactly the simple roots which vanish on $\mathfrak{s}_{0}\left(=\operatorname{Lie}\left(S_{0}\right)\right)$, i.e. those which are fixed by σ. (See the next subsection for more concerning our choice of basis of $\left.R_{0}.\right) T_{0} / T_{0}^{\sigma} \cong S_{0 K_{0}}$, and the multiplication morphism $T_{0}^{\sigma} \times S_{0} \longrightarrow T_{0}$ is an isogeny. $N_{0}=N_{S_{0}}\left(K_{0}\right)$, and by lemma 1.7 in [DP1], N_{0} is the subset of elements $s \in S_{0}$ such that $s^{2} \in Z_{0}$, so N_{0} is a finite group.

We will need to extend these notions to $G_{1} . H_{1}$ was defined in the introduction and it is equal to $\left\{\left(k s, s^{-1}\right) \in G_{1} \mid k \in K_{0}, s \in N_{0}\right\} . \sigma$ gives rise to an involution of G_{1} with $G_{1}^{\sigma}=K_{1}=K_{0} \times S_{0}^{\sigma}$. Let $T_{1}=T_{0} \times S_{0}, S_{1}=S_{0} \times S_{0}$. Furthermore, if $G_{0}=\widetilde{G_{0}} \times \widetilde{G_{0}}\left(\widetilde{G_{0}}\right.$ being any reductive algebraic group over $k)$ and σ is the transposition $(x, y) \longrightarrow(y, x)$, then $K_{0}=\Delta \widetilde{G_{0}}, G_{0} / K_{0} \cong \widetilde{G_{0}}$, $S_{0}=\Delta^{1,-1}\left(\widetilde{T_{0}}\right)=\left\{\left(t, t^{-1}\right) \mid t \in \widetilde{T_{0}}\right\}, T_{0}=\widetilde{T_{0}} \times \widetilde{T_{0}}, N_{G_{0}}\left(K_{0}\right)=\left(\widetilde{Z_{0}} \times \widetilde{Z_{0}}\right) \Delta \widetilde{G_{0}}$,
$N_{0}=\left\{\left(s, s^{-1}\right) \in S_{0} \mid s^{2} \in \widetilde{Z_{0}}\right\}, S_{0} \cap K_{0}=\left\{\left(s, s^{-1}\right) \in S_{0} \mid s^{2}=1\right\}$. We claim that, in this case, $G_{1} / H_{1} \cong \widetilde{G_{0}} \times \widetilde{T_{0}} / \Delta^{1-1}\left(\widetilde{Z_{0}}\right)$. Consider the morphism $\varphi: \widetilde{G_{0}} \times \widetilde{G_{0}} \times \Delta^{1,-1}\left(\widetilde{T_{0}}\right) / M_{0} \longrightarrow \widetilde{G_{0}} \times \widetilde{T_{0}} / \Delta^{1,-1}\left(\widetilde{Z_{0}}\right)$, where $M_{0}=$ $\Delta^{1,-1}\left(N_{0}\right)\left(\Delta\left(\widetilde{G_{0}}\right) \times\left(\Delta^{1,-1}\left(\widetilde{T_{0}}\right) \cap \Delta\left(\widetilde{G_{0}}\right)\right)\right.$, defined by $\varphi\left(\left(g_{1}, g_{2}, t, t^{-1}\right) M_{0}\right)=$ $\left(g_{1} g_{2}^{-1}, t^{2}\right) \Delta^{1,-1}\left(\widetilde{Z_{0}}\right) . \varphi$ is a bijective quotient morphism, hence an isomorphism.

1.2 Restricted roots and weights

For an arbitrary algebraic group G, let $X_{*}(G)$ be the set of its one parameter subgroups and $X^{*}(G)$ be its set of characters. According to [Vust1], $\exists \tilde{\lambda} \in$ $X_{*}\left(S_{0}\right)$ such that $P_{0}(\tilde{\lambda})$ is a parabolic subgroup of G_{0} with an open dense orbit in G_{0} / K_{0}. Here $P_{0}(\tilde{\lambda})$ is defined as the parabolic subgroup of G_{0} containing T_{0} and corresponding to the roots $\left\{\alpha \in R_{0} \mid\langle\tilde{\lambda}, \alpha\rangle \geq 0\right\}$. Set $P_{0}=P_{0}(\tilde{\lambda})$; then $Z_{G_{0}}\left(S_{0}\right)=Z_{G_{0}}(\tilde{\lambda})=P_{0} \cap \sigma\left(P_{0}\right)$. Moreover, $\exists \tilde{\mu} \in X_{*}\left(T_{0}\right)$ such that $B_{0}=P_{0}(\tilde{\mu})$ is a Borel subgroup of G_{0} contained in P_{0} and $B_{0} K_{0}=P_{0} K_{0}$ is open in G_{0} (similarly for K_{0} replaced by H_{0}). We can assume that B_{0} corresponds to our previous choice of simple roots $\alpha_{1}, \ldots, \alpha_{n}$. We will need the following lemma in order to be able to use our choice of B_{0} (actually, B_{0}^{-}) in section 2.
Lemma 1. Our choice of root system satisfies the condition in lemma 1.2 of [DP1], that is, if α is a positive root which is not identically zero on \mathfrak{s}_{0}, then $\sigma(\alpha)$ is a negative root.

Proof. If α is a positive root in $\left\{\alpha \in R_{0} \mid\langle\tilde{\lambda}, \alpha\rangle>0\right\}$, then $\sigma(\alpha)$ is negative because $\sigma(\tilde{\lambda})=-\tilde{\lambda}$ ([Vust1], prop. 4) and $B_{0} \subseteq P_{0}$. Therefore, it is enough to notice that $\left\{\alpha \in R_{0} \mid\langle\tilde{\lambda}, \alpha\rangle>0\right\}$ is $\left\{\alpha \in R_{0}^{+} \mid \alpha \not \equiv 0\right.$ on $\left.\mathfrak{s}_{0}\right\}$. Indeed, if $\langle\tilde{\lambda}, \alpha\rangle=0, \alpha \in R_{0}^{+}$, then $U_{\alpha} \subseteq Z_{G_{0}}(\tilde{\lambda})=Z_{G_{0}}\left(S_{0}\right)$, hence $\alpha \equiv 0$ on \mathfrak{s}_{0}.

Set $\overline{R_{0}}=\left\{\bar{\alpha}=\alpha-\sigma(\alpha) \mid \alpha \in R_{0}\right\}$. Lemma 2.3 in [Vust2] says that $\overline{R_{0}}$ is a root system in $X^{*}\left(S_{0 H_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$, which is a \mathbb{Q}-vector space of dimension l, l being the rank of S_{0}, which is also the rank of the symmetric variety G_{0} / K_{0}. We can order the simple roots of R_{0} in such a way that $\alpha_{m+1}, \ldots, \alpha_{n}$ are exactly those fixed by σ, and $\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}$ is a set of simple roots for $\overline{R_{0}}(l<m \leq n)$; furthermore, if $i>l$ and $\sigma\left(\alpha_{i}\right) \neq \alpha_{i}$, there is an $s \leq l$ such that $\overline{\alpha_{i}}=\overline{\alpha_{s}} . \overline{\alpha_{1}} \vee, \ldots, \bar{\alpha}^{\vee}$ are the simple dual coroots. The character group of $S_{0 K_{0}}$ is $\left\{\bar{\chi}=\chi-\sigma(\chi) \mid \chi \in X^{*}\left(T_{0}\right)\right\}$. We denote by $\bar{\eta}_{i}, i=1, \ldots, l$, the fundamental weights of the root system $\overline{R_{0}}$; by lemma 3.1 in [Vust2], the weight lattice of $\overline{R_{0}}$ is $X^{*}\left(S_{0 K_{0}}\right)$ and the root lattice is $X^{*}\left(S_{0 H_{0}}\right)$.

We will need to know later how the weights $\bar{\eta}_{i}$ are related to the fundamental weights of R_{0}. We can partition these into two sets

$$
\left\{\omega_{1}, \ldots, \omega_{m}\right\},\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}, m+k=n
$$

as in [DP1] §1.3, that is, such that $\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=0$ if $j>m,\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}$ if $j \leq$ $m,\left\langle\zeta_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{(i+m) j}$ if $j>m,\left\langle\zeta_{i}, \alpha_{j}^{\vee}\right\rangle=0$ if $j \leq m$. It is proved in [DP1] that if $i \leq m$ then $\sigma\left(\alpha_{i}\right)=-\alpha_{j}-\sum_{r>m} n_{r i} \alpha_{r}$ where the $n_{r i}$ are non-negative
integers, $j \leq m$, and $\sigma\left(\omega_{i}\right)=-\omega_{j}$. In the same article, the authors argue that, for $i \leq m, \bar{\eta}_{i}=c \omega_{i}$ or $\bar{\eta}_{i}=c\left(\omega_{i}+\omega_{j}\right)$, where $c=1$ or 2 . We can be a little more precise. According to [Vust2], there are three possible cases for a simple root, although only the first two are of interest to us: $(i \leq l \leq m)$

1. $\sigma\left(\alpha_{i}\right)=-\alpha_{i}$, so $\sigma\left(\omega_{i}\right)=-\omega_{i},\left\langle\left(\overline{\alpha_{i}}\right)^{\vee}, \overline{\omega_{i}}\right\rangle=\frac{1}{2}\left\langle\alpha_{i}^{\vee}, \overline{\omega_{i}}\right\rangle=\left\langle\alpha_{i}^{\vee}, \omega_{i}\right\rangle=1$ and $\left\langle\left(\overline{\alpha_{j}}\right)^{\vee}, \overline{\omega_{i}}\right\rangle=0$ if $j \neq i$. Hence $\bar{\eta}_{i}=2 \omega_{i}$.
2. $\left\langle\alpha_{i}^{\vee}, \sigma\left(\alpha_{i}\right)\right\rangle=0$; then $\left\langle\left(\overline{\alpha_{i}}\right)^{\vee}, \omega_{i}+\omega_{j}\right\rangle=\left\langle\alpha_{i}^{\vee}, \omega_{i}+\omega_{j}\right\rangle=1$ or $2,\left\langle\left(\overline{\alpha_{t}}\right)^{\vee}, \omega_{i}+\right.$ $\left.\omega_{j}\right\rangle=\left\langle\alpha_{t}^{\vee}, \omega_{i}+\omega_{j}\right\rangle=0$ if $t \neq i, j$. It follows that $\bar{\eta}_{i}$ is either $\omega_{i}+\omega_{j}$ if $j \neq i$, or ω_{i}.
3. $\left\langle\alpha_{i}^{\vee}, \sigma\left(\alpha_{i}\right)\right\rangle=1$. If this happens, then $\overline{R_{0}}$ is not reduced and any simple root $\overline{\alpha_{i}}$ of $\overline{R_{0}}$ comes from a root of the first two types.
$\mathcal{W}_{0}\left(\overline{\mathcal{W}_{0}}\right)$ denotes the Weyl group of $R_{0}\left(\overline{R_{0}}\right)$, and w_{0} is the longuest element of \mathcal{W}_{0}. $\overline{\mathcal{W}_{0}}$ is isomorphic to $N_{K_{0}}\left(S_{0}\right) / Z_{K_{0}}\left(S_{0}\right)$ [Rich], and this is isomorphic to $N_{H_{0}}\left(S_{0}\right) / Z_{H_{0}}\left(S_{0}\right)$ because ([Vust2]) $H_{0}=\left(S_{0} \cap H_{0}\right) K_{0} \Longrightarrow N_{H_{0}}\left(S_{0}\right)=$ $\left(S_{0} \cap H_{0}\right) N_{K_{0}}\left(S_{0}\right), Z_{H_{0}}\left(S_{0}\right)=\left(S_{0} \cap H_{0}\right) Z_{K_{0}}\left(S_{0}\right)$.

1.3 Regular functions on G_{1} / H_{1}

$k\left[G_{0}\right]=\oplus_{\lambda} V_{\lambda} \otimes_{k} V_{\lambda}^{*}$, where λ runs over all the dominant integral weights of B_{0} and V_{λ} is the irreducible representation of G_{0} of highest weight λ with respect to B_{0}. To obtain $k\left[G_{0} / K_{0}\right]=k\left[G_{0}\right]^{K_{0}}$, we have to take the sum over those λ such that V_{λ}^{*} contains a K_{0}-fixed non-zero vector, which is unique up to a scalar because $B_{0} K_{0}$ is dense in G_{0}. If this is the case, then $V_{\lambda} \cong V_{\lambda}^{*, \sigma}$ ([DP1] lemma 1.6), so V_{λ} contains also a K_{0}-fixed non-zero vector, and vice-versa. (By $V_{\lambda}^{*, \sigma}$, we mean the G_{0}-module V_{λ}^{*} with the action twisted by σ.) Therefore,

$$
k\left[G_{0} / K_{0}\right] \cong \bigoplus_{\operatorname{dim} V_{\lambda}^{K_{0}}=1} V_{\lambda}
$$

Suppose that $\operatorname{dim} V_{\lambda}^{K_{0}}=1$ and let $v \in V_{\lambda}^{K_{0}}$. We claim that N_{0} acts on the line spanned by v by the character λ. Indeed, it follows from the analysis done in section 1.7 of [DP1] that $v \otimes v=v_{\lambda} \otimes v_{\lambda}+\sum_{i=1}^{m} u_{i} \otimes v_{i}$, where v_{λ} is a highest weight vector of V_{λ} and $u_{i} \otimes v_{i}$ is a weight vector of smaller weight. This implies that $v=v_{\lambda}+\sum \tilde{v}_{i}, \tilde{v}_{i}$ being a weight vector of weight $\lambda-\sum_{j} a_{i}^{j} \alpha_{j}$, say. Let $s \in$ N_{0}; then $s v$ is a multiple of v, and $s v=\chi^{\lambda}(s) v+\sum_{i=1}^{m} \chi^{\lambda}(s) \prod_{j} \chi^{-a_{i}^{j} \alpha_{j}}(s) \tilde{v}_{i}=$ $\chi^{\lambda}(s)\left(v_{\lambda}+\sum_{i=1}^{m} \prod_{j} \chi^{-a_{i}^{j} \alpha_{j}}(s) \tilde{v}_{i}\right)$; therefore $\prod_{j} \chi^{-a_{i}^{j} \alpha_{j}}(s)=1 \forall i . \quad\left(\chi^{\lambda}\right.$ is the multiplicative character corresponding to λ.)

The isotypic component $k\left[G_{0} / K_{0}\right]_{\lambda}$ of $k\left[G_{0} / K_{0}\right]$ under left multiplication by G_{0} is spanned by the functions $f \otimes_{k} f_{\lambda}^{*}$, where $f_{\lambda}^{*} \in V_{\lambda}^{*, K_{0}}$. The argument above shows that N_{0} acts by right multiplication by the character $-w_{0}(\lambda)$ on $k\left[G_{0} / K_{0}\right]_{\lambda}$. If $k\left[G_{0} / K_{0}\right]_{\lambda} \otimes_{k} \chi^{\mu}$ is an irreducible component of $k\left[G_{0} / K_{0} \times S_{0 K_{0}}\right]$,
then $\Delta^{1,-1}\left(N_{0}\right)$ acts on it (by multiplication on the right) by the character $-w_{0}(\lambda)-\mu$. Therefore,

$$
\begin{gathered}
k\left[G_{1} / H_{1}\right]=\bigoplus_{-w_{0}(\lambda)-\mu \in \mathbb{Z}\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}} k\left[G_{0} / K_{0}\right]_{\lambda} \otimes_{k} \chi^{\mu} \\
k\left[G_{1} / H_{1}\right]_{(\lambda,-\mu)}=k\left[G_{0} / K_{0}\right]_{\lambda} \otimes_{k} \chi^{\mu} .
\end{gathered}
$$

(Note that S_{0}-acts on the function χ^{μ} by the character $-\mu$ under the action given by $\left(s_{1} \chi^{\mu}\right)\left(s_{2}\right)=\chi^{\mu}\left(s_{1}^{-1} s_{2}\right)$; this explains the minus sign.) By $\left(\Lambda\left(G_{0} / K_{0}\right) \oplus X^{*}\left(S_{0 K_{0}}\right)\right)^{\Delta^{1,-1}\left(N_{0}\right)}$, we mean the B_{1}-weights of the rational functions on $G_{0} / K_{0} \times S_{0 K_{0}}$ which are also rational functions on G_{1} / H_{1}, so they are all the weights (λ, μ) of $k\left[G_{0} / K_{0}\right] \otimes_{k} k\left[S_{0 K_{0}}\right]$ such that $\mu-w_{0}(\lambda) \in \mathbb{Z}\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}$. Note that $\Lambda\left(G_{0} / K_{0}\right)$ is a subgroup of $X^{*}\left(T_{0}\right)$ stable under $-w_{0}$, and $\left.\chi^{-\lambda}\right|_{N_{0}}=$ $\left.\chi^{-w_{0}(\lambda)}\right|_{N_{0}}$, i.e. $\lambda-w_{0}(\lambda) \in \mathbb{Z} \overline{R_{0}}$.

Finally, if for any affine G-variety Y - G a reductive group - we denote by $\Lambda_{+}(Y)$ the set of highest weights of the G-module $k[Y]$, then restriction of weights from T_{0} to S_{0} establishes an isomorphism between $\Lambda_{+}\left(G_{0} / K_{0}\right)$ and $X^{+}\left(S_{0 K_{0}}\right)([$ Vust2] $)$.

1.4 Classification of embeddings of symmetric varieties

We will be interested in normal embeddings of the varieties $G_{0} / K_{0}, G_{1} / H_{1}$ and $G_{a d} / K_{a d}$, but only in the last two cases will we consider dominant ones, that is, embeddings containing the given symmetric variety as a dense subset. We present in this section the combinatorial data associated to these varieties. Since G_{0} is semisimple and simply connected, we can apply directly the results of [Vust2]. However, this is not the case for G_{1}, so we have to make some slight modifications.

Spherical varieties (i.e. normal, irreducible G-varieties which contain an open orbit under the action of a Borel subgroup of a reductive group G, e.g. symmetric varieties) can be classified in terms of certain combinatorial data (see e.g. [Knop]). Let $\mathcal{D}\left(G_{0} / H_{0}\right)$ denote the set of B_{0}-stable irreducible divisors of G_{0} / H_{0}; these are the colors of G_{0} / H_{0}. For a simple (i.e. having only one closed orbit) embedding E_{0} of the homogeneous space $G_{0} / H_{0}, \mathcal{D}\left(E_{0}\right)$ is just the set of B_{0}-stable prime divisors of E_{0}. The set of colors $\mathcal{F}\left(E_{0}\right)$ of E_{0} consists of the B_{0}-stable prime divisors D of G_{0} / H_{0} whose closure \bar{D} in E_{0} contains the (unique) closed orbit of E_{0}. For $D \in \mathcal{D}\left(E_{0}\right), v_{D}$ denotes the normalized discrete valuation of $k\left(G_{0} / H_{0}\right)$ associated to D.

Let $\mathcal{V}\left(G_{0} / H_{0}\right)$ be the set of normalized G_{0}-invariant discrete valuations of $k\left(G_{0} / H_{0}\right)$. Each G_{0}-stable prime divisor in E_{0} determines an element of $\mathcal{V}\left(G_{0} / H_{0}\right)$; the set of all valuations arising in this way is written $\mathcal{V}\left(E_{0}\right)$.
Theorem 1 (cf. [LuVu]). A simple normal embedding E_{0} of G_{0} / H_{0} is uniquely determined by the data $\left(\mathcal{F}\left(E_{0}\right), \mathcal{V}\left(E_{0}\right)\right)$.

Denote by $\mathcal{P}_{0}^{H_{0}}$ the subgroup of $k\left(G_{0} / H_{0}\right)^{\times}$consisting of the normalized eigenvectors for the action of P_{0} (i.e. those taking the value 1 at $1 \cdot H_{0}$);
$\mathcal{P}_{0}^{H_{0}} \cong \Lambda\left(G_{0} / H_{0}\right)$. Each valuation v gives us an element $\rho(v)$ in $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right)$. The map $\mathcal{V}\left(G_{0} / H_{0}\right) \xrightarrow{\rho} \operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ is injective, but not the one $\mathcal{D}\left(G_{0} / H_{0}\right) \xrightarrow{\rho} \operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ in general. (The latter is one-to-one when, for instance, the symmetric variety is an algebraic group.)

If E_{0} is a simple embedding of G_{0} / H_{0}, we let $\mathcal{C}\left(E_{0}\right)$ be the \mathbb{Q}^{+}-cone inside $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by the finite sets $\rho\left(\mathcal{V}\left(E_{0}\right)\right)$ and $\rho\left(\mathcal{F}\left(E_{0}\right)\right)$.The pair $\left(\mathcal{C}\left(E_{0}\right), \mathcal{F}\left(E_{0}\right)\right)$ is called the colored cone of E_{0}. More generally, we can state the following definition.

Definition 1. A colored cone is a pair $(\mathcal{C}, \mathcal{F})$ with $\mathcal{C} \subseteq \operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Q}\right)$ and $\mathcal{F} \subseteq \mathcal{D}\left(G_{0} / H_{0}\right)$, such that \mathcal{C} is a cone generated by $\rho(\mathcal{F})$ and a finite subset of $\mathbb{Q}^{+} \mathcal{V}\left(G_{0} / H_{0}\right)$, and $\mathcal{C}^{\circ} \cap \mathbb{Q}^{+} \mathcal{V}\left(G_{0} / H_{0}\right) \neq \phi$.

Note that $\mathcal{C}\left(E_{0}\right)$ is a fortiori generated also by $\rho\left(\mathcal{F}\left(E_{0}\right)\right)$ and by $\mathcal{C}\left(E_{0}\right) \cap$ $\mathbb{Z}^{+} \mathcal{V}\left(G_{0} / H_{0}\right)$.

Theorem 2 (cf. [Knop] §4.1). There is a bijection between the set of simple normal embeddings of G_{0} / H_{0} and the strongly convex rational polyhedral colored cones in the vector space $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. This correspondence is the one described above.

As proved in [Vust2], $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right)$ is isomorphic to $X_{*}\left(S_{0 H_{0}}\right)$. An isomorphism is induced by the isomorphism $\phi: \mathcal{P}_{0}^{H_{0}} \longrightarrow X^{*}\left(S_{0 H_{0}}\right)$ given by $f \rightarrow-\omega$ if f is an eigenvector for P_{0} of weight ω. Therefore, we can view the colored cone of a simple embedding of G_{0} / H_{0} as a cone in $X_{*}\left(S_{0 H_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}=X_{*}\left(S_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. ($X_{*}\left(S_{0 H_{0}}\right)$ has finite index in $X_{*}\left(S_{0}\right)$.) From the previous section, we know that $X^{*}\left(S_{0 H_{0}}\right)$ is stable under $w_{0} . w_{0}$ thus induces an automorphism of $X_{*}\left(S_{0 H_{0}}\right)$ also.

Everything said so far (in particular theorem 1 and 2) is valid also for embeddings of the symmetric variety G_{1} / H_{1} with P_{0} replaced by $P_{1}=P_{0} \times S_{0}$, B_{0} by $B_{1}=B_{0} \times S_{0}$, and the maximal anisotropic torus being $S_{1}=S_{0} \times S_{0}$. $\mathcal{P}_{1}^{H_{1}}$ is the subgroup of $k\left(G_{1} / K_{1}\right)^{\times}$consisting of the normalized eigenvectors for the action of P_{1}. We can define similarly $\mathcal{V}\left(G_{1} / H_{1}\right), \mathcal{D}\left(G_{1} / H_{1}\right)$, and maps from these two sets to the lattice $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{1}^{H_{1}}, \mathbb{Z}\right)$. The colored cone $\mathcal{C}(E)$ and the colors $\mathcal{F}(E)$ of a simple embedding E of G_{1} / H_{1} are defined as before. We obtain also an isomorphism between $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{1}^{H_{1}}, \mathbb{Z}\right)$ and $X_{*}\left(S_{1 H_{1}}\right)$ by sending a B_{1}-weight vector of weight $\left(w_{1}, w_{2}\right)$ to the character $\left(-\left.w_{1}\right|_{S_{0}},-\left.w_{2}\right|_{S_{0}}\right)$; this follows from results in [Vust1] §2.1, 2.2 which are valid for any reductive group.

Proposition $1 \S 2.4$ in [Vust2] says that the $\rho\left(u_{D}\right), D \in \mathcal{D}\left(G_{0} / H_{0}\right)$, get identified, under the isomorphism $\operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{P}_{0}^{H_{0}}, \mathbb{Z}\right) \longrightarrow X_{*}\left(S_{0 H_{0}}\right)$, to the negative of the simple coroots of $\overline{R_{0}}$.

The B_{1}-stable (or P_{1}-stable) divisors of G_{1} / H_{1} are exactly the images of $D \times S_{0} / S_{0}^{\sigma}$ under the quotient morphism $G_{0} / K_{0} \times S_{0} / S_{0}^{\sigma} \longrightarrow G_{1} / H_{1}$, where D is a B_{0}-stable (or P_{0}-stable) divisor of G_{0} / K_{0}. Therefore, the $\rho\left(u_{D}\right)$, with $D \in \mathcal{D}\left(G_{1} / H_{1}\right)$, can be identified with the subset $\left\{\left(-\left(\overline{\alpha_{i}}\right)^{\vee}, 0\right) \mid 1 \leq i \leq l\right\}$. We can reach this conclusion also by mimicking the proof in [Vust2] since $k\left[G_{0} \times S_{0}\right.$] is also a UFD.

According to proposition $2, \S 2.4$ in [Vust2], the set $\mathcal{V}\left(G_{0} / H_{0}\right)$ corresponds to the set of indecomposable elements in $\overline{C_{0}} \cap X_{*}\left(S_{0 H_{0}}\right)$, where $\overline{C_{0}}$ is the chamber determined by the choice of positive roots in R_{0} (i.e. the one containing $\tilde{\lambda}$). As for $\mathcal{V}\left(G_{1} / H_{1}\right)$, it corresponds to the indecomposable elements in $\bar{C} \cap X_{*}\left(S_{1 H_{1}}\right)$, \bar{C} being again defined by our choice of positive roots $\left\{\left(\overline{\alpha_{i}}, 0\right)\right\}_{i=1}^{l}$; the proof in [Vust2] applies to this case too.

1.5 Valuations and one-parameter subgroups

The set $\mathcal{V}(E), E$ an embedding of G_{1} / H_{1}, can be described in terms of certain one-parameter subgroups. Let λ be a one-parameter subgroup of G_{1}. λ induces a valuation $v_{\lambda} \in \mathbb{Z}^{+} \mathcal{V}\left(G_{1} / H_{1}\right)$ in the following way. Let $f \in k\left[G_{1}\right]$; then $f=$ $\sum_{n \in \mathbb{Z}} f_{n}$ where $\lambda(t) f_{n}=t^{n} f_{n}$ for all $t \in k^{*}$; we set $v_{\lambda}(f)=\inf \left\{n \in \mathbb{Z} \mid f_{n} \neq 0\right\}$, extend v_{λ} to $k\left(G_{1}\right)$, and restrict it to $k\left(G_{1}\right)^{H_{1}}$.

An elementary embedding of G_{1} / H_{1} is a normal (a fortiori smooth) embedding consisting of two orbits: G_{1} / H_{1} and a closed orbit of codimension 1. It follows from the general theory of elementary embeddings in $[\mathrm{LuVu}]$ (§4.10, $\S 7.5$) that there exists a bijection (denoted $E^{\prime} \leftrightarrow v_{E^{\prime}}$, where $v_{E^{\prime}}$ is the valuation associated to the unique closed orbit of E^{\prime}) between elementary embeddings and G_{1}-invariant, discrete, normalized valuations of $k\left(G_{1} / H_{1}\right)$. If E^{\prime} is such an embedding, $x \in E^{\prime}$ a point with isotropy group equal to H_{1}, then there exists a one-parameter subgroup $\lambda_{E^{\prime}}$ of $S_{1 H_{1}}$ such that $\lim _{t \rightarrow 0} \lambda_{E^{\prime}}(t) x$ belongs to the open P_{1}-orbit in the unique closed G_{1}-orbit of $E^{\prime}([\mathrm{BLV}] \S 4)$. Furthermore, $v_{\lambda_{E^{\prime}}}$ is equivalent to $v_{E^{\prime}}$, and we can choose $\lambda_{E^{\prime}}$ in $X_{+}\left(S_{1 H_{1}}\right)$.

Now let E be an embedding of G_{1} / H_{1} and \mathcal{O} a G_{1}-orbit of codimension 1 in E. Then $G_{1} / H_{1} \cup \mathcal{O}$ is an elementary embedding of G_{1} / H_{1}. It follows from the previous paragraph that there exists a one-parameter subgroup $\lambda \in X_{*}\left(S_{H_{H_{1}}}\right)$ such that v_{λ} is equivalent to the G_{1}-invariant, discrete, normalized valuation of $k\left(G_{1} / H_{1}\right)$ corresponding to \mathcal{O}. In conclusion, one way to find $\mathcal{V}(E)$ is to identify the one-parameter subgroups of $S_{1 H_{1}}$ for which $\lambda(t) x$ converges in E when $t \rightarrow 0$ to a point in the open P_{1}-orbit of a G_{1}-stable prime divisor.

Using the bijection $E^{\prime} \leftrightarrow v_{E^{\prime}}$, it is possible to give more information on the set $\mathcal{C}(E) \cap \mathbb{Z}^{+} \mathcal{V}\left(G_{1} / H_{1}\right)$. If $v_{E^{\prime}} \in \mathcal{C}(E) \cap \mathbb{Z}^{+} \mathcal{V}\left(G_{1} / H_{1}\right)$, then we can find a morphism $E^{\prime} \xrightarrow{\varphi} E\left(\left.\varphi\right|_{G_{1} / H_{1}}=i d\right)$, and $\lim _{t \rightarrow 0} \lambda_{E^{\prime}}(t) 1 \cdot H_{1}$ exists in E^{\prime}, hence $\lim _{t \rightarrow 0} \lambda_{E^{\prime}}(t) 1 \cdot H_{1}$ exists also in E via φ. Conversely, if $\lambda \in X^{*}\left(S_{1_{H_{1}}}\right)$ and, without lost of generality, λ lies in the positive Weyl chamber, and if $\lambda(t) 1 \cdot H_{1}$ converges in E as $t \rightarrow 0$, then we can extend the identity map on G_{1} / H_{1} to a morphism $E^{\prime} \longrightarrow E$ (by $[\mathrm{LuVu}] \S 4.9$), which implies that $v_{E^{\prime}} \in \mathcal{C}(E), E^{\prime}$ being the elementary embedding such that $v_{E^{\prime}}$ is the normalized invariant valuation equivalent to v_{λ}.

2 The wonderful completion of $G_{a d} / K_{a d}$

In this section, we recall some of the properties of the wonderful compactification $\overline{G_{a d} / K_{a d}}$ of $G_{a d} / K_{a d}$ ([DP1]). $\overline{G_{a d} / K_{a d}}$ is a smooth complete variety over
k containing $G_{a d} / K_{a d}$ as a dense G_{0}-orbit, and the complement of $G_{a d} / K_{a d}$ consists of l smooth, normal crossing divisors X_{i}. Moreover, the G_{0}-orbits of $\overline{G_{a d} / K_{a d}}$ are in a bijective correspondence with the subsets of $\{1, \ldots, l\}$, and the orbit closures are exactly the intersections $X_{\left\{i_{1}, \ldots, i_{k}\right\}}=X_{i_{1}} \cap \ldots \cap X_{i_{k}}$.
$\overline{G_{a d} / K_{a d}}$ can be constructed as the closure of the G_{0}-orbit in $\mathbb{P}\left(V_{2 \lambda}\right)$ of the class of the unique - up to a scalar multiple - vector h^{\prime} in $V_{2 \lambda}$ fixed by K_{0}, where λ is a regular special weight, dominant with respect to B_{0}^{-}. (We choose B_{0}^{-}instead of B_{0} for convenience.) The geometric analysis of $\overline{G_{a d} / K_{a d}}$ can be carried out by studying a certain affine cell (i.e. locally closed subvariety isomorphic to affine space), denoted \mathcal{B}, which enjoys the following properties: \mathcal{B} is B_{0}-stable and isomorphic to $U_{S_{0}} \times \mathbb{A}^{l}$ where $U_{S_{0}}$ is the unipotent group generated by the root subgroups corresponding to the positive roots in R_{0} whose restrictions to \mathfrak{s}_{0} are non-zero, the torus T_{0} acts on it by multiplication by $\chi^{\overline{\alpha_{i}}}(t)$ on the $i^{t h}$-coordinate of \mathbb{A}^{l}, and the intersection of the G_{0}-orbit of $\left[h^{\prime}\right]$ with \mathcal{B} is the open set where the last l coordinates are non-zero. Furthermore, the unique closed G_{0}-orbit Y in $\overline{G_{a d} / K_{a d}}$ is the closure of $U_{S_{0}} \times\{0\}$, and the intersection of \mathcal{B} with X_{i} is the variety of codimension one given by the vanishing of the $i^{t h}$ coordinate of \mathbb{A}^{l}.

Let's determine the combinatorial data of $\overline{G_{a d} / K_{a d}}$ as a G_{0}-spherical variety with respect to the choice of B_{0} as Borel subgroup. It follows from the description given in the previous paragraph that Y is not contained in the closure of any of the B_{0}-stable divisors of $G_{a d} / K_{a d}$ because these are in the complement of \mathcal{B}. This means that $\overline{G_{a d} / K_{a d}}$ has no colors, so $\overline{G_{a d} / K_{a d}}$ is an example of a toroidal spherical variety.

Let x_{j} be a local equation for $X_{j} \cap \mathcal{B}$ as in [DP1]. x_{j} is a rational function on $G_{a d} / K_{a d}$ which is a B_{0}-eigenvector and its weight is $w_{0}\left(\overline{\alpha_{j}}\right)=\overline{w_{0}\left(\alpha_{i_{j}}\right)}=$ $-\overline{\alpha_{w_{0}\left(i_{j}\right)}}$ (up to reordering the x_{j}). Here is what we mean by this. B_{0}^{-}is the Borel subgroup corresponding to the choice $\left\{w_{0}\left(\alpha_{i}\right)\right\}_{i=1}^{n}$ of simple roots. This basis satisfies also the condition of lemma 1.7 in [DP1]. w_{0} induces a permutation, also denoted w_{0}, of the set $\{1, \ldots, n\}$ by $w_{0}\left(\alpha_{i}\right)=-\alpha_{w_{0}(i)}$. If $\overline{w_{0}\left(\alpha_{j_{1}}\right)}, \ldots, \overline{w_{0}\left(\alpha_{\left.j_{l}\right)}\right.}$ are all independent (distinct and non-zero), then we can assume that $\left\{w_{0}\left(j_{1}\right), \ldots, w_{0}\left(j_{l}\right)\right\}=\{1, \ldots, l\},\left\{\overline{w_{0}\left(\alpha_{j_{1}}\right)}, \ldots, \overline{w_{0}\left(\alpha_{j_{l}}\right)}\right\}=$ $-\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}$. In particular, $w_{0}\left(\overline{\alpha_{j}}\right)=-\overline{\alpha_{k}}$ (for some k) $=\overline{w_{0}\left(\alpha_{j_{i}}\right)}$ for some $j_{i}, 1 \leq i \leq l$.

Let v_{k} be the G_{0}-invariant valuation corresponding to X_{k}. Then

$$
\rho\left(v_{k}\right)\left(-\left(\overline{w_{0}\left(\alpha_{i_{j}}\right)}\right)\right)=v_{k}\left(x_{j}\right)=\delta_{j k} \Longrightarrow \rho\left(v_{k}\right)=\widetilde{\eta}_{w_{0}\left(i_{k}\right)} \in X_{*}\left(S_{0 H_{0}}\right)
$$

Therefore, $\mathcal{C}\left(\overline{G_{a d} / K_{a d}}\right)=\mathbb{Q}^{+}\left\{\rho\left(v_{1}\right), \ldots, \rho\left(v_{l}\right)\right\}=\overline{C_{0}}=\mathbb{Q}^{+} \mathcal{V}\left(G_{0} / H_{0}\right)$.
We can also characterize $\overline{G_{a d} / K_{a d}}$ as the unique dominant equivariant embedding of $G_{a d} / K_{a d}$ which is simple, complete, and without colors. This follows from the results in section 1.4 and the combinatorial criterion for completeness of spherical varieties (cf. [Knop]).
$\overline{G_{a d} / K_{a d}}$ can be realized in many different ways. For $i=1, \ldots, l$, let h_{i} be a non-zero K_{0}-fixed vector in $V_{w_{0}\left(\bar{\eta}_{i}\right)}$; here $V_{w_{0}\left(\bar{\eta}_{i}\right)}$ is the irreducible G_{0}-module
with highest weight $w_{0}\left(\bar{\eta}_{i}\right)$ with respect to $B_{0}^{-} . h_{i}$ is unique up to a scalar. Set $h=h_{1}+\ldots+h_{l}$. The wonderful completion of G_{0} / H_{0} is the closure of the orbit of the line $[h]$ in $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)} \oplus \ldots \oplus V_{w_{0}\left(\bar{\eta}_{l}\right)}\right)$.
$V_{w_{0}\left(\bar{\eta}_{1}\right)} \otimes_{k} \cdots \otimes_{k} V_{w_{0}\left(\bar{\eta}_{l}\right)}=V_{w_{0}\left(\bar{\eta}_{1}+\ldots+\bar{\eta}_{l}\right)} \oplus W$ where W contains a K_{0}-fixed vector h_{W}; set $h_{1, \ldots, l}=h_{1} \otimes \ldots \otimes h_{l}$ and $h^{\prime}=h_{1, \ldots, l}+h_{W}$. Then $\overline{G_{a d} / K_{a d}} \cong$ $\overline{G_{0}\left[h^{\prime}\right]} \subseteq \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)} \otimes \ldots \otimes V_{w_{0}\left(\bar{\eta}_{l}\right)}\right)$, an isomorphism being given by the restriction of the projection $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}+\ldots+\bar{\eta}_{l}\right)} \oplus W\right) \longrightarrow \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}+\ldots+\bar{\eta}_{l}\right)}\right)$ along $\mathbb{P}(W)$ (see [DP1] §4.1).

Furthermore, the Segre embedding mapping $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)}\right) \times \cdots \times \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{l}\right)}\right)$ into $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)} \otimes_{k} \cdots \otimes_{k} V_{w_{0}\left(\bar{\eta}_{l}\right)}\right)$ provides an isomorphism between $\overline{G_{0}\left[h^{\prime}\right]}$ and $\overline{G_{0}\left(\left[h_{1}\right], \ldots,\left[h_{k}\right]\right)}$, whence $\overline{G_{0}\left(\left[h_{1}\right], \ldots,\left[h_{k}\right]\right)}$ is isomorphic to $\overline{G_{a d} / K_{a d}}$.

Fix an ordered basis of $V_{w_{0}\left(\bar{\eta}_{1}+\ldots+\bar{\eta}_{l}\right)}$ consisting, say, of weight vectors, the last one being a highest weight vector for B_{0}^{-}. Let \mathcal{A} be the affine subset of $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}+\ldots+\bar{\eta}_{l}\right)}\right)$ where the last coordinate is non-zero; $\mathcal{A} \cap \overline{G_{0}\left[h^{\prime}\right]}$ is the affine cell \mathcal{B}. Using the isomorphism above, it follows that $\widetilde{\mathcal{A}} \cap \overline{G_{0}\left(\left[h_{1}\right], \ldots,\left[h_{l}\right]\right)} \cong \mathcal{B}$; here, $\widetilde{\mathcal{A}}$ is defined in a way similar to \mathcal{A} : for each $i=1, \ldots, l$, choose an ordered basis Θ_{i} of $V_{w_{0}\left(\bar{\eta}_{i}\right)}$ whose last element is a highest weight vector, and let $\widetilde{\mathcal{A}}$ be the affine subvariety of $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)}\right) \times \cdots \times \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{l}\right)}\right)$ defined by the non-vanishing of the last coordinate in each projective space.

3 Definition of $\operatorname{Env}\left(G_{0} / K_{0}\right)$

3.1 First definition

Let $\operatorname{Env}\left(G_{0} / K_{0}\right)$ be the affine variety over k (see lemma 2 below) with coordinate $\operatorname{ring} k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]=\oplus_{\nu \in \mathcal{L}} k\left[G_{1} / H_{1}\right]_{\nu}$, where \mathcal{L} is the \mathbb{Q}^{+}-cone in $\left(\Lambda\left(G_{0} / K_{0}\right) \oplus\right.$ $\left.X^{*}\left(S_{0 K_{0}}\right)\right)^{N_{0}} \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\left\{\left(\bar{\eta}_{i}, w_{0} \bar{\eta}_{i}\right),\left(0,-\overline{\alpha_{i}}\right)\right\}_{i=1}^{l}$, and $k\left[G_{1} / H_{1}\right]_{\nu}$ is the isotypic component of $k\left[G_{1} / H_{1}\right]$ corresponding to the dominant weight ν of B_{1}. $\Lambda\left(G_{0} / K_{0}\right) \cong \mathcal{P}_{0}{ }^{K_{0}} \cong X^{*}\left(S_{0 K_{0}}\right)$, and the highest weight semigroup of G_{0} / K_{0} (i.e. the semigroup formed by the dominant integral weights of the isotypic components of $\left.G_{0} / K_{0}\right)$ is $X^{+}\left(S_{0 K_{0}}\right)$.

It is also possible to define its coordinate ring by using an idea from [Pop]. Let's put a polyfiltration on $k\left[G_{0} / K_{0}\right]$ by setting $k\left[G_{0} / K_{0}\right]_{\leq \lambda}=\oplus_{\mu \leq \lambda} k\left[G_{0} / K_{0}\right]_{\mu}$ for $\lambda \in X^{*}\left(S_{0 K_{0}}\right) \cap\left(\mathbb{Q}^{+}{\overline{R_{0}}}^{+}\right)$, where $\mu \leq \lambda$ means that $\lambda+w_{0}(\mu) \in \mathbb{Z}^{+}{\overline{R_{0}}}^{+}$. The Rees algebra of this polyfiltration is a subalgebra of $k\left[G_{0} / K_{0}\right]\left[s^{ \pm \bar{\eta}_{1}}, \ldots, s^{ \pm \bar{\eta}_{l}}\right]$, $s^{\bar{\eta}_{1}}, \ldots, s^{\bar{\eta}_{l}}$ being variables algebraically independent over $k\left[G_{0} / K_{0}\right]$. Then $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]$ can be identified with this Rees algebra, i.e.

$$
k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right] \cong \bigoplus_{\lambda \in X^{*}\left(S_{0} K_{0}\right) \cap\left(\overline{R_{0}}+\otimes_{\mathbb{Z}} \mathbb{Q}\right)} k\left[G_{0} / K_{0}\right]_{\leq \lambda} s^{\lambda},
$$

if we think of s^{λ} as a character of S_{0}.
Let A be the S_{0} / N_{0}-toric variety $\operatorname{Spec} \oplus_{\mu \in \mathbb{Z}^{+}\left\{\bar{\alpha}_{1}, \ldots, \overline{\alpha_{l}}\right\}} k \cdot \chi^{\mu} . A$ is isomorphic to affine space \mathbb{A}^{l} since the roots $\overline{\alpha_{i}}$ form a basis for the character lattice of
S_{0} / N_{0} ([Vust2] lemma 3.1).
Lemma 2. $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]$ is a finitely generated algebra.
Proof. By corollary 4 in $([\mathrm{Pop}])$, it is enough to show that $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]^{U_{1}}$ is finitely generated, where $U_{1}=U_{0} \times 1$ (resp. U_{0}) is a maximal unipotent subgroup of G_{1} (resp. $\left.G_{0}\right) . \oplus_{\bar{\eta} \in X^{+}\left(S_{0 K_{0}}\right)} k\left[G_{1} / H_{1}\right]_{\left(\bar{\eta}, w_{0}(\bar{\eta})\right)}^{U_{1}}$ is isomorphic to $k\left[G_{0} / K_{0}\right]^{U_{0}}$, and $\oplus_{\bar{\alpha} \in \mathbb{Z}^{+} \overline{R_{0}}}+k\left[G_{1} / H_{1}\right]_{(0,-\bar{\alpha})}=k[A]$. Therefore we obtain that $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]^{U_{1}} \cong k[A] \otimes_{k} k\left[G_{0} / K_{0}\right]^{U_{0}}$, which is finitely generated since the same holds for $k\left[G_{0} / K_{0}\right]^{U_{0}}$. Equivalently, we could have observed simply that $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]^{U_{1}}$ is the semigroup algebra of the subsemigroup generated by $\left\{\left(\bar{\eta}_{i}, w_{0} \bar{\eta}_{i}\right),\left(0,-\overline{\alpha_{i}}\right)\right\}_{i=1}^{l}$.

Lemma 3. $\operatorname{Env}\left(G_{0} / K_{0}\right)$ is a normal variety.
Proof. According to a theorem of Popov ([Pop]), it is enough to check that $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]^{U_{1}}$ is normal; but $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]^{U_{1}} \cong k[A] \otimes_{k} k\left[G_{0} / K_{0}\right]^{U_{0}}$ (see lemma 2) and $k\left[G_{0} / K_{0}\right]^{U_{0}}$ is a polynomial ring of dimension l according to [Vust2] §3.2.

Lemma 4. $\operatorname{Env}\left(G_{0} / K_{0}\right)$ is an affine embedding of G_{1} / H_{1}.
Proof. It is enough to prove that the functions in $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]$ separate the points of G_{1} / H_{1}. If $\left(p_{1}, s_{1}\right) \Delta^{1,-1}\left(N_{0}\right)$ and $\left(p_{2}, s_{2}\right) \Delta^{1,-1}\left(N_{0}\right)$ are two distinct points of $G_{1} / H_{1}, p_{i} \in G_{0} / K_{0}, s_{i} \in S_{0 K_{0}}$, with $s_{1} s_{2}^{-1} \notin N_{0}$, then we can separate them using a character $\chi^{-\bar{\alpha}}$. Now if $s_{1} s_{2}^{-1} \in N_{0}$, it is possible to find a function $f \in k\left[G_{0} / K_{0}\right]_{\bar{\eta}}$ which separates $p_{1} s_{1} s_{2}^{-1}$ and p_{2}. It follows that $f \chi^{-w_{0}(\bar{\eta})}\left(\left(p_{1}, s_{1}\right) \Delta^{1,-1}\left(N_{0}\right)\right) \neq f \chi^{-w_{0}(\bar{\eta})}\left(\left(p_{2}, s_{2}\right) \Delta^{1,-1}\left(N_{0}\right)\right)$.

The three preceding lemmas show that $\operatorname{Env}\left(G_{0} / K_{0}\right)$ is a spherical variety for G_{1} (see the second definition below for more on this).

If we consider G_{0} as a symmetric variety of $G_{0} \times G_{0}$ via the involution $\left(g_{1}, g_{2}\right) \longrightarrow\left(g_{2}, g_{1}\right)$, then we get the enveloping semigroup of G_{0}. As a Borel subgroup of $G_{0} \times G_{0}$, we choose $B_{0} \times B_{0}^{-}$, and its maximal anisotropic torus is $\Delta^{1,-1}\left(T_{0}\right)$.

Let $\theta: T_{0} \longrightarrow \Delta^{1,-1}\left(T_{0}\right)$ be the isomorphism $t \mapsto\left(t, t^{-1}\right) ; \theta$ induces an isomorphism $T_{0} / T_{0,2} \xrightarrow{\cong} \Delta^{1,-1}\left(T_{0}\right) / \Delta\left(T_{0}\right)$, where $T_{0,2}$ is the subgroup of elements of order 2 of $T_{0} . X^{*}\left(T_{0} / T_{0,2}\right)=2 X^{*}\left(T_{0}\right), X^{*}\left(\Delta^{1,-1}\left(T_{0}\right) / \Delta\left(T_{0}\right)\right)=\{(\nu,-\nu) \mid \nu \in$ $\left.X^{*}\left(T_{0}\right)\right\}$, and $\theta^{*}(\mu,-\mu)=2 \mu$.

Let τ be the $G_{0} \times G_{0}$-equivariant isomorphism $G_{0} \longrightarrow G_{0} \times G_{0} / \Delta\left(G_{0}\right)$ given by $\tau(g)=(g, 1) \Delta\left(G_{0}\right)$. Then $\tau^{*}\left(k\left[G_{0} \times G_{0} / \Delta\left(G_{0}\right)\right]_{(\mu,-\mu)}\right)=V_{\mu} \otimes_{k} V_{-\mu}$.

According to our definition, $k\left[\operatorname{Env}\left(G_{0} \times G_{0} / \Delta\left(G_{0}\right)\right)\right]$ is equal to

$$
\bigoplus_{2-\nu_{1} \in R_{0}^{+}} k\left[G_{0} \times G_{0} / \Delta\left(G_{0}\right)\right]_{\left(\nu_{1},-\nu_{1}\right)} \otimes_{k} k\left[\Delta^{1,-1}\left(T_{0}\right) / \Delta\left(T_{0}\right)\right]_{\left(w_{0}\left(\nu_{2}\right),-w_{0}\left(\nu_{2}\right)\right)} .
$$

Under the isomorphism

$$
\tau \times \theta: G_{0} \times\left(T_{0} / T_{0,2}\right) \longrightarrow\left(G_{0} \times G_{0} / \Delta\left(G_{0}\right)\right) \times\left(\Delta^{1,-1}\left(T_{0}\right) / \Delta\left(T_{0}\right)\right),
$$

$k\left[G_{0} \times G_{0} / \Delta\left(G_{0}\right)\right]_{\left(\nu_{1},-\nu_{1}\right)} \otimes_{k} k\left[\Delta^{1,-1}\left(T_{0}\right) / \Delta\left(T_{0}\right)\right]_{\left(w_{0}\left(\nu_{2}\right),-w_{0}\left(\nu_{2}\right)\right)}$ corresponds to $V_{\nu_{1}} \otimes_{k} V_{-\nu_{1}} \otimes_{k} k\left[T_{0} / T_{0,2}\right]_{2 w_{0}\left(\nu_{2}\right)}$. The isomorphism $T_{0} / T_{0,2} \longrightarrow T_{0}$ given by squaring identifies $k\left[T_{0} / T_{0,2}\right]_{2 w_{0}\left(\nu_{2}\right)}$ with $k\left[T_{0}\right]_{w_{0}\left(\nu_{2}\right)}$. In conclusion, the decomposition of $k\left[\operatorname{Env}\left(G_{0} \times G_{0} / \Delta\left(G_{0}\right)\right)\right]$ as a $G_{0} \times G_{0} \times T_{0}$-module is

$$
\bigoplus_{\nu_{1}, \nu_{2} \in X^{+}\left(T_{0}\right), \nu_{2}-\nu_{1} \in R_{0}^{+}} V_{\nu_{1}} \otimes_{k} V_{-\nu_{1}} \otimes_{k} \chi^{-w_{0}\left(\nu_{2}\right)},
$$

which is how Vinberg had defined the coordinate ring of his enveloping semigroup since $V_{\nu_{1}} \otimes V_{-\nu_{1}}$ is isomorphic as a $G_{0} \times G_{0}$-representation to the space of matrix coefficients of the irreducible representation $V_{\nu_{1}}^{*}\left(=V_{-w_{0}\left(\nu_{1}\right)}\right)$.

We will use later the categorical quotient $\operatorname{Env}\left(G_{0} / K_{0}\right) / G_{0}$, which is isomorphic to A. Indeed,

$$
k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]^{G_{0}}=\left(k\left[G_{0} / K_{0}\right]^{G_{0}} \otimes_{k} k\left[S_{0 K_{0}}\right]\right)_{\mathcal{L}}=k \otimes_{k} k\left[S_{0 K_{0}}\right]_{\mathcal{L}}=k\left[S_{0 K_{0}}\right]_{\mathcal{L}} .
$$

By $(\cdot)_{\mathcal{L}}$, we mean the sum of the isotypic components with highest weights belonging to \mathcal{L}.

Let $\pi: \operatorname{Env}\left(G_{0} / K_{0}\right) \longrightarrow A$ be the quotient morphism. Then the fiber of π over $(1, \ldots, 1)$ is G_{0} / K_{0} : the same argument as in [Vin] proposition 3 applies, except that in our case we have to use a theorem of Luna ([Luna]) which asserts that a homogeneous space G / L, with G and L reductive, is affinely closed (i.e. it admits only one affine embedding, namely itself) if and only if $\left[N_{G}(L): L\right]$ is finite.

3.2 Second definition

$\operatorname{Env}\left(G_{0} / K_{0}\right)$ can also be defined in an equivalent way using the language of section 1. Let E be the G_{1}-spherical embedding of G_{1} / H_{1} whose colors are all the colors of G_{1} / H_{1} and whose colored cone is the \mathbb{Q}^{+}-cone in $X_{*}\left(S_{1 H_{1}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by

$$
\left\{\left(-\left(\overline{\alpha_{i}}\right)^{\vee}, 0\right)\right\}_{i=1}^{l} \cup\left\{\left(\widetilde{\eta}_{i},-w_{0}\left(\widetilde{\eta}_{i}\right)\right)\right\}_{i=1}^{l},
$$

where the $\widetilde{\eta}_{i}$ are the indecomposable elements in $\bar{C}_{0} \cap X_{*}\left(S_{0 H_{0}}\right)$. By lemma 3.1 in [Vust2], the root lattice $\mathbb{Z} \overline{R_{0}}$ is $X^{*}\left(S_{0} / N_{0}\right)$ and its dual is the coweight lattice - the fundamental coweights are those indecomposable elements.

This definition is equivalent to the first one. E is affine because $\mathcal{F}(E)=$ $\mathcal{D}\left(G_{1} / H_{1}\right)$ ([Knop] Theorem 7.7). $\mathcal{C}(E)^{\vee}$ denotes the cone dual to $\mathcal{C}(E)$ under the natural pairing $X^{*}\left(S_{1_{H_{1}}}\right) \times X_{*}\left(S_{1_{H_{1}}}\right) \longrightarrow k$, and, under the identification in section 1, it sits inside $X^{*}\left(S_{1 H_{1}}\right) .-\mathcal{C}(E)^{\vee} \cap X^{+}\left(S_{1 H_{1}}\right)$ is the highest weight semigroup of $k[E]$. Indeed, since E is normal, a regular function $f \in k\left[G_{1} / H_{1}\right]^{\left(B_{1}\right)}$ extends to all of E if and only if $v(f) \geq 0 \forall v \in \mathcal{V}(E)$. This means that (χ_{f} being the B_{1}-weight of f)

$$
k[E]^{\left(B_{1}\right)}=\left\{f \in k\left[G_{1} / H_{1}\right]^{\left(B_{1}\right)} \mid \chi_{f} \in-\mathcal{C}(E)^{\vee} \cap X^{+}\left(S_{1 H_{1}}\right)\right\},
$$

hence

$$
k[E]=\bigoplus_{\Lambda \in-\mathcal{C}(E)^{\vee} \cap X^{+}\left(S_{1 H_{1}}\right)} k\left[G_{1} / H_{1}\right]_{\Lambda} .
$$

Notice that in this case $-\mathcal{C}(E)^{\vee} \subseteq \mathbb{Q}^{+}$-span of $X^{+}\left(S_{1 H_{1}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. We just have to see now that $-\mathcal{C}(E)^{\vee}$ is equal to \mathcal{L}.

3.3 Action of $\operatorname{Env}\left(G_{0}\right)$

The G_{1}-action on $\operatorname{Env}\left(G_{0} / K_{0}\right)$ extends to an action of $G_{0} \times T_{0}, T_{0}^{\sigma}$ acting trivially, which decends to an action of the group $G_{0} \times T_{0} / \Delta^{1,-1}\left(Z_{0}\right)$, the group of units of $\operatorname{Env}\left(G_{0}\right)$.

Furthermore, we can extend this to an action of $\operatorname{Env}\left(G_{0}\right)$, the enveloping semigroup of G_{0}. Since $\mathcal{L} \subseteq \mathcal{L}\left(\operatorname{Env}\left(G_{0}\right)\right), \mathcal{L}\left(\operatorname{Env}\left(G_{0}\right)\right)$ being the cone in $\left(\Lambda\left(G_{0}\right) \oplus X^{*}\left(T_{0}\right)\right)^{\Delta^{1,-1}\left(Z_{0}\right)} \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\left\{\left(\omega_{i}, w_{0}\left(\omega_{i}\right)\right),\left(0,-\alpha_{i}\right)\right\}_{i=1}^{n}$, the action homomorphism $k\left[\operatorname{Env}\left(X_{0}\right)\right] \longrightarrow k\left[G_{0} \times T_{0} / \Delta^{1,-1}\left(Z_{0}\right)\right] \otimes_{k} k\left[\operatorname{Env}\left(X_{0}\right)\right]$ factors through the algebra $k\left[\operatorname{Env}\left(G_{0}\right)\right] \otimes_{k} k\left[\operatorname{Env}\left(X_{0}\right)\right]$, which proves our claim.

This extension enjoys the following property. Let E be any affine variety with an action of $\operatorname{Env}\left(G_{0}\right)$, and suppose that we are given a morphism $\phi: G_{1} / H_{1} \longrightarrow E$ which is equivariant with respect to the action of $G_{0} \times$ $T_{0} / \Delta^{1,-1}\left(Z_{0}\right)$; then we can extend ϕ to a morphism $\widetilde{\phi}: \operatorname{Env}\left(G_{0} / K_{0}\right) \longrightarrow E$ which is $\operatorname{Env}\left(G_{0}\right)$-equivariant. Indeed, the image of the algebra homomorphism $k[E] \longrightarrow k\left[G_{1} / H_{1}\right]$ must land inside the sum of the G_{1}-submodules $k\left[G_{1} / H_{1}\right]_{\nu}$ with $\nu \in \mathcal{L}\left(\operatorname{Env}\left(G_{0}\right)\right)$, so it factors through $k\left[\operatorname{Env}\left(X_{0}\right)\right]$.

4 Construction of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ from $\overline{G_{a d} / K_{a d}}$

In this section, we give a geometric construction of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ from the wonderful embedding $\overline{G_{a d} / K_{a d}}$ of $G_{a d} / K_{a d}$ similar to the one given in [Ritt1] for $\operatorname{Env}\left(G_{0}\right)$. By pulling back the line bundle $\mathcal{O}(1)$ on $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{i}\right)}\right)$, we obtain an ample line bundle L_{i} on $\overline{G_{a d} / K_{a d}} \subseteq \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)}\right) \times \cdots \times \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{l}\right)}\right)$.

Let E_{0} be the smooth variety $\oplus_{i=1}^{l} L_{i}^{\vee}$. The line bundles L_{i}^{\vee} admit a $G_{0^{-}}$ linearization (it is a general fact, obvious in this specific case, that the action of a simply connected algebraic group on a variety can be lifted to line bundles over it), so we get an action of $G_{0} \times S_{0}$ on E_{0} by letting the torus $1 \times S_{0}$ act linearly on each fiber of L_{i}^{\vee} by the character $\bar{\eta}_{i}$. For $I, J \subseteq\{1, \ldots, l\}$, set $E_{I, J}=\left.\oplus_{i \in I} L_{i}^{\vee}\right|_{X_{J}}$ $\left(E_{\phi, J}=X_{J}=\right.$ zero section of $\left.E_{\{1, \ldots, l\}, J}\right)$; these are the closed $G_{0} \times S_{0}$-stable subvarieties of E_{0}. Let $\mathcal{O}_{I, J}$ be the unique open $G_{0} \times S_{0}$-orbit in $E_{I, J} . E_{0}$ is a simple $G_{0} \times S_{0}$-spherical variety with unique closed orbit $\mathcal{O}_{\phi,\{1, \ldots, l\}}$.

Let us show that the open orbit $\mathcal{O}_{\{1, \ldots, l\}, \phi}$ is isomorphic to G_{1} / H_{1}. Over \mathcal{B}, the bundles L_{i}^{\vee} trivialize, so let f_{i} be a trivializing section for L_{i}^{\vee} over \mathcal{B}. Let $p=\sum_{i=1}^{l} f_{i}\left(1 \cdot H_{0}\right)$; we want to find the isotropy group of p under the action of $G_{0} \times S_{0}$. Let $(g, s) \in \operatorname{Stab}(p)$. Then $g H_{0}=H_{0} \Longrightarrow g \in H_{0}$; say $g=s_{0} k_{0}, s_{0} \in N_{0}, k_{0} \in K_{0}\left(H_{0}=\left(S_{0} \cap H_{0}\right) K_{0}\right.$ according to [Rich] §8). It follows that $\bar{\eta}_{i}\left(s \cdot s_{0}\right)=1 \forall i=1, \ldots, l$, (note that K_{0} acts trivially on the fiber of E_{0} over $1 \cdot H_{0}$) hence $s \cdot s_{0} \in S_{0}^{\sigma} . \Longrightarrow s=s_{0}^{-1} \tilde{s}, \tilde{s} \in S_{0}^{\sigma}$. Therefore, $\operatorname{Stab}(p)=$ $\left\{\left(k_{0} \cdot s_{0}, s_{0}^{-1} \tilde{s}\right)\right\}=\Delta^{1,-1}\left(N_{0}\right)\left(K_{0} \times S_{0}^{\sigma}\right)=H_{1}$, and $\mathcal{O}_{\{1, \ldots, l\}, \phi} \cong G_{1} / H_{1}$, which proves our claim.
E_{0} doesn't have colors because the same is true for $\overline{G_{a d} / K_{a d}}$. The irreducible G_{1}-stable divisors of E_{0} are the $E_{\{1, \ldots, l\}, j}, j=1, \ldots l$, and the $E_{\widehat{\{j\}, \phi}}, j=$ $1, \ldots, l$, where $\widehat{\{j\}}$ is the complement of $\{j\}$ in $\{1, \ldots, l\}$. Let γ_{j} be the $G_{1^{-}}$ invariant valuation associated to $E_{\{1, \ldots, l\}, j}$, and let ϵ_{j} be the one corresponding to $E_{\widehat{\{j\}}, \phi}$. Let x_{j} be a local equation for $X_{j} \cap \mathcal{B}$ as in section 3. Set $\widetilde{X}_{j}=X_{j} \cap \mathcal{B}$; then x_{j} becomes a local equation for $\left.E_{0}\right|_{\tilde{X}_{j}}$. The B_{1}-weight of x_{i} is $\left(w_{0}\left(\overline{\alpha_{i}}\right), 0\right)$ (up to reordering the rational functions x_{i}), hence $\rho\left(\gamma_{j}\right)\left(-w_{0}\left(\overline{\alpha_{i}}\right), 0\right)=\delta_{i j}$.
$E_{\widehat{\{j\}}, \phi}$ is the divisor of y_{j}, which is the restriction to E_{0} of the regular function on $\mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{1}\right)}\right) \times \cdots \times \mathbb{P}\left(V_{w_{0}\left(\bar{\eta}_{l}\right)}\right) \times V_{w_{0}\left(\bar{\eta}_{1}\right)} \times \cdots \times V_{w_{0}\left(\bar{\eta}_{l}\right)}$ which sends $\left(q_{1}, \ldots, q_{l}, u_{1}, \ldots, u_{l}\right)$ to the last coordinate of u_{j} with respect to the basis Θ_{j}. It follows that the weight of the B_{1}-eigenvector y_{j} is $\left(-w_{0}\left(\bar{\eta}_{j}\right),-\bar{\eta}_{j}\right)$. We conclude that $\rho\left(\epsilon_{j}\right)\left(w_{0}\left(\bar{\eta}_{k}\right), \bar{\eta}_{k}\right)=\delta_{j k}$.

Furthermore, $\rho\left(\gamma_{j}\right)\left(w_{0}\left(\bar{\eta}_{i}\right), \bar{\eta}_{i}\right)=0, \rho\left(\epsilon_{j}\right)\left(-w_{0}\left(\overline{\alpha_{i}}\right), 0\right)=0 \forall i$, so we may deduce that $\rho\left(\gamma_{i}\right)=\left(-w_{0}\left(\widetilde{\eta}_{i}\right), \widetilde{\eta}_{i}\right)$ and $\rho\left(\epsilon_{j}\right)=\left(0,{\overline{\alpha_{j}}}^{\vee}\right)$.

We have proved the following proposition.
Proposition 1. E_{0} is a simple smooth embedding of G_{1} / H_{1} without colors whose associated cone in $X_{*}\left(S_{1_{H_{1}}}\right)$ is generated by $\left\{\left(-w_{0}\left(\widetilde{\eta}_{i}\right), \widetilde{\eta}_{i}\right)\right\}_{i=1}^{l}$ and by $\left\{\left(0,{\overline{\alpha_{i}}}^{\vee}\right)\right\}_{i=1}^{l}$.

Let us define E_{1} as the variety $\operatorname{Spec} \Gamma\left(E_{0}, \mathcal{O}_{E_{0}}\right)$, which is the same as Spec $\oplus_{n_{1}, \ldots, n_{l} \geq 0} \Gamma\left(\overline{G_{a d} / K_{a d}}, L_{1}^{\otimes n_{1}} \otimes \cdots \otimes L_{l}^{\otimes n_{l}}\right)$.
Proposition 2. E_{1} is a simple normal embedding of G_{1} / H_{1} whose colors are all the colors of G_{1} / H_{1}. The colored cone of E_{1} is the \mathbb{Q}^{+}-cone in $X_{*}\left(S_{1_{H_{1}}}\right)$ generated by $\left\{\left(\widetilde{\eta}_{i},-w_{0}\left(\widetilde{\eta}_{i}\right)\right),\left(-\left(\overline{\alpha_{i}}\right)^{\vee}, 0\right),\left(0,\left(\overline{\alpha_{i}}\right)^{\vee}\right)\right\}_{i=1}^{l}$.
Proof. E_{1} is the normalization of the multi-cone $\widetilde{G_{a d} / K_{a d}}$ in $\prod_{i=1}^{l} V_{w_{0}\left(\bar{\eta}_{i}\right)}$ over $\overline{G_{a d} / K_{a d}}$ on which G_{1} acts, and this action lifts to E_{1}. The G_{1}-morphism $\varphi: E_{0} \longrightarrow E_{1}$ is birational (and proper because so is the morphism $E_{1} \longrightarrow$ $\widetilde{G_{a d} / K_{a d}}$), so E_{1} is an embedding of $G_{1} / H_{1} . E_{1}$ is a simple embedding (since integral invariants separate closed orbits, it is a general fact that an affine $G_{1^{-}}$ variety with a dense G_{1}-orbit has only one closed orbit), and its colors are all the colors of G_{1} / H_{1}.

To find the colored cone of E_{1}, we simply need the B_{1}-highest weight semigroup of E_{1}. By [DP1] §8.3, the decomposition of $k\left[E_{1}\right]$ under the action of G_{0} is $k\left[E_{1}\right]=\oplus_{(\gamma, \lambda) \in \mathcal{Q}} V_{\gamma}^{*}$ where $\mathcal{Q}=\left\{(\gamma, \lambda) \in X^{-}\left(S_{0 K_{0}}\right) \oplus X^{-}\left(S_{0 K_{0}}\right) \mid \lambda-\gamma \in\right.$ $\left.\mathbb{Z}^{-}\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}\right\}$. Here, V_{γ} is the irreducible representation of G_{0} whose highest weight with respect to B_{0}^{-}is γ. Therefore, $k\left[E_{1}\right]=\oplus_{(\gamma, \lambda) \in \mathcal{Q}} V_{-\gamma}$, where $V_{-\gamma}$ has highest weight $-\gamma$ with respect to B_{0}, and thus $k\left[E_{1}\right]=\oplus_{(\mu, \nu) \in \mathcal{Q}} V_{\mu}$ where now $\mathcal{Q}=\left\{(\mu, \nu) \in X^{+}\left(S_{0 K_{0}}\right) \oplus X^{+}\left(S_{0 K_{0}}\right) \mid \nu-\mu \in \mathbb{Z}^{+}\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}\right\}$.

Let $\lambda \in X^{-}\left(S_{0 K_{0}}\right)$, say $\lambda=\sum_{i=1}^{l} n_{i} w_{0}\left(\bar{\eta}_{i}\right)$, and set $L_{\lambda}=L_{1}^{\otimes n_{1}} \otimes \cdots \otimes L_{l}^{\otimes n_{l}}$. $1 \times S_{0}$ acts on $\Gamma\left(\overline{G_{a d} / K_{a d}}, L_{\lambda}\right)$ by the character $-w_{0}(\lambda)$, so the decomposition of $k\left[E_{1}\right]$ under the action of G_{1} is

$$
k\left[E_{1}\right]=\bigoplus_{(\mu, \nu) \in \mathcal{Q}} V_{\mu} \otimes_{k} \chi^{-w_{0}(\nu)}, k\left[E_{1}\right]_{\left(\mu, w_{0}(\nu)\right)}=V_{\mu} \otimes_{k} \chi^{-w_{0}(\nu)} .
$$

This means that the B_{1}-highest weight semigroup of E_{1} is the intersection of the semigroup generated by $\left\{\left(\bar{\eta}_{i}, w_{0} \bar{\eta}_{i}\right\}_{i=1}^{l} \cup\left\{\left(0,-\overline{\alpha_{i}}\right)\right\}_{i=1}^{l}\right.$ with the semigroup $\left(\Lambda_{+}\left(G_{0} / K_{0}\right) \oplus X^{-}\left(S_{0 K_{0}}\right)\right)^{N_{0}}$. Dualizing, we get that the colored cone of E_{1} inside $X_{*}\left(S_{1_{H_{1}}}\right)$ is the \mathbb{Q}^{+}-cone generated by

$$
\left\{\left(\widetilde{\eta}_{i},-w_{0}\left(\widetilde{\eta}_{i}\right)\right),\left(-\left(\overline{\alpha_{i}}\right)^{\vee}, 0\right),\left(0,\left(\overline{\alpha_{i}}\right)^{\vee}\right)\right\}_{i=1}^{l} .
$$

Let A be as in section 3.1, so A is the S_{0} / N_{0}-toric variety defined by the cone in $X_{*}\left(S_{0} / N_{0}\right)$ generated by $\left\{\widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{l}\right\}(=\mathcal{V}(A))$. Let A_{1} be the categorical quotient E_{1} / G_{0};

$$
A_{1}=\operatorname{Spec} k\left[E_{1}\right]^{G_{0}}=\operatorname{Spec} \bigoplus_{\lambda \in X^{+}\left(S_{0} K_{0}\right) \cap \mathbb{Z}\left\{\overline{\alpha_{1}}, \ldots, \overline{\alpha_{l}}\right\}} k \cdot \chi^{\lambda},
$$

so A_{1} is the S_{0} / N_{0}-toric variety associated to the cone in $X_{*}\left(S_{0} / N_{0}\right)$ consisting of all the coweights $\widetilde{\eta}$ such that $\langle\widetilde{\eta}, \bar{\alpha}\rangle \geq 0$ for all $\bar{\alpha}$ in the intersection of the root lattice with the positive Weyl chamber. The inclusion of the first cone into the second one induces an equivariant morphism $\psi: A \longrightarrow A_{1}$. Combining this with the quotient $\varphi: E_{1} \longrightarrow A_{1}$, we can consider the fiber product $E_{2}=E_{1} \times{ }_{A_{1}} A$.

Proposition 3. E_{2} is an embedding of G_{1} / H_{1} isomorphic to $\operatorname{Env}\left(G_{0} / K_{0}\right)$.
Proof. The action of G_{1} on E_{2} is described by $(g, s) \cdot(e, a)=((g, s) e, s a)$, and the isotropy group of $\left(1 \cdot H_{1}, p\right)$, where $\psi(p)=\varphi\left(1 \cdot H_{1}\right)$, is H_{1}, so E_{2} is an embedding of G_{1} / H_{1}.
E_{2} is simple because it is affine and contains an open dense orbit under the action of G_{1}, and the only closed G_{1}-orbit is $\theta \times_{A_{1}} 0, \theta$ being the closed orbit of E_{1}. It is also normal since, as one can easily check directly, $k\left[E_{2}\right]=$ $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]$. Of course, this shows that E_{2} and $\operatorname{Env}\left(G_{0} / K_{0}\right)$ are isomorphic affine varieties, but we want to give a different proof which is more instructive and uses results from section 1 .

We would like to show that the two varieties E_{2} and $\operatorname{Env}\left(G_{0} / K_{0}\right)$ share the same combinatorial data. To find $\mathcal{C}\left(E_{2}\right) \cap \mathbb{Z}^{+} \mathcal{V}\left(G_{1} / H_{1}\right)$, we apply the result of section 1.5. Let (λ, μ) be a one-parameter subgroup in $X_{*}\left(S_{1_{H_{1}}}\right)$ which is in $\mathcal{V}\left(G_{1} / H_{1}\right)$. Then $\lim _{t \rightarrow 0}(\lambda, \mu)(t) 1 \cdot H_{1}$ exists in E_{2} if and only if the limits $\lim _{t \rightarrow 0} \pi_{j}\left((\lambda, \mu)(t) 1 \cdot H_{1}\right)$ exist in $\pi_{j}\left(E_{2}\right)$, where π_{j} is the projection morphism onto the $j^{\text {th }}$ factor. Now $\lim _{t \rightarrow 0} \pi_{1}\left((\lambda, \mu)(t) 1 \cdot H_{1}\right)$ exists if and only if $(\lambda, \mu) \in \mathcal{C}\left(E_{1}\right) \cap \bar{C} \cap X_{*}\left(S_{1_{H_{1}}}\right)=\mathbb{Z}^{+}\left\{\left(\widetilde{\eta}_{i},-w_{0}\left(\widetilde{\eta}_{i}\right)\right),\left(-\left(\overline{\alpha_{i}}\right)^{\vee}, 0\right)\right\}_{i=1}^{l} \cap \bar{C} \cap$ $X_{*}\left(S_{1 H_{1}}\right)+\mathbb{Z}^{+}\left\{\left(0,\left(\overline{\alpha_{i}}\right)^{\vee}\right)\right\}_{i=1}^{l}$, and $\lim _{t \rightarrow 0} \pi_{2}\left((\lambda, \mu)(t) 1 \cdot H_{1}\right)$ exists if and only if $\mu \in \mathbb{Z}^{+}\left\{\widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{l}\right\}$; the condition $\psi\left(\pi_{1}\left((\lambda, \mu)(t) 1 \cdot H_{1}\right)\right)=\varphi\left(\pi_{2}\left((\lambda, \mu)(t) 1 \cdot H_{1}\right)\right)$ is automatically satisfied since all the morphisms involved are equivariant and equality holds for $t=1$. Therefore,

$$
\mathcal{C}\left(E_{2}\right) \cap \mathbb{Z}^{+} \mathcal{V}\left(G_{1} / H_{1}\right)=\mathbb{Z}^{+}\left\{\left(\widetilde{\eta}_{i},-w_{0}\left(\widetilde{\eta}_{i}\right)\right),\left(-\left(\overline{\alpha_{i}}\right)^{\vee}, 0\right)\right\}_{i=1}^{l} \cap \bar{C}
$$

which is equal to $\mathcal{C}\left(\operatorname{Env}\left(G_{0} / K_{0}\right)\right) \cap \mathbb{Z}^{+} \mathcal{V}\left(G_{1} / H_{1}\right)$.

We claim now that the colors of E_{2} are all those of G_{1} / H_{1}. Let λ_{1} be a one-parameter subgroup of $1 \times S_{0}$ such that $\left\langle\lambda_{1}, \overline{\alpha_{i}}\right\rangle>0 \forall i$. Then, if \tilde{q} is a point on the fiber of L_{i}^{\vee} over $q \in \overline{G_{a d} / K_{a d}}, \lim _{t \rightarrow 0} \lambda_{1}(t) \tilde{q}=\lim _{t \rightarrow 0} \bar{\eta}_{i}\left(\lambda_{1}(t)\right) \tilde{q}=q$, q being the projection of \tilde{q} on the zero section of L_{i}^{\vee}. Therefore, if \tilde{q} is now a point on the multicone $\widetilde{G_{a d} / K_{a d}}$, then $\lim _{t \rightarrow 0} \lambda_{1}(t) \tilde{q}=0$. It follows that if $D \in \mathcal{D}\left(G_{1} / H_{1}\right)$ and \tilde{q} is a point on D, we can find a one-parameter subgroup λ_{1} of $1 \times S_{0}$ such that $\lim _{t \rightarrow 0} \lambda_{1}(t) \tilde{q}=\theta$ and $\lambda_{1}(t) \tilde{q} \in D \forall t$.
$\varphi \circ \lambda_{1}$ has image in the open orbit S_{0} / N_{0} of A_{1}, and we have $\psi\left(\lambda_{1}(t) 1 \cdot N_{0}\right)=$ $\varphi\left(\lambda_{1}(t) 1 \cdot H_{1}\right) \forall t .\left(A \cong \mathbb{A}^{l}\right.$ and $1 \cdot N_{0}$ is just the point $\left.(1, \ldots, 1)\right) .\left\langle\lambda_{1}, \overline{\alpha_{i}}\right\rangle>0 \forall i$ implies that $\lim _{t \rightarrow 0} \lambda_{1}(t)(1, \ldots, 1)=(0, \ldots, 0)$, so

$$
\lim _{t \rightarrow 0}\left(1, \lambda_{1}(t)\right)(\tilde{q},(1, \ldots, 1))=\theta \times\{0\}
$$

Moreover, $\left(1, \lambda_{1}(t)\right)(\tilde{q},(1, \ldots, 1)) \in D \forall t$, so $\theta \times\{0\}$ is in the closure of D inside E_{2}. In conclusion, the colors of E_{2} are the closures of those of G_{1} / H_{1}.

5 Properties of $\operatorname{Env}\left(G_{0} / K_{0}\right)$

The goal of this section is to establish some properties of $\operatorname{Env}\left(G_{0} / K_{0}\right)$, generalizing those of the enveloping semigroup of a semisimple group.

5.1 Orbit structure of $\operatorname{Env}\left(G_{0} / K_{0}\right)$

The orbit structure of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ under the action of G_{1} is exactly the same as the decomposition of $\operatorname{Env}\left(G_{0}\right)$ under the action of $G_{0} \times T_{0} / \Delta^{1,-1}\left(Z_{0}\right)$ (or $G_{0} \times T_{0}$). Let Σ be the Dynkin diagram of the root system $\overline{R_{0}}$. For a subset $I \subseteq\{1, \ldots, l\}, \Sigma_{I}$ denotes the subdiagram corresponding to the roots $\overline{\alpha_{i}}$ with $i \in I$.

Definition 2 (cf. [Vin]). A pair (I, J) of subsets $I, J \subseteq\{1, \ldots, l\}$ is said to be essential if no connected component of the complement of J is entirely contained in I.

Proposition 4. There exists a bijection between G_{1}-orbit closures inside the variety $\operatorname{Env}\left(G_{0} / K_{0}\right)$ and essential pairs (I, J) of subsets $I, J \subseteq\{1, \ldots, l\}$.

Proof. For a simple spherical variety, there exists a bijection between orbit closures and colored faces of its colored cone (see [Knop] for a definition of colored face); therefore, to retrieve Vinberg's parametrization in terms of essential pairs, we simply have to establish a bijection between colored faces of $\mathcal{C}\left(\operatorname{Env}\left(G_{0} / K_{0}\right)\right)$ and such pairs exactly as in [Ritt1] §5.3.

5.2 Toric subvarieties

In [Vin], Vinberg considers the closure of the center and of a maximal torus of G inside a given reductive algebraic monoid with group of units G. On the other
hand, in [DP2], DeConcini and Procesi use in an essential way the closure of a maximal anisotropic torus inside the wonderful completion of $G_{a d} / K_{a d}$. Our intention now is to relate this second toric variety to the closure of $S_{1 H_{1}}$ inside $\operatorname{Env}\left(G_{0} / K_{0}\right)$.

Let $\overline{S_{0} / N_{0}}$ be the closure of the embedding of S_{0} / N_{0} in $\overline{G_{a d} / K_{a d}}$ given by the morphism $s \mapsto s \cdot H_{0}, s \in S_{0} . \overline{S_{0} / N_{0}}$ is the complete toric variety associated to the fan in $X_{*}\left(S_{0} / N_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ given by the decomposition into Weyl chambers ([DP2] §5.3); in particular, it is non-singular. In fact, the Weyl chamber spanned by our choice of fundamental coweights $\widetilde{\eta}_{i}$ is just the affine cell $\mathcal{S}_{0}=1 \times \mathbb{A}^{l} \subseteq$ \mathcal{B}. Furthermore, since $\overline{S_{0} / N_{0}}$ contains the affine cell \mathcal{S}_{0}, it follows from the description given in section 4 that $\overline{S_{0} / N_{0}}$ intersects every G_{0}-orbit of $\overline{G_{a d} / K_{a d}}$.

We follow the same procedure as in section 4. Let F_{0} be the vector bundle $\left.\oplus_{i=1}^{l} L_{i}^{\vee}\right|_{\overline{S_{0} / N_{0}}}$, and let $F_{1}=\operatorname{Spec} \Gamma\left(F_{0}, \mathcal{O}_{F_{0}}\right)$. That F_{0} is an embedding of $S_{1 H_{1}}$ is clear because the stabilizer of p (see the proof of proposition 1) under the action of S_{1} is $S_{1} \cap H_{1}$; since the natural equivariant morphism $F_{0} \longrightarrow F_{1}$ is birationnal, F_{1} is also an $S_{1 H_{1}}$-toric variety.
F_{0} is a closed subvariety of E_{0}, and the proper morphism $\varphi: E_{0} \longrightarrow E_{1}$ maps F_{0} onto F_{1}. In fact, the restriction homomorphism $\Gamma\left(\overline{G_{a d} / K_{a d}}, L\right) \longrightarrow$ $\Gamma\left(\overline{S_{0} / N_{0}}, L\right)$ is surjective for L as in the next paragraph. Therefore, $F_{2}=$ $F_{1} \times A_{A_{1}} A$ is closed in $\operatorname{Env}\left(G_{0} / K_{0}\right)$, and it corresponds to the closure of $S_{1 H_{1}}$ inside $\operatorname{Env}\left(G_{0} / K_{0}\right)$. The next lemma shows that it is a toric variety.

Lemma 5. F_{2} is a normal variety.
Proof. Fix n_{1}, \ldots, n_{l}, and set $L=L_{1}^{\otimes n_{1}} \otimes \cdots \otimes L_{l}^{\otimes n_{l}} ;$ let's find the decomposition of $\Gamma\left(\overline{S_{0} / N_{0}}, L\right)$ under the action of $S_{0 K_{0}} \times 1 . \overline{S_{0} / N_{0}}$ is covered by affine cells $\mathcal{B}_{1}, \ldots, \mathcal{B}_{r}, \mathcal{B}_{i}$ corresponding to the $i^{t h}$ Weyl chamber inside $X^{*}\left(S_{0} / N_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. (Fix an arbitrary ordering of these chambers so that \mathcal{B}_{1} corresponds to $\overline{C_{0}}$, the positive Weyl chamber.) For each i, let $\left\{\bar{\eta}_{i}^{1}, \ldots, \bar{\eta}_{i}^{r}\right\}$ be the orbit of $\bar{\eta}_{i}$ under the action of $\overline{\mathcal{W}_{0}}$, ordered in such a way that $\bar{\eta}_{i}^{j}$ is in the $j^{\text {th }}$ Weyl chamber.
L trivializes over \mathcal{B}_{1}, so $\Gamma\left(\mathcal{B}_{1}, L\right)=\oplus_{u \in S} \chi^{u}$ where S is defined as the set $\{u \in$ $\left.X^{*}\left(S_{0 K_{0}}\right) \mid u=w_{0}\left(\sum_{i=1}^{l} n_{i} \bar{\eta}_{i}-\bar{\alpha}\right), \bar{\alpha} \in \mathbb{Z}^{+}{\overline{R_{0}}}^{+}, n_{i} \geq 0\right\}$. This follows from the fact that there exists a non-vanishing section over \mathcal{B}_{1} of weight $-w_{0}\left(\sum_{i=1}^{l} n_{i} \bar{\eta}_{i}\right)$, and the others are obtained by multiplying it by the functions $x_{j}, j=1, \ldots, l$.

Let w_{1}, \ldots, w_{r} be the elements of $\overline{\mathcal{W}_{0}}$ such that w_{i} takes C_{0} to the $i^{\text {th }}$ Weyl chamber. Then

$$
\Gamma\left(\overline{S_{0} / N_{0}}, L\right)=\cap_{i=1}^{r} \Gamma\left(L, \mathcal{B}_{i}\right)=\bigoplus_{u \in \cap_{i=1}^{r} w_{i}(S)} k \cdot \chi^{u}
$$

$\cap_{i=1}^{r} w_{i}(S)$ consists of the integral points inside a polyhedron in the vector space $X^{*}\left(S_{0 K_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. Set $S_{n_{1}, \ldots, n_{l}}=\cap_{i=1}^{r} w_{i}(S)$. Then

$$
k\left[F_{1}\right]=\bigoplus_{\substack{n_{1}, \ldots, n_{l} \geq 0 \\ u \in S_{n_{1}}, \ldots, n_{l}}} k \cdot \chi^{u}
$$

As an $S_{0 K_{0}} \times S_{0 K_{0}}$-module, the decomposition of $k\left[F_{1}\right]$ is

$$
k\left[F_{1}\right]=\bigoplus_{\substack{n_{1}, \ldots, n_{l} \geq 0 \\ u \in S_{n_{1}}, \ldots, n_{l}}} k \cdot \chi^{u} \otimes_{k} \chi^{n_{1} \bar{\eta}_{1}+\ldots+n_{l} \bar{\eta}_{l}}
$$

Notice that the weight semigroup of F_{1} contains $\left\{\left(-w_{j} \bar{\eta}_{i},-\bar{\eta}_{i}\right)\right\}_{i, j=1}^{l, r}$. Moreover it contains also $(0,-\bar{\alpha})$ for $\bar{\alpha} \in \mathbb{Z} \overline{R_{0}} \cap \overline{C_{0}}$: if $-\bar{\alpha}=\sum_{k_{i} \geq 0}-k_{i} \bar{\eta}_{i}$; then

$$
r(0,-\bar{\alpha})=\sum_{j=1}^{r} \sum_{i=1}^{l} k_{i}\left(-w_{j}\left(\bar{\eta}_{i}\right),-\bar{\eta}_{i}\right)
$$

is in the weight semigroup of F_{1}. But this semigroup is a saturated subsemigroup of the lattice $X^{*}\left(S_{1 H_{1}}\right)$ since F_{1} is normal, so it contains $(0,-\bar{\alpha})$.

The weight semigroup of $k\left[F_{2}\right]$ is generated by

$$
\left\{\left(-w_{j}\left(\bar{\eta}_{i}\right),-\bar{\eta}_{i}\right),\left(0,-\overline{\alpha_{i}}\right)\right\}_{i, j=1}^{l, r}
$$

Indeed, if $\kappa=\left(\kappa^{\prime}, \kappa^{\prime \prime}\right)$ belongs to that semigroup, then $\kappa^{\prime} \in \mathbb{Z}^{+}\left\{w_{j}\left(\bar{\eta}_{i}\right)\right\}_{i}^{l}$ for some (fixed) j, and $\kappa^{\prime \prime}-w_{j}^{-1}\left(\kappa^{\prime}\right) \in \mathbb{Z}^{+}{\overline{R_{0}}}^{+}$.

Set $\Xi_{i}^{j}=\left(w_{j}\left(\bar{\eta}_{i}\right), \bar{\eta}_{i}\right)$, so that $k\left[F_{2}\right]=k\left[\chi^{\Xi_{i}^{j}}, \chi^{\left(0, \overline{\alpha_{i}}\right)}\right]_{i, j=1}^{l, r}$. We claim that the weight semigroup of F_{2} is a saturated subsemigroup of $X^{*}\left(S_{1 H_{1}}\right)$, which implies that F_{2} is normal. Indeed, suppose that $(\lambda, \mu) \in X^{*}\left(S_{1_{H_{1}}}\right)$ and $r(\lambda, \mu) \in$ $\mathbb{Z}^{+}\left\{-\Xi_{i}^{j},\left(0,-\overline{\alpha_{i}}\right)\right\}_{i, j=1}^{l, r}$ for some $r \in \mathbb{Z}^{+}$; then $r \lambda=-w_{j} \bar{\eta}, r \mu=-\bar{\eta}-\bar{\alpha}$ for some $\bar{\eta} \in X^{+}\left(S_{0 K_{0}}\right), \bar{\alpha} \in \mathbb{Z}^{+}{\overline{R_{0}}}^{+}$. It follows that $\bar{\eta}=r \bar{\eta}^{\prime}, \lambda=-w_{j}\left(\bar{\eta}^{\prime}\right)$, and $r \mu=-r \bar{\eta}^{\prime}-\bar{\alpha}$, so $\bar{\alpha}=r\left(-\mu+\lambda-\lambda-\bar{\eta}^{\prime}\right) . \quad \mu-\lambda \in \mathbb{Z} \overline{R_{0}}$, and $-\lambda-\bar{\eta}^{\prime}=$ $w_{j}\left(\bar{\eta}^{\prime}\right)-\bar{\eta}^{\prime} \in \mathbb{Z} \overline{R_{0}}$, hence $\bar{\alpha} \in r \overline{R_{0}}, \bar{\alpha}=r \bar{\alpha}^{\prime}$. We deduce that $\mu=-\bar{\eta}^{\prime}-\bar{\alpha}^{\prime}$, so (λ, μ) belongs to the weight semigroup of $k\left[F_{2}\right]$.

From the theory of toric varieties, we know that to each face τ of the cone of F_{2} corresponds a distinguished idempotent element x_{τ}, which is the unique one in the orbit associated to τ. For an arbitrary toric variety \mathcal{Z}, we call a point x an idempotent if x is an idempotent for one (hence any) affine toric subvariety of \mathcal{Z} containing x.

Proposition 5. Any two idempotents of F_{2} which are in the same G_{1}-orbit are conjugate under the action of $\overline{\mathcal{W}_{0}}$.

Proof. $\overline{\mathcal{W}_{0}}$ acts on $\overline{S_{0} / N_{0}}$, and combinatorially this action is described by the action of $\overline{\mathcal{W}_{0}}$ on the Weyl chambers. This action lifts to F_{0}, hence also to F_{1} and F_{2}. (In the latter case, $\overline{\mathcal{W}_{0}}$ acts trivially on A and A_{1}.) Furthermore, $\overline{\mathcal{W}_{0}}$ permutes the idempotents of $\overline{S_{0} / N_{0}}$ in the sense that if $C_{1}, C_{2}=w\left(C_{1}\right), w \in \overline{\mathcal{W}_{0}}$, are two Weyl chambers corresponding to the affine cells $A_{C_{1}}, A_{C_{2}}$ inside $\overline{S_{0} / N_{0}}$, and if $x \in A_{C_{1}}$ is an idempotent, then so is $\omega(x)$.
F_{0} is covered by the affine cells $A_{C} \times \mathbb{A}^{l}=\left.F_{0}\right|_{A_{C}}$ and $\overline{\mathcal{W}_{0}}$ permutes these; therefore, the idempotents in F_{0} which are in the same orbit under the action
of G_{1} are conjugate under the action of $\overline{\mathcal{W}_{0}} . \oplus_{i=1}^{l}\left(\left.L_{i}^{\vee}\right|_{\overline{S_{0} / N_{0}}} \backslash\right.$ \{zero section\}) is isomorphic to $F_{1} \backslash\{0\}$, so the same is true about idempotents in F_{1}.

Now suppose $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in F_{1} \times A$ are idempotents in the same G_{1}-orbit. Then q_{1} and q_{2} are in the same S_{0}-orbit, so $q_{1}=q_{2}$. From what we know about F_{1}, it follows that p_{1} and p_{2} are conjugate under the action of $\overline{\mathcal{W}_{0}}$. Therefore, the same assertion holds for F_{2}.

Proposition 6. Every G_{1}-orbit of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ meets F_{2}.
Proof. Every G_{0}-orbit of E_{0} meets F_{0} : this follows from the fact that $\overline{S_{0} / N_{0}}$ intersects all the G_{0}-orbit of $\overline{G_{a d} / K_{a d}}$. Since the morphism $E_{0} \longrightarrow E_{1}$ is surjective and it is compatible with $F_{0} \longrightarrow F_{1}$ under the immersions $F_{0} \longrightarrow E_{0}$ and $F_{1} \longrightarrow E_{1}$, the same is true for E_{1} and F_{1}, hence also for E_{2} and F_{2}.

Remark 2. It is a general result, due to M. Putcha, that in a reductive algebraic monoid M with unit group G any $G \times G$-orbit contains an idempotent which can, furthermore, be chosen in the closure of a maximal torus of G and is then unique up to the action of the Weyl group.

From the two previous propositions, we conclude that we can retrieve the orbit decomposition of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ from the orbit structure of F_{2} :

$$
\left\{G_{1}-\text { orbits in } \operatorname{Env}\left(G_{0} / K_{0}\right)\right\}=\left\{S_{1}-\text { orbits of } F_{2}\right\} / \overline{\mathcal{W}_{0}}
$$

5.3 Abelianization

In [Vin], Vinberg characterizes the enveloping semigroup in terms of a certain universal property among a family of reductive monoids. We want to give a similar characterization of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ following the same steps. If \mathcal{X} is a G-equivariant affine embedding of a homogeneous space G / L of the reductive group $G, G^{\prime}=[G, G]$, we call the categorical quotient \mathcal{X} / G^{\prime} the abelianization of \mathcal{X}; it is a toric variety endowed with an action of the torus G / G^{\prime}. We will generalize this definition to arbitrary simple embeddings, and then will study the properties of the abelianization map in the affine case and determine when it is a flat integral submersion, i.e. when it is dominant, flat, with reduced and irreducible fibers. Such an embedding of G / L is simply called flat. We will consider dominant embeddings of varieties other than G_{0} / H_{0} and G_{1} / H_{1}; their classification is similar to the one given in section 1.4, and the reader is refered to [Vust2] for all the general results.

Let $G=G_{0} \times \widetilde{T_{0}}$ be a reductive group with Borel subgroup $B=B_{0} \times \widetilde{T}_{0}$ and maximal torus $T=T_{0} \times \widetilde{T}_{0}$, and let L be a closed subgroup. Let $p_{2}: G \longrightarrow \widetilde{T}_{0}$ be the projection onto the second component(similarly for p_{1}). The submersion $\varrho: G / L \longrightarrow G_{0} \backslash G / L \cong \widetilde{T}_{0} / p_{2}(L)$ induces an injection $\varrho^{*}: X^{*}\left(\widetilde{T}_{0} / p_{2}(L)\right) \hookrightarrow$ $\Lambda_{+}(G / L)$ and a linear map $\varrho_{*}: \mathcal{Q}(G / L) \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow X_{*}\left(\widetilde{T}_{0} / p_{2}(L)\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ where $\mathcal{Q}(G / L)=\operatorname{Hom}_{\mathbb{Z}}(\Lambda(G / L), \mathbb{Z})$.

Definition 3. The abelianization $A b(E)$ of E is the $\widetilde{T}_{0} / p_{2}(L)$-toric variety whose cone in $X_{*}\left(\widetilde{T}_{0} / p_{2}(L)\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ is the image of $\mathcal{C}(E)$ under ϱ_{*}, and the abelianization morphism is the one determined by ϱ_{*}.

If E is affine, $A b(E)$ is just the categorical quotient under the action of G_{0}, i.e. $A b(E)=E / G_{0}$. Indeed, $\varrho_{*}: \mathcal{C}(E) \longrightarrow \mathcal{C}(A b(E))$ induces a homomorphism $\varrho^{*}: \mathcal{C}(A b(E))^{\vee} \hookrightarrow \mathcal{C}(E)^{\vee}$ and $\rho^{*}\left(-\mathcal{C}(A b(E))^{\vee}\right)=-\mathcal{C}(E)^{\vee} \cap\left(0 \oplus X^{*}\left(\widetilde{T}_{0} / p_{2}(L)\right)\right)$, which is the weight semigroup of $k[E]^{G_{0}}$. Therefore, $k[A b(E)] \cong k[E]^{G_{0}}$, and the homomorphism of rings induced by $\varrho_{*}: \mathcal{C}(E) \longrightarrow \mathcal{C}(A b(E))$ is the inclusion $k[E]^{G_{0}} \hookrightarrow k[E]$.

Any symmetric variety arising from an involution of a reductive group with semisimple part G_{0} is isomorphic to one coming from a group $G_{0} \times \widetilde{T}, \widetilde{T}$ a torus, and an involution ς such that $\varsigma\left(G_{0}\right)=G_{0}$ and $\varsigma(1, t)=\left(1, t^{-1}\right) \forall t \in \widetilde{T}$. We call such a symmetric variety unmixed.

Let \mathcal{E}^{\prime} be the set of unmixed symmetric varieties whose semisimple part is G_{0} / K_{0} and which come from an involution of a reductive algebraic group with semisimple part equal to G_{0}. The semisimple part of $G_{0} \times \widetilde{T}_{0} / L, G_{0}^{\varsigma} \times \widetilde{T}_{0,2} \subset$ $L \subset N_{G_{0} \times \widetilde{T}_{0}}\left(G_{0}^{\varsigma} \times \widetilde{T}_{0,2}\right)$, is $G_{0} / L_{0}, L_{0}=L \cap\left(G_{0} \times 1\right)$. Let \mathcal{E} be the set of flat embeddings of symmetric varieties isomorphic to elements of \mathcal{E}^{\prime}.

Theorem 3 (cf. [Vin] prop.5)). For any $E \in \mathcal{E}$ which is an embedding of the symmetric variety G / L, and if $m=n$ (§1.2), any isomorphism φ_{0} of the semisimple part of G / L with G_{0} / K_{0} can be extended to an equivariant morphism $\varphi: E \longrightarrow \operatorname{Env}\left(G_{0} / K_{0}\right)$ which is excellent with respect to the abelianization maps.
(Excellent means that the canonical morphism $E \longrightarrow \operatorname{Env}\left(X_{0}\right) \times{ }_{A} A b(E)$ is an isomorphism, $A=A b\left(\operatorname{Env}\left(X_{0}\right)\right)$.)

The proof of this proposition will occupy the rest of this subsection. First, we have to find a criterion in terms of colored cones which characterizes flat, simple embeddings. E will denote an embedding of an unmixed symmetric variety $G / L \in \mathcal{E}^{\prime}$ for $G=G_{0} \times \widetilde{T}_{0}$ arising from an involution $\varsigma, K=G^{\varsigma}=K_{0} \times \widetilde{T}_{0,2}$, and $S=S_{0} \times \widetilde{T}_{0}$ will be a maximal anisotropic torus of G inside the ς-stable maximal torus $T=T_{0} \times \widetilde{T}_{0}$, so that $\mathcal{C}(E) \subseteq X_{*}\left(S_{L}\right)$. Let L_{1} be the finite group $L \cap S / K \cap S$, so that $S_{L} \cong\left(S_{0 K_{0}} \times \widetilde{T}_{0} / \widetilde{T}_{0,2}\right) / L_{1}$ and $X^{*}\left(S_{L}\right) \cong\left(X^{*}\left(S_{0 K_{0}}\right) \oplus\right.$ $\left.X^{*}\left(\widetilde{T}_{0} / \widetilde{T}_{0,2}\right)\right)^{L_{1}}$.

As suggested by Vinberg, we define a preorder on $-\mathcal{C}(E)^{\vee} \cap X^{+}\left(S_{L}\right)$ by $\nu_{1} \geq \nu_{2}$ if $\nu_{1}-\nu_{2} \in\left(0 \oplus X^{*}\left(\widetilde{T}_{0} / p_{2}(L)\right)\right) \cap\left(\mathcal{C}(E)^{\vee}\right)$. (We cannot obtain a partial order because, unlike in the case of toric varieties, it does not seem possible in general to reduce to the case when $\mathcal{C}(E)^{\vee} \cap\left(X^{*}\left(\widetilde{T}_{0} / p_{2}(L)\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$ contains no linear subspaces.) Let \mathcal{M} be the set of minimal elements, ν_{1} being minimal if $\nu_{2} \leq \nu_{1} \Longrightarrow \nu_{1} \leq \nu_{2}$.

Proposition 7. $A b: E \longrightarrow A b(E)$ is flat and its fibers are reduced and irreducible if and only if there exists a homomorphism $h_{*}: X_{*}\left(\widetilde{T}_{0} / \widetilde{T}_{0,2}\right) \longrightarrow$ $X_{*}\left(S_{0} \times 1_{L}\right)$ and a cone $\Delta \subseteq X_{*}\left(\widetilde{T}_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ such that $\mathcal{C}(E)$ is of the form
$\left\{\left(\lambda_{1}, \lambda_{2}\right) \in X_{*}\left(S_{L}\right) \mid \lambda_{1}+h_{*}\left(\lambda_{2}\right) \in\right.$ span of $\left.\mathcal{F}(E), \lambda_{2} \in \Delta\right\}$, and h^{*} satisfies $\chi^{h^{*}(\nu)}\left(p_{2}(x)\right)=\chi^{-\nu}\left(p_{1}(x)\right) \forall x \in L \cap S, \forall \nu \in X^{*}\left(S_{0} \times 1_{L}\right)$.

Corollary 1. The abelianization morphism of $\operatorname{Env}\left(X_{0}\right)$ is a flat integral submersion.

Proof. In this case, Δ is the cone generated by $-w_{0}\left(\widetilde{\eta}_{i}\right), i=1, \ldots, l$ and h_{*} : $X_{*}\left(S_{0 K_{0}}\right) \longrightarrow X_{*}\left(S_{0 K_{0}}\right)$ is w_{0}.

The previous proposition is a consequence of the next three results.
Lemma 6. The following statements are equivalent:

1. $A b: E \longrightarrow A b(E)$ is flat.
2. $k[E] \cong k[A b(E)] \otimes_{k} k[G / L]_{\mathcal{M}_{1}}$, where $k[G / L]_{\mathcal{M}_{1}}=\oplus_{\mu \in \mathcal{M}_{1}} k[G / L]_{\mu}$ and \mathcal{M}_{1} is a set of representatives of the cosets in \mathcal{M} of the group $\left(-\mathcal{C}(E)^{\vee}\right) \cap$ $\mathcal{C}(E)^{\vee} \cap X^{*}\left(\widetilde{T}_{0} / p_{2}(L)\right)$.

Proof. 2) \Longrightarrow 1)is clear, so let us turn to the other implication. The essential point here is that the $k[A b(E)]$-submodule $k[E]^{U_{2}}$ of $k[E]$ admits a complement which is also a $k[A b(E)]$-module. The rest of the proof is as in [Vin]; it consists of showing that if $\nu_{1}, \nu_{2} \in \mathcal{M}, \chi_{1}, \chi_{2} \in\left(-\mathcal{C}(E)^{\vee}\right) \cap X^{*}\left(\widetilde{T}_{0} / p_{2}(L)\right)$ and $\nu_{1}+\chi_{1}=$ $\nu_{2}+\chi_{2}$, then $\nu_{1} \geq \nu_{2}$ and $\nu_{2} \geq \nu_{1}$.

Lemma 7. The fibers of $A b: E \longrightarrow A b(E)$ are reduced and irreducible if and only if \mathcal{M} is a subsemigroup of $\left(-\mathcal{C}(E)^{\vee}\right) \cap X^{+}\left(S_{L}\right)$.

Proof. Let e be the distinguished idempotent in the unique closed orbit in $A b(E)$. It is sufficient to determine when the fiber $A b^{-1}(e)$ is reduced and irreducible, and for this we can argue as in [Vin] §4.

We will need also the following lemma whose proof is similar to the one of proposition 12 in [Ritt2].

Lemma 8. Let G / L be a symmetric variety. Let τ be a polyhedral cone contained in $\mathbb{Q}^{+} \mathcal{V}(G / L)$ such that $\tau+\mathbb{Q}^{+} \rho(\mathcal{D}(G / L))$ is strictly convex. Then there exists a unique subset $\widetilde{\mathcal{F}} \subset \rho(\mathcal{D}(G / L))$ and a set of colors $\mathcal{F} \subset \mathcal{D}(G / L)$ such that $\widetilde{\mathcal{F}}=\rho(\mathcal{F})$ and the colored cone $\left(\tau+\mathbb{Q}^{+} \widetilde{\mathcal{F}}, \mathcal{F}\right)$ corresponds to an affine embedding of G / L.

Proof of proposition 7. Let us translate the results above into the language of colored cones. We assume first that E is flat. Then we get a group epimorphism $\mathcal{M}-\mathcal{M} \longrightarrow X^{*}\left(S_{0} \times 1_{L}\right)$ (it is surjective since the dominant morphism $G / L \longrightarrow E$ is an embedding), so we can find a homomorphism $X^{*}\left(S_{0} \times 1_{L}\right) \longrightarrow$ $\mathcal{M}-\mathcal{M}$ which is a right inverse. This inverse is of the form $\nu \longrightarrow\left(\nu, h^{*}(\nu)\right)$, where h^{*} is a group homomorphism $X^{*}\left(S_{0} \times 1_{L}\right) \longrightarrow X^{*}\left(\widetilde{T}_{0} / \widetilde{T}_{0,2}\right)$, and $\nu \in$ $X^{+}\left(S_{0} \times 1_{L}\right) \Longrightarrow h^{*}(\nu) \in \mathcal{M}$; since $\left(\nu, h^{*}(\nu)\right) \in X^{*}\left(S_{L}\right), \chi^{h^{*}(\nu)}\left(p_{2}(x)\right)$ and $\chi^{-\nu}\left(p_{1}(x)\right)$ are equal for all $x \in L \cap S$. Setting $\Delta^{\vee}=-\mathcal{C}(E)^{\vee} \cap\left(X^{*}\left(\widetilde{T}_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$,
we conclude that $-(\mathcal{C}(E)+\rho(\mathcal{D}(G / L)))^{\vee}=\left\{(\nu, \mu) \in X^{*}\left(S_{L}\right) \mid \mu-h^{*}(\nu) \in\right.$ $\left.-\Delta^{\vee}, \nu \in X^{+}\left(S_{0} \times 1_{L}\right)\right\}$.

Consider the \mathbb{Q}^{+}-cone $\tau=\left\{\left(-h_{*}(\widetilde{\eta}), \widetilde{\eta}\right) \mid \widetilde{\eta} \in \Delta\right\}$ in $\mathbb{Q}^{+} \mathcal{V}(G / L), \Delta$ being the dual of Δ^{\vee} in $X_{*}\left(\widetilde{T}_{0} / \widetilde{T}_{0,2}\right)$. Then $\left(\mathcal{C}(E)+\mathbb{Q}^{+} \rho(\mathcal{D}(G / L))\right)^{\vee}=(\tau+$ $\left.\mathbb{Q}^{+} \rho(\mathcal{D}(G / L))\right)^{\vee}$, hence $\mathcal{C}(E)+\mathbb{Q}^{+} \rho(\mathcal{D}(G / L))=\tau+\mathbb{Q}^{+} \rho(\mathcal{D}(G / L)) . \mathcal{C}(E)+$ $\mathbb{Q}^{+} \rho(\mathcal{D}(G / L))$ is strictly convex since its dual is the highest weight semigroup of E, which generates $X^{*}\left(S_{L}\right)$ as a group. According to lemma 8, there exists $\mathcal{F} \subseteq \mathcal{D}(G / L)$ such that $\left(\tau+\mathbb{Q}^{+} \rho(\mathcal{F}), \mathcal{F}\right)$ is the colored cone of an affine embedding \widetilde{E} of G / L. The \mathbb{Q}^{+}-span of the highest weight semigroup of \widetilde{E} is $-\left(\tau+\mathbb{Q}^{+} \rho(\mathcal{D}(G / L))\right)^{\vee}$, so $\widetilde{E} \cong E$ and $\mathcal{F}=\mathcal{F}(E)$.

Conversely, if $\mathcal{C}(E)$ is of the form given in proposition 7 , then the second of the two equivalent statements in each of lemma 6 and 7 holds.

We are now in a position to prove theorem 3.
Proof. Let $E \in \mathcal{E}$. The notation related to E is borrowed from the proof of proposition 7. We can assume that φ_{0} is the identity. The homomorphism h_{*} can be extended to a homomorphism $\widetilde{h_{*}}: X_{*}\left(S_{L}\right) \longrightarrow X_{*}\left(S_{1_{H_{1}}}\right)$: indeed, by our assumption on h^{*} and the fact that $\left.\chi^{\nu}\right|_{N_{0}}=\left.\chi^{w_{0}(\nu)}\right|_{N_{0}}$, the composite of $i d \times\left(h^{*} \circ w_{0}\right)$ with the homomorphism $X^{*}\left(S_{1 H_{1}}\right) \longrightarrow X^{*}\left(S_{1 K_{1}}\right)$ maps to $X^{*}\left(S_{L}\right)$, and we let $\widetilde{h_{*}}$ be its adjoint.

We claim that $\widetilde{h_{*}}(\mathcal{C}(E)) \subseteq \mathcal{C}\left(\operatorname{Env}\left(G_{0} / K_{0}\right)\right)$. Combined with the fact that $\widetilde{h_{*}}(\mathcal{F}(E)) \subseteq \mathcal{F}\left(\operatorname{Env}\left(G_{0} / K_{0}\right)\right)$, this shows that E admits a morphism to the variety $\operatorname{Env}\left(G_{0} / K_{0}\right)$ (see [Knop]); that this morphism is excellent can be deduced as in [Vin]. From the proof of lemma 11, we know that $V_{\bar{\eta}_{i}}^{2}$ contains $V_{2 \bar{\eta}_{i}-\overline{\alpha_{i}}}$ as an irreducible component. Therefore, $\left(2 \bar{\eta}_{i}, h^{*}\left(2 \bar{\eta}_{i}\right)\right)$ and $\left(2 \bar{\eta}_{i}-\overline{\alpha_{i}}, h^{*}\left(2 \bar{\eta}_{i}\right)\right)$ both belong to the highest weight semigroup of $k[E]$. It follows that $\widetilde{h_{*}}\left(\overline{\alpha_{i}}\right) \in-\Delta^{\vee}$.

If $\widetilde{\eta} \in \Delta$, then $\left\langle\tilde{\eta},-h^{*}\left(\overline{\alpha_{i}}\right)\right\rangle \geq 0 \Longrightarrow\left\langle-h_{*}(\widetilde{\eta}), \overline{\alpha_{i}}\right\rangle \geq 0$, so $-h_{*}(\widetilde{\eta}) \in$ $X_{+}\left(S_{0 K_{0}}\right)$. As a consequence, we conclude that $\widetilde{h_{*}}\left(-h_{*}(\widetilde{\eta}), \widetilde{\eta}\right)$, which equals $\left(-h_{*}(\widetilde{\eta}), w_{0}\left(h_{*}(\widetilde{\eta})\right)\right)$, is in the \mathbb{Z}^{+}-span of $\left\{\left(\widetilde{\eta}_{i},-w_{0}\left(\widetilde{\eta}_{i}\right)\right)\right\}_{i=1}^{l}$; this proves our claim.

6 Construction of $\overline{G_{a d} / K_{a d}}$ from $\operatorname{Env}\left(G_{0} / K_{0}\right)$

The wonderful completion of $G_{a d} / K_{a d}$ can be realized as a geometric quotient of an open subvariety of $\operatorname{Env}\left(G_{0} / K_{0}\right)$ when $m=n$ (§1.2), which we will assume throughout this section; in the case when G_{0} / K_{0} is a semisimple algebraic group, this was done by Vinberg ([Vin]) and our approach his similar to his.

The S_{0} / N_{0}-orbits of $A\left(\cong \mathbb{A}^{l}\right)$ are parametrized by subsets of $\{1, \ldots, l\}$ in the obvious way. We denote by S_{I} the orbit corresponding to $I \subseteq\{1, \ldots, l\}$. More precisely, $S_{\{1, \ldots, \hat{j}, \ldots, l\}}$ has codimension one, and S_{I} is the open orbit in $\cap_{j \notin I} \overline{S_{\{1, \ldots, \hat{\jmath}, \ldots, l\}}}$. For $I \subseteq\{1, \ldots, l\}$, let \mathcal{O}_{I} be the unique G_{1}-orbit in $A b^{-1}\left(\overline{S_{I}}\right)$ which is open in $A b^{-1}\left(\overline{S_{I}}\right)$.

Theorem 4. Let Σ be the open G_{1}-stable subvariety $\cup_{I} \mathcal{O}_{I}$ of $\operatorname{Env}\left(G_{0} / K_{0}\right)$. Then there exists a geometric quotient $\Sigma / 1 \times S_{0}$, and it is isomorphic to the wonderful completion of $G_{a d} / K_{a d}$.

Lemma 9. Σ is simple.
Proof. If $I \neq \phi$, consider $S_{I} \subset \overline{S_{I}} \subset A$ and $A b^{-1}\left(\overline{S_{I}}\right)$. (\subset denotes a strict inclusion.) \mathcal{O}_{I} is open in $A b^{-1}\left(S_{I}\right)$, and $\overline{\mathcal{O}_{I}}=A b^{-1}\left(\overline{S_{I}}\right) \supset \mathcal{O}_{I}$. Choose $k \in I$; then $S_{I \backslash\{k\}} \subseteq \overline{S_{I}}$, so $\mathcal{O}_{I \backslash\{k\}} \subseteq \overline{\mathcal{O}_{I}} \cap \Sigma$, whence $\mathcal{O}_{I \backslash\{k\}}$ is in the closure of \mathcal{O}_{I} inside Σ. Therefore, \mathcal{O}_{ϕ} is the only closed orbit in Σ.

Lemma 10. Σ has no colors.
Proof. $\overline{\mathcal{O}_{\phi}}=A b^{-1}(0)$ and the ideal of functions vanishing on this fiber is

$$
\bigoplus_{\nu \in \Lambda_{+}\left(G_{1} / H_{1}\right) \backslash \mathcal{M}} k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]_{\nu} .
$$

\mathcal{M} is the subsemigroup of $\Lambda_{+}\left(G_{1} / H_{1}\right)$ generated by $\left\{\left(\bar{\eta}_{i}, w_{0}\left(\bar{\eta}_{i}\right)\right)\right\}_{i=1}^{l}$. In particular, since $\left(\bar{\eta}_{i}, w_{0}\left(\bar{\eta}_{i}\right)\right) \in \mathcal{M}, f_{i}^{1} \not \equiv 0$ on \mathcal{O}_{ϕ}, where f_{i}^{1} is a (fixed) choice of a highest weight vector in $k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]_{\left(\bar{\eta}_{i}, w_{0}\left(\bar{\eta}_{j}\right)\right)}$ with respect to B_{1}. However, we claim that each f_{i}^{1} is identically zero on (at least) one color of G_{1} / H_{1}, which will complete the proof.

Let $\pi: G_{0} \longrightarrow G_{0} / K_{0}$ be the quotient morphism, and let \widetilde{D}_{i} be a color of G_{0} / K_{0}. According to lemma 3.4 in [Vust2], if we let \tilde{f}_{i} be a generator of the ideal of $\pi^{-1}\left(\widetilde{D}_{i}\right)$ in $k\left[G_{0}\right]\left(G_{0}\right.$ is simply connected, so its divisor class group is trivial), $1 \leq i \leq q, q$ being the cardinality of $\mathcal{D}\left(G_{0} / K_{0}\right)$, then we can divide these \tilde{f}_{i} in such a way that, up to reordering, $\tilde{f}_{i} \in k\left[G_{0} / K_{0}\right]$ for $1 \leq i \leq q-2 r\left(K_{0}\right)\left(r\left(K_{0}\right)\right.$ being the rank of the character group of $\left.K_{0}\right)$, and for each $q-2 r\left(K_{0}\right)<i \leq q-r\left(K_{0}\right), \tilde{f}_{i}$ is an eigenvector under right multiplication by K_{0}, and there exists $\tilde{f}_{i+r\left(K_{0}\right)}$ such that $\tilde{f}_{i} \tilde{f}_{i+r\left(K_{0}\right)}$ is invariant under K_{0}; furthermore, we can take f_{i}^{1} to be \tilde{f}_{i} if $1 \leq i \leq q-2 r\left(K_{0}\right)$ and to be $\tilde{f}_{i} \tilde{f}_{i+r\left(K_{0}\right)}$ if $q-2 r\left(K_{0}\right)<i \leq q-r\left(K_{0}\right)$.
$f_{i}^{1}=\tilde{f}_{i} \otimes_{k} \chi^{-w_{0}\left(\bar{\eta}_{i}\right)}$ is a regular function on $G_{0} / K_{0} \times S_{0 K_{0}}$ and it vanishes on the divisor $D_{i}=\widetilde{D}_{i} \times S_{0 K_{0}}$. Furthermore, f_{i}^{1} descends to a regular function on G_{1} / H_{1}, and its divisor of zeros contains a color of G_{1} / H_{1}.

Consider the B_{1}-stable affine subvariety $\mathcal{B}_{\Sigma}=\Sigma \backslash \cup_{D \in \mathcal{D}\left(G_{1} / H_{1}\right)} \bar{D}$ [Knop]. Let $\Omega_{i}=k\left[G_{1} / H_{1}\right]_{\left(\bar{\eta}_{i}, w_{0}\left(\bar{\eta}_{i}\right)\right)}^{*}, \Omega=\oplus_{i=1}^{l} \Omega_{i}$. For each i, choose a basis $f_{i}^{1}, \ldots, f_{i}^{n_{i}}$ of the irreducible G_{1}-module $k\left[G_{1} / H_{1}\right]_{\left(\bar{\eta}_{i}, w_{0}\left(\bar{\eta}_{i}\right)\right)}$ consisting of eigenvectors of T_{1} with f_{i}^{1} as above. Let $\left\{f_{i}^{j, *}\right\}_{j=1}^{n_{i}}$ be the dual basis. We consider the equivariant $\operatorname{morphism} \psi: \operatorname{Env}\left(G_{0} / K_{0}\right) \longrightarrow \Omega$ given by $\psi(x)=\sum_{i, j} f_{i}^{j}(x) f_{i}^{j, *}$ for $x \in$ $\operatorname{Env}\left(G_{0} / K_{0}\right)$. Set $\Omega_{i}^{\prime}=\Omega_{i} \backslash\{0\}, \Omega^{\prime}=\oplus_{i=1}^{l} \Omega_{i}^{\prime}$, and $\Omega_{i}^{\prime \prime}=\left\{\sum_{j=1}^{n_{i}} a_{i}^{j} f_{i}^{j, *} \in\right.$ $\left.\Omega_{i} \mid a_{i}^{1} \neq 0\right\}=\left\{v \in \Omega_{i} \mid f_{i}^{1}(v) \neq 0\right\}, \Omega^{\prime \prime}=\oplus_{i=1}^{l} \Omega_{i}^{\prime \prime}$.

Lemma 11. $\left.\psi\right|_{\mathcal{B}_{\Sigma}}$ is a closed immersion into $\Omega^{\prime \prime}$.

Proof. The complement of \mathcal{B}_{Σ} in $\operatorname{Env}\left(G_{0} / K_{0}\right)$ consists of the closures inside $\operatorname{Env}\left(G_{0} / K_{0}\right)$ of the colors of G_{1} / H_{1} because \mathcal{B}_{Σ} meets every G_{1}-stable prime divisor. Therefore $k\left[\mathcal{B}_{\Sigma}\right]=k\left[\operatorname{Env}\left(G_{0} / K_{0}\right)\right]\left[\left(f_{1}^{1}\right)^{-1}, \ldots,\left(f_{l}^{1}\right)^{-1}\right]$. We only have to verify that the characters $\chi^{-w_{0}\left(\overline{\alpha_{i}}\right)}$ of S_{0} are in the algebra generated by the f_{i}^{j} and the $\left(f_{i}^{1}\right)^{-1}$.

Let $V_{\bar{\eta}}$ be the irreducible representation of G_{0} with highest weight $\bar{\eta}$. Under our assumptions, $\bar{\eta}_{i}=\left(\omega_{i}-\sigma\left(\omega_{i}\right)\right)$, and $\sigma\left(\omega_{i}\right)=-\omega_{k}$ for some k. (We assume here that i and k are fixed, $i, k \leq m$, and we do not exclude the case $i=k$.) The square of $V_{\bar{\eta}_{i}}$ contains the irreducible representation $V_{2 \bar{\eta}_{i}}-\overline{\alpha_{i}}$: this can be proved after reducing to a similar problem for a reductive group of rank ≤ 2, namely the reductive subgroup of G corresponding to the roots in $\mathbb{Z}\left\{\alpha_{i}, \alpha_{k}\right\}$. It follows that $k\left[G_{0} / K_{0}\right]_{\left(2 \bar{\eta}_{i}-\overline{\alpha_{i}}\right)}$ is a submodule of the product $k\left[G_{0} / K_{0}\right]_{\bar{\eta}_{i}} k\left[G_{0} / K_{0}\right]_{\bar{\eta}_{i}}$. Note that $2 \bar{\eta}_{i}-\overline{\alpha_{i}}$ is a dominant weight, so we can write $2 \bar{\eta}_{i}-\overline{\alpha_{i}}=\sum_{j=1}^{l} c_{j} \bar{\eta}_{j}$. Therefore the highest weight vector $\left(f_{1}^{1}\right)^{c_{1}} \cdots\left(f_{l}^{1}\right)^{c_{l}} \chi^{-w_{0}\left(\overline{\alpha_{i}}\right)}$ of $V_{2 \bar{\eta}_{i}-\overline{\alpha_{i}}} \otimes_{k} \chi^{-2 w_{0}\left(\bar{\eta}_{i}\right)}$ is contained in the subalgebra of $k\left[G_{1} / H_{1}\right]$ which is generated by the functions in $k\left[G_{1} / H_{1}\right]_{\left(\bar{\eta}_{i}, w_{0}\left(\bar{\eta}_{i}\right)\right)}$.

We are now able to prove the following proposition.
Proposition 8. $\left.\psi\right|_{\Sigma}$ is a closed immersion into Ω^{\prime}.
Proof. Since ψ is equivariant, it maps Σ isomorphically onto a closed subvariety of $G_{1} \cdot \Omega^{\prime \prime}$. Let's prove that $G_{1} \cdot \Omega^{\prime \prime}=\Omega^{\prime}$. Fix i, and let $\xi \in \Omega_{i}^{\prime}$. Since f_{i}^{1} is a highest weight vector, the span of the vectors in its G_{1}-orbit is Ω_{i}^{*}, so $\exists g \in G_{1}$ such that $\left(g \cdot f_{i}^{1}\right)(\xi) \neq 0$. Thus $f_{i}^{1}\left(g^{-1} \xi\right) \neq 0$ and $\xi \in g \Omega_{i}^{\prime \prime}$. Now if $\left(\xi_{1}, \ldots, \xi_{l}\right) \in \Omega^{\prime}$, we can pick a $g \in G_{1}$ such that $\left(\xi_{1}, \ldots, \xi_{l}\right) \in g \Omega^{\prime \prime}$.

Finally, we can prove the main result of this section.
Proof of theorem 4. $\psi(s x)=\sum_{i=1}^{l}\left(w_{0}\left(\bar{\eta}_{i}\right)(s) \sum_{j} f_{i}^{j}(x)\left(f_{i}^{j}\right)^{*}\right)$ where $s \in 1 \times S_{0}$, $x \in \Sigma$; this means that via ψ the action of $1 \times S_{0}$ on Σ becomes simply the restriction of the linear action on Ω^{\prime} given by multiplication by $w_{0}\left(\bar{\eta}_{i}\right)(s)$ on the $i^{t h}$-direct summand, and a geometric quotient for this action is $\mathbb{P}\left(\Omega_{1}\right) \times$ $\cdots \times \mathbb{P}\left(\Omega_{l}\right)$. Hence $\Sigma / 1 \times S_{0}$ is a projective variety. Moreover, $G_{1} / H_{1} / 1 \times S_{0}=$ $G_{0} / N_{0} K_{0}=G_{a d} / K_{a d}$ since $H_{0}=N_{0} K_{0}([$ Rich $])$.

To see that $\Sigma / 1 \times S_{0}$ is the wonderful completion of $G_{a d} / K_{a d}$, notice that only one orbit is closed because Σ is simple (lemma 9), and $\Sigma / 1 \times S_{0}$ has no colors since the same is true for Σ (lemma 10) and $1 \times S_{0} \subseteq B_{1}$.

References

[BLV] M.Brion, D. Luna, T. Vust, Espaces homogènes sphériques, Invent. math. 84 (1986), 617-632.
[DP1] C. De Concini, C. Procesi, Complete Symmetric Varieties I, LNM 996 (1983), 1-44.
[DP2] C. De Concini, C. Procesi, Complete Symmetric Varieties II, Advanced Studies in Pure Mathematics 6, Algebraic Groups and Related Topics, 1985, 481-513.
[Ful] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, 1993.
[Knop] F. Knop, The Luna-Vust Theory of Spherical Embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups, 1991, 225-249.
[Luna] D. Luna, Adhérences d'orbites et invariants, Invent. math. 29 (1975), 231-238.
[LuVu] D. Luna, T. Vust, Plongements d'espaces homogènes, Comment. Math. Helvetici 58 (1983), 186-245.
[Pop] V.L. Popov Contraction of the Actions of Algebraic Groups, Math. USSR Sbornik 58 (1987), 311-335.
[PV] V.L. Popov, E.B. Vinberg, Invariant Theory in Algebraic Geometry IV, Encyclopedia of the Mathematical Sciences 55, Springer-Verlag, 1994.
[Rich] R.W. Richardson, Orbits, Invariants, and Representations associated to Involutions of Reductive Groups, Invent. math. 66 (1982), 287-312.
[Ritt1] A. Rittatore, Monoïdes algébriques et plongements de groupes, Ph.D. Thesis, Institut Fourier, Grenoble, 1997.
[Ritt2] A. Rittatore, Algebraic Monoids and Group Embeddings, Transform. Groups 3 (1998), no. 4, 375-396.
[St] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Memoirs of the AMS 80 (1968).
[Vin] E. Vinberg, On Reductive Algebraic Semigroups, Amer. Math. Soc. Transl. 169 (1995), 145-182.
[Vust1] T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. math. France 102 (1974), 317-333.
[Vust2] T. Vust, Plongement d'espaces symétriques algébriques: une classification, Ann. della Sc. Norm. Sup. di Pisa XVII (1990), 165-194.

