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Abstract. The main purpose of this note is to give a proof of a statement of V. Drinfeld in [Dr1] regarding

Yangians and quantum loop algebras, namely how the former can be constructed as limit forms of the latter.
We also apply the same ideas to twisted quantum loop algebras to recover the (non-twisted) Yangians.

Introduction

Quantum loop algebras and Yangians are examples of affine quantum groups that representation theorists
have all heard about since they have been well studied for over twenty-five years. It is also well-known
that Yangians are, in some sense, limit forms of quantum loop algebras, but, as far as the authors know, a
complete proof had never appeared until very recently [GaTL] 1, although a precise statement of this fact is
formulated in [Dr1] and a proof is certainly known to some experts. The main purpose of this note is to give
a detailed proof of how to realize Yangians as limits of quantum loop algebras since this may be useful to
other mathematicians who may not be experts in the field (like the present authors). The precise statement
is given in theorem 2.1 below. Some of the ideas in the proof were applied in [Gu1] to quantum toroidal
algebras to obtain affine Yangians and deformed double current algebras. Those ideas were also used in
[Gu2] to propose a generalization of deformed double current algebras to semisimple Lie algebras other than
those of type A. We should also mention the articles [DHZ1, DHZ2] where a certain correspondence between
quantum affine algebras and double Yangians is used to study representations of the latter. The authors
believe that it is important that a proof of theorem 2.1 be published to fill a gap in the literature, hoping
that it will give more visibility to theorem 2.1 whose statement is buried in a paragraph in [Dr1] instead
of being stated in a more conspicuous way. Moreover, the proof is connected to the very important recent
paper [GaTL] which provides, among other results, a strengthening of theorem 2.1. Indeed, the degeneration
isomorphism π in the proof of theorem 2.1 is the inverse of the associated graded of the homomorphism Φ
of geometric type in [GaTL]: see theorem 6.5 in loc. cit.

After proving theorem 2.1 for untwisted quantum loop algebras, we realized that the same ideas could be
applied to twisted quantum loop algebras. These are examples of quantum Kac-Moody groups which have
been studied in a few papers over the years by mathematicians (see for instance [CFS, ChMo, ChPr, He1,
JiMi, Sz]) and by mathematical physicists [DGZ, GMW]. We show that the limit forms of these quantum
groups that we consider yield the usual (non-twisted) Yangians associated to complex simple Lie algebras of
type A,D,E (under one assumption).

We treat the untwisted and the twisted cases at the same time. The first section contains a definition
of quantum loop algebras, of Yangians and of seemingly new algebras Y (g, σ) (for σ a Dynkin diagram
automorphism) which are proved to be isomorphic to Y (g). The second section starts with two versions of
the main theorem and continues with its proof. In the last section, we explain briefly the relation between
quantum toroidal algebras, affine Yangians and deformed double current algebras.
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1. Quantum loop algebras and Yangians

1.1. Definitions. In this subsection, after introducing the notation, we simply recall the definition of un-
twisted and twisted quantum loop algebras and of Yangians associated to a complex simple Lie algbra g.
Let C = (cij)i,j∈I be the Cartan matrix of g and let di, i ∈ I, be coprime positive integers such that the
matrix (dicij)i,j∈I is symmetric.

Let σ be a Dynkin diagram automorphism, so σ : I → I be a bijection such that cσ(i)σ(j) = cij for
all i, j ∈ I. Let m be the order of σ, so m = 1, 2 or 3. Denote also by σ the corresponding Lie algebra
automorphism of g. The different possibilites for the pair (g, σ) are given explicitly in [JiZh]: in particular,
if m 6= 1, then g is of type A,D or E.

Fix a primitive mth root of unity ω ∈ C×. For d ∈ Z/mZ, let gd be the eigenspace of σ on g with
eigenvalue ωd. Then, g = ⊕d∈Z/mZgd is a Z/mZ-gradation of g. The fixed point set g0 of σ is a simple Lie
algebra. The nodes of its Dynkin diagram are naturally indexed by Iσ, the set of σ-orbits in I. For i ∈ I,
let ı be the σ-orbit of i, so ı ∈ Iσ. Moreover, gd is an irreducible representation of g0. The twisted affine Lie
algebra ĝσ is the universal central extension (with one dimensional centre) of the twisted loop algebra

L(g)σ = {f ∈ g⊗C C[t, t−1]|f(ωt) = σ(f(t))}.

ĝσ is a symmetrizable Kac-Moody algebra whose Dynkin diagram has nodes indexed by Îσ = Iσ
∐
{0}. Let

Aσ = (cσı,)ı,∈Îσ be the generalized Cartan matrix of ĝσ, and let {dı}ı∈Îσ be the coprime positive integers

such that the matrix (dıc
σ
ı) is symmetric (except that, in the A

(2)
2n case, one of the dı equals 1

2 - see [JiMi]).

Let (·, ·) denote a symmetric, non-degenerate, bilinear form on the dual of a Cartan subalgebra h of g which is
invariant under the Weyl group action and normalized so that (α, α) = 2 if α is a short root. Let {αi}i∈I be
a set of simple roots of g and let {αı}ı∈Iσ be a set of simple roots of g0. The entries cij of the Cartan matrix

of g are cij =
2(αi,αj)
(αi,αi)

and we set di = (αi,αi)
2 . For i, j ∈ I, we have cı, =

2
∑m−1
d=0 c

i,σd(j)∑m−1
d=0 c

i,σd(i)

=
2
∑m−1
d=0 (αi,ασd(j))∑m−1
d=0 (αi,ασd(i))

and dı =
∑m−1
d=0 (αi,ασd(i))

2 .

Instead of working with the twisted quantum loop algebras for a fixed numerical value of the parameter

q ∈ C×, we will need to work with its h-adic complete version defined over the ring C[[h]]. Set q = e
h

2m . We
need some more notation. For i, j ∈ I, we define dij ∈ Q, P±ij (u1, u2), F±ij (u1, u2), G±ij(u1, u2) ∈ C[[h]][u1, u2]
as follows:

• If σ(i) = i, then dij = di
2 , P

±
ij (u1, u2) = 1;

• if ciσ(i) = 0 and σ(j) 6= j, then dij = 1
2m , P

±
ij (u1, u2) = 1;

• if ciσ(i) = 0 and σ(j) = j, then dij = 1
2 , P

±
ij (u1, u2) =

um1 q
±2m−um2

u1q±2−u2
;

• if ciσ(i) = −1, then dij = 1
4 , P

±
ij (u1, u2) = u1q

±1 + u2;

• F±ij (u1, u2) =
∏
d∈Z/mZ(u1 − ωdq±dici,σd(j)u2);

• G±ij(u1, u2) =
∏
d∈Z/mZ(u1q

±dici,σd(j) − ωdu2).

In order to present a definition of quantum loop algebras which encompasses both the untwisted and the

twisted cases, we use the definitions given in the original paper [Dr2] in theorems 3 and 4 with q = e
h

2m and
trivial central element (c = 0 in the notation of loc. cit.).

Definition 1.1. The quantum loop algebra Uh(L(g)σ) (or just Uh(L(g)) if σ is trivial) is the associative
complete C[[h]]-algebra topologically generated by elements X±i,r,Hi,r for i ∈ I, r ∈ Z, which satisfy the
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following relations for i, i1, i2 ∈ I and r, k1, k2 ∈ Z:

(1) X±σ(i),r = ωrX±i,r; Hσ(i),r = ωrHi,r; Hi1,r1Hi2,r2 = Hi2,r2Hi1,r1 ;

(2) [Hi1,0,X±i2,r] = ± 1

m

 ∑
d∈Z/mZ

di1ci1,σd(i2)

X±i2,r;

(3) [Hi1,r1 ,X±i2,r2 ] = ±

 ∑
d∈Z/mZ

q
r1di1ci1,σd(i2) − q−r1di1ci1,σd(i2)

r1h
ωdr1

X±i2,r1+r2
if r1 6= 0;

(4) [X+
i1,r1

,X−i2,r2 ] =
∑

d∈Z/mZ

δσd(i1),i2ω
dr2

(
Ψ+
i1,r1+r2

−Ψ−i1,r1+r2

h

)
,

where the Ψ±i,r are defined by

∞∑
r=0

Ψ±i,±ru
−r = exp

(
±h

2
Hi,0

)
exp

±h∑
l≥1

Hi,±lu−l


and Ψ±i,r = 0 if ∓r > 0;

(5) F±i1i2(u1, u2)X±i1 (u1)X±i2 (u2) = G±i1i2(u1, u2)X±i2 (u2)X±i1 (u1), X±i (u) =
∑
r∈Z
X±i,ru

−r;

X±i1 (u1)X±i2 (u2) = X±i2 (u2)X±i1 (u1) if ci1,i2 = 0 = ci1,σ±1(i2);

Sym
{
P±ii3(u1, u2)

(
X±i3 (u3)X±i (u1)X±i (u2)− (q2mdii3 + q−2mdii3 )X±i (u1)X±i3 (u3)X±i (u2)

+X±i (u1)X±i (u2)X±i3 (u3)
)}

= 0
(6)

if cii3 = −1 and σ(i) 6= i3, where Sym denotes symmetrization over u1 and u2;

(7) Sym
{(
q

3
2u∓1

1 − (q
1
2 + q−

1
2 )u∓1

2 + q−
3
2u∓1

3

)
X±i (u1)X±i (u2)X±i (u3)

}
= 0

and

(8) Sym
{(
q−

3
2u±1

1 − (q
1
2 + q−

1
2 )u±1

2 + q
3
2u±1

3

)
X±i (u1)X±i (u2)X±i (u3)

}
= 0

if ciσ(i) = −1, where Sym denotes symmetrization over u1, u2 and u3;
Finally, if m = 1, the quantum Serre relations are:

(9)
∑
π∈SN

N∑
k=0

(−1)k
[
N
k

]
q

X±i,rπ(1)
· · · X±i,rπ(k)

X±j,sX
±
i,rπ(k+1)

· · · X±i,rπ(N)
= 0

∀ i, j ∈ I, i 6= j and for all sequences of integers r1, . . . , rN ∈ Z where N = 1 − cij and

[
N
k

]
q

is the usual

q-binomial coefficient.

Remark 1.1. The untwisted quantum loop algebra corresponds to the case when m = 1 and σ is trivial.

We will need the following result [En].

Proposition 1.1. Uh(L(g))/hUh(L(g)) ∼= U(L(g)) and Uh(L(g)) is isomorphic to U(L(g))[[h]] as C[[h]]-
modules.
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Remark 1.2. It is expected that proposition 1.1 holds in general for Uh(L(g)σ) and this may even be known
to be true to some experts, but the authors have not been able to locate any reference. Theorem 1.3 in [En]
applies only to untwisted loop algebras; theorem 1.1 in loc. cit. is valid for symmetrizable quantum Kac-
Moody algebras. It seems that the proof of the isomorphism in theorem 4.2 in [JiZh] uses the twisted analog
of proposition 1.1, so it does not appear possible to combine both results to obtain an analog of theorem 1.3
in [En] for twisted quantum loop algebras.

Definition 1.2. The Yangian Y (g) is the algebra generated by X±i,r, Hi,r, i ∈ I, r ∈ Z≥0, which satisfy the

following relations (∀ i, j ∈ I, ∀ r, s ∈ Z≥0):

(10) [Hi,r, Hj,s] = 0, [Hi,0, X
±
j,s] = ±dicijX±j,s;

(11) [Hi,r+1, X
±
j,s]− [Hi,r, X

±
j,s+1] = ±dicij

2
(Hi,rX

±
j,s +X±j,sHi,r);

(12) [X+
i,r, X

−
j,s] = δijHi,r+s;

(13) [X±i,r+1, X
±
j,s]− [X±i,r, X

±
j,s+1] = ±dicij

2
(X±i,rX

±
j,s +X±j,sX

±
i,r);

(14)
∑
π∈SN

[
X±i,rπ(1)

,
[
· · · , [X±i,rπ(N)

, X±j,s] · · ·
]]

= 0 ∀r1, . . . , rN , s ≥ 0 if i, j ∈ I, i 6= j

where N = 1− cij.

We now define an algebra Y (g, σ) which is seemingly different from the Yangian Y (g). The notation
suggests that they are related to Yangians: actually, we will prove below in theorem 1.1 that Y (g, σ) ∼= Y (g).

As for twisted quantum loop algebras, we will need the following notation:

• If σ(i) = i, then pij(v1, v2) = 1;
• if ciσ(i) = 0 and σ(j) 6= j, then pij(v1, v2) = 1;

• if ciσ(i) = 0, σ(j) = j, then pij(v1, v2) = v1 +v2 ∈ C[v1, v2]/(v2
1−1, v2

2−1) if m = 2 and pij(v1, v2) =

v2
1 + v1v2 + v2

2 ∈ C[v1, v2]/(v3
1 − 1, v3

2 − 1) if m = 3;
• if ciσ(i) = −1, then pij(v1, v2) = v1 + v2 ∈ C[v1, v2]/(v2

1 − 1, v2
2 − 1);

• F±ij (u1, u2, v1, v2) = u1−u2∓
1

2

∑m−1
d=0

(∑m−1
e=0 ωeddici,σe(j)

)
vm−d1 vd2 ∈ C[u1, u2, v1, v2]/(vm1 −1, vm2 −

1) and G±ij(u1, u2, v1, v2) = −F±ij (u2, u1, v1, v2).

Definition 1.3. Assume that σ is non-trivial. Y (g, σ) is the associative C-algebra generated by elements
X±i,r,k, Hi,r,k with i ∈ I, r ∈ Z≥0, 0 ≤ k ≤ m− 1, which satisfy the following relations:

(15) X±σ(i),r,k = ωkX±i,r,k, Hσ(i),r,k = ωkHi,r,k, [Hi,0,k1 , X
±
j,r,k2

] = ±

 ∑
d∈Z/mZ

ωdk1diciσd(j)

X±j,r,k1+k2
;

(16) [Hi1,r1,k1 , Hi2,r2,k2 ] = 0; [X+
i1,r1,k1

, X−i2,r2,k2 ] =
∑

d∈Z/mZ

δσd(i1),i2ω
dk2Hi1,r1+r2,k1+k2 ;

(17) ∂u1∂u2F
±
i1i2

(u1, u2, v1, v2)X±i1 (u1, v1)X±i2 (u2, v2) = ∂u1∂u2G
±
i1i2

(u1, u2, v1, v2)X±i2 (u2, v2)X±i1 (u1, v1);

(18) ∂u1
∂u2

F±i1i2(u1, u2, v1, v2)Hi1(u1, v1)X±i2 (u2, v2) = ∂u1
∂u2

G±i1i2(u1, u2, v1, v2)X±i2 (u2, v2)Hi1(u1, v1);

(19) X±i1 (u1, v1)X±i2 (u2, v2) = X±i2 (u2, v2)X±i1 (u1, v1) if ci1,i2 = 0 = ci1,σ±1(i2);

Sym
{
pii3(v1, v2)

(
X±i3 (u3, v3)X±i (u1, v1)X±i (u2, v2)− 2X±i (u1, v1)X±i3 (u3, v3)X±i (u2, v2)

+X±i (u1, v1)X±i (u2, v2)X±i3 (u3, v3)
)}

= 0
(20)
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if cii3 = −1 and σ(i) 6= i3, where Sym denotes symmetrization over (u1, v1) and (u2, v2);

(21) Sym
{(
v1 − 2v2 + v3

)
X±i (u1, v1)X±i (u2, v2)X±i (u3, v3)

}
= 0

if ciσ(i) = −1, where Sym denotes symmetrization over (u1, v1), (u2, v2) and (u3, v3).

Here we use the notation X±i (u, v) =
∑
r∈Z≥0

∑
k∈Z/mZX

±
i,r,ku

−r−1v−k ∈ Y (g, σ)[[u−1]]⊗CC[v, v−1]/(vm−
1), which we view as an element of Y (g, σ)[[u−1]]⊗C C[v, v−1]/(vm − 1).

Remark 1.3. We could extend definition 1.3 to the case when σ is trivial by adding relation (14) to it.
However, it will be more convenient for us to refer to a separate definition in the proof of theorem 1.1 below.

Theorem 1.1. The algebras Y (g, σ) and Y (g) are isomorphic.

We will use the following notation: if a, b ∈ A for some ring A, then S(a, b) = ab+ ba.

Proof of theorem 1.1. We would like to construct an algebra homomorphism ϕ : Y (g, σ) −→ Y (g) by setting

(22) ϕ(X±i,r,k) = mr
m−1∑
s=0

ω−skX±σs(i),r, ϕ(Hi,r,k) = mr
m−1∑
s=0

ω−skHσs(i),r.

We will now perform a few computations to check that ϕ is an algebra homomorphism. This will be
enough since ϕ is surjective on generators, hence an epimorphism, and it is also injective: Y (g, σ) is a
filtered algebra with X±i,r,k, Hi,r,k of degree r and that the associated graded homomorphism gr(ϕ) is one-

to-one follows from the PBW theorem for Y (g) [Le] which states that gr(Y (g)) ∼= Ug(C[u]). Alternatively,

one could also verify that X±i,r 7→ 1
mr+1

∑m−1
k=0 X±i,r,k and Hi,r 7→ 1

mr+1

∑m−1
k=0 Hi,r,k define a homomorphism

Y (g) −→ Y (g, σ) which is the inverse of ϕ. We are assuming that σ is non-trivial, so di = 1 for the rest of
the proof.

1. Relation (15): The first two relations can be obtained from the definition of ϕ easily, so we show the last
one. Using (10), we have

[ϕ(Hi,0,k1), ϕ(X±j,r,k2)] = mr
m−1∑
s,t=0

ω−sk1−tk2 [Hσs(i),0, X
±
σt(j),r]

= mr
m−1∑
s,t=0

±ω−sk1−tk2cσs(i),σt(j)X±σt(j),r

(set d = t− s) = ±

(
m−1∑
d=0

ωdk1ci,σd(j)

)
m−1∑
t=0

mrω−t(k1+k2)X±σt(j),r

= ±

(
m−1∑
d=0

ωdk1ci,σd(j)

)
ϕ(X±j,r,k),

which is exactly the rightmost relation in (15).
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2. Relation (16): The first one is trivial. Let us prove the second one. Using (12) we have

[ϕ(X+
i1,r1,k1

), ϕ(X−i2,r2,k2)] = mr1+r2

m−1∑
s1=0

m−1∑
s2=0

ω−s1k1ω−s2k2 [X+
σs1 (i1),r1

, X−σs2 (i2),r2
]

= mr1+r2

m−1∑
s1=0

m−1∑
s2=0

ω−s1k1ω−s2k2δσs1 (i1),σs2 (i2)Hσs1 (i1),r1+r2

= mr1+r2

m−1∑
s1=0

m−1∑
s2=0

ω−s1(k1+k2)ω(s1−s2)k2δσs1−s2 (i1),i2Hσs1 (i1),r1+r2

=

m−1∑
d=0

δσd(i1),i2ω
dk2ϕ(Hi1,r1+r2,k1+k2).

3. Relations (17), (18): Using (13) and the definition of ϕ, we have

[ϕ(X±i1,r1+1,k1
), ϕ(X±i2,r2,k2)](23)

= mr1+r2+1
m−1∑
s1,s2=0

(
[ω−s1k1X±σs1 (i1),r1

, ω−s2k2X±σs2 (i2),r2+1]
)

±m
r1+r2+1

2

m−1∑
s1,s2=0

cσs1 (i1),σs2 (i2)S(ω−s1k1X±σs1 (i1),r1
, ω−s2k2X±σs2 (i2),r2

)

= [ϕ(X±i1,r1,k1), ϕ(X±i2,r2+1,k2
)]±Rm,

where

R2 = 2r1+r2−1(ci1,i2 + ci1,σ(i2))S(X±i1,r1 + (−1)k1X±σ(i1),r1
, X±i2,r2 + (−1)k2X±σ(i2),r2

)

+2r1+r2−1(ci1,i2 − ci1,σ(i2))S(X±i1,r1 − (−1)k1X±σ(i1),r1
, X±i2,r2 − (−1)k2X±σ(i2),r2

)

= ±1

2

(
(ci1,i2 + ci1,σ(i2))S

(
ϕ(X±i1,r1,k1), ϕ(X±i2,r2,k2)

)
+(ci1,i2 − ci1,σ(i2))S

(
ϕ(X±i1,r1,k1−1), ϕ(X±i2,r2,k2−1)

))
,

R3 = ±3r1+r2+1

2

(
ci1,i2

(
S(X±i1,r1 , X

±
i2,r2

) + S(ω−k1X±σ(i1),r1
, ω−k2X±σ(i2),r2

) +

S(ω−2k1X±σ2(i1),r1
, ω−2k2X±σ2(i2),r2

)
)

+ ci1,σ(i2)

(
S(X±i1,r1 , ω

−k2X±σ(i2),r2
)

+S(ω−2k1X±σ2(i1),r1
, X±i2,r2) + S(ω−k1X±σ(i1),r1

, ω−2k2X±σ2(i2),r2
)
)

+ci1,σ2(i2)

(
S(ω−k1X±σ(i1),r1

, X±i2,r2) + S(X±i1,r1 , ω
−2k2X±σ2(i2),r2

)

+S(ω−2k1X±σ2(i1),r1
, ω−k2X±σ(i2),r2

)
))

= ±1

2

(
(ci1,i2 + ci1,σ(i2) + ci1,σ2(i2))S

(
ϕ(X±i1,r1,k1), ϕ(X±i2,r2,k2)

)
+

(ci1,i2 + ωci1,σ(i2) + ω2ci1,σ2(i2))S
(
ϕ(X±i1,r1,k1+2), ϕ(X±i2,r2,k2+1)

)
+

(ci1,i2 + ω2ci1,σ(i2) + ωci1,σ2(i2))S
(
ϕ(X±i1,r1,k1+1), ϕ(X±i2,r2,k2+2)

))
.

This shows that relation (17) holds. Similarly, one can show that relation (18) holds.

4. Relations (19), (20), (21): ϕ respects relation (19) because of relation (14) in the case cij = 0. As for
the other two, they can be proved case-by-case: the details are in Appendix A.

From steps 1-4, we can deduce that ϕ is a homomorphism of algebras, hence an isomorphism (as explained
before). �
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2. Statement and proof of the main theorem

We have the following sequence of algebra homomorphisms:

Uh(L(g)σ) � Uh(L(g)σ)/hUh(L(g)σ) −→ U(L(g)σ)
t7→1
� U(g).

Let K be the kernel of this composite. Let Ỹ (g, σ) be the C[[h]]-subalgebra of C((h)) ⊗C[[h]] Uh(L(g)σ)

generated over C[[h]] by Uh(L(g)σ) and K
h . In the case when σ is trivial, the following theorem was asserted

in [Dr1].

Theorem 2.1. If proposition 1.1 holds true for Uh(L(g)σ), then Ỹ (g, σ)/hỸ (g, σ) is isomorphic to Y (g, σ).

We rephrase this theorem in a slightly different form as suggested in [GaTL] (see theorem 6.4 when σ is triv-
ial). We have a decreasing filtration on Uh(L(g)σ) given by the powers of K. The graded ring grK(Uh(L(g)σ))
associated to this filtration is

⊕∞
n=0 Kn/Kn+1. The algebras Y (g) and Y (g, σ) can be defined over the ring

C[h] (and are then denoted Yh(g) and Yh(g, σ)) if we add a factor of h in the right-hand side of relations

(11) and (13) (respectively, if we set F±ij (u1, u2, v1, v2) = u1 − u2 ∓
h

2

∑m−1
d=0

(∑m−1
e=0 ωeddici,σe(j)

)
vm−d1 vd2).

Whenever c ∈ C \ {0}, we have isomorphisms between Yh=c(g) and Yh=1(g) and between Yh=c(g, σ) and
Yh=1(g, σ). Yh(g) and Yh(g, σ) become graded algebras if we assign degree one to h. Theorem 1.1 is also
true for Yh(g) and Yh(g, σ).

Theorem 2.2. If proposition 1.1 holds true for Uh(L(g)σ), then Yh(g, σ) is isomorphic to grK(Uh(L(g)σ)).

Before proving this version of the main theorem below, let us state a lemma which will be necessary.

Lemma 2.1. The following relation holds in Uh(L(g)σ):

(24) F±ij (z, w)Ψ+
i (z)X±j (w) = G±ij(z, w)X±j (w)Ψ+

i (z),

where Ψ+
i (z) =

∑
k≥0 Ψ+

i,kz
−k and X±j (w) =

∑
l∈Z X

±
j,lw

−l.

Proof. The proof in general is similar to the one found in section 3.2 of [He2] when σ is trivial. For details,
see Appendix B. �

Denote by O(h`) an arbitrary element in h`Uh(L(g)σ). For r, k ≥ 0, define elements X±i,r,k,Hi,r,k in

Uh(L(g)σ) by:

X±i,r,k =

r∑
s=0

(−1)r−s
(
r

s

)
X±i,k+ms, Hi,r,k =

r∑
s=0

(−1)r−s
(
r

s

)
Ψ+
i,k+ms −Ψ−i,k+ms

h
.

Using

(
r + 1
s

)
=

(
r
s

)
+

(
r

s− 1

)
, we obtain the inductive relations

(25) X±i,r+1,k = X±i,r,k+m −X±i,r,k, Hi,r+1,k = Hi,r,k+m −Hi,r,k.

Lemma 2.2. For any i ∈ I, r, k ≥ 0, we have X±i,r,k,Hi,r,k ∈ Kr.
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Proof. The proof is by induction on r. We can assume that Kr̃ contains X±i,r̃,k for 0 ≤ r̃ ≤ r and all k ∈ Z.

(This is true at least when r̃ = 0, 1.) We have

[Hi,m −Hi,0,X±i,r,k] =

r∑
s=0

(−1)r−s
(
r

s

)(
[Hi,m,X±i,k+ms]− [Hi,0,X±i,k+ms]

)
= ±

r∑
s=0

(−1)r−s
(
r

s

) ∑
d∈Z/mZ

(
qmdici,σd(i) − q−mdici,σd(i)

mh
X±i,k+m(s+1) −

dici,σd(i)

m
X±i,k+ms

)

= ±
r∑
s=0

(−1)r−s

m

(
r

s

) ∑
d∈Z/mZ

dici,σd(i)

(
X±i,k+m(s+1) −X

±
i,k+ms

)
+O(h2)X±i,k+m(s+1)


= ±

r+1∑
s=0

(−1)(r+1)−s

m

((
r

s− 1

)
+

(
r

s

)) ∑
d∈Z/mZ

dici,σd(i)X±i,k+ms ±O(h2)X±i,r,k+m

= ± 1

m

∑
d∈Z/mZ

dici,σd(i)X
±
i,r+1,k ±O(h2)X±i,r,k+m

Since Hi,m−Hi,0 ∈ K and X±i,r,t ∈ Kr by assumption for any t ∈ Z≥0 (so that O(h2)X±i,r,t ∈ Kr+2 ⊂ Kr+1),

we deduce that X±i,r+1,k ∈ Kr+1. By induction, this must be true for any r ∈ Z≥0.

From equation (4), we get

[X+
i,r,k,X

−
i,0,0] =

r∑
s=0

(−1)r−s
(
r

s

)
[X+
i,k+ms,X

−
i,0]

=

r∑
s=0

(−1)r−s
(
r

s

) ∑
d∈Z/mZ

δσd(i),i

Ψ+
i,k+ms −Ψ−i,k+ms

h
=

∑
d∈Z/mZ

δσd(i),iHi,r,k,

which implies Hi,r,k ∈ Kr for any r, k ≥ 0 since
∑
d∈Z/mZ δσd(i),i 6= 0. �

Given an element X ∈ Kr, we denote by X its image in the quotient Kr/Kr+1.

Lemma 2.3. X
±
i,r,k+m = X

±
i,r,k and Hi,r,k+m = Hi,r,k.

Proof. This is a corollary of lemma 2.2. �

Proof of theorem 2.2. Let m+,m− be two scalars such that m+m− = m. Define

(26) π : Y (g, σ) −→ grK(Uh(L(g)σ)) by X±i,r,k 7→ m±mrX
±
i,r,k, Hi,r,k 7→ mr+1Hi,r,k.

where r ≥ 0, k ∈ Z/mZ and π(h) = h ∈ K/K2. From lemma 2.2, we know that this map makes sense. Now
we show that it is an algebra homomorphism, that is, it respects the relations in definition 1.3.

Remark 2.1. To prove theorem 2.1, the homomorphism Y (g, σ) −→ Ỹ (g, σ)/hỸ (g, σ) to consider is given
by the same formula except that X±i,r,k,Hi,r,k should be replaced by h−rX±i,r,k, h

−rHi,r,k (and it should be

proved that these elements of C((h))⊗C[[h]] Uh(L(g)σ) belong to Ỹ (g, σ)).

1. Relations (15), (16): Relations (15) for π(X±i,r,k), π(Hi,r,k) follow from (1), (2), (3). The first one on line

(16) is also a direct consequence of (1). Let us now verify that π respects the second relation on line (16),
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that is, let us see that [π(X+
i1,r1,k1

), π(X−i2,r2,k2)] =
∑
d∈Z/mZ δσd(i1),i2ω

dk2π(Hi1,r1+r2,k1+k2).

[m+mr1X+
i1,r1,k1

,m−mr2X−i2,r2,k2 ] = mr1+r2+1

[
r1∑
a=0

(−1)r1−a
(
r1

a

)
X+
i1,k1+am,

r2∑
b=0

(−1)r2−b
(
r2

b

)
X−i2,k2+bm

]

= mr1+r2+1
r1∑
a=0

r2∑
b=0

(−1)r1+r2−a−b
(
r1

a

)(
r2

b

)
[X+
i1,k1+am,X

−
i2,k2+mb]

= mr1+r2+1
∑

d∈Z/mZ

δσd(i1),i2ω
dk2

r1+r2∑
e=0

e∑
a=0

(−1)r1+r2−e
(
r1

a

)(
r2

e− a

)
Ψ+
i1,k1+k2+em −Ψ−i1,k1+k2+em

h

= mr1+r2+1
∑

d∈Z/mZ

δσd(i1),i2ω
dk2

r1+r2∑
e=0

(−1)r1+r2−e
(
r1 + r2

e

)
Ψ+
i,k1+k2+em −Ψ−i,k1+k2+em

h

= mr1+r2+1
∑

d∈Z/mZ

δσd(i1),i2ω
dk2Hi1,r1+r2,k1+k2 .

2.1. Relation (17): m = 1 case. We will give full details in the case m = 1 and just a few computations
when m = 2 or m = 3. Taking the coefficients of u−k1u−k2 in (5), rearranging the terms and simplifying
yields:

[X±i1,k1+1 −X
±
i1,k1

,X±i2,k2 ]+(1− q±di1ci1i2 )X±i2,k2X
±
i1,k1+1

= [X±i1,k1 ,X
±
i2,k2+1 −X

±
i2,k2

] + (q±di1ci1i2 − 1)X±i1,k1X
±
i2,k2+1.

(27)

Assume by induction that we know that

[X±i1,r1+1,k1
,X±i2,k2 ] + (1− q±di1ci1i2 )X±i2,k2X

±
i1,r1,k1+1

=
[
X±i1,r1,k1 ,X

±
i2,k2+1 −X

±
i2,k2

]
+ (q±di1ci1i2 − 1)X±i1,r1,k1X

±
i2,k2+1.

(28)

We have already shown this to be true when r = 0 and all k1, k2 ∈ Z by (27). Using the inductive relation
(25), we can conclude by induction that (28) is true for any k1, k2 ∈ Z, r1 ∈ Z≥0.

Now, let us do the same for i2, k2 instead of i1, k1. Arguing again by induction, we conclude that the
following equality holds for any r1, r2 ∈ Z≥0, k1, k2 ∈ Z:

[X±i1,r1+1,k1
,X±i2,r2,k2 ] + (1− q±di1ci1i2 )X±i2,r2,k2X

±
i1,r1,k1+1

= [X±i1,r1,k1 ,X
±
i2,r2+1,k2

] + (q±di1ci1i2 − 1)X±i1,r1,k1X
±
i2,r2,k2+1.

Therefore, in Kr+1/Kr, we obtain the desired relation:[
X
±
i1,r1+1,k1 ,X

±
i2,r2,k2

]
−
[
X
±
i1,r1,k1 ,X

±
i2,r2+1,k2

]
= ±di1ci1i2h

2

(
X
±
i2,r2,k2 X

±
i1,r1,k1+1 + X

±
i1,r1,k1 X

±
i2,r2,k2+1

)
.

This is true in particular when k1 = 0 = k2, so we deduce that π(X±i1,r1) and π(X±i2,r2) satisfy relation (13).

2.2. Relation (17): m = 2 case. (5) can be rewritten as:

[X±i1,k1+2 −X
±
i1,k1

,X±i2,k2 ]− [X±i1,k1 ,X
±
i2,k2+2 −X

±
i2,k2

] = (q±ci1i2±ci1,σ(i2) − 1)(X±i2,k2X
±
i1,k1+2

+ X±i1,k1X
±
i2,k2+2) + (q±ci1i2 − q±ci1,σ(i2))S(X±i2,k2+1,X

±
i1,k1+1).

Using the induction relation (25) as in the case m = 1, we can deduce by induction that

[X±i1,r1+1,k1
,X±i2,r2,k2 ]− [X±i1,r1,t1 ,X

±
i2,r2+1,k2

](29)

= (q±ci1i2±ci1,σ(i2) − 1)(X±i2,r2,k2X
±
i1,r1,k1+2 + X±i1,r1,k1X

±
i2,r2,k2+2)

+(q±ci1i2 − q±ci1,σ(i2))S(X±i2,r2,k2+1,X
±
i1,r1,k1+1)
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From Lemma 2.3, after passing to the quotient Kr+1/Kr, equation (29) becomes (17) (up to a factor of 1
m

on the right-hand side, but it is accounted for in the definition of π).

2.3. Relation (17): m = 3 case. (5) can be rewritten as (di1 = 1 when m = 3):[
X±i1,k1+3 −X

±
i1,k1

,X±i2,k2
]
−
[
X±i1,k1 ,X

±
i2,k2+3 −X

±
i2,k2

]
= ± h

2m

((
2∑
d=0

ci1,σd(i2) +O(h)

)
(X±i2,k2X

±
i1,k1+3 + X±i1,k1X

±
i2,k2+3)

+

(
2∑
d=0

ci1,σd(i2)ω
d +O(h)

)
S(X±i2,k2+1,X

±
i1,k1+2)

+

(
2∑
d=0

ci1,σd(i2)ω
2d +O(h)

)
S(X±i2,k2+2,X

±
i1,k1+1)

)

Using relation (25) and induction, we get:

[X
±
i1,r1+1,k1 ,X

±
i2,r2,k2 ]− [X

±
i1,r1,k1 ,X

±
i2,r2+1,k2 ]

= ±h
6

(
(ci1i2 + ci1σ(i2) + ci1σ2(i2))

(
X
±
i2,r2,k2 X

±
i1,r1,k1+3 + X

±
i1,r1,k1 X

±
i2,r2,k2+3

)
+ (ci1i2 + ci1σ(i2)ω + ci1σ2(i2)ω

2)S(X
±
i2,r2,k2+1,X

±
i1,r1,k1+2)

+ (ci1i2 + ci1σ(i2)ω
2 + ci1σ2(i2)ω)S(X

±
i2,r2,k2+2,X

±
i1,r1,k1+1)

)
.

(30)

From Lemma (2.3), equation (30) shows that π(X±i1,r1,k1), π(X±i2,r2,k2) with r1, r2 ∈ Z≥0, k1, k2 = 0, 1, 2,

satisfy equation (17).

3. Relation (18): This is quite similar to the previous case, starting this time with relation (24), so we give
a few explanations only when m = 2. di1 = 1 when m = 2 and (18) can be written as

[Hi1,r1+1,k1 , X
±
i2,r2,k2

]− [Hi1,r1,k1 , X
±
i2,r2+1,k2

] =±
h(ci1i2 + ci1σ(i2))

2
S(Hi1,r1,k1 , X

±
i2,r2,k2

)

±
h(ci1i2 − ci1σ(i2))

2
S(Hi1,r1,k1+1, X

±
i2,r2,k2+1).

In order to show that this equation is satisfied when Hi,r,k, X
±
i,r,k are replaced by π(Hi,r,k), π(X±i,r,k), we

need the following equation:

[Hi1,r1+1,k1 ,X
±
i2,r2,k2

]−[Hi1,r1,k1 ,X
±
i2,r2+1,k2

]

=(q±ci1i2±ci1,σ(i2) − 1)(X±i2,r2,k2Hi1,r1,k1+2 + Hi1,r1,k1X
±
i2,r2,k2+2)

+ (q±ci1i2 − q±ci1,σ(i2))S(Hi1,r1,k1+1,X
±
i2,r2,k2+1).

(31)

Notice that relation (24) can be written as[
Ψ+
i1,k1+2 −Ψ+

i1,k1
,X±i2,k2

]
−
[
Ψ+
i1,k1

,X±i2,k2+2 −X
±
i2,k2

]
= (q±ci1i2±ci1,σ(i2) − 1)

(
X±i2,k2Ψ+

i1,k1+2 + Ψ+
i1,k1
X±i2,k2+2

)
+ (q±ci1i2 − q±ci1,σ(i2))S

(
Ψ+
i1,k1+1,X

±
i2,k2+1

)(32)

Using (32),(25) and induction, it is possible to establish (31) when k1 > 0.
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To establish (31), when k1 = 0, rewrite (32) as:[
Ψ+
i1,2
−Ψ+

i1,0
+ Ψ−i1,0,X

±
i2,k2

]
−
[
Ψ+
i1,0
−Ψ−i1,0,X

±
i2,k2+2 −X

±
i2,k2

]
= (q±ci1i2±ci1,σ(i2) − 1)

(
X±i2,k2Ψ+

i1,2
+ Ψ+

i1,0
X±i2,k2+2

)
+ (q±ci1i2 − q±ci1,σ(i2))S

(
Ψ+
i1,1

,X±i2,k2+1

)
+
[
Ψ−i1,0,X

±
i2,k2+2

](33)

Using [Ψ−i1,0,X
±
i2,k2+2] = (1−q±ci1i2±ci1,σ(i2))Ψ−i1,0X

±
i2,k2+2 and dividing by h, we obtain relation (31) when

k1 = 0 and r1 = 0 = r2. The general case follows again by induction using (25).

4. Relations (20), (21): Let us see why π respects relation (20), (21) being rather similar. We start with
equation (6). We can expand that relation as∑

k1,k2,k3

Pii±3
(u1, u2)Cii3(X±i,k1 ,X

±
i,k2

,X±i3,k3)u−k11 u−k22 u−k33 + {u1 ←→ u2} = 0,

where Cii3(x, y, z) =
(
zxy − (qdii3 + q−dii3 )xzy + xyz

)
.

Notice that Cii3(x, y, z) is linear in each of x, y, z. So using again (25) and induction, we obtain

Sym

 ∑
k1,k2,k3

Pii3(u1, u2)Cii3(X±i,r1,k1 ,X
±
i,r2,k2

,X±i3,r3,k3)u−k11 u−k22 u−k33

 = 0.

Thus

Sym
{
Pii3(u1, u2)Cii3(X±i,r1,k1(u1, v1),X±i,r2,k2(u2, v2),X±i3,r3,k3(u3, v3))

}
= 0.(34)

Since we have Pij(u1, u2) = pij(u1, u2) +O(h) and Cii3 = (zxy− 2xzy+ xyz) +O(h), we can see that, after
passing to Kr1+r2+r3/Kr1+r2+r3+1, the equation (34) becomes equation (20). Similarly we can prove (21)
by using (7) and (8).

5. Relation (14). This applies only to the case m = 1. Since X±i,rX
±
j,s = X±j,sX

±
i,r if cij = 0, it follows that

π(X±i,r)π(X±j,s) = π(X±j,s)π(X±i,r) in this case, which is relation (14) when cij = 0. From (9), we deduce by
induction that, for any k1, . . . , kN , k ∈ Z, r1, . . . , rN ∈ Z≥0:

∑
τ∈SN

N∑
`=0

(−1)`
[
N
`

]
q

X±i,rτ(1),kτ(1) · · ·X
±
i,rτ(`),kτ(`)

X±j,s,kX
±
i,rτ(`+1),kτ(`+1)

· · ·X±i,rτ(N),kτ(N)
= 0.

Passing to the quotient Kr/Kr+1 where r = s+
∑N
i=1 ri, we obtain, when k = 0 and ki = 0 for 1 ≤ i ≤ N ,

relation (14) but with X±i,rτ(a) replaced by π(X±i,rτ(a)).

From steps 1-5, we can conclude that π is an algebra homomorphism.

We now have to check that the images X
±
i,r,k,Hi,r,k of X±i,r,k,Hi,r,k for r ∈ Z≥0, 0 ≤ k ≤ m− 1 generate

grK(Uh(L(g)σ)). This will prove that the homomorphism π is surjective. Let Y be the subalgebra of

grK(Uh(L(g)σ)) generated by X
±
i,r,k,Hi,r,k ∀ r ∈ Z≥0 and for 0 ≤ k ≤ m − 1. The kernel K is generated

as an ideal by hUh(L(g)σ) and X±i,r+m − X
±
i,r,Hi,r+m − Hi,r for i ∈ I, r ∈ Z, so we have to see that

X±i,r+m −X
±
i,r and Hi,r+m −Hi,r are in Y. This follows from lemma 2.3 which implies that, if r ≡ k modm

with 0 ≤ k ≤ m − 1, then X±i,r+m −X
±
i,r = X

±
i,1,r = X

±
i,1,k, so X±i,r+m −X

±
i,r ∈ Y because X

±
i,1,k ∈ Y. The

same argument works for Hi,r+m −Hi,r.

We are left to show that the map π : Y (g, σ) → grK(Uh(L(g)σ)) is injective. This is where we need
proposition 1.1. We will assume that this proposition holds also when σ is non-trivial. For each α ∈ ∆+ and
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for each integer k such that 0 ≤ k ≤ |O(α)| − 1 where |O(α)| is the size of the orbit O(α), choose a sequence
i1, . . . , it ∈ I such that setting

E±α,k =

[
1

m

m−1∑
s=0

X±σs(i1),0,

[
1

m

m−1∑
s=0

X±σs(i2),0, · · ·

[
1

m

m−1∑
s=0

X±σs(it−1),0,
1

m

m−1∑
s=0

ω−ksX±σs(it),0

]
· · ·

]]

gives a non-zero vector in
(∑|O(α)|−1

s=0 gσs(α)

)
∩ gk (here we view E±α,k as belonging to U(g) ⊂ Yh(g)). We

require the same choice of indices i1, . . . , it for α, . . . , σm−1(α), so that E±σs(α),k = ωksE±α,k. Set X±α,r,k =[
X±i1,0,0,

[
X±i2,0,0, · · · [X

±
it−1,0,0

, X±it,r,k] · · ·
]]

. The elements X±α,r,k ∈ Uh(L(g)σ) are defined similarly: X±α,r,k =[
X±i1,0,

[
X±i2,0, · · · [X

±
it−1,0

,X±it,k+rm] · · ·
]]

and we have X±σ(α),r,k = ωkX±α,r,k, X±σ(α),r,k = ωkX±α,r,k. Under

Uh(L(g)σ)/hUh(L(g)σ) ∼= U(L(g)σ), X±α,r,k is equal to E±α,k ⊗ uk+rm (see [Dr2]), and in Yh(g, σ)/hYh(g, σ) ∼=
U(L(g)), X±α,r,k = mr+tE±α,k ⊗ ur (see [Le]).

Yh(g) (so Yh(g, σ) with σ = id,m = 1) is a free C[h]-module spanned by the set of ordered monomials in the
elements X±α,r, Hi,r(for any choice of total ordering on these elements) - see [Le]. Because of theorem 1.1, for
any σ, a basis for Yh(g, σ) as a module over C[h] is provided by the set B of ordered monomials in the elements
X±α,r,k, Hi,r,k for all α ∈ ∆+, i ∈ I, r ≥ 0 and for 0 ≤ k ≤ |O(α)| − 1 (respectively, 0 ≤ k ≤ |O(αi)| − 1).

If α and β are in the same orbit under σ, then X±α,r,k and X±β,r,k are scalar multiples of each other, so it is
enough, for each r, k, to choose only one generator for each root orbit. Let Bs be the basis over C of the
piece of Yh(g, σ) of degree s provided by elements of the form htM where M ∈ B has degree s− t.

Because we are assuming that proposition 1.1 holds true for Uh(L(g)σ), ordered monomials in the elements
X±α,r,Hi,r provide a (topological) basis of Uh(L(g)σ) over C[[h]]. (As in the previous paragraph, some
restrictions should be imposed on r, α, i to avoid zero elements and repetitions.) However, we need to
compute the associated graded ring for the descending filtration given by the powers of K and this necessitates
a different basis. For r ∈ Z≥0, 0 ≤ k ≤ m− 1 and ∗ = + or ∗ = −, set X∗α,±r,±k =

∑r
s=0(−1)r−s

(
r
s

)
X ∗α,±s,±k

and Hi,±r,±k =
∑r
s=0(−1)r−s

(
r
s

)Ψ+
i,±k±ms−Ψ−i,±k±ms

h .

From proposition 1.1, a free topological basis of Uh(L(g)σ) is provided by the set B of ordered monomials
(for some choice of total ordering) in the set of non-zero elements among X+

α,±r,±k,X
−
α,±r,±k,Hi,±r,±k for

r ∈ Z≥0 and for 0 ≤ k ≤ |O(α)| − 1 (respectively, 0 ≤ k ≤ |O(αi)| − 1). Again, one should note here that if
α and β are in the same orbit under σ, then X∗α,±r,±k is a multiple of X∗β,±r,±k, hence only one of the two
should be included; the same holds for Hi,±r,±k and Hj,±r,±k if i and j are in the same orbit under σ.

We can now determine a basis of grK(Uh(L(g)σ)). What we need is a basis of Ks/Ks+1 for each s ∈ Z≥0.
Note that X∗α,±r,±k,Hi,±r,±k ∈ Kr. Furthermore, it follows from the proof of lemma 2.2 that X∗α,r,m−k −
(−1)rX∗α,−r,−k ∈ Kr+1 for any r, k ≥ 0, ∗ = ± and the same is true for Hi,r,k. Therefore, to obtain a

spanning set of Ks/Ks+1, it is enough to consider (ordered) monomials in the elements X∗α,r,k and Hi,r,k with

r ≥ 0, 0 ≤ k ≤ m− 1, ∗ = ±. IfM is such a monomial and htM∈ Ks, then htM∈ Ks ∩hUh(L(g)σ), hence
ht−1M∈ Ks−1 (see [GaTL] section 6.3; proposition 1.1 is necessary here), thusM∈ Ks−t. If the sum of all
the indices r appearing in such a monomialM is ≥ s, thenM∈ Ks. The converse is also true: ifM∈ Ks,
the image of M under the composite Uh(L(g)σ) � U(L(g)σ) ↪→ U(L(g)) � U(g⊗C (C[t, t−1]/(t− 1)s)) is 0
since Ks belongs to the kernel of this composite, and we deduce from this that the sum of all the indices r
appearing in M is ≥ s.

Therefore, a basis for Ks/Ks+1 is provided by the set B̃s of elements of the form htM where M is an
ordered monomial in the elements X+

α,r,k,X
−
α,r,k and Hi,r,k which are nonzero and the sum of the indices r

inM is equal to s− t. (Again, it should be taken into account that some of the elements are scalar multiples
of each other if they correspond to roots in the same σ-orbit, as for Yh(g, σ).) It follows that π maps the

basis Bs of each graded piece of Yh(g, σ) of degree s to the basis B̃s of Ks/Ks+1: this ends the proof that
π is an isomorphism. �
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3. From quantum toroidal algebras to affine Yangians and deformed double current
algebras

The ideas of the previous section can be extended to the quantum toroidal case: this was used in [Gu1, Gu2]
and we give here just a few explanations.

Definition 3.1. The quantum toroidal algebra Utorh (g) (respectively, the affine Yangian Ŷ (g)) is the algebra
which is defined exactly as Uh(L(g)) (respectively, as Y (g)), except that the Cartan matrix of finite type must
be replaced by the corresponding affine Cartan matrix.

Remark 3.1. To obtain the “full” quantum toroidal algebra, a central element should be added. This explains
why it is necessary to take the quotient by the one-dimensional subspace spanned by t−1dt in the next lemma.

Lemma 3.1. Utorh (g)/hUtorh (g) is isomorphic to the enveloping algebra of the quotient of the universal central
extension ĝ(C[s±1, t±1]) of g(C[s±1, t±1]) by the one-dimensional subspace spanned by the central element

t−1dt (under the identification of the center with the quotient Ω1(C[s±1,t±1])
d(C[s±1,t±1]) of the space of all 1-forms on

C× × C× by the subspace of all exact forms - see [MRY]).

Proof. This follows, for instance, by comparing the relations in definition 3.1 and those in section 3 in
[MRY]. �

It is not known in general if the quantum toroidal algebras are flat deformations of the enveloping algebra
U
(
ĝ(C[s±1, t±1])/Ct−1dt

)
. At least, it was proved in [He2] that they possess a multiplicative triangular

decomposition.

Ŷ (g) admits a filtration by giving generators X±i,r, Hi,r degree r and its associated graded ring is a quotient

of the enveloping algebra of the universal central extension ĝ(C[s±1, t]) of g(C[s±1, t]). (Conjecturally, they
are isomorphic.) For any positive real root α of the affine Lie algebra ĝ(C[s±1]) and for each r ∈ Z≥0, one can

define elements X±α,r ∈ Ŷ (g) with principal symbol in gr(Ŷ (g)) corresponding to X±α t
r ; it is also possible

to define elements Hi,p,r ∈ Ŷ (g) for i ∈ I, p ∈ Z, r ∈ Z≥0 corresponding to His
ptr in gr(Ŷ (g)). However,

ordered monomials in the elements X±α,r, Hi,p,r are not enough to form a spanning set of Ŷ (g): one also has

to lift to Ŷ (g) the central elements of ĝ(C[s±1, t]).

We have a sequence of algebra homomorphisms

Utorh (g) � Utorh (g)/hUtorh (g)
∼−→ U

(
ĝ(C[s±1, t±1])/t−1dt

) t 7→1
� ĝ(C[s±1]);

let K be the kernel of this composite and let
˜̂
Y (g) be the C[[h]]-subalgebra of Utorh (g)⊗C[[h]] C((h)) generated

by Utorh (g) and by h−1K. One can define a homomorphism ψ : Ŷ (g) −→ ˜̂
Y (g)/h

˜̂
Y (g) (the formulas (26) are

also valid when i is the extending vertex (usually labelled 0) of the affine Dynkin diagram of ĝ) and show
that it is onto as in the case of Y (g). Using the same ideas as in the proof of the main theorem, one could
try to prove the following conjecture.

Conjecture 3.1. Ŷ (g) is isomorphic to
˜̂
Y (g)/h

˜̂
Y (g).

To prove this, one should first establish that Utorh (g) is a flat deformation of U
(
ĝ(C[s±1, t±1])/Ct−1dt

)
.

In type A, the quantum toroidal algebras Utorq,d(sln) studied in [VaVa] depend on two parameters d, q ∈ C×.

One can define a similar algebra Utorq,d,h(sln) over C[[h]] using the same relations and setting q = e
λ
2 h, d = eβh

for some λ, β ∈ C. Moreover, the affine Yangian of type A depends also on two parameters λ, β - see [Gu1].
Conjecture 3.1 is true when g = sln(C) in this two-parameter setting: in [Gu1], it was possible to avoid the
question of the flatness of Utorq,d,h(g) by using a family of representations coming from the Schur-Weyl functor.

Let S̃ be the subalgebra of Ŷ (g) ⊗C C[h] generated by hrX±i,r, h
rHi,r, i ∈ Î , r ≥ 0. Set Ŝ = S̃/hS̃. Since

S̃ is the Rees ring of Ŷ (g) (for the same filtration as above), Ŝ ∼= gr(Ŷ (g)). There is a canonical map
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U
(
ĝ(C[s±1, t])

)
� gr(Ŷ (g)): it was proven in [Gu1] that this map is an isomorphism when g = sln. In

general, this is not known although believed to be true, so we will proceed by assuming that we have an

isomorphism U
(
ĝ(C[s±1, t])

) ∼−→ gr(Ŷ (g)). Under this assumption, we have a map Ŝ � U
(
g(C[s±1, t])

)
.

Consider the composite S̃ � Ŝ � U(sln[s±1, t]) � U(sln[t]), where the last map is obtained by setting

s = 1. Let K be the kernel of this composite map. Let S be the C[h]-subalgebra of Ŷ (g) ⊗C C[h, h−1]

generated by S̃ and h−1K. It is argued in [Gu2] that S/hS should be an interesting deformation of the
enveloping algebra of the universal central extension of g(C[s, t]); when g = sln, S/hS is the deformed

double current algebra of type A studied in [Gu1]. It is also possible to define the affine Yangian Ŷh(g) over
C[h] by adding a central variable h to the right-hand side of the relations (11),(13) as in [GaTL] and define

a subalgebra of Ŷh(g) ⊗C[h] C[h, h−1] similar to S. Note that there is a homomorphism Ŷh(g) � S̃ which

induces a map Ŷh(g)/hŶh(g) −→ Ŝ which is conjecturally an isomorphism.

Appendix A

Let us show that ϕ preserves the relation (20). Assume cii3 = −1 and σ(i) 6= i3.

Assume first that m = 2. Then σ2 = 1 and ϕ(X±i,r,k) = 2r(X±i,r+(−1)kX±σ(i),r). We consider the following
cases.

Case 1: σ(i) = i. We have pii3(v1, v2) = 1 and ciσ(i3) = −1. (20) is equivalent to the following identities in
Y (g) (we use (14) here):

Sym
(

(−1)k2
[
[X±i3,r3 , X

±
i,r1

], X±σ(i),r2

]
+ (−1)k1

[
[X±i3,r3 , X

±
σ(i),r1

], X±i,r2
]

+(−1)k1+k2
[
[X±i3,r3 , X

±
σ(i),r1

], X±σ(i),r2

]
+ (−1)k3

[
[X±σ(i3),r3

, X±i,r1 ], X±i,r2
]

(35)

+(−1)k2+k3
[
[X±σ(i3),r3

, X±i,r1 ], X±σ(i),r2

]
+ (−1)k1+k3

[
[X±σ(i3),r3

, X±σ(i),r1
], X±i,r2

])
= 0

Here, Sym means symmetrization with respect to (r1, k1) and (r2, k2). Using σ(i) = i and (14) again, we
can see that this equality holds.

Case 2: σ(i3) 6= i3, ciσ(i) = 0. In this case, we have pii3(v1, v2) = 1 and ciσ(i3) = 0. (20) is also equivalent

to (35). Using (14), we have [X±σ(i),s, X
±
i3,r

] = [X±σ(i3),s, X
±
i,r] = [X±σ(i),s, X

±
i,r] = 0 which implies (20).

Case 3: σ(i3) = i3, ciσ(i) = 0. We have pii3(v1, v2) = v1 + v2 and cσ(i)i3 = −1. If we replace pii3(v1, v2) by

just v1 on the left hand side of (20), compute the coefficient of ur11 u
r2
2 u

r3
3 v

k1
1 vk22 vk33 and apply ϕ to it, we find

that it equals (after some minor simplifications)

Sym
(

(−1)k2
[
[X±i3,r3 , X

±
i,r1

], X±σ(i),r2

]
− (−1)k1

[
[X±i3,r3 , X

±
σ(i),r1

], X±i,r2
]

+(−1)k2+k3
[
[X±σ(i3),r3

, X±i,r1 ], X±σ(i),r2

]
− (−1)k1+k3

[
[X±σ(i3),r3

, X±σ(i),r1
], X±i,r2

]
−(−1)k1+k2

[
[X±i3,r3 , X

±
σ(i),r1

], X±σ(i),r2

]
+ (−1)k3

[
[X±σ(i3),r3

, X±i,r1 ], X±i,r2
])

If now we replace pii3(v1, v2) by just v2 on the left hand side of (20), compute again the coefficient of

ur11 u
r2
2 u

r3
3 v

k1
1 vk22 vk33 and apply ϕ to it, we find that it equals (after some minor simplifications)

Sym
(
− (−1)k2

[
[X±i3,r3 , X

±
i,r1

], X±σ(i),r2

]
+ (−1)k1

[
[X±i3,r3 , X

±
σ(i),r1

], X±i,r2
]

−(−1)k2+k3
[
[X±σ(i3),r3

, X±i,r1 ], X±σ(i),r2

]
+ (−1)k1+k3

[
[X±σ(i3),r3

, X±σ(i),r1
], X±i,r2

]
−(−1)k1+k2

[
[X±i3,r3 , X

±
σ(i),r1

], X±σ(i),r2

]
+ (−1)k3

[
[X±σ(i3),r3

, X±i,r1 ], X±i,r2
])

The sum of these two expressions vanishes in Y (g).



FROM QUANTUM LOOP ALGEBRAS TO YANGIANS 15

Case 4: ciσ(i) = −1. Then cσ(i)i3 = 0 and pii3(v1, v2) = v1 + v2. This is analogous to the previous case, but
both sums simplify even more since cσ(i)i3 = 0.

Assume now that m = 3. Then σ3 = 1 and ϕ(X±i,r,k) = 3r(X±i,r + ω−kXσ(i),r + ω−2kXσ2(i),r).

We have the following cases.

Case 1: σ(i) = i. We have pii3(v1, v2) = 1 and ciσs(i3) = −1 for s = 0, 1, 2. The relation (20) is equivalent
to the following identity:

Sym

(
2∑

s1,s2,s3=0

ω−(s1k1+s2k2+s3k3)
[
[X±σs3 (i3),r3

, X±i,r1 ], X±i,r2
])

= 0

where Sym denotes symmetrization over (r1, k1), (r2, k2). The previous equality holds since, from (14), it
follows that

[
[X±σs3 (i3),r3

, X±i,r2 ], X±i,r1
]

+
[
[X±σs3 (i3),r3

, X±i,r1 ], X±i,r2
]

= 0.

Case 2: σ(i3) = i3, ciσ(i) = 0. We have pii3(v1, v2) = v2
1 + v1v2 + v2

2 and cσs(i)i3 = −1 for s = 0, 1, 2. The
relation (20) can be written as

Sym

(
2∑

s1,s2,s3=0

ωs3k3(ω−(s1(k1+2)+s2k2) + ω−(s1(k1+1)+s2(k2+1))

+ ω−(s1k1+s2(k2+2)))
[
[X±i3,r3 , X

±
σs2 (i),r2

], X±σs1 (i),r1

])
= 0

Since
[
[X±i3,r3 , X

±
σs2 (i),r2

], X±σs1 (i),r1

]
+
[
[X±i3,r3 , X

±
σs2 (i),r1

], X±σs1 (i),r2

]
= 0 if s1 = s2 by relation (14), the

left-hand side can be written as

Sym
( 2∑
s,s3=0

2∑
t=1

ωs3k3(ω−(s(k1+2)+(s+t)k2) + ω−(s(k1+1)+(s+t)(k2+1))+

ω−(sk1+(s+t)(k2+2)))
[
[X±i3,r3 , X

±
σs+t(i),r2

], X±σs(i),r1 ]
)

= 3δk3,0

2∑
t=1

(1 + w−t + w−2t)

2∑
s=0

ω−s(k1+k2)−2s−tk2
[
[X±i3,r3 , X

±
σs+t(i),r2

], X±σs(i),r1

]
which is zero.

Now let us prove (21). We have ciσ(i) = −1 and m = 2. Applying ϕ to (21) reduces to the following
identity:

Sym
(

2(−1)k1+k2
[
[X±i,r3 , X

±
σ(i),r1

], X±σ(i),r2

]
+ 2(−1)k2

[
[X±i,r1 , X

±
σ(i),r2

], X±i,r3
])

= 0

where Sym denotes symmetrization over (r1, k1), (r2, k2), (r3, k3). This equality holds by (14).

Appendix B

We give a proof of lemma 2.1.



16 NICOLAS GUAY AND XIAOGUANG MA

Let H+
i (z) =

∑
k≥1 kHi,kz−k−1 and X±j (w) =

∑
l∈Z X

±
j,lw

−l. We have

[H+
i (z),X±j (w)] =

∑
k≥1,l∈Z

k[Hi,k,X±j,l]z
−k−1w−l

=
∑

k≥1,l∈Z

± ∑
d∈Z/mZ

qkdici,σd(j) − q−kdici,σd(j)
h

ωdk

X±j,k+lz
−k−1w−l

= ±
∑

d∈Z/mZ

∑
k≥1

qkdici,σd(j) − q−kdici,σd(j)
h

ωkdz−1
(w
z

)k
X±j (w)

= ± 1

h

∑
d∈Z/mZ

( 1

z − qdici,σd(j)ωdw
− 1

z − q−dici,σd(j)ωdw

)
X±j (w)

= ±
∑

d∈Z/mZ

(qdici,σd(j) − q−dici,σd(j))ωd

(z − qdici,σd(j)ωdw)(z − q−dici,σd(j)ωdw)
wX±j (w).

Define

(36) Ψ+
i (z) =

∑
k≥0

Ψ+
i,kz
−k = exp

(
h

2
Hi,0

)
exp

h∑
k≥1

Hi,kz−k
 .

Then the above cross relation between H+
i (z) and X±j (w) is equivalent to the data of a α±(z, w) ∈

C[w,w−1][[z]] such that

(37) Ψ+
i (z)X±j (w) = α±(z, w)X±j (w)Ψ+

i (z).

Now we calculate α±(z, w). Applying ∂z to (37), we get

∂zΨ
+
i (z)X±j (w) = ∂zα±(z, w)X±j (w)Ψ+

i (z) + α±(z, w)X±j (w)∂zΨ
+
i (z).

From (36), we have ∂zΨ
+
i (z) = −hH+

i (z)Ψ+
i (z). Thus we have

−hα±(z, w)[H+
i ,X

±
j (w)]Ψ+

i (z) = ∂zα±(z, w)X±j (w)Ψ+
i (z).

Therefore, α±(z, w) satisfies the following differential equation:

∂zα±(z, w)

α±(z, w)
= ∓

∑
d∈Z/mZ

(qci,σd(j) − q−dici,σd(j))ωd

(z − qdici,σd(j)ωdw)(z − q−dici,σd(j)ωdw)
w.

The solution is

α±(z, w) = C ·
∏

d∈Z/mZ

z − q∓dici,σd(j)ωdw
z − q±dici,σd(j)ωdw

.

The constant term of Ψ+
i (z) is exp

(
h
2Hi,0

)
and

exp

(
h

2
Hi,0

)
X±j (w) = q±

∑
d∈Z/mZ dici,σd(j)X±j (w)exp

(
h

2
Hi,0

)
,

which implies C = q±
∑
d∈Z/mZ dici,σd(j) . So we have

α±(z, w) =
∏

d∈Z/mZ

q±dici,σd(j)z − ωdw
z − ωdq±dici,σd(j)w

=
G±ij(z, w)

F±ij (z, w)
.
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