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Abstract

Given a finite quiver @ without loops, we introduce a new class of quantum algebras D(Q) which
are deformations of the enveloping algebra of a Lie algebra which is a central extension of s, (II(Q))
where II(Q) is the preprojective algebra of Q. When @ is an affine Dynkin quiver of type A, D or
E, we can relate them to I'-deformed double current algebras. We are able to construct fu/r}ctors
between different categories of modules over D(Q). We also give some general results about sl,, (A)
for a quadratic algebra A and about g(C[u, v]), which we use to introduce deformed double current
algebras associated to a simple Lie algebra g.

1 Introduction

Quivers have been studied for a long time and the discovery of a geometric link between quiver varieties
and Kac-Moody algebras by H. Nakajima [Na] around fifteen years ago rekindled the interest of repre-
sentation theorists for that subject. To a quiver, one can associate its preprojective algebra II(Q) and
its deformed versions I1*(Q)), whose representation theory is related to the geometry of a certain mo-
ment map. In [CBHo], W. Crawley-Boevey and M. Holland were able to connect deformed preprojective
algebras of affine Dynkin quivers (of type A,D,E) to certain non-commutative deformations of Kleinian
singularities. The theory of symplectic reflection algebras introduced by P. Etingof and V. Ginzburg in
[EtGi] is a generalization of the Crawley-Boevey-Holland theory of non-commutative deformations. In
[GaGi], symplectic reflection algebras for wreath products of finite subgroups I" of SLs(C) were shown to
be Morita equivalent to a new family of algebras Hl)"l’(Q) which can be seen as deformed preprojective
algebras for wreath products S; 1 T'; they are also called Gan-Ginzburg algebras in the literature. (We
denote by S; the symmetric group on I letters.)

In [Gu3], we introduced the quantum algebra analogs of symplectic reflection algebras for wreath
products S; T, which we called I'-deformed double current algebras (I-DDCA). In this paper, we want to
construct the quantum analogs D) (Q) of the deformed preprojective algebras for wreath products. We
start by proving general results for the Lie algebra sl,,(A) when A is a quadratic algebra. We also extend
some results from [Gu2] about sl, (C[u, v]) to any semisimple Lie algebra g (of rank > 3), we apply this
to suggest a definition of deformed double current algebras for g and justify why they are, conjecturally,
limit forms of affine Yangians.

Afterwards, we define the deformed enveloping quiver algebras D) (Q) and explain how they are
related to Gan-Ginzburg algebras via a functor of Schur-Weyl type. We are able to generalize to D) (Q)
some of the main results of [CBHo, Ga, GaGi]. When the graph underlying @ is an affine Dynkin diagram
of type A, D or E corresponding to a finite subgroup I' of SLs(C) via the McKay correspondence, we
connect a certain subalgebra of the I-DDCA DZP(T') to a quotient of D) (Q). Furthermore, we are
able to construct functors between categories of modules over D)\ (Q) for values of the deformation
parameters which differ by a reflection of the Weyl group associated to (). For H;""(Q), this was achieved
in [Gal, generalizing the results of [CBHo] for II*(Q). The Schur-Weyl functor intertwines the reflection
functors for deformed enveloping quiver algebras and for Gan-Ginzburg algebras when [ + 1 < n.
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3 Universal central extensions of type A for quadratic algebras

We are interested in sl,,(A) when A is a quadratic algebra as defined in [BrGal. Let V' be a finite
dimensional bimodule over a semisimple finite dimensional C-algebra B. Let R; € V®pV,a; € V,3; € B
andset P, =R;+a;+ 5, € VeopV oV ®B, with j € J, J being some indexing set.

Definition 3.1. A quadratic algebra A is an algebra of the form A = TpV/(P;)jes where TgV =

Br>0V @V ®p --- @ V (k times) is the tensor algebra and (P;);cy is the ideal generated by the
elements P;. The algebra A is said to be homogeneous if a; =0 = p;Vj € J.

Let mo, m1, mo: V@V ®V ®B — V®pV, V, B be the projection maps. The Lie algebra sl,,(A) is
defined as the derived Lie algebra of gl,,(A4), that is, sl,,(4) = [gl.(A), gl,(A)]. Since it is a perfect Lie
algebra, it possesses a universal central extension. The following theorem will be essential later in this
section.

Theorem 3.1 ([KaLo]). Let A be an associative algebra over C (not necessarily quadratic), n > 3. The
universal central extension sl,(A) of sl,,(A) is the Lie algebra generated by elements Eqp(p),1 < a #b <
n,p € A, satisfying the following relations:

Eap(tipr + tapa) = t1 Eap(p1) + taEap(p2) Viti,t2 € Copr,p2 € A (1)
[Eab(P1), Ebe(p2)] = Eac(p1p2) if a #b#c#a (2)
[Eab(p1), Bea(p2)] =0 if a £ b# c£d#a )

The main result of this section is the following proposition.

Proposition 3.1. Suppose thatn > 5 and let A be a quadratic algebra as in definition 3.1. The universal
central extension sl,(A) of sl,(A) is the Lie algebra generated by the elements E,p(v), Eqp(€) for 1 < a #
b < n,v € V,e€ B satisfying Eqp(t1v1 + tave) = t1Eap(v1) + t2Eap(v2), Eap(t1e1 + tae2) = t1Eqp(er) +
toEap(e2) and the following relations:

Ifa#b#c#a#d#c,
[Ean(v1), Boe(v2)] = [Eaa(v1), Bac(v2)], [Eab(€), Eve(v)] = Eac(ev), [Eav(€1), Ene(e2)] = Eac(erea)  (4)
and [Eqp(v), Epe(e)] = Eqe(ve) for v,v1,v9 € Ve € B. (5)
If a,b,c are all distinct, P=R+a+ 3, a =m(P),8 =mo(P) and R=m3(P) =), v, @0, € V@BV

for some vg, v, € V, then

Z[Eab(vk)a Ebe(0k)] = —Eac(a) — Eac(B). (6)
k
Ifa#b#c#d+#a andvi,vs € V,ej,e5 € B,

[Eap(v1), Eca(v2)] = 0 = [Eap(e), Eca(v)] = [Ean(e1), Ecale2)]- (7)



Remark 3.1. The elements Egp(e) V1 < a # b < n,Ve € B, generate a Lie subalgebra isomorphic to
s, (B). Moreover, sl,(B) is semismiple: since B is a finite dimensional semi-simple C-algebra, it is
isomorphic to a direct sum of matriz algebras My(C) and sl,, (M}, (C)) is simple because s, (My(C)) =

Proof. Let us assume that n > 5. Let § be the Lie algebra defined by the same generators and only
relations (4),(5),(7). We first show that § 2 sl,(T5V). We would like to define E,(p) for all p € TV
by induction via E,p(p) = [Eac(v), Ect(P)] for some ¢ # a,b if p = v @ p. Let us assume that E,;(p) has
been defined in this way if the degree of p is < k — 1. By assumption, this is true if £ = 1,2 and does not
depend on the choice of c.

Let p; € V®i i =1,2. We want to prove by induction on k; + ko that [Eap(p1), Eve(p2)] = Eac(p1p2)
ifa#b#c# aand [Ew(p1),Eca(p2)] =0if a # b # ¢ # d # a, so that we can apply theorem 3.1.
We know from our hypothesis that this is true if k1 + k2 = 0 or 1, so let us assume that it holds for
0<ki+k<k-1

Suppose that ki + ks = k > 2 and p € V&, We define E,(p) as above, that is, we express p as
p =v®p and set Eup(p) = [Eac(v), Ecp(D)] for some ¢ # a,b. By induction, we can assume that E.;(p)
is well defined. First, we prove that the definition of E,;(p) does not depend on the choice of ¢ # a,b.
Write p =7 ®p,0 € V,p € V=2 and choose d, e such that a, b, ¢, d, e are all distinct. Then

Eab(p) = [Eac > [Eac(v) [ c€(~) E(’b( )H
= [[Eac(v), Ece(®)], En(P)] = [ ), Eae ()], Ect(P)]
= [Eaalv ) [Ede 0),Ect(D)]] = v), Eap ()]

We have used [Eqe(v), Ecp(D)] = 0 = [Eqa(v), Ecp(D)], & consequence of our inductive assumption. The
definition of E,;(p) also does not depend on the choice of v and p.

Without loss of generality, we can assume that k; > 2 and write p; = v1 @ p1,v1 € V,py € V&1L,
We define E,.(p1 ® p2) by Eac(p1 ® p2) = [Eqa(v1), Eac(P1 ® p2))], which does not depend on the choice
of d. For a # b # ¢ # d # a, choose e # a, b, ¢, d; then

[Eab(pl)7 Ecd<p2>] - [[Eae(vl)y Eeb(ﬁl)]y Ecd(p2)] =0
since, by induction, [Eqe(v1),Eca(p2)] = 0 = [Eco(P1), Eca(p2)]-
Now, if a # b # ¢ # a, choose d # a, b, ¢; then
[Eas(p1), Eve(p2)] = [[Ead(v1), Eas(P1)], Ebe(p2)] = [Ead(v1), [Eas(P1), Eve(p2)]]

= [Eaa(v1), Eac(P1 ® p2)] = Eqc(p1 ®@ p2)

__ This completes the induction step. We have proved our claim regarding §f. We now observe that
50, (A) is the quotient of sl,(TgV') by the Lie ideal generated by the elements Ep(P); if we write such a
P in the form P = my(P) 4+ m(P) + mo(P) with mo(P) = >, v ® U € V ®p V, then, for a # b # ¢ # a,

Eab(P) =Y [Eac(vk), Eeo(@)] + Eap (m1(P)) + Eap (mo(P)),
k

which completes the proof of proposition 3.1. O

We will be interested in the following two situations:



1. A = Clu,v] x T’ where I' C SLy(C) is a finite subgroup, so B = C[I'] is the group algebra, V =
U®cC[T], where U = span{u,v} = C?, and P = u®v—v®u or, more generally, P = u®v—vQ@u—2
with z € ZT', ZT" being the center of the group algebra C[I'].

2. A =TI(Q) is the preprojective algebra of a quiver () which has no loop, so B = @®;c;C - ¢; is the
semisimple algebra associated to the vertex set I(Q) of Q with e? = ¢;,i € 1(Q), V is a vector space
with basis given by the arrows of the double quiver Q and (P, )ze 1(Q) is the ideal generated by the

elements P; = > ¢, cqin(w)=i} VU~ Do {ve|i(w)=i} ¥ - U for each i € I(Q).

Proposition 3.2. For these two algebras, proposition 3.1 is true also when n = 4.

Proof. The case Clu,v] x T was treated in [Gu3], so we will explain how to adapt the proof of proposition
3.1 to the second case, following exactly the same steps as above, using induction and a similar notation.
Actually, it will be enough to prove the statement for the path algebra Tg E. (Here V = F and E = E(Q)
in the notation of section 6.) Note that, in sl,(TE), we can define clements Eqq(v) by Egq(v) =
[Eab(v), Epa(et(ry)] for some b # a. (This does not depend on the choice of b.) Then it is true that
Eaa(v) = [Eac(€n(w)); Eca(v)] for any c # a.

Suppose that the path p equals v @ p,v € F and p = v ® p,v € E. Choose a,b, c,d all distinct. We
can assume by induction that Eg(p) = [Eqq(V), Eqp(P)]. We want to show that the inductive definition of
Eas(p) does not depend on the choice of ¢. We have

Eab(p) = [Eac(”)a Ecb(@] [ ( )7 [ cd(eh(ff))ﬂ Edb(j]] = [ ac(v)7 [Ecc(/g% Ecb(p)]]
= [Eac v), [Ec eh(i@’))a[ (0),Ean(P } Eac(€t(v))], [Ece(0), Ecb@)]]
[ [

(v)
Eaa(v), [Eqa(V), Eay(D)]] since [Eqq(v), ECC(T))} =0 = [Eqq(v), Ee(P)] by induction
= [Eaa(v), Edb(ﬁ)}

Hence, we have proved that the inductive definition of E,.(p) does not depend on the choice of ¢ # a, b.

Suppose now that a # b # ¢ # d # a,deg(p1) > 2,deg(p2) > 1 and also a # ¢ (the case deg(p;) >
2,deg(p2) = 0 is easier); then, with p; = v; ® p1,

[Eas(p1), Eca(p2)] = [[Eqa(v1), Eas(P1)]; Eca(p2)] =0

because [Eqq(v1), Eca(p2)] = 0 = [Ean(P1), Eca(p2)] by induction. If @ = ¢ and a, b, d are all distinct, then,
writing p; = p1 ® U1, we get

[Eab(p1), Eaa(p2)] = [[Eas(P1), Evp(01)], Eaalp2)] =0

since [Eqp(P1), Eaa(p2)] = 0 = [Epy(V1), Eqa(p2)] by induction.

Now choose distinct a, b, ¢,d. Then

[Eat(P1): Evc(p2)] = [[Eaa(v1), Ean(P1)], Epe(p2)]
[Ead(v1), [Eas(P1), Edc(p2)]] = [Eaa(v1), Eac(P1 ® p2)]
E

ac (Pl ® pz)

To complete the proof, we need to see that [Eqq(v), Eqe(P)] = Eqc(p). Choose d # a,c.

[Eaa(v),Eac(P)] = [[Ead( ) Eda(e: v))]aEaC(lg)]
[Ead(v), Eqe(P)] = Eac(p) since [Eqq(V), Eqe(p)] = 0 as proved previously



4 Universal central extension of g(Clu,v])

The goal of this section is to give two presentations of the Lie algebra g(Clu,v]), g being a simple Lie
algebra, in terms of generators and relations, which are similar to those obtained in [Le] and [MRY]. Let
C = (c¢ij)o<i,j<n be the Cartan matrix of affine type associated to g. We will assume that the rank N of
g is > 3 and denote by §(-) the usual §-function: §(TRUE) = 1,6(FALSE) = 0.

Lemma 4.1. The universal central extension g(Clu,v]) of §(Clu,v]) is isomorphic to the Lie algebra |
generated by the elements X+ H; . and ngT for 1 <i < N,r >0 subjected to the following relations:

@7

(Hi, gy Higory) = 0, [Hiy 0, X5 1= %di, i, X5, for 1 <iiyyip <N, 0<iz <N, ri,ra, 13 € Lo
(8)
+ + + + + + T
[Hil,r1+1»X¢2,r2] = [Hil,rlaXiz,r2+1]v [Xil,r1+1sz'2,r2] = [Xil,rlﬂXiQ,rg—i-l]? 0<iyig <N 9)
[XZ,Tl’X;WQ] = 57517J2Hi1,r1+r2 fO?” 0<i < N, 1 <49 < N, r1,T9 € ZZ()? (10)

Z [Xi [ [XE X: ]]] =0 where k=1—¢;, iy, T1,---Tky S € L0 (11)

11,77 (1) 11, (k) © 12,8
WESk

In (9), (11), when i1 = 0,ix = 0 or iz = 0, there is a relation only in the “+”-case.

Proof. This can be proved using the same ideas as in proposition 3.5 in [MRY], with one modification:
since [ does not have the generator X, we cannot define the action of the affine Weyl group, but it is
still possible to see that the root spaces corresponding to positive roots which are related by a simple
reflection must have the same dimension by using the fact that the relations above for all H; ,., X, ;‘T define
the non-negative part of a triangular decomposition of [. (This is not true for the relations in [MRY]
involving the same elements, which explains why we have to consider more relations here.) O

Lemma 4.2. The Lie algebra g(Clu,v]) is isomorphic to the Lie algebra m generated by the elements
Xwai’r for 1 <i < N,r =0,1 and X(]L’O,Xofl subjected to the same relations as in lemma 4.1, but
with the following restrictions: r1,79,r3 = 0 or 1 in (8); ri,m3 = 0 4n (9); r1 + 79 = 0,1 in (10) ;

T1yeeoy Ty s =0 in (11).

Proof. This can be deduced from lemma 4.1 using computations similar to those in the proof of lemma
2.7 in [Gu2]. We need the observation that, if ¢g;, # 0, then it is possible to find i such that ¢;,,, # 0
but Cis0 = 0. O

5 Deformed double current algebras

As an application of lemmas 4.1 and 4.2, we suggest a definition of deformed double current algebras
associated to any simple Lie algebra g of rank > 3: the case g = sl,, was treated in [Gu2] and we follow
a similar approach, expressing them as limit forms of affine Yangians, which we have to define first.

Let us assume that g is not of type A. (In type A, there are two deformation parameters in the
definition of the affine Yangians, so that definition 5.1 would be less general in type A.) Under this
assumption, we can fix k such that ¢, # 0 and ¢ = k is the only value of ¢ € {1, ..., N} such that c¢g; # 0.
Let do, . .., dy be relatively prime integers such that DC' is a symmetric matrix if D is the diagonal matrix
with diagonal entries equal to dp,...,dy. If A is any algebra and a,b € A, we set S(a,b) = ab+ ba.



Definition 5.1. The affine Yangian f/(g) is the algebra generated by the elements X”,Hzir,o <13 <
N,r > 0 which satisfy the following relations for any 0 < i1,i0 < N,

[Hiy oy Hig oyl =0, [Hyy 0, X35 ) = diy iy 0, X5 0 (X X0 ] = 00, Hiy rges (12)
Fry 1 X5 ] = s X ] = %, 1S (i, XE ) (13
X 00 X ] = X X ] = + 0, 1, S(XE, XE ) (14)
Yo X Xy X X ] =0 (15)
TeS;
where 7 =1 — ciliz,rl,...,rj,]s € Z>o.-

Remark 5.1. We could have introduced a deformation parameter X in this definition by multipliying
the right-hand side of relations (13),(14) by X\. However, for values of X # 0, these algebras are all
isomorphic, so we just set X\ = 1. Setting X = 0 yields the universal central estension g(Clu™!, v]) of
g Qc C[uil, v].

When we exclude the generators for i # 0, we obtain a presentation of the Yangian of the corresponding
finite type [Dr2]. These can also be defined in terms of generators z, J(z) for z € g (see [Drl],[ChPrl])
with the property that [z1,J(22)] = J([z1, 22]). The relation between the two presentations is given by
the following formula:

X7 = J(X;) — wf where wj" i > S(IXF xELX )—iS(Xii,HZ-) (16)
aEA+

where AT is the set of positive roots for g and the root vectors XF are those considered in [Dr2]. !

This will be useful in the proof of theorem 5.1 below. There are also elements v; € U(g) such that
H; 1 = J(H;) — v;: they are given by v; = [w}, X

R Eniat ) }
Our goal in this section is to give some motivation for the next definition.

Definition 5.2. The deformed double current algebra D(g) is the algebra generated by XZ o Hi T,XSF’T for
1 <i < N,r =0,1 subjected to the same relations as in lemma 4.2, except that the followmg relations
involving X0 » must be modified:

do _ _
[XZ,pXofo] - [Ximx&] = _Es(xzmxe )+ [le>x0] + [x;:,o’w(;r] (17)
d _
[Hi,1, X5 0] = [Hi0,X31] = OS(HZWX )+ dowg + [vk, X5 ] (18)
[X(T,l?XI;,O] = [X;Z,o,wo*]a [X(J)r,lvxo,o} = Qdoxahox_ (19)
[XS_,OvX?,:ﬂ = [Xe_,wii}, [X(T,px?,:o] [wo ) ] fori#k (20)

The elements X, and w(J{ are defined at the beginning of the proof of theorem 5.1 below.

Remark 5.2. As with affine Yangians, we could have added a parameter A € C in this definition, but
when A # 0, these algebras would all be isomorphic to each other, while setting A = 0 would give the
universal central extension of g ®c Clu,v] (see lemma 4.2).

n the published version, the root vectors were those from [ChPr1], but these were not the right choice. In formula (16)

_1
on p.378 in [ChPrl], two formulas should be ga(Xi) =d, H X o and <p(Xii) =d, ? Xizl + go(w?:).



We have maps U(g(Clu])) — D(g), U(g(Clv])) — D(g) with imageb equal to the subalgebras
generated by the elements Xfo, HLO,XE{O, 1 < ¢ < N and by the elements Xz o Hip with ¢ # 0,7 = 0,1,
respectively.

Let us start with }/}(g) and its filtration given by deg(Xfr) = r = deg(H;,,). We need to introduce
a new variable h. Let S be the subring of Y (g) ®c C[h] generated by hT’Xi h"H; ,,0 <i < N,r>0.

Set S = S/hS. Since S is the Rees ring of Y(g), S = gr(Y(g)), the associated graded ring. There is a
canonical map U (g(Clu*!, v])) — gr(Y(g)): it was proven in [Gu3] that this map is an isomorphism when
g = sl,,. In general, this is not known although believed to be true, so we will proceed in this section by
assuming that we have an isomorphism £((g(Clu*?,v])) — gr(Y (g)). We only need this assumption to

prove theorem 5.1. Thus, under this assumption, we have a map S - Ll(g((C[uil, v]))

Consider the composite § — § — U(sl,[u*!,v]) — Y(sl,[v]), where the last map is obtained by
setting u = 1. Let K be its kernel. Let S be the C[h]-subalgebra of Y (g) ®cpn) C[h, k'] generated by S
and h'K.

Theorem 5.1. Assume that (G(Clu®!,v]))) = gr(Y(g)). The algebra S/hS is a quotient of the de-
formed double current algebra D(g).

Proof. Let %i =h Xt

7,177

$ir = h"H;, and denote by ¢ the highest positive root of g. We write X, as

Xe_ = [XkO,X ], a root vector for the lowest root — of g, and X; = [Xkoaxe o) € D(g). (Here,
X; an = Xg_op €0 C D(g).) Let X,, € S be obtained by replacing X, , in the previous expression
for X, by X, ,. We will also need the notation wi = —[wlz,)?eiak]. The map ¢ : D(g) — S/hS

is deﬁned in terms of the generators of D(g) in the following way: for 1 < ¢ < N,r = 0,1, we set
( ) xl TMP( ) =i, and set @(XS:T) — h—1($air o %(;T),r —0,1.

We have to verify that the images of the generators satisfy the same relations as those given in
definition 5.2. The relations with i1,i2 # 0 are easy to verify, so we focus on those involving go(Xat )

First, we compute

[o(X{1), e(XE0)] = [ (X o), (X 1) ;

d D @ [ i e
_ ickos(f{ko’f{oo) [k,l 9]h[ k,0 0,1]

= %C%S( (X o), 0(X5)) + [p(wih), (X)) + [ (X o) o (wd)]

since %ar’o = X, in S/hS. It is known that co = —1. Note that the sum of the last two terms equals
[‘P(X;o)v [p(w)h), <p()~(91ak)]] when —6 4 2qy, is not a root of g. Relation (18) can be deduced from (17)
since [p(Xg o), ¢(Xj, )] =0 and

[@(Xéfl),<p(><;§,o)] = [Xk_,OaXe_,ﬂ = [Xk_,0>w(—”'

Xoo =Xy X1 — %o,
th,jJ, — — | X0 ’

Now we look at

[<P(Xar,1):%0(xar,o)} = h? ( xo 17350 0 xe 17369 0} [363{)1,365)0] - [xe_,l’xar,o])
= nH (do(X50)? = [l K] Ko, ))
= n! d 360 0 (:{9 o) ) = doh_l(}:({o - 3€67,0)(%:{,0 + xg,o)

= 2dop(X{)e(Xy)



Here, we used

(o X5, X5, ] Y S0 X0 X X D) + S [Hi, X5), X ak]
aeAt
= = [T X LX) X5 ]) + dreroS(X7, X5), Xy, |

b—‘dk\l—\uk\H .-h\»—t

(S(Xy .\ [Ho—ay, Xp]) + 2docor (X, )?)

(dkckOS(X;, X, )+ 2docor (X, )?)
= _d()COk(X ) = do(X )
Note that dkcko = d(]COk = —d().

For i # k, co; =0 and [X,, Xﬁo] = 0 but we get some non-trivial relations:

[p(Xg0) p(XiE)] = [Xg 0,07 ], [0(XT 1), 0(Xi)] = —lwg, Xi5] sinee [[J(X;), X5, ], Xi5] = 0.

Finally, we have to justify why ¢ is surjective. The kernel K is the two-sided ideal generated by the
elements .’fo » — Xy, Vr € Z>, and we already know that the elements hil(%a"r —-X,,) forr=0,1are

in the image of ¢ as are 3e .Vr >0,Vi#0. Since }I = h(h 71(%3} fi”g_ﬂ.)) +X,, = Xy, in S/hS,
.'{3'77“ is also in Image(y )VrzO.

Let us assume that we know that h_l(%a'j — X, ;) € Image(p). Then it is also the case that
[ﬁhl, h_l(ffa'i — %g);)} € Image(p). The subalgebra of S/hS generated by st,f)i,s for1 <7< N,s>0,
is a quotient of 4g(C[v]) and one can see, from this observation, that [Hg 1, Xa_,?-] = dicroXy 7y + K where
k € Y(g) has filtration degree < r. Therefore,

_ dic dic dic
[m,l,h—l(ae;;—xw)} - ko%:{ﬂl—l- PR g S(9r,0, X )— Bk

h h
B + dkaO 7
- dkaoh ( 0,741 x@ T+1) + = 9 (yjk? 05 0r> +h’

xO_TJrl + h7"

We can conclude that h™ (}CO #+1 — Xp7.1) € Image(p) and, by induction, this is true Vr > 0. O

0,7+1

We conjecture that D(g) and S/hS are isomorphic.

6 Gan-Ginzburg algebras

Let @ be an arbitrary finite quiver without loops, with arrow set E(Q) and vertex set I(Q) (sometimes
abbreviated I). We will denote its double by @, the head of v € E(Q) by h(v), its tail by ¢(v) and the
opposite arrow by T € E(Q), so h(v) = t(v),t(v) = h(v). Fori € I,1 < j <1, let B, = C - ¢; with ¢;
an idempotent, B = @®;c;B;,B = B®!, E; = B®U-1 @¢ B(Q) ®c B®(!~7) and E = @é‘:ﬂzj- The space
E is a B-bimodule, so we can form the tensor algebra TgE, which is a module for the symmetric group
Si, hence we have also the smash product TgE x S;. We set 1g = > ., ¢;,¢e Ej) 1®(J b e @ 1®(l J)

i€l
v =159V 00015477 € E; and

Pl = 3 7@ g @) _ 3 v @7 e EP2,
{(veB(Q)|h(v)=i} (veB(Q)lt(w)=i)



Definition 6.1 ([GaGi]). Let A = (\;)icr € C®Hl v € C. The deformed preprojective algebra H?’”(Q)
(also called Gan-Ginzburg algebra in the literature) is defined as the quotient of TgE x S; by the following
relations:

!
Foranyl<j<l,iel, pgj) - )\iel(»j) =v egj)e(.k)ajk; (21)

(2
k=1

k#j

For1<j#k<lv,v € E(Q),

v @8 — 0l @ o) = vé,,5, (1 - 20(v2 € B(Q)))ell) el i (22)

It is possible to filter the algebra Hl)"l’(Q) by assigning degree zero to the elements of B and degree
one to those of E. One of the main results of [GaGi] is the next theorem.

Theorem 6.1 (Theorem 2.2.1 in [GaGi]). Suppose that Q is a quiver whose underlying graph is an affine
Dynkin diagram of type A,D or E. The canonical map H?‘ZO’":O(Q) — gr(Hl)""(Q)) s an isomorphism.

7 Deformed enveloping quiver algebras

In this section, we introduce the algebras which will be our main objects of interest. For i € I (Q), set

nbh(i) = {j € I|3v € E(Q),h(v) = i,t(v) = j}. Recall that, for any algebra A and elements a,b € A, we
set S(a,b) = ab+ ba. We will assume that n > 4 for the rest of this paper.

Definition 7.1. Let v € C,\ = (\;)ier € COUl. The deformed enveloping quiver algebra D) (Q) is
the algebra generated by elements Eqp(v), Eap(e) for any 1 < a,b < n,v € E(Q),e € B which satisfy
the following relations: The elements Eop(e),1 < a,b < n,e € B, generate a subalgebra isomorphic to
(Ugl,) @1l (= Ugl,(B)). V1 < a,b,c,d <n, Vv e E(Q),Vie I(Q),

[Eab(ei); Eca(v)] = 6i n(v)0bcEad(v) — 4 ¢(v)0aaBen(v) (23)

Fora#b#c#a#d+#c, v,0€ E(Q) and Hpa(eyv)) = Eup(er(v)) — Baa(es(v)),

[Eab(v), Ebc(i)\)} — [Ead(v), Edc(i}\)} = gdm(l — 2(5(1} € E(Q)))S(Hbd(et(v)), Eac(eh(v))) (24)
Z Z Eou(e;) is central Vi € I(Q) (25)
i€I(Q)a=1
Z [Eab(v)v EbC(E)] = Z [Eab(ﬁ)a EbC(U)} + ()‘i - %) EaC(ei)
{veE|h(v)=i} (veE|t(v)=i}
+g > S([Eav(es); Ejules)]; [Exj(er), Ene(er)])
7,k=1

+vS(Em(es)Eacle)) =5 D S(Eaclei) Ewle;)  (26)

jEnbh(s)
Ifa #b+# c#d# a, then

[Eab(v)v Ecdﬁj\)} = %5%(1 - 25(” € E(Q)))S(Ecb(et(v))a Ead(eh(v))) V’U,i)\ € E(@) (27)



It follows from proposition 3.2 that D)=%*=0(Q) is isomorphic to the enveloping algebra of a Lie
algebra which properly contains s, (II(Q)) since Eqq(e) € DM(Q) for any 1 < a < n,e € B. We
denote this Lie algebra by sl (I1(Q)), so s, (II(Q)) = sl (II(Q)) & (B,c; C-I(e;)) where I(e;) € gln(B;)
is the identity matrix and is central in sl,(II(Q)). More generally, D}*=°(Q) = U(sl,(II*(Q))) with
sl (IT(Q)) D sl, (IT*(Q)). When @ is an affine Dynkin quiver of type A,D or E, and \; = dim¢ N; (N
corresponds to i under the McKay correspondence, see theorem 9.1 below), we have HC; (ITM(Q)) = 0,
HCo(TINQ)) = C®U1=1 (since TI(Q) is then Morita equivalent to the smash product of the first Weyl

algebra with a certain finite group so that we can use the calculations in [AFLS]), hence ;[n(H)‘(Q)) =

5L, (IIN(Q)) and s1, (I1(Q)) = gl (ITN(Q)) © C - I(1p).
When @ satisfies the condition that |nbh(¢)| = 2 for any i € I(Q), relation (26) can be rewritten as:

Z [Eab(v)’EbC(ﬁ)] = Z [E ( ) Ebc Z S ac € Ebb( _ei))

{veE|h(v)=i} {veE|t(v)=i} jEnbh %)

+ ()\i - %) Z S([ s Ej(ei)]; [Exj(e:), Ene(es)])

_/,k: 1

In this case, we can replace gl,,(B) in definition 7.1 by its Lie subalgebra of codimension one generated
by sl,(B) and Eqq(e; —ej) for i # 45,1 < a <n.

The algebra D} (Q) can be filtered by giving E.;(e) degree zero and E,p(v) degree one.

8 Schur-Weyl functor

In this section, we construct a functor which connects the category of modules over deformed preprojective
algebras for wreath products to the category of modules over the deformed enveloping quiver algebra with
the same parameters.

Let M be a right module over II;"*(Q) and m ® u € M ®csy) (C")®,m € M,u € (C")®". We want
to turn M ®cjg,] (C™)®! into a left module over D} (Q) by letting E,;(v) and Eqp(e;) act on it according
to the following formulas:

l l
Ew(v)(m®w) =3 mo) @ B (), Ew(e)(mew) =Y me @ £ (u).

j=1
We have to verify that the relations in definition 7.1 are preserved by these operators.

For v € E(Q) and a,b, ¢, d all distinct, ([Eqs(v), Epe(0)] — [Ead(v), Eqe(?)]) (m @ u) equals

= > mpV,oWe (BYE - BRED) (W)

1<j k<l
= vm(1-20(we BQ) Y. meelhome (B ED - EWED) ()
1<J¢k<l
= (1 —20(ve E(Q Z meh(v (k) ) ® (Eg:)E( ) — EéZ)Eé{))(u)
1<j#k<l
v
= 55%(1 - 25(” € E(Q)))S(Hbd(et(v))a Eac(eh(v)))(m Y u)

and the relations (23) are checked in a similar manner.
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The expression (Z{veEm(v):i}[Eab( ), Evc(@)] = 2o (e miw) =iy [Ean (D), Ebc(v)}) (m ® u) equals

l
- Ym DR CECI SO Yo Gt

k=1 (vEE|h(v)=i} {veE]i(v)=i}
l
+ Z m Z [@(j)7v(k)} _ Z [U(j)’@(k)] ® E(k)E(J)( )
’j;:kl {veE|h(v)=i} (veE]i(v)=i}
= N\ Zme k>®E(k) Z me 0 ® E%) (u)
k=1 1<]7ék<l
&) (i
v Z Z meh (v) t(v )Tk  ® B EY (u)
{veE|h(v)=i} 1<j£k<I
—v Z Z me (J) o ®E(k)E(J)( )
) t( Jk ab

{veE|t(v)=i} 1<j#k<1

— Zme(k)@@Eac *VZ S me®el @ BYEP ()

k=1 d=11<j#k<I
k k
vy > me;zj()v ( ))®Ez§b)E( D (u)
{veE|h(v)=i} 1<j#k<I
k k
g Z Z mei& §€2)®El§b)E( ) (w)
{veE|t(v)=i} 1<j#k<I
nv
= <>‘i o ?) Eac(ei)(m Z S Eav(€i) Efg(ei)], [Egr(ei)s Ebc(el)])(m@)U)
fg 1
v
+VS(Ebb<€i)aEac(@i))(m®u)—5 Z S (Eqc(es), Evn(e;)) (m @ u)
JjEnbh(%)

We have verified relation (26) and we now turn to (27). If a # b # ¢ # d # a, then

[Eap(0),Eca@®](mau) = > mp?vW]e EWED ()
1<j#k<I
= vn(l-200weEQ) > meh(v % © E®EY (u)
1<j#k<l
= vim(1-20@eEQ) > meh(v t(v) @ By B (w)
1<j#k<l
14
= §5W(1 —26(v € E(Q)))S(Ecs(et(v))s Eaalen(w))) (m @ u)

All these computations prove the first part of theorem 8.1 below, but first we need a couple of definitions.

Definition 8.1. A module N over D) (Q) is said to be of level | if it is a (possibily infinite) direct sum
of gl (B;)-modules, each of which is a direct summand of (C™)®!, for each i € I(Q).

Definition 8.2. A module N over D" (Q) is said to be integrable if Eqp(e;) and Eqp(v) act locally
nilpotently on N for any 1 <a#b<mn,i€1(Q), v e E(Q).

11



l,int

We will denote by mod;™" — D) (Q) the category of integrable left modules of level I over D} (Q). Note
that a map of right Hl)"l’(Q)—modules M, — My induces a map M; Qc|g,] (C™® — M, ®clsy] (Cm®!
of D) (Q)-modules.

Theorem 8.1. Let M be a right module over Hl)"V(Q) and set SW; (M) = M ®c;s,] (C*)®!. This formula

defines a functor SW; : modg — H?’”(Q) — modlL’mt —D)(Q). Furthermore, if | +2 < n, this functor
is an equivalence of categories.

Proof. It remains to prove the last statement, so let us assume that [+2 < n. Let N € modlL’mt -DX(Q).
From the classical Schur-Weyl duality, we know that N = SW;(M) as a module over Ugl, (B) for some

B®! % Sj-module M and E,;(e;)(m ®@ u) = 22:1 el(m) ® E<(1Jb) (u) where € € Endc(M). Following the

same approach as in [ChPr2, Gu3], one can show that, for any v € E(Q), there exists ¢;(v) € Endc(M)
such that Eqp(v)(m®@u) = 22‘:1 oj(v)(m)® E((ljb) (u). Furthermore, since [Eqp(€:), Epe(v)] = 95 p(v)Eac(v),
[Eab(v), Epe(e:)] = 8;4(0)Eac(v) if a # b # ¢ # a, we can show that € ¢y (v) = ¢r(v)el if j # k, eF gy (v) =
;. 4(v)@r(v) and br(v)el = i h(v)®k(v). This proves that M is a module over TgE and we want to show
that it descends to H;"V(Q): this is similar to the proof of the Schur-Weyl duality in [Gul, Gu2], using
the other relations in definition 7.1 to deduce (21) and (22). O

9 Symplectic reflection algebras for wreath products

We need to recall the definition of symplectic reflection algebras for wreath products and why they are
Morita equivalent to certain Gan-Ginzburg algebras via the McKay correspondence.

The definition of a symplectic reflection algebra depends on two parameters: t € C and ¢ = k- id +
2 er\{id) €Y € ZT', which is an element in the center ZI" of C[I']. We have adapted the definition of the
symplectic reflection algebra Hy ¢(T';) from [GaGi]. For v € ', we write 7, for (id,...,id,~,id,...,id) €
Iy = I'*! % S; where ~ is in the k" position. Let U = U, = C%,1 < k < [ be the two-dimensional
symplectic plane with the standard symplectic form w and set U! = @ﬁclek. For each 1 < k <[, choose
a basis xy, yr € Ug such that w(xy,yx) = 1. Note that I'; acts on U'.

Definition 9.1. The symplectic reflection algebra Hy o(I';) is defined as the algebra generated by the
vectors in Ul and by g € Ty with the relations:

g we-g  =g(r), 9-yk-g " =gl), k=1,...,[,VgeT, (28)
l
_ k -1 _
[xk,yk] —t+§ZZO’j1@’7k’Yj + Z Ve, k=1,...,1 (29)
j];;ﬂ yel ~ye'\{id}

For1<j#k<Iland anyu; € Uj, vy, € Uy:

K

[, o] = =5 D w((w), v)ojpy (30)

Remark 9.1. When I' = Z/dZ, H, c(I';) is a rational Cherednik algebra [GGOR).

FixI' C SL2(C) and let Irr(T") be the set of its irreducible representations. One can define a graph G(T")
with vertices indexed by Irr(T") and with one edge between vertices Ny and Ny if Homp (N7, No @ C?) # 0,
and two edges if I = Z/2Z.
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Theorem 9.1 (McKay correspondence). The map I' — G(T') establishes a bijection between isomor-
phism classes of finite subgroups of SLa(C) and affine Dynkin diagrams of type A, D, E.

Let N; be the irreducible representation of I' corresponding to i € I(G(I')). Let fx € C[I'] be an
idempotent such that C[I'|fy = N and set f = ZNGIH(F) fn. In the next section, we will obtain a result
analogous to the following one, although weaker.

Theorem 9.2 (Theorem 3.5.2 in [GaGi|, theorem 3.4 in [CBHo]). Let Q be a quiver with underlying
graph G(I"). Let An be the trace of t + Zwﬁd cyy on N and set v = % Then there is an isomorphism

of algebras HZ\’"(Q) 5 O, (Ty) £

This theorem implies that H?’”(Q) and H; (T';) are Morita equivalent. The proof of this theorem is
based on the next lemma. Let C'= U ®c C[I'] and view it as a bimodule over C[I'] where the left action
is the diagonal one and the right action is simply right multiplication on the second factor. Set f; = fn;,
for i € I(G(I)).

Lemma 9.1 (Lemma 3.3 in [CBHol). Suppose that the underlying graph of Q is G(T'). To each arrow
v e E(Q), one can associate elements 0, € fu()C fr(v), Pv € frw)C few) such that, for any i € 1(Q),

Z (bvev - Z 9v¢v = ‘Nz|f2(-ry - ym) (w(x,y) =1lz,y€ U)
{veE(Q),h(v)=i} {veE(Q),t(v)=i}

The isomorphism in theorem 9.2 is given by e sy f®lfi(k)f®l, k) oy IR $l ang ()

i

FEO FE We write ¢y, 6, in the form ¢, = Tn)yPofiw)s Ov = fiw)Pvfnw) With ¢y, 9, € C.

10 A relation between deformed enveloping quiver algebras and
I-DDCA

In this section, we will assume that @ is a quiver whose underlying graph is of affine Dynkin type A,D
or E and related to the group I" via the McKay correspondence (theorem 9.1). We will start by recalling
the definition of I'-DDCA from [Gu3]. In view of theorem 9.2, one could be led to conjecture that it is
possible to realize D} (Q) as a subalgebra of an algebra slightly larger than DP(T'), but this does not
seem to be possible. Proposition 10.1 below gives us one relation between D)} (Q) and D2-P(T).

We need an algebra slightly larger than the one studied in [Gu3] because, as defined here, the degree
zero part of D2P(T) (with respect to its natural filtration) is (gl,, (C[I'])) instead of U(gl,, (C[T])). (The
difference is simply gl,,(C[T]) = g[,,(C[I']) @ C - Id.)

Definition 10.1. The T'-deformed double current algebra D3P(T') with parameters 3 € C,b € ZI',b =
Xid + Zyer\{id} by is the algebra generated by the elements of gl,,(C[I']), Eap(tiu + tav) for 1 < a #
b < mn,ty,ta € Ciu,v € U which satisfy Eqp(t1u + tav) = t1Eqp(u) + t2Eap(v), Id € gl (C[IY)) is central in
DE®(T), and the following relations hold:

Ifa#b#c#a#d#c,

[Eabn(7), Epe(u)] = [Eaa(v(w)); Eac(M)]; [Eon(7), Epe(u)] = [Epe(v(w)); Ece (V)] (31)
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Ea(®), Ene(o)] = [Eaa(u),Eae(w)] + 0 0)Ee (b+ ) + () o D

~eTl 7,k=1

(S(Ew(r™)Eugl: [Ess Ese()]) + S (1Eaa): Eshy [Eju Eacl 7))
X
2

Z (W(V(U’)a U) - w(u’ U)) (Ebb(’y_l)Eac(’Y) + Edd(’Y) Eac('y_l)) (32)

yel

Ifa#b#c#d#a, [Ew(y),Eac(u)] = 0= [Eap(7), Eca(w)] and

[Eap(u), Eca(v)] = —% > w((w),v)S(Eaa(r ™), Eer(7)) (33)

yel’

Lemma 9.1 entices us to consider the following algebra.

Definition 10.2. We define D2-P(T') to be the subalgebra of D2-P(T) generated by Eqp(f;) = Eap(fi) V1 <

a,b < n and by the elements Eq(v) = [Eaa(f), [Eap(¥y), Ebb(f)]] , Ewp(0) = [Eaa(f)7 [Eab(0), Ebb(f)” for
each v € E(Q),1 < a # b<mn. (The idempotents f; were defined in the previous section.)

In [Gu3], we constructed a Schur-Weyl functor relating H; .(I';) and D2®(T'), so we can put on the
space V! = Hy o(T)®¢(s, (C™)®" a structure of right module over DZP(T') when 8 = t— "erl —K,by=c

and A\ = k.

,Y—l

We can view f®'H; (1) f®! @c(s,) (C")®! as a subspace of V! and, as such, it is stabilized under

the action of the subalgebra DZP(T"). Indeed, the generators of DZ:P(T') act in the following way, for
m € fEH, (I)) f®,ue (C")®, v e EQ):

l l
Eq(v)(m@u) =Y mbP @ S (v), Eq@)(meou) =3 mél B} (u).
k=1 k=1

Let ¥, : DJP(T) — Endc (f®'Hyc(T) f®! @cs,) (C™)®') be the algebra map coming from this module
structure. Let J2P = {2 € DP(D)|¥)(z) = 0V € Z>1 }.

nk|T| k[T

Proposition 10.1. Suppose that § =t — — K, by = ¢y, A= K,V =
t+3 44y on Nj. The algebra D) (Q) maps onto the quotient D3P (T)/J5P.

and A; is the trace of

Proof. We want to define a map 7 : D)V (Q) — DZP(I)/J5P by Eup(v) = Egp(v) for v € E(Q),1 <
a#b<nand Eg(e;) = Eu(f;) for any 1 < a,b < n. We have to jutisfy why it respects the relations
in definition 7.1. Let ®; : D)}¥(Q) — Endc (H;"V(Q) ®cis;) (C™)®!) be the algebra map coming from
the module structure obtained in section 8 and note that ®; = ¥; o n VI € Z>; after the identification
Hl)"y(Q) 5 fOIH, o(T)®! f®! given by theorem 9.2 - see the formulas at the end of the previous section.
From theorem 9.2 and the computations done in section 8, it follows that ¥;(E.;(e;)) and ¥;(E(v)) for
all i € 1(Q),v € E(Q),l € Z> satisfy the relations in definition 7.1. Therefore, the same is true for
n(Eap(€:)), n(Eap(v)) in the quotient DZP(T) /I3 P because of the way the ideal JZP is defined. This
proves that 7 is well defined. O

The case I' = Z/dZ and @ a cyclic quiver on d vertices is simpler to understand, for then f = 1,
so that H;"”(Q) >~ H, o(I';) and, moreover, DZ-P(I") =2 DSP(I") = D)V (Q). In [Gu3], in the case when
I' = Z/dZ, a second presentation of DZ-P(T") was given which involves an infinite number of generators,
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but simpler relations. It thus provides another realization of D} (Q) when @ is the cyclic quiver with d
vertices.

Let F} be the filtration on D?P(T) inherited from the filtration on DP(T") considered in [Gu3] and
let F2 be the one obtained by giving Eqy(f;) degree zero and E,(v) degree one. Then FZ(DEP(I)) C
F} (Dflvb(F)) for any k € Z>g, but it is not clear if this inclusion is an equality. We have a natural map
DI=0-P=0(T") — grpm (D2P(T')) and an inclusion grp: (D5P(T)) C gre (DEP(T)), so grp: (D5P(I)) is
isomorphic to a certain subalgebra of D#=%P=9(T") [Gu3] which contains DZ="P=0(T").

We also have two filtrations on the quotient ring D2 (T") /J5-P: this family of algebras does not provide
a flat deformation of D#=0:P=0(T") /JA=0:b=0 When 3 = 0,b = 0, J?-P is quite large, containing the center
of 51, (IL(Q)) (note that sk, (I1(Q)) = sl, (f(Clu,v]xT)f) C DA=0P=0(T) ¢ DA=0.b=0(T") = (s, (Clu, v] %
I')), but when k = 0 and A\; = dim¢ N; for any ¢ € I(Q) (and corresponding 3, b as in proposition 10.1), it
is generated by >, c (o) > 1 Bk (), Bre(0)] =3, e MI(fi), where E (v) = [Eg g41(0), Brg1k (€4(0))]-
Actually, in the latter case, the map 1 above induces an isomorphism between DZP(T")/J5P and the
quotient of D) (Q) by the two-sided ideal generated by 2veR(Q) et [Exk(v), Exi (D)) — Do, Ail ().
(When v = 0, \x = dimc N, 5 = 1,b, = 0, these are isomorphic to a subalgebra of the enveloping algebra
of gl,(4; xT).)

Finally, we note that, for any values of \, v, the following element is always in the kernel of the algebra
map D) (Q) — Endc( Q) ®csy] ((C")®l) from section &:

5 3 (Ear0): Eaa @]+ 25 (Eaneno): Evaler)) = 3 (Re) = % 3 S(Eunler),Ennler))).

vEE(Q) a=1 ieI(Q) a,b=1

This means that corollary 9.1 in [Gu3] does not hold for D} (Q).

11 Reflection functors

In [CBHo], the authors introduced reflection functors for deformed preprojective algebras of quivers: these
provide equivalences between categories of modules over IT1*(Q) for values of \ related by a reflection of
the Weyl group of the quiver. This was inspired by the classical work [BGP]. Their construction was
generalized to HZ\’V(Q) in [Ga], and a second, more natural approach was given in [EGGO]. In this
section, we construct reflection functors R;,; for the algebras D))" (Q) where ig € I(Q) and | € Z>.

The Ringel form of Q is the bilinear form on Z®!/| given by (a, 8) = Dic1(Q) Qibi— 2 ver(Q) Ct(v)Br(v)
where o = ()icr(@), B = (Bi)icr(q)- Its symmetrization is given by (a, 8) = («a, 8) + (8, ). We write
e; € Z2! for the coordinate vector corresponding to the vertex i € I(Q). If there is no loop at the vertex
i, then we have a (simple) reflection s; : Z®!I — Z®I1 defined by s;(a) = a — (v, €;)¢;. The Weyl group
W of the quiver Q is the group of automorphisms of Z®!!l generated by all these simple reflections. What
will be more important for us is the dual reflection r; : B — B given by r;(A) = 3_.c () (Aj — (€, €5)Ai)e;
where A = 3" 1) Ajej € B.

Fix a vertex ig € I(Q). We will assume that i is a sink, so that no arrow in @ has a tail at i5. This
does not result in any loss of generality since D} (Q) does not depend on the orientation of Q: if Q;
is obtained from @ by reversing an arrow vy, then an isomorphism D) (Q) — D} (Q;) is given by
Eap(v1) — —Eap(v1), Eap(U1) — Eap(T1) and Eqp(v) — Egp(v) for v # vy, 7. Let us set &;, = Z#io e;.

We need first to understand better i I, (Q)é;, and we start by looking at ¢i,C(Q)é;,, C(Q) being
the path algebra of Q. The latter is the algebra of all paths in ) which starts and end at a vertex
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different from ig. Let Q° be the quiver whose vertex set is I(Q) \ {io} and whose arrows are v € E(Q)
with h(v) # i # t(v) and v;, 4, = v, ® Uy, where v;; with i; € nbh(ig) is an arrow in E(Q) with
t(vi;) = ij,h(vs;) = io. In order to simplify the notation, we will assume that between two vertices
in I(Q) there is at most one arrow in E(Q) and that nbh(ig) = {é1,%2,...,inm} for some M € Z>;.
The quiver Q° has a loop ¢; = v;; at every vertex i € nbh(ip) and &;,C(Q)é&, = C(Q"). Using this
identification, the algebra é; I}, (Q)é;, can be viewed as the quotient of C(Q°) by the ideal generated
by the elements p; — A;e; where p; is as in definition 6.1 when i ¢ nbh(ig), whereas

pi = Z TRV — Z v®U—¥; if i € nbh(ip),
{veE(Q)|h(v)=i} {veE(Q)[t(v)=i,h(v)#io}

and generated also by the elements Zienbh(io) Viy.iViis — NigUiq g TOT 41,492 € nbh(ig).

Let us now look at the higher rank case, that is, [ > 1. The algebra e®l(TBE x §p)e? 10 , which equals

(e ngBEe@’l) x Sy, is generated by the idempotents egj) with i # ig, by v, U if h(v),t(v) # ig, by
oD =09 @57 with iy,is € nbh(ip) and by g € S. (If iy = iz = i € nbh(i), v, = ¢9))

21,22 11 [

In view of proposition 11.2 below taken from [EGGO], the next proposition is most probably already

known to some people, although it is not stated explicitly in loc. cit.. This will be useful later in this
section and motivates our construction of Df;;’o (@), following the ideas of section 3.

Proposition 11.1. The algebra e®lH’\ "(Q)é@;l is the quotient of é?;l(TBE X Sl)é%l by the ideal generated

K2

by:
1
Z Ugj) ®v§j) - Z vgj) ®@(-j) —0(i € nbh(io))él(.j) — )\iegj) — I/Z el(.j)el(-k)ajk
{veE(Q)|h(v)=i} {veE(Q)|t(v)=i,h(v)Fio} ,’;;E
(34)
Z ff)z ® szl Aig ¥ z(fz)Q for iy, is € nbh(ig). (i1 = iy is allowed, vz(fz)l = 653)) (35)
i€nbh(io)

For1<j#k<I, h(vi), h(ve),t(v1),t(ve) # i and iy,42,13,%4 € nbh(ip),
v @ ol — v @ ol — 1, 5 (1 - 20(v2 € E(Q)))ell) et o (36)

(J)

1112

(0) _ (9 @ ol — o) @ 690 4if h(vy), t(va) # o (37)

( j) ®’U(k) (k) ®’U(]) —I/((5 ’U( (J) S ’U( J) (k))a'jk (38)

11Z5 1214 7,27,4 1113 0104 1213 11 1213 Y4114 13

® Vg )®v

G192

In the last expression, i1 = i3 and i3 = i4 are allowed.

Proof. Let Jl’\’” be the defining ideal of HZ\’”(Q) as a quotient of TREx.S;, that is, Hl’\’”(Q) = TBExSl/Jl)"V.
It is described in definition 6.1. We must identify J; N ' TRE x Sjef'.

Let us see from where relation (38) comes. Relation (22) with v = T;,,v0 = vm says that v(]) (f)
vl(z) Eg) = —v0;yi, egg) ES)U ik- Multiplying on the left by v ) and on the right by v yleldb
@) ) _ D) (R k) o) o)
2113 1224 11 12 7,3 7,4 - 7V62213 1194 7,3 0j
@) ) k) )k 5G) 3 (k)
— zfza 1214 12 zf 14 zi - _V52213v11z4613 JJk
k k k N (k
— 1(523”1(224 ’U§21)4 1(523 - V6i114vl(2)e£1)el(' )UJk (j) = _V6’2Z3 212)4653)0-3/C

(k) (4) (7)) (k) _
— V51114’01213611 Ojk — V62223 1114613 Ojk =

o) &) k) ()

7/1713 7/2714 1224 7/1713
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Relation (35) is the other one which requires some explanations. We start with relation (21) in the

case 1 = 19 and multiply it on the left by v,

} : o), (@) (9) (k)
13 ll,l 17,2 ’L4
1€nbh(ig)

0 13

= 3 o@D BrIs® 4 o@D, 5

13 7/2 744

i€nbh(ig)
1713
k
25, Z oD ePeMoy 5
ik
_ ) (k) (
- V513_12 Z Uzl,z z 13
i€nbh(ig)
1743
(7)), (k) () (k) (4)
+0;75, 05, UZ-S v, 0, —/\iov- )

Bia i Z U(])

m=1
m#j,k
— . }: o) @) (F)
- V51312 11,1 114 13 ]k

i€nbh(ig),izis

+z/vg) vz(f)@g)vgk)

—‘,—'U.(j? 'U.(j? v(k) (522

11%3 "13%2 1324

ok + V0;

e) (J) (k (J)
1114 137,20-]'1671/ 51372 Z 'U i4 O’]majkiy Z

m=1
m#j,k

Z 29 4@ (R) o
211 ’LZ4 1,';

i€nbh(ig) i#i3

= v

1312

VIR (OIE) )

J)
%4 ak Ojm —V E v,

(k )v(]) and on the right by 797 which yields:
11 2 14
l
(k) ,, ) 5k (k) D m)5 (k) o
VivigViy " — VUi V310 Viy -V Z Uiy Viy Viy "Viy Tjm
ok

Ao ®0) 5

2122 744

o

13 743 13 Ji2 Z4

l
_, Z DB 5

m;éj k
(k
+ Z U’Ll,l 1(]1)2 131)4 +VU( )6( ) (i)aﬂc z(g,)zzv’54)
i€nbh(ig)
1743
k)—(j)=(k k k
( )vEZ)vEQ - u26m4v53 ehy e o, o — vopl) vyl o

1314Ujm
m=1

mtj,k

), (9) (k)
+ Z l] ,’L ’L lz 1314
i€nbh(ig),i#is

742743 1123 13 13 10

Mgt @ e® e g5

20 Y11 13

7 D)o, 70
k j k
oty = Moty 5324 V25‘3i47}§f32€§3)

Z3’L4 U]m

m=1

m#j,k

} : () 4, (9) o, (k)
+ Ull,’b 7 szlgl4
i1€nbh(ig),i#is

280 e el o, o+ vorl v o+ v vl vl e o
1o @) 0 sy y) (B y ) 8 s 6) () 0) )

1113 1312 2314 i213

0 11%4 13

10 11%2 2314 1314 Q112 13 11%4 1312 Jk

§ : § : () z5(m) (k)
_V 7/37/2 U’Ll ’i4 i3 O-Jmo-Jk -V U Z2 U]mU2314

m=1

m#j,k

Z (J) (J)
7,1,1 U; K

i€nbh(ig)

= v

1312

oD ) )
+ Z zl,z 112 10 1112

i€nbh(ig)

m=1

m#j,k

_ E: Dgm) (k)
740 1114 -V 'U“ 14 jm eig U]k

m;éj k

l
0 3 o5 g | o)
m=1

m#j,k

Now, multiplying on the left by vg ) and on the right by 7(: ) with p # j,k, we see that we get a

linear combination of elements of the form (Z

o) @)
zEnbh(zo) 01,8 H?

D gm)

(7) )
>\10U111771/Zm7§j k,p Vi, Vip Oim ) 4
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with ¢ € H;"”(Q)efil and i7 € nbh(ip) after performing similar computations. Continuing this way, we

see that any element in JM V®ZH’\ v Q ! of the form ¢1qoqs with ¢; € e®lHX “(Q), q3 € T (Q)e®
1 1

20

and ¢ = r )\zoeg — VE o e(J) € )ajk as in (21) is a sum of elements of the form pypops with
p1,p3 € e®l1‘[’\ Y (Q)e 'Z_O and py = (Zienbh(io) vffl v, 22) /\Zovlfzz for some 41,45 € nbh(ip). O

The following proposition was first proved in [EGGO] as a consequence of the results of [Ga]. It is
fundamental for the construction of the reflection functors.

Proposition 11.2. The algebras e®lHA ”(Q)é%l and éf?)lﬂl”“ (/\)’V(Q)é?;l are isomorphic.

Proof. An isomorphism is given explicitly in terms of the generators in proposition 11.1 by:

09— 00 if B(v), t(v) # o, o) s v(j)2 if i1 # o, Egj) — Egj) + /\ioel(.j) for 4 € nbh(ip)

1112 217

O

To simplify the notation, we will set H)"V(Q) = “®ZH’\ (Q)eR ®! Given a right module M over H/\,%’; (Q),
we can form the tensor product M ®c(g, ((C”)®l In particular, we can simply choose M = Hl 70(Q). We

want to identify a subalgebra of D) (Q) which stabilizes this subspace of Hl)‘ (Q) ®c(s, (C™)®L. This
leads us to the following definition.

Definition 11.1. We let Dﬁ:o(Q) be the subalgebra of D)V (Q) which is generated by the elements
Eap(€i) for i # i and 1 < a,b < n, by Eap(v), Eap (V) if h(v),t(v) # io, by Eap(li) = [Eac(Vi), Ecp(vi)] —
5S(Ecc(eig), Eanlei)) for 1 < a # b < n and some ¢ # a,b if i € nbh(ip) and by Eup(vi, 5,) =
[Eac(Tiy ), Ecn(vs,)] for i1,i2 € nbh(ig),i1 # i2 and any 1 < a # b <n. We also need to define Eqq(liy) by

nv

7) Ece(ein) — gl(eio)

Eaalliy) = > [Eael®) Eea®)] + (Mg —

{veE(Q)|h(v)=io}

+g Z S(ch(eio)7 EfC(eio)) - g Z S(Eaa(eio)7 ECC(eio))

f=1 i€nbh(ig)

(These elements do not depend on the choice of ¢ # a,b.)

The algebra Df‘”VO(Q) inherits a filtration from D} (Q). We can identify a quotient of Di;’o (Q) with
the following algebra defined in terms of generators and relations - see theorem 11.1 below.

Definition 11.2. Denote by Dn 10(@) the algebra genmerated by the elements Eqp(e;) for i # ip, by
Eab(0), Eap(D) if h(v),t(v) # do, by Eab(Viy ip) for i1,i2 € nbh(ig),i1 # i2,1 < a,b < m, by Eqp(¢;) for
i € nbh(ig) and 1 < a #b<mn, and by Eua(biy) for 1 < a < mn, which satisfy the following list of relations
(many of these are quite similar to some others.).

The elements Eqp(€;),1 < a,b < n,i e I(Q)\ {io}, generate a subalgebra isomorphic to Ugl, (i, B;).
For any 1 <a,b,c,d <n,

[Eab(€j), Eca(V)] = 0bedj h(v)Ead (V) — daadsi(w)Eeh(v) (39)
[Eab(€5)s Ecd(Viyin)] = Obc0yinEad(Viyin) — Saddj iy Ebe(Viyis) (40)
[Eab(€5); Ece(liy)] = (Obe — Oac)dy iy, Eac(liy,) (41)
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We set Hpq(Vigis) = [Ebd(Vigis)s Eavl€in) + (1 — 0iiz)Ean(eis)]. For a # b # ¢ # a # d # ¢ and
h(v), t(v), h(V), (V) # o,

[Eab (V) Ebe (V)] — [Ead(v), Eac(V)] = 55%(1 —26(v € E(Q)))S (Hpa(et(v))s €aclen(v))) (42)
[Eab(V), Epe(Viyin)] = [Ead(V); Eac(Viyin)]s [Eaa(liy), Eac(v)] = [Eab(Liy)s Epe (V)] (43)

[Eab(Viziy)s Ebe(Viyis)] — [Ead(Viniy),s Eae(viis)] = g(sz‘luS(Hbd(Uz’zz‘a)a Eacleir))
_géiziSS(Hbd(eiB)v gac(v’h’u)) (44)

(Eaabig): Eac(viria)] = [Ean(tiy). Eve(viria)] = 56 (Han vy, Encler,)) = 5.8 (Hanlers), Enclviyiy))  (45)

(Eac(Viria): Eeellio)] = [Ean(visa): Encllig)] = 55 (Eucliia) iclew)) = 55 (Eaclern) Buclvass)  (46)

Y (), Eel®)] = > [€a(9), Ee(0)] + 8(i € nbh(i0))Enc(6:)
)=1

{veE|h(v)=i} {veE|t(v)=i,h(v)#io}

14

(FOT’i 75 io) +§ Z S’([Eab(ei)75jk(ei)], [Ekj(ei),é'bc(ei)]) + VS(Ebb(ei),é'ac(ei))
k=1

LY S(EalensEmlen) + (i = B Eacled) (47)

jenbh(i),j#io

Z [Eab(Viin), Ebe(Viy i)] = Nig€ac(Viyiy) — g Z S (Eac(viyiy), Ennles))
i€nbh (i) i€nbh(io)
(i1 = iy is allowed) +g5i1125(5ac(eh),5b,,(121-0)) (48)

Ifa#b#c#d#a and h(v),t(v), h(D),t(V) # 1o, then

[Ean(0). £ca(®)] = F05w(1 —20(v € B(Q))S (Eaplery): Enalenn)) (49)
[Eab(viriz), Eca(v)] = 0 [Eaalliy), Eca(v)] = 0 (50)

(Vi) Ecalviria)] = 500uS (Enalen): Eonviniy)) = 5000isS (Eaa(visin). Eanleiy))  (51)
(Eaalla), En(6)] = 2 (Slen) Eult)) = S(Eult) mle) (52)

- (S(gad(eil )7 Eea (vi1i2)) - S(gad(vi1i2)7 gca(eiz ))) (53)

Ifa 7é C 7é d 7é a, [gaa(gio)750d(vi1i2)] = 2

Remark 11.1. It is possible to filter ’Dn (@) by giving Eap(e;) degree zero and Eap(v), Eab(li;), Eab(Viyiy)
and Eqq(Li,) degree one. It could also be filtered by giving each of Eup(€s;), Eab(Viriy ), Ea (&0) degree two
instead.

Theorem 11.1. The algebra Dn i (Q) maps onto the quotient of DM (Q) by the ideal )Y N DN

n’Lg TL’L() nzo(

)
where J)‘ % 18 the two-sided ideal of DX} (Q) generated by Eup(vi,)Eea(Ti,) and Eup(es,) for any 1 <
a,b,¢,d < n,i, i, iz € nbh(ip).
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Proof. The epimorphism ¢ : D’ (@) — D o (@ Q)1 o N D) " (Q) is simply defined by Eup(e;) —
Eav(€:), Eap(v) = Eup(v), Eap (i) — Eap(4s), Sab(vlm) — Eab(vzm) and E,4(liy) — Eau(fi,). (Note that
this map respects the filtrations on the two algebras if we give E.p(viyi,), Ean (i) and Eqa(f;,) filtration
degree two.) We have to verify that ¢ is well defined, that is, that it respects the relations in definition
11.2. We will verify only (44),(48),(51): the other relations are easier to check or can be verified in a

similar way.

FiI‘St, we find that [Sp(gab(viﬂ&))? @(Sbc(vil%))} - [@(gad(vhu))v @(gdc(”ilis))] equals

[1Bacl@ia). Ean(via)] = 5011 S(Ece(esy): Eanlesa): [Ena(Fiy ), Eac(vi,)]
~ 59155 (Eaalein). Ere(en))] — [[Eae(®i,). Ecalvi,)]

~ 5 9iaisS(Eceleiy). Ena(eis): [Ean (i), Eac(vi)] = 56141y S (Eaaleio). Eacler,)]

= | [Bacl@i), [Een(vi), Ena(Fi)I], Eac(03)] + |Ena (T, [[Eue(Bia), Euc (s )], Eco(vs)]
500 = s = i2) ( [Eac(Ti,), S(Eaa(ei): Eeelvia))] = [Eac(Tiy), S(Eaalei): Eee(v32))])
— S0l = i1 = i5) (S (Eceleio): [Eaa (i), Eac(via)]) = S (Eeelei): [Eaa(iy ), Eac(v:,)]) )

+£5(z’1 =y =g = i4)<S( ce(€iy), S(Eaal€iy), Eacles,))) — S(Ecc(ez-o),S(Eaa(eio),Eac(en))))

(Eae(@i,): Eca(via)): [Eaa(Tio): Eac (vi,)]]

[ [Eacl@in): [Eeb(via): Eva ()] Eac(vis) | + [Eva(Tia)s [[Eae(@i): Eaclvis )], Ean(viy)] |

—[[Eac(is)s Eca(vi,)], [Eaa Wiy ) Eac(viy )]

= |[Bacl@i): [Eea(via) Eaa(T)]]s Eac (v3,)] = S0iaia [[Bac(@ir). S(Hualess), Ecalesy)))s Eac(viy)]
+%5m4 [Eba (s ), [S(Eac(€iy), Eaclei ), ECb(viz)]] — [[Eac(@is), Eca(vi,)], [Eda(Tiy), Eac(vi, )]

= | [Eac(i). Eeavin)], Eac(vi)] Eaa(Tiy) | = 5 uais [S(Hualesn). Eaa(Fir)), Eaclvry)]
+g5m4 [Eba(Tis), S(Eab(viy), Eac(es, )]

= 761‘11'4 [[S(Eac(eio)v Eac(eil))7 ECd(vi2)]7 Eda (Eiz)] -

12
5 76i2iSS(Hbd(ei2)7 Eac(vi1i4))

2
_6i1i4 (Zéiziss(Hbd(eiz)’ S(Eaa(eio)’ EaC(ei1 ))) - gs([Eba(Eis% Eab(viz)]a EaC(ei1))>

v

= 500 ([Eaa(ve), Ean(Ti)] = [Ean(vi). Ena (i) Eucle))
5 Fiaiy S (Hnaesy) Enclviria) = T Oiaig i S (Hnales,). S (Ena(eiy). Encler,))
v

= g(silus((p(Hbd(UiQig)), @(gac(eh))) - 551‘21;35((,0(8%(61'3)) - (p(gdd(eis))a @(5ac(vili4)))

2
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This verifies (44). Next, we compute that >,y ;o) [0(Eab(viiz)), (Epe(viy i) is equal to

— Z [Eab(Um'Q); Ebc(vil,i)]

i€nbh(ig)
= Z [[Eacwiz)v Ecb(”z)] [Ebd( i) EdC(Un)H - g[S(ECC(eio)v Eab(e€iy)), [Ebd@ia)a Edc(”il)]]
i€nbh(ig)

5 [[Eac (i), Eco (v, )], S(Eauleio). Eneleir))] +
= Y [[Eacl@i): [Eer(vi), Esa(@)]] Eaclos,)]]

i€nbh(ig)

+50mi 2 [Epa(®), [S(Eacleir), Eaclein))s Eeo(vi)]] = 5:S(Eaa(eio), [Eae(Tin), Ecel(wiy)])

ienbh(io)

Zéi1i2S(Ecc(ei0)’ S(Edd(eio)v E(w(eil)))

- §S(Ecc(eio)a [Ead(Viy), Edc(vil)])

2

JFZ(siligS(ECC(eio)v S(Edd(eio)a EaC(eh)))

n
nv

= [[Eac(ﬁiz)z (>\i0 - 7) Ecaleiy) + g ng S(Ecs(eip), Ealeiy))

~5 2 SEuw(ed), Eealew)], Eaelvi)] = 55 (Eceleis), [Eaa(@ir), Eaclvi)])

i€nbh(ig)

+%6ili2 Z [Ebd(iz’% S(Edb(vi)a Eac(eig))] - gS(Edd(eio)v [Eac(@iz)v Ecc(vh)])
i€nbh(ig)

1/2

+Z§ili2S(Ecc(eig)7 S(Eaa(eiy), EaC(ei1>))

= [0 = %) Eaal@) + 5 D S(Ear i) Eralei) + 55 (Ecclesy). Eaa(7:,))

_% Z S(Ebb(ei)a Ead(ﬁig))v EdC(Ui1 )] - gS(ECC(eio)’ [Ead(@iz)’ EdC(Uil )D
i€nbh(io)
_gS(Edd(eio)» [Eacwh)a ECC(UH)]) - g‘siu’z Z S([Edb(vi)7 Ebd(@')], Eac(eig))
i€nbh(ig)
2
+Zéi1’i25(Ecc(eio)7 S(Edd(eio)v Eac(eil )))
nv v nv V — _
= ()\io - 7) Eac(viyi,) + 5 (Aig - ?) 0i1iS(Edda(eiy), Eac(ed,)) + B fz_:l S(Eay(Viy), Ee(viy))
U — v _ _
+5 Z S af vl2 Edc(vll)] Efd(eio)) + 55([Ead(viz)v Edc(vil )] - [Eac(Ui2)7 Ecc(vil)]a Edd(eio))
f;b
Z S(Evp(€i), [Ead(Tiy), Eac(viy)]) — g(smzs( (>\i0 - n2u> Eaalei,)
z€nbh(zo)
Y S S(Eaen)sEralen) — S(Epy(es), Eaalein)) — Enp(li) = 5 1(eiq), Eacle,)
+2 2 ) 2
f=1 i€nbh(ig)
2
7 Oivia S (Eceleiy), S(Eaa(eiy). Eaeler,)
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2

= (M~ 5) Baelvnin) + 05 (S(S(Haclen). Eaclen)): Eaalesy)) + S((e). Eaclen)))

2
_VZ&ilizS(S(Edd(eio)’ Edd(eio))7 Eac(eil)) + gé‘ilizs(Ebb(fio)» Eac(eil))
5 Y S(S(Emles) Eaalen), E Kij Efe(vi,))
g Viniz ‘ . bb\€i )y Edd|Eig ac 611 D) af UZQ felviy
i€nbh(ig) f=1
2
+%6i1i2S(ECC(eio)7 S(Edd(eio)7 Eac(eil))> - K S([Ead(ﬁiz)a Edc(vil )]7 Ebb(ei))
h(io)
= NioBac(viyiy) — % Z S (Eac(viyin), Ebb(ei)) 5@1@2 (Evb(€iy ), Eacl(ei,))
i€nbh(ig)
+u2":E (0 B (B) + 26 1 S(1(es ) Eneles)) (54)
put fe\Viy JEaf\Vip g iz i0)s Eacl€iy
14
= )‘io@<ga0<vi1i2)) - 5 Z S(@(‘cf’ac(viliz))a (P(gbb(ei)))
i€nbh(ig)
14
+§5i1i2 Z S((P(gbb(gl)), 90(5(16(61'1)))
1€nbh(ig)

To obtain the last equality, note that the elements on line (54) are in the ideal J’\ v , N DM

n,io "

Finally, we check that, if a # b # ¢ # d # a, [p(Eab(Vigiy))s ©(Ecd(Viyis))] equals

= [Eab(vizu)? ECd(Uilig.)]

= [[Eac(®i)s Eev(vi,)]s [Eca(Tiy )s Eaalvs,)]] — =

751‘21'4 [S<Ecc(eio)v Eab(elé))’ [ECG (Eis)v Ead(vil)]]

2
—g%s [[Eac(@iy), Ecb(vi,)], S (Eaalesy)s Ecalei )]
+%25i2i4(5i1i3 [S(Ece(€in)s Eab(€s3))s S(Eaal€in)s Ecales))]
= | [Bacmi): Een(vi): Eca@)l] Euav)] + [Eca@i): [Eue(in). Eaaloa )] Ec(vs )
= T [[Eacl®), SEar(er,), Evalery)], Eaaln)]
+g5m4 [Eca(@iy), [S(Eac(€io)s Eaaleir)), ey (vi,)]]
= 5008 (PEer(eir)) P(Eaaviyin))) + 500isS (P(Ecr(Vizis)): 0(Eaaler, )

O

It may be tempting to think that D’\’;-'O(Q) gives a flat deformation of DQ?S’”:O(Q) C Usl, (TI(Q)).
(Here, we consider the filtration on D:; o (Q) inherited from the one on D)(Q).) This is not true. As the
computations in the previous proof show, when v # 0, there exist elements p such that p € F5(D)"(Q))
and 0 # p € Fo(D)Y (Q))/F1(D)¥ (Q)), but 5 is not in the image of D" ="(Q) — grp, (D)Y (Q)).
The induced filtration on Di;jo(Q) is different from the one obtained by giving generators E.;(e;) degree
zero, Eqp(v) degree one, and Eqp(¢;), Eap(Viyiy)s Eaa(€iy) degree two, which we denote F. Agagl, from the
computations above, we see that we can find elements p such that p € F»(D)(Q)), but p € F5(D)"(Q))

although p € Fy (D) (Q)).

We have the following analog of proposition 11.2.
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Tig A),v
n Zo

Proposition 11.3. The algebras Difo(Q) and D (Q) are isomorphic.

Proof. An explicit isomorphism is given by: Eup(e;) — Eap(e;) for i # g,

Eap(V) = Eap(v) I B(v),1(V) # do, Eaalliy) = Nig D Eaales) + Eaalliy)

i€nbh(ig)

Eab(viliQ) — gab(viliz) if 44 75 12, 5@(&) — /\i Eab(el) + &lb(g ) for i € nbh(Zo)

The algebras Hl):;z (@) and DM (Q) are also related by a functor of Schur-Weyl type.

n,io

Theorem 11.2. Given a left H;:;’;(Q)-module M, the space (C™)®! ®cis,) M can be given the structure

of a right module over D:;;’ (Q). (Here, we view C™ as the space of row vectors of length n on which

M, (C) acts on the right by matriz multiplication.) Thus, we have a functor, which we denote also SW,
from mody, — Hl’\% (Q) to modg — DM (Q)

’nZo

Proof. We let the generators of Dn ZO(Q) act on this space according to the following formulas:

1 1
(u®@m)Eup(e;) Z E(J)®e(])m i # i, (u®@m)E, Z E(])®U(Jm1fh() t(v) # i
Jj=1 j=1
1 1
(U ® m)Eap(viziz) = D_(WEG @ vl m. (u®m)Eaal Z (WER © ' m
=1 j=1i€nbh(i )

One can check, as in section 8, that these operators satisfy the relations in definition 11.2. We do it
here only for equations (42) and (48).

(u®@m)([Eap(v), Ebe(D)] — [Eaa(v), Eac(D)])
= Y @EDED - EVEP) @ 5,00 ]m

1<j#k<I
= vim(1-20(w e Q) > (w)(EYEY — EYER) @ ojkell) elf)m
1<j#k<I
; k ; k k
= 1os(1 - 20(v € E(Q))) <gk<l<u><Eg?Eéb>—EéJJEéd)) el eninm
1<j#k<

= g5ﬁ(1 —26(v € E(Q)))(u®m)S(Eac(en(w)), Evv(€r(v)) — Eqalerw)))
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em) [ Y (Vi) Enelviyi)]

i€nbh(io)

> S et Y ¥ wEEY s b

nbh(ig) Z;kl i€nbh(ig)
l
=i Y (WEY @0} m—v 3 Z EDEP @ 050, e®Fm
J=1 i€nbh(ig) j,k=1
J;ﬁk

Oiyin Z Z El%)Ebc ®0j é (J)m
i€nbh(ig) j#£k
12
= Aig (W@ m)Eap(vini) — 5 > (u@m)S(Eaclviyiy), Ennlei))
i€nbh(ig)
1%

500 Z (w®@m)S(Eac(ei, ), Eon(Li))
i€nbh(ig)

O

Remark 11.2. We can view Hl):;l;(Q) ®csy) (CM)® and H;\’”(Q)éfil ®cisy) (C™)® as subspaces of the
DX (Q)-module H;"V(Q) ®c[si] (C™®! and, as such, they are stable under the action of the subalgebra
DY (Q).

n, ’I()

The following diagram is commutative, the vertical arrows being the equivalences of categories coming
from the isomorphisms given in the proofs of propositions 11.2 and 11.3:
SW;

mody, — I} (Q) —————modp — D, (Q)

mody — I[N (@) — ' modp — DM (Q)

lyig n,ig

Now we need to introduce the space Vi ;, = (C®™)®! @, € V®ZHT”°()\) (Q) ®csy) (C™)®L. Tt is a left
7‘10()\),1/

module over D%()\) (Q) by theorem 8.1, a right module over D, '} ™" (Q) by theorem 11.2 and these
two module structures commute, so that V;;, is a bimodule. Proposition 11.3 implies that it is also a

right module over D" (Q).

’ILZQ

We are now in a position to construct the reflection functor R;, ;. Let N be a left D))" (Q)-module.
We want to obtain a new module R;,. l(N) over Do (Q). Let N'o = {z € N|I(e;,)x = 0}, note that
N is a module for D T (Q), set Jo = ano nDY " (Q) (see theorem 11.1) and N* = N* /JoN*. We

can view N as a module over D?{\L:io (Q)/J%, hence over DQ;’O (Q) according to theorem 11.1.

Definition 11.3. The reﬂegtion functor Ry, ; : mody, — DM (Q) —» mody, — D:LiO(A),IJ(Q) is defined by
Rigi(N) = Vi ®prw () V-

Before proceeding further, we need to recall the construction of the reflection functors F;, ; for HZ\’”(Q)
given in [EGGO]. (When A;, + kv # 0 for k = 0,...,1 — 1, they are the same as the reflection func-
tors studied in [Gal, see corollary 6.6.3 in [EGGO].) Given a left module M over Hl)"V(Q), é%lM is a

module over I} (Q). Proposition 6.6.1 in [EGGO] states that T} (Q) is isomorphic to II;2 ™" (Q).
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Therefore, it is possible to view H;io(/\)’y(Q)égil as a right module over Hi;g(@). The tensor product

H;iO(A)’V(Q)é?‘;l Omrr () é?;lM is thus a left module over H;ioo\)’y(Q). Since we need to work with right
1,ig

modules, we will consider instead the functor Fj,; : M — Mé?gl O (@) é%lﬂro(/\)’y(Q).
1,ig

The functors R;,,; and Fj,; are related as stated in the next proposition.

Proposition 11.4. Suppose thatl+ 1 < n. Then the following diagram is commutative:

mody — T (Q) — '+ mody, — DM¥(Q)

Fio,ll \LRio.l

mody — I (Q) mod;, — Di*™M7(Q)

SwW,;

Proof. Under the assumption n > [, the Schur-Weyl functor from modz —C[S;] to mod, —sl,, is an equiv-
alence of categories and its inverse is given by N + (C")®! ®s((s1,,) IV this follows from the decomposition
of (C™)®! into irreducible S; x SL,,(C)-modules, which is the classical Schur-Weyl reciprocity.

Let M € modg — II""(Q),l + 1 < n and observe that SW(M) - Mé%l ®cisy) (C)®F = SW(M)%,
This can be seen by decomposing M as the direct sum of its subspaces Me;, ® --- ®e;, for i1,...,4; €

——— 1o

I(Q) as in [Ga] and observing that JSW(M) = 0. Any element u; ® p®@ m ® up in ((C")® ®¢g,
7'110(/\)7V

L2(Q)) ©pr (MeE! ®cps,) (C")®') can be written as a linear combination of elements of the

form u; ® éle ® m ® Uy where Uy = uj, ® -+- ® u;, with ji,..., 7 all distinct, uq,...,u, being the
standard basis of C". Using this observation and the one in the previous paragraph, we can conclude
i9(A)s . .. . . .
that ((C")®' ®c(s,] H;ioo( ) (@) ®D2:;’0 (Me?;l ®csy) (C™)®') is isomorphic to Mé®! as a right module
over H;Z‘;(A)’y (Q). Therefore,
Riy o SWi(M) = Ry (M ®cis) V)

= Viio Opp (Me2! ocrs, (CM®)

. Tig(A),V .
= (€ @isy 21 (@) @pre (MER @cis) (€))) @cis) (€

. . rig (A),v
— (Melg(;l ®HZ\,%‘6(Q) e%lﬂl 0 (Q)) ®clsy] ((C")®l

= SW[ o Fig,l(M)
O

We end with a few open questions. As remarked above, the following diagram is commutative:

modp — T (Q) ——t—+ mody, — DA(Q)

1 .
'eg} l l.LO

modp — e?;lﬂl)"”(@)e@l mod; — DM Q)

10 Ssw, n,io

Here, the first vertical arrow is the functor M — M e?}l, which is a Morita equivalence when A;, # 0
according to lemma 6.6.2 in [EGGO)]. The second one is the functor N — N introduced above. In view
of this diagram and lemma 6.6.2 in loc.cit., one may ask if the functor e can sometimes be a Morita

equivalence, at least when restricted to certain subcategories of mody, — D) (Q) and mod;, — D?L’)?O (Q).
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An answer to this question would require a better understanding of the ideal J;\l’:o. As a particular case,

one can ask if there are equivalences between certain categories of modules over the Lie algebra ;[n(H(Q))
and over sl,, (€4, II(Q)e4, ). One can also ask the same question with sl,, replaced by gl,, and I1(Q) replaced
by [T*=1¥¢(Q). In the same line of thought, one can wonder about the relationship between the categories
of modules over s, (Clu,v] x T') and sl (C[u,v]"), or over g, (A; x T') and gl,,(A}) where A; is the first
Weyl algebra.
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