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Abstract

We introduce a new quantum group which is a quantization of the enveloping superalgebra of a twisted
affine Lie superalgebra of type Q. We study generators and relations for superalgebras in the finite and
twisted affine cases, and also universal central extensions. Afterwards, we apply the FRT formalism
to a certain solution of the quantum Yang-Baxter equation to define that new quantum group and we
study some of its properties. We construct a functor of Schur-Weyl type which connects it to affine
Hecke-Clifford algebras and prove that it provides an equivalence between two categories of modules.

1 Introduction

Soon after the emergence of quantum groups attached to Kac-Moody Lie algebras in the 1980’s, it was
realized that it was also possible to quantize the enveloping superalgebras of certain Lie superalgebras, in
particular those of classical type [Ya]. Simple Lie superalgebras were classified by V. Kac in [Ka] and, among
the classical ones, are the so-called strange Lie superalgebras psq,, of type (). Quantum groups ,q,, for the
Lie superalgebras q,, (closely related to psq,,) were first constructed by G. Olshanski in [Ol]; moreover, he
was able to relate them to Hecke-Clifford algebras (also called Sergeev algebras) by extending the classical
Schur-Weyl construction.

Among quantum Kac-Moody groups of non-finite type, the quantized enveloping algebras of affine Lie
algebras and the Yangians are those which have been the most studied. In [Na2], M. Nazarov associated
a Yangian to a twisted Lie superalgebra of type Q. (See also [St].) Our goal in this paper is to construct
a g-deformation, which is a Hopf algebra, of the enveloping superalgebra of a twisted affinization of a Lie
superalgebra of type ). (Previous results are contained in [Nal]; this article also considers the strange Lie
superalgebras of type P and their associated Yangians.) Other mathematicians have been interested recently
in Lie superalgebras of type @: for instance, [GJKK] provides several interesting results about highest weight
modules over 4,q, and it is announced in [GJKKK] that the authors have been able to develop a theory
of crystal bases for this quantum supergroup. Blocks of the category O over ¢, were studied in [FrMa]
and characters of finite dimensional ¢,-modules were computed in [PeSel, PeSe2]. A conjecture regarding
characters of infinite dimensional modules over g, is presented in [Br]. The representation theory of (twisted)
affine Lie superalgebras of type @ has not been much studied so far, but one notable article is [GoSe| which,
however, focuses on Verma modules over a twisted affine Lie superalgebra of type @ different from the one
that we consider.

We start by defining q,, and sq,, and give presentations of sq,, in terms of generators and relations.
Afterwards, in subsection 3.2, we present some results about central extensions of a certain matrix Lie
superalgebra (more general results are contained in [ChGu]) and use them to study g%, the twisted affine
Lie superalgebra of type @), which is a central extension of L4,,q,, the twisted loop superalgebra of q,,. L9y
bears some ressemblance to the sl,-Onsager algebra [IvUg]. It should be possible to extend the results of
subsection 3.2 and those in [ChGu] to the double affine setting: this may be useful in combining the ideas in
[Gul, Gu2] with the double affine Hecke-Clifford algebras studied in [KhWa2, KhWa3, Kh] to produce new
double affine quantum superalgebras, but we do not consider this question in this paper.

The second half of the paper concerns the quantum setup. We recall the definition of affine Hecke-Clifford
algebras in section 4. For the symmetric group, these were first studied in [JoNa]; in [KhWal], the authors
succeeded in associating similar algebras to the other classical Weyl groups. In section 5, we recall Olshansk’s
construction of the quantum group of type Q. Afterwards, we introduce its affine version, 4,q%”, by using
a certain matrix S, which is a solution of the quantum Yang-Baxter equation, and the FRT-presentation



first developed in [FRT]. In the following section, we prove that $f,q.” is a Hopf algebra deformation of the
enveloping superalgebra of q% and provides a quantization of a certain co-Poisson Hopf algebra structure
coming from a Lie bisuperalgebra structure on gt.

In the last section, we introduce the Schur-Weyl functor, extending the work of Olshanski [Ol] to the
affine setting, thus obtaining a g-analog of one of the main theorems in [Na2] and a super analog of the
central construction in [ChPr]. We prove that it provides an equivalence between certain categories and we
establish some of its properties - for instance, that it sends an irreducible module to zero or to an irreducible
one.

It should be possible to realize L4,,q, via a centralizer construction by combining the work of [NaSe] with
[HoMo], but we do not treat this question here.
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3 The Lie superalgebra of type () and its associated twisted affine
Lie superalgebra

We start by recalling definitions relevant for our work. Unless specified, all the (Lie) algebras and superal-
gebras are defined over C.

3.1 Finite type

The space C(n|n) = C" & C" is Z/2Z-graded; we denote its standard basis by e_,,,...,e_1,€e1,...,¢e,. The
parity of e; equals |i| where |i| = 1 if ¢ < 0 and |i| = 0 if ¢ > 0. Endc(C(n|n)) is a superalgebra, i.e. a
Z./2Z-graded algebra. It has a basis given by matrices Eqp with —n < a,b < n, ab # 0 and the parity of E,,
is | Easl = [a] + Bl

Definition 3.1. The general linear Lie superalgebra gly, is defined as the space Endc(C(n|n)) endowed
with the superbracket [my,ma] = mimg — (—1)|m1\|m2\m2m1, mi,ms € Endc(C(n|n)).

The supertrace on gy, is given by Str(E.) = Sap(—1)1%l and is extended linearly to all of glyjn- The
special linear Lie superalgebra is defined to be sl,, = {E € gl,,,|Str(E) = 0}. Let J € gl,}, be the
element J = >0 (Eq_—q — E_q,4). The map ¢ : ol — glujn given by Eup — E_, 3 is an involutive
automorphism which can be restricted to sly),.

The two closely related Lie superalgebras g, and sq,, that we now define will be among the main objects
of interest in this article.

Definition 3.2. The Lie superalgebra q, can be defined equivalently as either the centralizer of J in gly,
or the fized-point subalgebra of gy, with respect to 1. We set sq,, = [qn, n]-

s(q,, is the Lie subsuperalgebra of q,, consisting of matrices whose upper-right and lower-left n x n blocks
have trace zero (but not necessarily the two diagonal n x n blocks). Note that sq,, contains the identity
matrix. The simple Lie superalgebra of type @, as defined in [Ka], is the quotient sq,,/Cls,, which is
usually denoted psq,,.



A basis of q, is given by EY, = Eoy + E_, p and E}, = E_,, + E, _p, for 1 < a,b < n. Its even part is
isomorphic to the Lie algebra gl,, and its odd part to gl,, viewed as a gl,-module via the adjoint action. As
for sq,,, its even part is gl,, but its odd part is sl,,, so a basis is given by Egb, EY., Eéb with 1 <a#b<n
and by H) =E}, —El, | ., for1<a<n-—1

It may also be useful to use the following notation for a basis (which is what is done in [Ol]). For any
—n < a,b <n with ab # 0 and a < b, we set Lab:El,a}b if a <0 <b, Lab:Egb if 0 < a <b, Lab:Eﬁaﬁb
if a <b<0. (Note that Leg =L_4 _4.)

There is another way to view ¢, and sq,, which is relevant considering the connection between g,, and
Hecke-Clifford algebras. Let A be the Clifford algebra on just one generator ¢, so A = spang{1,c} with
c? = 1. We view A as a superalgebra with deg(c) = 1. We can apply the following general result.

Proposition 3.1. Let A be a unital superalgebra, so A is a Z/27Z-graded algebra, A = Ag® Ay and 1 € Ay.
The space gl,,(A) of n X n-matrices with entries in A can be turned into a Lie superalgebra by defining the
superbracket [-, -] in the following way:

[m1 @ a1, ma ® as] = (mima) ® (aras) — (—1)!4111%2l (mam,) @ (asay)

(Here, |a;| denotes the parity of a;.)

We will apply this proposition again in subsection 3.2.

Definition 3.3. With A as in the preceding proposition, we define the Lie superalgebra sl,(A) to be the
derived Lie superalgebra sl,(A) = [gl,(A), gl (A)].

Remark 3.1. We have a vector space decomposition sl,(A) = sl, @c A® I ® [4, A].

We can now give a second description of g, and sq,,. Note that, if A = A, then [A, A] = C.

Lemma 3.1. The Lie superalgebra sq,, (resp. qn) is isomorphic to sl,(A) (resp. gln(A)).

Proof. Tt is enough to prove the statement for g, and gl,(A), and for this we give an explicit isomorphism
gl (A) = qn: Eap(1) — E%, Eu(c) — EL,. O

The rest of the propositions of this subsection are analogs of the classical theorem of Serre for semisimple
Lie algebras. The last one will be useful in the quantum affine setting. Similar presentations are known for
basic classical Lie superalgebras (see [FSS], and references therein, where it is explained that one often has
to introduce relations involving more than two generators, as in proposition 3.3 below).

A presentation of the Lie superalgebra g,, is given in [LeSe] and the g-deformation of the relations can
be found in [GJKK]. The reference [LeSe] is not available to the authors and, since it is probably not easily
available to many readers, we have decided to include a proof for completeness. (Actually, our proof is for
5q,, since we consider this Lie superalgebra in the following proposition, but could be modified accordingly
for g, by changing slightly H; 1,1 <i <n —1 and adding a new odd generator Hy ;.)

Proposition 3.2. The Lie superalgebra sq,, is isomorphic to the Lie superalgebra g generated by ij, H; 4
with1 <i<n-—1,7=0,1and by H; o with 1 <i <n (the second index indicates the parity) which satisfy

the relations: (below, ||-|| denotes the absolute value, not the parity)
(Hi, 1, Hiy 1] = 26306, (Hiy 0 + Hiy11,0) = 206, 41,0, Hiy 0 — 20i541,6, Hiy 0, (1)
[Hil,juHiz,jz] =0 (j17j2) 7é (17 1)5 [Hi1,0?Xi:|2:7j2] = 1(57172 - 5i1,i2+1)Xi:|2:7j2a (2)

, A n

[Hi, 1, X5 ] = (21)7211(265,6,0550 — (—1)204, ig11 — 06 41,00) X i1 (3)
(4)

(X 0 Xy i) = OivinHiy gygo i G0 # G2, (X500 X, 5 = 0iyi (Hiy 0 — (=1) Hyy 11.0),



X3 0o X o) = @D HRRXE L XS ) i <, (5)

i1,J1° “Ti2,72
ad(X;E ;)2 (X; ;) =0 for any 1 <iy,ip <n — 1, j1, 4o = 0,1 if [[iy —do|| = 1. (6)
(X: 5 X ] =0 for any 1 <iy,ip <n—1, ji,jo = 0,1 if |liy — i # 1. (7)

Remark 3.2. The second relation in (4) when j; =1 can be deduced from the other ones.

Proof. We define a map ¢ : g — sq,, by X;"; — El, |, X, EL , Hig— E%, Hiy— HL

K2

We check, for instance, that it respects relation (5) in the + case when j; = 1 = jo and is =i + 1.

[ (XZ 1) (X;:,l)] = [E*’L'l’il“rl + Eil,*’il*l?E*il*l,ilJrQ + Ei1+1,7i172]
=FE_ iy —iy—2+ Eiy 42 = [Eiyiy+1 + Eiy —iy—1, Biyv 12 + Eoiy—1,-4, 2]
= [SD(XI,O)HP(XZE,O)]

Serre’s theorem for sl,, (slightly adapted to gl,,) implies that we have a map gl,, — g which, composed
with ¢ : g — sq,,, is an isomorphism onto the even part of sq,,. We thus have an adjoint action of gl,
on g. Equations (1)-(5) imply that g can be decomposed as g =g + g+ g* where g* is the subalgebra
generated by X i for 1<i<n-—1,57=0,1and g° is the span of the H; j- Furthermore, each of these is a
Lie subsuperalgebra and, considering the weights of the adjoint action of the standard Cartan subalgebra of
gl,,, we deduce that that decomposition is a direct sum. Note that the map X+. — X, H;j— H,;is an
anti-involution of g. It is thus enough to prove the following claim: a vector space basis of g+ is given by:

{{Xit,o’ {X;;H,o’ [ a[X;g—l,OaX;;j]"']HH SiiSipsn—1j= 0’1}'

The proof of this claim is by induction using relations (5),(6),(7). (The order of the brackets does not matter,
so we just picked a convenient one.) O

Let us give another presentation of sq,,. It is inspired by the presentation of sl,, given in [Ya] and
also by the fact that one of the extra generator corresponds, in the Chevalley-Kac presentation of the loop
algebra sl,, (Clu,u™1]), to E,1 ® u.

Proposition 3.3. Suppose that n > 4. sq,, is isomorphic to the Lie superalgebra a generated by the even
elements e;, fi, hi, hy, with 1 < i <n—1 and by the odd elements ey, h,, which satisfy the following relations:

The elements e;, fi, hi, hy, with 1 < i < n — 1 satisfy the standard relations (cf. Serre’s theorem for sl )
of the Lie algebra gl,,. Furthermore,

len,en] =0, lesen] =0ifi#Ln—1, |en,[en,e1]] =0, [en,[en,en1]] =0, (8)
[fisen] =0Vi=1,...,n—1, [el, [el,enﬂ =0, [en,l, [en,l,en]} =0, (9)
[hiyen] =0, i # 1,n, [hi,en] = —en = —[hn, €n), (10)

Ton = [en, [+ [lex, ea), es), - - ,en,l]}, Tos o] = 2(hy + ), (11)

[en, [en_h[ehen]]] =0, [ﬁn, [67“61]} = [ [[fn—lyfn—Q]a"'Lf2:| (12)

Proof. We will need the relation

[[ﬁn,enq]?en} = —[' o [[fn=2, fa=s], fo-a], - ,fl}, (13)



which follows from (12). Let us prove it first. We will need to use [hy,,e,,] = 0: this is proved later, inde-
pendently of the proof of (13). Set ez, = [[ -+ [ea, 63],],--~en,1] (12) implies that [[fNLn, en—1), [en, 61]] +

[ﬁn, [[en,eﬂ,en_lﬂ = —{ [[fn—27fn—3]a"'}af2:| so, applying ad(f;) and using that [f1, A, e,—1]] =0,
we find that

[+ (o famsls o] 1] = = [hn,fl enserlsen-a] | = [ eual: enshal] = [Bn, [[en ), n-i]]
= [[emezn] [en, €1], €n—1 } s en1], €n] = [n [en, €n-1]] = [em [627m[[€n761],6n—11]] by (12)
- [e [le2.ns [ens 1], en- 1} [en, eQ,n,en],el],en,l]} + [en, [[en,[egymeﬂ],en,l]}

- [en, [[le2.n, €n], 1] ] [en [Fons en1]] = [en, [[eQm,[en,en_l]],elH — [ens [Fon en1]]

= —[en, [ﬁn,en,l]]

because [627774, [en,en,lﬂ = 0. Indeed,

le2.m, [en, en—1]] = [[[627n_2,6n_2],6n_1}, [en,en_l]} = [[eg,n_g, [en—2, [en,en_ﬂ]],en_l}

because [en,l, [en,en,l]] = 0; moreover,
[62,na [en» enflu = [[62,n7 611}, enfl] - |:[e2,n727 [en72a [671,1, en]]:l ) en711|

since [62,n7 en—1] =0, so [62,7“ [en, en—l” = - [62,7“ [en, en—lH-

We now define an epimorphism 7 : a — sq,, and we show that the dimension of a is at most the dimension
of sq,,, so that 7 must be an isomorphism.

Set m(h;) = EY; for 1 <i <mn, m(e;) = E);, and m(f;) = E),,; for 1 <i < n —1; set also m(e,) = Ej,

and W(En> = EL,, — Ei,. One can readily check that 7 respects the defining relations of a. m(e,) generates
the odd part of sq,, as a module over its even part (via the adjoint representation), so 7 is indeed onto.

Let us determine a spanning set of vectors for a. Let ag be the Lie subalgebra of a generated by
e, fi,hi,hn,1 <1 < n —1. Let a; be the cyclic ap-submodule of a generated by e, via the adjoint repre-
sentation of a on itself, but restricted to ag. dg is isomorphic to gl, and © maps a; onto the odd part of
54,

Since [fi,en] = 0, e, is a lowest weight vector of gl,, = dy. Moreover, ad(e;)?(e,) = 0 for i = 1,n — 1
and [e;,e,] = 01if ¢ # 1,n — 1. It follows that a; is isomorphic to the adjoint representation of gl,, on sl,.
Therefore, it is enough to prove that a = ag ¢ a;. Let us show that, if X1, X5 € @y, then [X7, X5] € ay.
Using the super Jacobi identity and the fact that a; is generated by e, under the adjoint action of ag, we
can reduce the problem to proving that [e,, X] € dq if X € a.

Set
o = [ [[61,62],63],"' ,el} and f§; = [ [[ej,ej+1],ej+2],~-~ ,en,l} fori,j=1,...,n—1.
Then, by (12) and the fact that [hn,,e,] = 0 (proved below), we can see that
[ens B2]. [enser] | = =+ [fams famal. fama] oo L o] (14)
Since a; is isomorphic to the adjoint representation of gl,, on sl,,, a; has a basis

{en; [aisen), 1 <i<n—1; [Bj,e,,2<j<n—1; [o,[3,en]],1 <i,j <n—1}.

Now we prove [e,, a;1] C g in seven steps.



1) [en,en] = 0. This is the first relation in (8).

2) [en, [en,ai]] =0,for1 <i<n-—1. If i #n—1, then [en, [emai]] = 0 since [en, [en,el]] =0. If

i =1 — 1, then [en, n_1] = in, 50 [en, [én; @n_1]] = 0. Indeed,
(ensha) = [ens [ens ln-2,enal]] = [en [lens an-al: enr]] + [en: [an=2: lens €]
= [ [ens an-2]. [ensen-1]] + [[ens an-2], [en, ena]| =0
(It is also true that [hy,e] =0 for 2 <i<n —2.)
3) [en, [en, 3] =0, for 2 < j < n—1, since [en, [en, en_1]] = 0.

4) [en, [an,l, 155, en}]] €agforl1 <j<n—1. For j =1 we have [31,e,] = —En, hence, since [En, en] =0,

[en, (1, [51,%]]} = [len, an1], [B1, €n]] = —[Fons Fon] = =2(hy + hn) € Go by (11).

If j # 1 and we write 3; = [gj,en,ﬂ, we have
[en, [anfl, [ﬂjven]]] = [Env [[Ejvenfl]»en” = Uﬁn» [ijenflnven}
= [B5: - encal] en] = [By: ([, en-al. ]
Hence by equation (13), we have [en, [an,l, 155, enm € dp.

5) Since [B1,¢e,] = —hy,, so using equation (12) and [ﬁn,en] =0, we can show {en, [, [Bl,en”] € ayp for
1<i<n-2.

6)If2<j#i+1<n—1,then [en, [, [@-,en]}] —0.
(i) If j # 2, writing a; = [e1, @;] and 3; = [B;, en_1], then
(5, [ens il ] = [B5 llews 1) @] | = [[1Bys en-iblemser]], @] = [[Bis len-1, fen, eall] @]
Hence, by equation (12), [en, [ﬁj,[en,ai]ﬂ - [[B’j,[en,[en_l,[en,el]]]],&i} —0.

(ii) We have |:/82, [en,ai]} = [ﬂg, [[en, 61],&” = [[52, [€n, 61}] , ai]. Thus by equation (14) and ag = gl,,,
[en, [ﬂ27 [en,ai]]] = [[en, [62, [en,elm,ai} =0.

7) [[en, Bl [en,ai]} €T for 1 <i<mn—2 Thecasei=1is equation (14), so let us assume that
i# 1.
[[ens Bia]s [ens @il = [[ens Bisa], ens i1, ]| = [[ens Bisa], [lens @il ei]
= [[len. Bl len @ima]]. ] = [[ews ] [len: Bisal ]
= —[[en. i 1] e isr,eil]] = [ [en 8], fem 0i-1]

Hence by equation (14), we have |:|:€n,ﬂi+1], [en,ai]} = [[en,ﬂg], [en,al]} €apforall1<i<n-—2. O



The last presentation that we give has the advantage of involving a smaller number of generators than
the one given in proposition 3.2 with relations that are simpler than those in proposition 3.3. Olshanski was
probably referring to a similar presentation for g, in his third remark in [Ol].

Proposition 3.4. sq,, is isomorphic to the Lie supemlgebm t generated by the even elements e;, fi, hi, hy,
with 1 < i < n —1 and by the odd elements el,fl,hl which satisfy the following relations: the elements
€iy fiyhiy hyy with 1 < i <mn —1 satisfy the standard relations of Serre’s theorem for sl,, extended to gl,, and,
furthermore,

lei,e] =0 ifi £1,2, [e1,61] =0 = [ez,[ea, &1]], [€1,[E1,€2]] =0 = [€1,[e1, e2]], (15)
[fla.}?l]:ozfl%]-a?a [flaf:vl]zoz [f27[f27j71]}7 [ﬁa[.flan” =0= [ﬁ’[flva]]v (16)
[fier] =0=[es, 1] if i # 1, [€1, fi] = b1 = [ex, ful, [E1, o] = ha + ho, [61,61) =0 = [f1, f1], (17)
[hi,e ) =0=[h, fi] ifi # 1,2, [m,&] =& = —[hs, e, [hi, fi] = —f1 = —[h2, fi], (18)

Remark 3.3. The following commutator relations between the generators can be deduced from these relations:
[El, hj] =0 V1 <j<n, [711,711] =2h; + 2h2, (19)

@] =0, [, Al =0, [fn,e] =28, [, fil = =2f1, (e =0= [, fi] fi>2  (20)
[h1,e9] = —[f1,[e1, e2]], (i, fo] = [[anfl]ael] (21)
Proof. We define a Lie superalgebra homomorphism 7 : £ — sq,, which is the same on e;, fl, hiyhp,1 <1<

n—1 as the one in the proof of proposition 3.3 and for which 7(&;) = EL,, #(f1) = E11 and m(hy) = E}, —EL,.
To prove that 7 is an isomorphism, we show that the dimension of £ is at most 2n% — 1.

The elements e;, fi, hi, hy, 1 < ¢ < n — 1 generate an even subalgebra £, isomorphic to gl,. Let ¢ be
the €g-submodule of € generated by e;. € is also generated by & = [[ - [er,ea, - ] , €n—1}- ad(e;)(e) = 0

if 1 <i<mn-—1,soéis a highest weight vector; since ad(f;)(€) = 0 if 2 <i < n — 2 and ad(f;)*(e) = 0 if
i=1,n—1, it follows that £; is isomorphic to the adjoint representation of gl,, on sl,.

As in the proof of proposition 3.3, it is enough to explain why [€;, ;] C €y. Since £ is isomorphic to the ad-

joint representation of gl,, on sl,, it is spanned by e, ﬁl,Eij = [fi1,€1;] with é;; = [[ - [er, e, 0], ej,l],

fi = [fi,l, [ ,[fg,fl] . H for all 2 <4,5 < n. (We define f;; (resp. ey;) as fi (resp. €1;) but with fi
replaced by fi (resp. € replaced by e;)). We can also write €;; = [ﬁ-l, e1;].

We must prove that [€;,,, €iyjn] € o for any 1 < iy,i2,71,72 < n (with €; = fll) It is actually enough
to show that [e7, ] C €. (This implies that [f1,%] C €.) This is indeed the case since we have:

[e1,e15] = [e1, [e1, ez5]] =0,
€1, ful] = [e1, [fiZ»ﬁ]] = [[glafiz}»ﬁ] + [ fiz, [’6“17J71H = [fi2, h1 + ha] € o,

[e1,€55] = [en, [ﬁhelj]] = [[gl,ﬁl],elj] - [fil, [e1,e15]] C [ko, e15] C b0,

where ey, fio € 8 are such that €;; = [€1, e2;] and ﬁl = [fi2, fl] O



3.2 Affine type

In [Na2], the author considers a twisted polynomial current Lie superalgebra Liwqn. We do the same, but
include Laurent polynomials. We also present a few results about L, qq,-

The involution ¢ can be extended to gl,, ®c Clu™!] by letting it act only on glnn- Set g[nm[uil] =
alon ®c Clut!].

Definition 3.4. We define the twisted Lie superalgebras Liwqn and Ly’ dqn to be
Liwtn = {X (1) € glypa[w™'] | «(X(w) = X(u™)}, Low'dn = [Cowtns Louwtn]
We let Liq, be defined as (see [Na2], where the author considers only polynomials in u):
Luwtn = {X(u) € glyjn[u™] | (X (w)) = X(~u)} and set Loo'dn = [Lrawtin, Lown).

A vector space basis for L,,q,, is provided by:
{ES, (k) = Eap(u¥) + E_q _p(u™"),EL (k) = E_qp(u™") + B _p(u¥)|1 < a,b < n,k € Z}

As for L4,'q,, a basis is provided by {ES,(k),EL (K)]1 < a # b < nk e Z}u{HL(k) = E\ (k) —
Ei 1 ar1(k), i =01k € Zy U{I(k) = 3201 (EG, (k) + Eqy(=k))[k € Zxo} U{T (k) = 3o5_; (Eg, (k) —
El,(k+2))|k € Z}. We have an exact sequence of Lie superalgebras:

0— Ltw/qn I £tqu — £—0

where £ is the abelian Lie superalgebra spanned by the even elements I°(k) for k € Z~¢ and the odd elements
I'(k) for k € Z>( which correspond to the images of > | (E? (k) —EY (—k)) and of .1, (E};(k) + Ej;(—k))
in the quotient Ly dn/Liw’ qn-

Some of the propositions of subsection 3.1 have analogs in this affine setup, but first we have to introduce
the following smash product.

Definition 3.5. Let A be the algebra C{u,u=1,c)/(c® — 1,cu — u~‘c).

The algebra A is Z/2Z-graded with even part equal to Clu,u~!] and odd part equal to Clu,u"!]c. The
even part of [A,A] is equal to [A,A]° = {p € Clu,u~!|p(u) = p(u~!)} and its odd part is [A,A]! =
{pc € Clu,u™t]c|p(1) = 0 = p(—1)}. Here, [A, A] is computed using the super bracket [¢1,ls] = {15 —
(—1)lealle2lpy0) with 1,45 € A and |¢;] is the parity of £;; in particular, [c,c] = 2. Thus, the even part of the
Lie superalgebra sl,, (A) is gl,, ([A, A]°) + s, (Clu, v ™1]) and its odd part is gl, ®c [A, A]! + s, ®c Cu, u~!]e.

Lemma 3.2. The Lie superalgebra Ly, qn (Liw'Gn) is isomorphic to gl,(A) (resp. to sl,(A) ).

Proof. Tt is enough to check that the following formulas define an isomorphism gl,, (A) —= Liwdn: Eap(u¥) —
Egb(k)7 Eab(ukc) — E(llb(k:). O

Remark 3.4. The Lie superalgebras Liwqn and Ly,'qy differ from the Lie superalgebra q(n)?) studied in
[GoSe]. The loop version of this Kac-Moody superalgebra of type q(n)? is almost equal to sl,(A) where
A = C{ut! et /(c? — u,cu — uc): the difference is that the even part of the former is sl,(C[t*2]), not
gl (C[t*2]).

As for the twisted polynomial Lie superalgebra considered in [Na2], it is a subsuperalgebra of Ly, which

is isomorphic to g, (A) where A = C{v,v71,¢c)/(c? — 1,cv + ve).

The Lie superalgebra aln‘n[uil] is defined to be equal to gl,, [ut!] @ C - ¢ as a vector space with ¢ a
central even element and the super bracket is given by:

[Ealbl ® uTlﬂEazbz ® urz] = [Ealbl7Ea2b2] ® T + 67“1,*?”2Str(EalblEazbz)rlc



where Str denotes the supertrace. (If we replace gl,|, by sl,,, we get the universal central extension of
sl,,1, ®c Clu®!]: see [IoKo], theorem 4.7.) The involution ¢ can be extended to gl,,, [u*!] by fixing the extra

central element c.

n|n

Definition 3.6. The central extension qt° of Liwdn is defined as Liwqn in definition 3.4, except that

gl [ut!] has to be replaced by ol [uFl]. We let Gt be its derived Lie subsuperalgebra.

n|n

We would like to see that gt is actually the universal central extension of £4,,’q,. We need to compute
HC4(A) to see that it is one dimensional and use theorem 3.1 from [ChGu].

Definition 3.7. For n > 3, the Steinberg Lie superalgebra st,,(A) is defined to be the Lie superalgebra over
C generated by the homogeneous elements Fij(a), a € A homogeneous, 1 < i # j < n and deg Fj;(a) =
dega = |al, subject to the following relations for a,b € A:

a— Fjj(a) is a C-linear map, (22)
[Fij(a), Fj5(b)] = Fig(ab), for distinct i, j, k, (23)
(Figla), Fu(b)] =0, fori £ #k£1#1, (24)

Theorem 3.1. [ChGu/ Suppose that n > 3. The Steinberg Lie superalgebra st,(A) is the universal central
extension of sl,(A) and the kernel of the epimorphism st,(A) — sl,,(A) is isomorphic to HC1(A), a Z/2Z-
graded version of the first cyclic homology group of A.

Let us now compute HCy(A). Let (A, A) be the quotient of A ® A by the subspace I spanned by
a1 @ as + (*l)lalllazlag ® a1 and (71)‘“2“‘11%2@3 X ay + (71)|a3”a2|a3a1 X ag + (*1)"13"“1'&1(12 ® ag for
ai,az,as € A. The first cyclic homology group HC;(A) is, by definition, the kernel of the map (A, A) —
[A, A] given by a1 ® as — [a1, as] = ajas — (—1)ll1%2lg,a,.

In (A, A), u’c’ @uFc! can be expressed as a linear combination of u'c®@u, vic®@u~!, vt ®u and u'c’ @ c
with ¢ € Z,j = 0,1. Observe that, in (A, A),

uic®u_1:ui®cu_1+c®ui_1:ui®uc+c®ui_1:ui+1®c+cui®u+c®ui_1.

This implies that (A, A) is spanned by u‘c®u, u~! ® u and u’c’ ® ¢ with i € Z,j = 0, 1. Moreover, if i > 0,
then

u? ®c = uil Ruc+u® cu' Tt =i? (9 u’c +u® u3e +u® uw e
= 3@ udctudu Petuu P ectruxu tle="--
= W¥¥ou c+udulc+ - +uu Be+ruu e
= uRulc+uu Bctruu e+ Fuu e+t uu e

and a similar identity holds when ¢ < 0.

This shows that (A, A) is spanned by u'c ® u, u=! ® u and u’c ® ¢ with i € Z. It is even enough to
restrict to u'c ® ¢ with ¢ > 0 because u'c ® ¢ — u~'c ® ¢ = 0. Using the following computations, we can
conclude that HCy(A) is spanned by v ™! @ w: [u’c,u] = (u*~! —uitt)c, [ulc,c] = u® +u~".

We can also perform similar computations by replacing A with A. The results in [ChGu] apply also to

sl,(A) and it is natural to wonder whether the universal central extension of s, (A) is trivial or not. It turns
out to be trivial because HC1(A) = 0. Let us see why this is the case.

In (A, A), we have that vic/ ® v¥c! can be expressed as a linear combination of vic/ ® v with i > —1,
vicd @ v! with i <0, and v'e/ ® ¢ with i € Z, for j = 0, 1.

Suppose that i is odd. In (A,A), vie®c—cv'®c+cc®@ v’ =0, ie, (1 + (=1)THvic®c = 0, so
vie®c = 0. Suppose i is even. Then v’cc®@c+cv’c®@c+cec®vic =0, i.e., (1+(—1))v'®c =0, so v'®c = 0.



It is also true that, in (A, A), v**T! @ ¢ +v?*c @ v+ cv ® v?¥ = 0 and vV?* ! @ ¢ +ve @ v?* 4+ cv?* @ v = 0.
Substracting these two equations yields ve ® v?* = 0 and, therefore, vt @ ¢ = —v?*c @ v.

A bit surprisingly, we can show also that v™' ® v = 0 in (A, A):

v*1®v:v*102®v:cv®v*1c7c®c:fvc®v*1cfc®c:cv*1c®v7vflcv®cfc®c:7v71®v

Therefore, the space (A, A) is spanned by vic ® v with i > —1, v’c®@v~! with i <0, vic ® ¢ with i even.
Using the following computations in [A, A], we can conclude that HC1(A) is {0}: [v'c’,v] = ((—1)7 —1)vitlcd
(= 0if and only if j = 0), [v’c/,v™1] = ((—1)/—1)v*~ e/ (= 0 if and only if j = 0), and [vic, ¢] = (14 (—1)%)v?
(=0 if and only if ¢ is odd).

We will now give a couple of presentations by generators and relations of the twisted affine Lie superal-
gebras, as we did in the previous subsection for g, and sq,,. Recall that L4,'q, = sl,(A) by lemma 3.2, so
q'w’ is isomorphic to sl,,(A), the universal central extension of sl,(A).

Proposition 3.5. Suppose that n > 5. ET[,L(A) 1s isomorphic to the Lie superalgebra e which is generated by
the even elements Fop(1), Fop(u), Fap(u™1) and the odd elements Fup(c) for 1 < a # b < n which satisfy the
following identities:

If a,b, c are all distinct and a,c,d also,

[Fub(u'), Fye(€)] = [Faa(c), Fac(u™)] and [Fop(u'), Foe(u")] = [Faa(u'), Fae(u")] fori= 1,1, (25)
[Fup(c?), Fye(c?)] = Fae(c™) fori,j,k = 0,1 and k = i + j mod 2 (26)
[Fup(u'), Foe(w?)] = Foe(u™7) fori,j,i+j=—1,0,1. (27)

Ifa#b+#c#d#a,
[Fap(u'), Fea(e?)] = 0 = [Fap(u'), Fea(u’)], [Fap(c"), Fea(c?)] = 0, fori,j =—1,0,1 (28)

Proof. We need theorem 3.1. We have to explain how to construct in ¢ elements Fy(u*c’) Vk € Z,i =
0,1,a # b which satisfy the relations (23),(24), i.e.,

[Fab(ukci)a ch(ulcj)] = 6chad<uk+(_1)ilci+j) for a 7é b7 & 7é d 7& a. (29)

Since {ufc'|k € Z,i = 0,1} is a vector space basis of A, we could then define F;(¢) for any ¢ € A by linearity
and the equality [Fap(€1), Fra(€2)] = dpeFua(€12) for a # b, ¢ # d # a would then follow from (29).

First we show (29) for ¢ = 0,j = 0,1 and k,l € Z>o (or Z<o). We just show the positive case - the
negative case is similar. Because of relations (25)-(28), for 1 < a # ¢ < n, we have well defined elements
Fuc(u™c?) given by Fu.(u™c?) = [Fup(u), Fpe(u™ 1)) for 1 < m < 2,5 = 0,1,1 < b < n,b # a,c.
(They are well defined since they do not depend on the choice of b.) Equation (29) is then true when
0<k+1<2,i=0,j=0,1.

Let us assume now that we have constructed elements F,.(u*c’) for 0 < k < m,m > 2,j = 0,1 which
satisfy relation (29) when 0 < k41 <m,i=0,j =0, 1. Suppose that a # d # b # ¢ # a and pick e # a, b, c,d
(this is where our assumption n > 5 is useful); then [Fyq(u), Fyc(u™c?)] = [Faq(u), [Fye(u), Fec(u™ c?)]] =0
by induction. For a # ¢, pick b # a, ¢ and set F,.(u™"1c?) = [Fup(u), Fye(u™c?)]. This does not depend on
the choice of b, for if d # a, b, ¢, then

[Fap(w), Foe(u™c?)] = [[Faa(w), Fap(1)], Fye(u™e?)] = [Faq(u), Fae(u™c’)]
since we proved just before that [F,q(u), Fy.(u™c?)] = 0.

We thus have well defined elements F,.(u™*'c’),j = 0,1. If a # b, ¢ # d # a, pick e # a, b, ¢, d; then we
have

[Fap(1), Foa(u™ 7)) = [Fap(1), [Fee(u), Feq(u™c?)]] = Gpe[Fae(u), Fea(uc?)] = SpeFag(u™ 'c?).
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If k> 2and k41 =m+ 1, then, by induction,
[Fab(uk)a ch(ulcj)] = [[ch(u)a Feb(uk_l)], ch(ulcj)] = Ope[Fae(u), Fed(“k_1+lcj)] = 6chad(u7n+1Cj)~
Now we show that (29) holds for i = 0,5 = 0,1, and kI < 0. We consider only the case k¥ > 0 and [ < 0.
If a # b, ¢c # d # a, pick e # a,b, ¢, d; by induction on |||, we have
[Fap (1), Fea(u'e’)] = [Fab(u)v [Fee(u™), Fed(ul+lcj)]] = Obe[Fue(1), Fea(u'™'e?)] = bpe Faa(u™' ).
By induction on k + ||I||, we deduce that, for k > 2,

[Fap(u"), Foa(u'c?)] = [[Fae (@), Fop(u)], Fea(u'e?)] = Gpe[Fue(u 1), Feq(u! T e?)] = GpeFaa(ute?).

We are left to show (29) for i = 1,5 = 0,1 and k,l € Z. If a # b, ¢ # d # a, pick e # a,b,c,d; by
induction on [ > 0, we obtain

[Fap(c), Fea(u™c’)] = [Fab(c)7 [Fee (w™), Fed(uil:Flcj)]] = [[Fab<c)7 Fee(u™))], Fed(uil:Flcj)}
= [[Fab(U:Fl)a Fee(c)], Fed(uilqﬂcj)] = [Fab(U:Fl)a [Fee(c), Fed(uilqﬂcj)ﬂ

= [Fab(qul),ch(uj”ﬂcjﬂ)] = 6chad(qulcj+1).

Finally, for arbitrary k,l € Z,
Fus(050), Foalt'e)] = [[Fac(u®), Fup(e)], Feaule)] = [Fue(ub), [Fen(), Fra(u'e?)]]
= 5bc [Fae (uk)7 Fed(u_lcj+1)] = 5chad(uk_le+l)
O
We end this subsection by giving an affine version of proposition 3.4 and we will need the previous
proposition to prove it.

Proposition 3.6. Suppose that n > 5. The Lie superalgebra q'*" is isomorphic to the Lie superalgebra
f generated by the even elements €; ., fir,hip,hno with 1 < i < n—1,7 = —1,0,1, by the odd elements
ﬁ1,0,€170, .]?1,0 and by a central element c which satisfy the following relations:

The elements with the second index equal to 0 satisfy the relations in proposition 3.4;

For any 1 <iq,ia <n,r1,ro = —1,0,1 (respecting some restrictions below):

[Piy,+1, €i5,0] = [Piy,0 = hiy 41,05 €in,x1)s [Pir 05 Cinira] = (0iy a0 — Oy in 1) Cin ros
(hiy 215 fiz,0] = [Pir,0 = hiv+1,0, fio, £1], [Riy 05 finira] = (Gir i1 = 04y i0) fin o
[673177“1’.}01'2,7'2] = 5i1i2hi177’1+7"2 fOT L+ T2 = 713 15 [hilﬂ"lahhﬂb} = 57“17—7“2(:;

[€i1,r15 €inra) = 0= [fiy 1, fin,ra] if 11 =2 or ||ix — i > 1;

[eiln“l’ [eilﬂ“z’ei?,,'f’a]] =0= [filﬂ"w [fily'fzvfisﬂ"e‘]] Z.f H’Ll - 7'3” =1,r1+ryr3=-1,0,1;
[€1,0, €ipr] =0 = [J?l,o»fiz,m] if iz > 2, [€1,0, fizrs) =0 = [ﬁ,o,eiz,TQ] if ip > 2;

(30)

(31)

(32)

(33)
€ir, 415 €i,0] = [€i1,05 €in 21]s [fir, 215 fin,0] = [fir,05 fin,21]s €3, 215 fin 51 = iyin (Riy 0 — hiy 11,0 £ 2¢); (34)
(35)

(36)
Er0se20a] = [e12r [Fr0: Bros ezol] |+ Uzas Fro] = [ (a0 Frols exo]s fi,ra). (37)
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Proof. We use proposition 3.5: we introduce elements Fyp(u®!), Fyp(c?),i = 0,1in § for 1 < a # b < n and
we show that they satisfy the relations (25) - (28). The relations defining f show that the Lie subalgebra of
f generated by the even generators contains the affine Lie algebra g[n((C[u, u~1]). This gives us the elements
Fap(u*!) that we need. (For instance, h; 11 corresponds to EY;(£1) — E? , ;. (+1).) Moreover, we can
define elements Fy;(c’),j = 0,1 as in proposition 3.4 and this proposition actually shows that the Lie
subsuperalgebra generated by the elements with r = 0 is equal to sq,,. It is thus enough to check the first
relations in (25) and (28).

We must prove that [Fyp(c), Fea(u)] = 0if a # b # ¢ # d # a. It follows from (36) that [Fiz(c), Feq(u)] =
0 for any 3 < ¢ < n,2 < d < n,c # d, from which we can deduce that [Fi,(c), Feq(u)] = 0 for any
2 < b,c,d < n,b # ¢ # d and then also when ¢ = 1. Using the adjoint action of gl,, we then see that
[Fap(c), Feqg(uw)] =0if a #b# c# d# a and 2 < a,b,¢,d < n; the general case follows from all this. The
proof that [Fup(c), Feg(u™1)] = 0 is similar.

We must also show that [Fap(c), Fpe(u”)] = [Faa(u™"), Fae(c)],r = —1,1 when a # b # ¢ # a # d #
c. Let us prove this first when b = d. Relation (37) says that [Fia(c), Fas(u™)] = [Fiz2(u™"), Fas(c)].
From this, we deduce that [Fya(c), Fac(u”)] = [Fao(u™"), Fac(c)] for any a # 2 # ¢ # a. If b # 2,a,c,
then [Fua(c), Fpe(u™)] = 0 by the previous paragraph, so using ad(Fs(1)) we see that [Fyp(c), Fpe(u")] =
[Faz(c), Foc(u)]; similarly [Fop(u™"), Fpe(c)] = [Faz(u™"), Fac(c)]. Using all this, we can deduce the desired
conclusion. O

~—

4 Hecke-Clifford algebras

In order to extend some of the results of M. Nazarov in [Na2] to the quantum affine setup, we will need the
affine Hecke-Clifford algebra.

Definition 4.1. [JoNa] Let ¢ € C*,l € Z>1 and set e = q — ¢~ '. The affine Hecke-Clifford algebra H,
(which is called the affine Sergeev algebra in [JoNa]) is the algebra generated by elements T, ..., T;_1, pair-
wise commuting elements Xlﬂ, . ,Xlil, and anti-commuting elements cq, . .., c;, which satisfy the relations:

(Ti—q)(Ti+q ) =0,i=1,...,1—1, TiTi1 Ty =Ty TiTip1,i=1,...,1—2
T,T; =TT if lli— jll > 2, ¢ =—1, ccj = —cjc; if 1 <i#j<l, Tici=ci1T;
iXi=X;"c, ¢Xj=Xjciifj#i, Ticj=c;T; and T;X; = X;T; if j #i,i+ 1
T;X; = XipaTi — e(Xip1 — cicit1Xs), TiXip1 = XiT + e(1+ ¢icip1) Xiga,
Remark 4.1. The second relation on the last line can be deduced from the others: we have included it only
for convenience.

The subalgebra H,; generated by the elements T;,1 < i <1 —1 and ¢;,1 <7 <[ is isomorphic to the
finite Hecke-Clifford algebra which plays a role in [Ol]. H,; becomes a Z/2Z-graded algebra if we declare
T;,X; to be even and ¢; to beodd forall 1 <¢ <1 —-1,1 <5 <.

In the computations below, the following relations will also be useful: Tjc;+1 = ¢;T; — €(c; — ¢;41) and
(T; — eciciy1)XiT; = Xip1. Moreover, the inverse of T; — ec;c;iq is T; — (1 + ¢;Ciq1).

5 Quantum groups associated to g, and q'*

After recalling the quantum supergroup introduced in [Ol], we define in the second subsection a new twisted
affine quantum group associated to q,. For the rest of this paper, we will view ¢ as a variable and will
consider algebras over C(q) and over A, the localization of C[q,¢!] at the ideal (¢ — 1). We will denote
C(g) ®c C(n|n) by Cy(n|n).
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5.1 Finite case

G. Olshanski found a quantization of ig, in [Ol] and gave a presentation in terms of a matrix S €
Endg(q)(Cq(n|n))®? which satisfies the quantum Yang-Baxter equation. However, the classical limit of
S dlffers from the unique even R-matrix in q©2 which determines the cobracket. (Actually, the latter does
not satisfy the classical Yang-Baxter equation.) We recall a couple of definitions from [O]].

Definition 5.1. We denote by S the element of Endc, (Cq4(n|n))®? given by the formula:

S=> (1+(g—-1E,) @ Eua+» (14 (¢ = 1)E),) @ E_ g4
a=1 a=1
(38)

Z Egb ® Epa — Z Egb @ L _p—a— Z Eclz,b Q@ FE_pa

, , a,b=1
a>b a<b

S can be viewed as an element of q, ®c Endc, (C4(n|n)) which is upper triangular. It will also be useful
in computations below to rewrite it as

S = Z @it 2D @ B,
ijef£L,....£n}

(39)
+e > o (-VE;eEi+ ). (-)VEL ;@ E;
i, je{*1,..., +n} i,je{*1,..., +n}
1>] 1>]

Definition 5.2. [Ol] The quantized enveloping superalgebra of q,, is the Z/2Z-graded algebra i,q,, generated
by elements t;; with ¢ < j and i,j € {£1,...,£n} which satisfy the following relations:

tist—i,—i = 1 =1t_; _itss, T12T13523 = SosT13T12 (40)

where T =7, tij @c By and the last equality holds in $,q, ®c(q) Ende(g)(Cy(n|n))®?. The Z./2Z-degree
of tij is [i| + 4]

The elements t;; with ¢ < j and |i| = |j| generate a subalgebra isomorphic to ,gl,(C): see the first
remark in [Ol]. 4,q, is a quantization of g, and the Lie bialgebra structure on g, is the one associated
with the following Manin triple [Ol]: g = g1 & g2 with g = glyj,, 91 = dn, 92 = >0y C(Eaa — E_q—a) +
an,s;i; g<n CE;; and these two Lie subsuperalgebras are isotropic with respect to the invariant bilinear form

ij
w given by w(X,Y) = %Str(XY), X,Y € glyj,- In section 6, we will give a twisted affine extension of this
bialgebra structure.

5.2 Affine case

Set Cy(x,y) = C(q) ®c C(z,y). We now introduce the matrix (with coefficients in Cy(x,y)) which we will
need to define the twisted quantum affine superalgebra of q,,.

Definition 5.3. Let S(xz,y) be the element of End(y)(Cq(n|n))®? ®@c(q) Cq(z,y) given by

eP e])J&JQ

S(fzay)=5+x_ly_1 pv—

where P = ij:_n(—l)mEij ® Ej; is the superpermutation operator and J, = J®1,Jo =1® J.
N
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The proof of the following lemma explains where the idea of defining S(z,y) in this way comes from.

Lemma 5.1. S(z,y) satisfies the quantum Yang-Baxter equation with parameters:

S12(z,y)S13(x, 2)S23(y, 2) = Sa3(y, 2)S13(7, 2)S12(7, y).

Proof. Set S(z,y) = PS(z,y). S(z,y) satisfies the quantum Yang-Baxter equation with parameters if
and only if S(z,y) satisfies the braid relation Sya(y, 2)Sa3(x, 2)S12(2,y) = Sas(x,y)S12(x, 2)S23(y, 2). In-
deed, starting from this braid relation and multiplying on the left on both sides by P2 gives the equality
S12(y, 2)Sa3(x, 2)S12(x, y) = S13(x, y)S12(x, 2)S23(y, z). Multiplying again on the left by Pa3 and Pjo yields
Sa3(y, 2)S13(, 2)S12(w, y) = S12(z,y)S13(2, 2) S23(y; 2).

To complete the proof, we have to observe that S(z,y) is the image in Endc () (Cq(n|n)®?) @c(q) Cq(x,y)
of the element v (z,y) defined in equation 3.13 in [JoNa], where C,(n|n)®? is viewed as a representation of
Hy,2 as in theorem 5.2 in [Ol]. Finally, lemma 4.1 in [JoNa] states that ¢(z, y) satisfies the braid relation. [

Using S(z,y) and the formalism developed in [FRT], we can now introduce a new quantum affine super-
algebra.

Definition 5.4. The twisted affine quantum superalgebra 4,945 is the algebra over C(q) generated by el-
(r)

ements t” 7 € Z>o,—n < 4,5 < n,ij # 0 and by an invertible, central even element C which satisfy the
following relations:

ty =0dfi>j 1700 =1=40) (41)

Tlg(w)Tlg(Z)Sgg(C_lw,C_ Z) = SQ3(C1U,CZ)T13(Z)T12(U)) (42)

where T(z) = 31— tij(2) ® Eij € 440, [[271]] ®c Ende(C(n|n)) and tij(2) = 3,50 tg) ~". The twisted
1§70
quantum loop superalgebra Uy L, gy, is the quotient U gt /(C —1).

4,q% is a Hopf algebra with coproduct A(T'(z)) = T13(2(1 @ C))Ta3(2(C™* ® 1)) € (U4,qL*)®%[[z71]] ®c
Endc(C(nln)), A(C) = C ®c C, or, more explicitly,

t(r) Z Z YRR+ () s r®t< s, (43)

s=0k=—n k;éO

The antipode is given by T'(z) — T(z)~1,C — C~1. 4, is a Z/2Z-graded algebra: the generator tl(-;-) has
degree [i| + |7]-

6 Quantization

We explain in this section how 4,q% can be viewed as a quantization of a Lie bialgebra structure on g4*.
We prove that it is a deformation of g (theorem 6.1) and that the classical limit of the coproduct A
recovers the cobracket § defined in (44) (proposition 6.1).

Set s(z,y) =s+ _%]y) T+ 2PJ1J2 where
s=Y E0,®([FBa—FE_a-a)+2 Y EW®E.-2 > E}QE b,a—zzEb@@E ba
a=1 1<b<a<n 1<a<b<n a,b=1

is the element defined in (3.3) in [Ol]. s(z,y) satisfies si2(z,y) + s21(y, ) = 0 since sj2 + s91 = 2P (where
s21(y,x) = Psi2(y,z)P) and the classical Yang-Baxter equation [s12(z,¥),s13(z, 2)] + [s12(z, ), s23(y, 2)] +
[s13(x, 2),s23(y, 2)] = 0 (since s does [O]]).
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Set E;;(r) = Ejju” + E_; _ju™". gt becomes a Lie superbialgebra if we define a cobracket 6 by d(c) =0
and (for r > 0):

=9 Z Z \kl (I Hlkl)(IJ\HkI)Ek (r—s) @ Ei(s) — Eig(s) @ Ep;(r — s))

5= Ok];?ZOn (44)
+ (-l ((Ez‘z‘(O) — (=1)HIE;(0)) @ Bij(r) — Ey(r) @ (Eau(0) - (—U'“Hlea‘j(O)))
+ ZT‘(EU (T‘) RKe—cR® Eij (T))

When s = 0, the first sum should be over k such that k < 4, and when s = r it should be over k such that
k > j. This superbialgebra structure comes from the following Manin triple, which is an affine extension
of the one given in definition 3.1 in [Ol]. Set p = g[nm[uil] @ Co where 0 is the usual derivation, so
P,E;u"] = rEzju”. 0 is an even element and [¢, 9] = 0. Consider the following pair of Lie subsuperalgebras
of p: p1 =g and

= C(Bau—E—a-a)+ Y, CEj;+ Y > CEju"+C.
a=1

—n<i<j<n T€L>q ij=—n
ij7#0 570

Note that p = py @ pa. There is an even, invariant, supersymmetric, nondegenerate bilinear form (-, -) on p
given by (E;ju™, Egu™) = %Str(EijEkl)érl,_m, (c,0) = % and (¢, E;;u") = (¢,c) = 0= (0, E;;u") = (0,0).
Since ps is a Lie superalgebra, its bracket induces a dual map 6 : ps — (A%ps)* C (p2 ®c p2)*. Using (-,-),
we can view p; as a subspace of p5 and A2p; C A2p} C (A2py)*. It turns out that d(p;) C A2py, so g‘m can
be used to define a cobracket § on pp, which is the one given above.

The cobracket § induces a co-Poisson Hopf algebra structure on {ql”. We will explain how 4,q%* provides
a Hopf algebra deformation of g and we will consider afterwards how the Poisson cobracket on LUq%" can
be retrieved from the coproduct on %" .

Let us write down explicitly relation (42); this will be useful below. Set p(i,j) = |i| + |j],¢(i,5) =
(6i; + 0;—;)sign(s) and 6(i,j, k) = sign(sign(i) + sign(j) + sign(k)) = (1) HJH'J”MH’“” |, Expanding
P

w1lz—1 and Zil—]f as w*i—l == (ZEO(UF ) )P and
PJyJs LS A i
s —1 = w2) (;(W) Z (—DV'Ey; @ E_j i,
- iz
we find that

(—1)PEDPED GO 4 (5 < 139(i, 5, k)etly 1) + {1 < j}0(—i, —j, k)et ) 1)

i,—1
min{r—1,s—1}
—e0(i, j k Zt(r £ I(CSJH e0(i, j, —k) Z o2ty E,Tfll t) I(cs j1 t)
t=0 - (45)
— PR )y ) (’") +{k < Y0, 5 R)et 1) + i < —k}0(—i, —j, k)et )t
min{r—1,s—1}
—e0(i, j k Zt(s+t t(’ 1) —e0(i, j, k) Z Cc 2(t+1)t(a 1-t), (_Tzwl t)

t=0

where {® < e} equals 1 if the inequality is satisfied and 0 otherwise.

Let U 4q%" be the A-subalgebra of 4,q%" generated by Tij ,—n <1i,5 <n,ij #0,r € Z>o and by y where

(T) (0)
r . t,; —1 c—-1
Z(J) 7_ ifi#jorr#0, Tz(lo) L = —
9-4q qg—1 q—1
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Theorem 6.1. The quotient U4qt”/(q — 1)U 4qL? is isomorphic to 4qL” as an algebra over C.

"tw
q, -

Proof. We first construct an epimorphism ® : Uqt — U4q5" /(g — 1)U 4

For r € Zso, —n < i,j < n,ij # 0, set ®(E;;(r)) = (—l)mFg-? where Fg-:) is the image of T;:) in the
quotient U4qi" /(g — 1)4UAql?. If r = 0, we can assume that j < i (since E;;(0) = E_; _;(0)) and set
®(E;;(0)) = (-1 )|J|T( ) if 7 < ¢ and ®(E;(0)) = ( )M*(O). Set ®(c) = —v. We have to show that ®

satisfies [®(X7), <I>(X2)] D([X1, Xo]) VX1, Xo € 8. We will not check all the cases, but some of them to
show how one should proceed.

A straightforward computation shows that

(DB (r), ()M By ()] = (=) (63 Bjx (r + 5) + 65, 1B _k(r — 5))
_ (_1)Ii\lj\+|i\\l|+lel|+|k\((_1)|i\+lj|5k].E”(r +8) + 0B _i(s — 7)) + 25i7_l(—1)M*"“'(SmStr(Ej,_k)rc

(46)
(From (45), we deduce the following relation in ${4q%" /(g — 1)U g% if s > r > 0:
r) — i|=(s+7r i|l=(s—7r
0 70) = Su(—1)IFE) 45,y (~1)liFe ) .
_ 5jk(71)\il|j|+\i||l\+\j||l\?z(;+s) _ 5—k,j(*DMUHMulHjHlHlilHﬂ?(fﬁ”
_ e =0 — _=(0) .
If s =r >0, we find that (using 7,/ = —7°; _,):
[ 5;)77'1@1 ] = 6(— )li‘ﬁ(ff) + 6 (—1)liF 0k~ 1)\il|j|+\i|Il\+ljlll\+|i\+lj|?l(_f)zl
26, 185 (= 1D)llry — 8, (=1 )|Z\|J\+|Z\|l|+|1Hl|?§lzr) (48)

— 0, (1— 5—1‘,1)(—1)'“UIH“‘llHjHllJr‘i'Hﬂ?g),l — 6 (1= 6_p ) (=1)llF (0) L

We can now verify that the equality [®(X;), ®(X2)] = ®([X1, X»]) holds when X; = (—1)E;;(r) and
Xy = (=1)*IEj4(s) in the two cases s > r > 0 and s = r > 0 by comparing (46) with (47) and (48). Note that,
in (47), when r—s < 0, ®(E; _;(r—s)) is not defined: this is not a problem since E; _1(r—s) = E_; x(s—7).
We can also verify that equality when s > r = 0 if we use the following relation (with ¢ < j) which can be
deduced from (45):

FO, 7] = (—1)15,7) + (—1)lis, (1 — 6,,)7

— g (=) AN ()il (1 6,7),

(49)

The case s = r = 0 is treated in [Ol] and the case r > s can be checked similarly.

We thus have an epimorphism D LUgly — 4 Aq qtv /(g — 1)U 4qt?. We will also need to consider <I> which
is defined as ®, but with g% replaced by L,q, = G4 /(c) and il ALY replaced by U4q%/(C — 1). Actually,

we will first prove that ® is an isomorphism, and for this we need evaluation representations. Let x1,...,z;
be commuting variables. We can construct a representation of Y4q" on Alzi?,. .., 27 ®@c C(n|n)®! via
the map

o1 UAGE — End4(Alzf?, ... 2F]) @c Ende(C(n|n))® D[z 71
determined by
pi(T(2)) = S141(21,2)S2,141(22,2) - St (21, 2)

where both sides belong to End4(A[zE!, ... ,xlﬂ]) ®c Ende(C(n|n))®W[[z]] ®c Endc(C(n|n)), and by
letting C act by multiplication by 1. That p; is a well-defined representation of £l,qt* follows from the fact
that S(z,y) satisfies the quantum Yang-Baxter equation (see lemma 5.1); the general case follows by applying
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the coproduct A to obtain a representation on (Afz, z '] ®c C(n|n))®4l = Az, ... zif ] ®@c C(n|n)®". We
can also view p; as a representation of 4L, 0.

JFrom the definition of S(z,z), we can see that p; descends to a representation p; of the quotient
U ALt qn/(q — 1)U AL qn on the space Clz!, ... 2] @c C(n|n)®! and 77 o ® yields the representation of
Ltwqn on the same space given by

!
Ei(s)(p®vVv)= Z ‘JI (pz}, ®E( )( )+pm,§s®E(_ki),_]( )) where p = p(aft, . afh.
k=1

Here, Ef]k) € Endc(C(n|n)®') acts by the matrix E;; only on the k' factor in the tensor product C(n|n)®!,

|
but signs have to be taken into account: if v = v; ® --- ® v; which each v; homogeneous, then El(f) (v)

(—1)(“'*‘”‘)253 ol @ - @1 ® E;j(v) ® g1 ® - -+ ® vy where |v,] is the parity of v,.

Let K, = Ker(p; o ®). We want to show that N2, K; = {0} since this would imply that Ker(® ®) = {0},
hence completing the proof that ® is an isomorphism. Since Etqu - g[n|n[ u*1], it is enough to prove that
the intersection of all the kernels of the representations of gl,,[u*'] on Clz7,... ;2 @c C(n|n)®! (given
by (Eiju”)(p@v) = 22:1 pxy, ®Eg€) (v)) is equal to zero. This is proved in [Na2]: see the proof of proposition
2.2, which ultimately boils down to applying the Poincaré-Birkhoff-Witt theorem for Lie superalgebras. (In
[Na2], the author considers only polynomials in non-negative powers of z1, ..., x;, but the proofs works also
for Laurent polynomials.)

To show that ® is an isomorphism, we need to consider tensor products p; ® 4 T, where 7y, is a representa-
tion of 4% on a A-module on which C acts by multiplication by ¢*, k € Z. Set K = Ker((m) o<I>).
(01 @4 1) o ® is a representation of Uq¥” on which ¢ acts by multiplication by k. One can then show that
Nkez ﬂ;ﬁl Kl,k = {0} O

It is possible to obtain an analogous proposition by replacing C(q),.A by C((h)),C[[h]]: one can define
the Hopf algebra L[(c((h))a“” and its subalgebra U g by replacing ¢ by ¢ = € € C[[h]], and show that

n

Uql is isomorphic to Ui’ /Ay ah” Z(JT) should be replaced by (2h)_1t§;) if ¢ # j or r > 0 and by

h~ (()—1)1fz—j,r—0 ~ should be set equal to h=(C — 1).

Let us now consider the classical limit of the coproduct on LUgypydi”. Let (-)° be the involution on
(Uenyaie)®? given by Ay ® Ay — (—1)1M1l1421 4y @ A; where |A;| is the Z/2Z-degree of A; for i = 1,2.

Proposition 6.1. For any A € Ueipaiy, h—l(A(A) — A(A)°) = §(A qiw)®2 where A(A) denotes

) €
reduction modulo h and A is the image of A in SJ(C[[ W [ hieqn ]qn ilat
Proof. Only for this proof, we use the definition of Ti(jr), ~ given just before the statement of the proposition
with A in the denominator. Using the formula (43) for the coproduct A, we find that, for —n <i#j <n

- (r) (Mo
and > 0, h=H(A(7;;7) — A(7;;7)°) equals

r—1
22 Z 1) il+ED AR+ <s>®7<r s) r;j) - s>)
s=1 k,k_;gon
0 —(r —(r —(0 r 0
+9 Z 1) (i IED k1D (7 Ek)®7—l(cj)+7—z(k)®7—§€j)) (T§J)®Tfk)+7ig)®ﬁﬁ))
k’?o}'?j
19 (7(7-) ® ?(9) _ 7(0> o7 + (0> ® 7(7) _ 47) ® T(0>)
+7 QT — (”®r(°)+r(”®r(0) (.2)®T§;)+2r(?§§)®7—7®?§;))
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Using formula (44) and the fact that Ti(]Q) = 0 if ¢ > j, one can see that the right-hand side is equal to
S((=1)IE;4(r)). O

7 Schur-Weyl functor

We construct a functor, that we call the Schur-Weyl functor, which connects affine Hecke-Clifford algebras
with twisted quantum loop algebras of type Q. Theorem 7.1 below extends theorem 5.2 in [O]] to ,q%”. Tt
can also be viewed as a super analog of the main theorem in [ChPr] and a g-version of proposition 5.2 in
[Na2].

Theorem 5.2 in [O]] states that Cy(n|n) is a representation of both H,; and {,q,, and, moreover, the
actions of these two superalgebras supercommute. The element T,,1 < a < ! — 1 acts by P, q+15.a+1
on C,(n|n)®!, the indices a,a + 1 denoting on which two consecutive factors P and S act, whereas c,
acts via J@ =1® - ®1®J®1® - ®1 € Endg(g)(Cy(n|n))®. To see why J@JO) = —j®) jl@ jf
1 < a# b <1, we have to keep in mind that Endc(q)(Cq(n|n))®" is identified with Endg(q)(Cq(n|n)®') via
the following isomorphism (which can be extended from U,V to Vi,...V): if U,V are two Z/2Z-graded
C(q)-vector spaces, f € Endg(q)(U),g € Endg(q) (V) are Z/2Z-graded linear maps of homogeneous degree
and u € Uyv € V, then (f ® g)(u ® v) = (—1)P9PM®) f(4) @ g(v) where p(u),p(g) € {0,1} denote the
7./27-degrees of u and g.

In order to extend theorem 5.2 in [Ol] to U,q%”, we first reinterpret Olshanski’s construction in a slightly
different way. Let M be a Z/27Z-graded right module over H,;. We can form the tensor product M ®+,,
Cq(n|n)®!. Using that the actions of Usq, and Hy; supercommute, we can see that M @4, , Cq(n|n)®'
©)
ij
tensor: tz(-?)(m @v) = (=1)PtmUi+liDm g tg;))(v). In other words, we identify tl(.g) with the linear map
1® tg?) € Endg(g) (M) ®c(q) Ende(g) (Cq(n|n)®') = Ende(g) (M ®c(q) Cq(n|n)®') where the last isomorphism
is the one from the previous paragraph.

becomes a left module over 4,q, if we define the action of ¢;.” in the following way on an elementary

Let H; be the C-algebra defined by the same relations as those in definition 4.1 with ¢ = 1. The irreducible
7./2Z-graded representations of H; are parametrized by the strict partitions of I [Se]. Let F be a splitting
field for the semisimple C(g)-algebra H, ;, so that H,; ®c(q) F is a split semisimple algebra - see [JoNa]. It is
proved in [JoNa] that the irreducible Z/2Z-graded representations of Hy; ®c(q) I are also parametrized by
the strict partitions A of . (Compare with Tits’ deformation theorem, which is theorem 7.4.6 in [GePf].) One
of the main results of [JoNa] provides an explicit splitting field F for H,; which is a composite of quadratic
extensions of C(g), hence is a Galois extension of C(g). The irreducible Z/2Z-graded representations of H, ;
can be recovered from those of Hy; ®c(q) F by taking direct sums of irreducible modules over an orbit for
the action of the Galois group of F' over C(g): see [CuRe] section 7B. It is proved in [Se|] that the tensor
space C(n|n)®! decomposes as a direct sum of subspaces of the form W @c V* - 279U where ) is a strict
partition of [, V* is a representation of g,, and W* @¢ V- 27902 ig either equal to W* ®@¢ V* if the number
of parts in A is even or to a proper submodule of W* @¢ V* if the number of parts in A is odd. Moreover,
V2 is non-zero exactly when A has at most n parts (theorem 4 in [Se]). Therefore, if n > I, this condition
is always satisfied (and this is not the best lower bound since A must be a strict partition of [, hence has
always less then [ parts if [ > 1). This means that, when n > [, every irreducible Z/2Z-graded representation
of H; occurs in C(n|n)®'. The same is true for Hyy ®@c(q) F and F(n|n)®; from this, it follows that every
irreducible Z/2Z-graded representation of H,; must also occur in C,(n|n)®! if n > I.

Let W3 be the irreducible Z/2Z-graded representation of H, ®c(q) F corresponding to A. Set Hp; =
Hai @c(g) F and Upg, = Ugqn @c(q) F. F(n|n) decomposes into a direct sum of irreducible Hr; ®r Urpqn-
modules of the form W @p V3 - 270D as above. Let V be an irreducible right module over Hg,;. Since
Homp (V' @, W2, F) = HomHF,L(WH‘?‘,HomF(V, [F)), it follows that V ®s W3 is non-zero if and only if
V= WF’\’* (the dual of Wﬁ;\) Moreover, if A has an even number of parts, then W]lf"* ST W]Bi\ is one-

18



dimensional and if A has an odd number of parts, then W]?’* @, Wi is two-dimensional. (This is where we
need the fact that Hp; is split semisimple, so that the even part of the commutant of a simple Hy ;-module
reduces to scalars.) In this latter case, W ®@p Vi = W @ V@ - 2790AD @ W where W is a second irreducible

module over Hr; @ Upq, (see [Se] for the case of H,); it follows that VV]F @, Wi @p Vi - 279020 22 12,

In the previous section, we explained how to obtain evaluation representations of gl on the space

C(g)zi?, ..., af" ®c(q) Cq(n|n)®!. (Strictly speaking, to obtain what one would normally call an evaluation
representation, the variables x1, ..., x; should be evaluated at some specific values in C.) This construction
can be generalized in the following way. Suppose that the variables X fﬂ, o X lil pairwise commute and

are even elements. As in the previous section, it is possible to define an algebra homomorphism $f,qi* —
Cq)[Xi,. .., X[ ®c(q) Ende(g) (Cq(n|n))®! via the formula

—

€ €
1) = I (St ooy @ Bon i

1<p<l p P

X Pp,l+1<]pz]l+1) , C— 1. (50)

Let us view the affine Hecke-Clifford algebra H,; as an algebra over C(g) and defined by the same relations
as in definition 4.1. If M is a Z/2Z-graded right module over H,,, then, since C(q)[Xi?, .. Xﬂ] can be
viewed as a commutative subalgebra of Hy;, M can also be viewed as a module over C(g )[X il , X
corresponding to an algebra homomorphism C(q)[X7 +l ¢ +1 e Endg (g (M); by composmon we obtam
an algebra homomorphism #,q%" — Endg () (M) ®(C(q) EndC(q)(Cq(n\n)@’l) = Endg () (M @c(q) Cq(n|n)®h).

To state theorem 7.1, we will need to consider the following subalgebra let ﬂ]p be the F-subalgebra of
UgLiwqn Dc(q) F generated by t( ) ,1 <i<j <n,and by t(l il is defined similarly over C(gq). (The

l(]), 1 <4 < j <mn, is isomorphic to Ugq,.) Note that the Lie subsuperalgebra

of L,qn generated by g, and E}m(l) contains L' qn, s0 ﬂq is quite a large subalgebra.

—n’

subsuperalgebra generated by ¢

Definition 7.1. We define mod9;, —Hg; to be the category of finite dimensional Z/2Z-graded right modules
over Hp; and modgr 0 $lp to be the category of finite dimensional Z/27Z-graded left modules over Ur which,

as modules over Upq,, are direct sums of submodules of F(n|n)®" and on which the action oft satisfies

n,—n

the following technical condition: if ( n. 7n) (z) = 0 for some x € N, N € mod{; O Sk € Z>o, then
() =0
tn. .

—n

Theorem 7.1. Let M be a right Z/2Z-graded module over Hy ;. Then M @y, , Cq(n|n)® is a Z/2Z-graded
left module over $4,q5" on which C acts trivially and this defines a functor, denoted SW and called the Schur-
Weyl functor, between the categories of Z/2Z-graded right (respectively, left) modules over Hy; and iqun .

Moreover, if | +1 < n, it provides an equivalence of categories between mod9, — Hy; and modL)l L[F

Remark 7.1. It is known [GJKK] that the category of tensor modules over ,q,, that is, the category of
submodules of Cq(n\n)@)l VI € Zsq, is completely reducible. Moreover, in loc. cit., it is identified with a
category of finite dimensional modules with non-negative highest weights (in a precise sense).

If N is a right module in mod%’}o — ﬁm, the second part of the theorem tells us that it is isomorphic, as
ﬁp—module, to SW(M) for a right Hy ;-module M. However, at this point, it is not possz’ble to tell if the

(r) 1)

action of all ti; on N is the same as its action on SW(M), but we can prove this for tn _ - This explains

why we consider ﬂ]p.

Given a right Z/2Z-graded module My over H,,;, we will also denote by SW(Mj) the left H,q,-module
My @, Cq(n|n)®!, and similarly over F.

Proof. Since C acts trivially on SW(AM), we will work with 4, L¢.,qy, instead of 4,ql”. We already know that
M ®c(q) Cy(n|n)® is a left module over $,L,,q,. We have to see that tl(»;) (mT, ® v —m® P, q+154,a+1V)
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and t%’) (mc, ® v —m ® J(@v) belong to the subspace M defined by

M =spanc( {mTy ®V — M ® Pyyp1Spp41V]1 <b <1~ 1,7 € M,¥ € Cy(n|n)®'}
@ spangy {me; ® Vv —m @ JOV|m € M,1<i <1, € Cy(n|n)®'}

in order to be able to conclude that tE;) descends to the quotient M/M = M @, Cq(nn)® of M ®¢(q)
Cy(n|n)®.. When r = 0, this follows from theorem 5.2 in [Ol]. The proof for any r € Z> can be reduced to
the case when | = 2,a = 1 because T, ® 1 — 1 ® (PS)q,q+1 commutes with S, ;11(X,,2) if p # a,a+ 1 and
Ca®1—1® J@ commutes with Spi+1(Xp, 2) if p # a. It is thus enough to prove that

® P13+

€ €
1®85 —_ —_
( ® S13 + (Xflz—l) Xiz—1)

® P13J1J3>

'(1®523+ ® Pa3 + ®P23J2J3>(T1®1®1®1—1®P12512®1)

(X;lz -1) (X22—1)

belongs to the right ideal in Endg()f;) (M) ®c(q) Endg(q)(Cq(n|n))®? generated by T1 @ 1010110 P12S12®1

and ;01101 -10JD @1 fori = 1,2. (The analogous claim with c;, JD or ¢y, J@ instead of Ty, P12S12
is easier to establish.) The proof of this claim involves rather long computations which we will not reproduce
here.!

Since we will not provide the full details, we want at least to prove that M ®4, , C4(n|n)®" is a module
over a large subalgebra of ,L+,,q,, namely over ﬁq. Let us consider the action of tg)_n on M ®c(q) (Cq(n|n)®l.
Using the fact that tg;-)) = 0if i > j and the formula (43) for A(t(l) ), we deduce that (if m is homogeneous)

n,—n

¥ ) +mX e BEX(v))

!
) (m@v) = (~1)PMe Y ¢+ -5 (mx;, © EX)
k=1
where ar(v) = #{1 < j < kli; = —nori; = n} and Bi(v) = #{k < j < lli; = —nori; = n} if
V=0 @ - ®@v; and {v_,,v_py1,...,0,} is the standard basis of Cy(n|n).

Set hip = >, g 0nFo—nEY, € Endg(q)(Cy(n|n)). It is enough to check the following congruence in
Ende(g) (M ®c(q) Cq(n|n)®") modulo W, the right ideal generated by T; ® 1 —1® P; j415; 41,1 <j<1-1
andc; @1 —-1®JV 1<j<I:

T X, © BS) hEH 41X @ BY pS Y 41X @ kW EETD p mox ol @ hW BT

=X, @ E®) n* P Sk + X @ EX R P Sk (51)

—n,n'’—n ,—n''—n

+ X1 ® hglk)E(kJrl)Pk,k-i-lSk,k-&-l + X,;:l ® hgc)E(kH)Pk,kHSk,kH

—n,n n,—n

Using the relations in definition 4.1, we can rewrite the left-hand side as:

(Xk+1Tk - C(Xk+1 - Cka+1Xk)) ® E(k) h(k—H) + (X_llTk + G(Xk_l - Cka+1Xk+1)) (29 E,,(Lk) h(k+1)

—n,n'’—n k+ ,—n't—n

+ (XiTrk + e(1 4 cpcrr1) Xpr1) ® hslk)E(_kJ,lL) + (Xk_lTk - €(X,€_1 + k1 X)) ® hglk)E,(ffi)

Therefore, the congruence (51) holds if and only if the following expression is congruent to 0 modulo W:
Xi+1® ((Prok1Sk k41 — E)E(Q,nh(ﬁl) - h%k)EEk;rll)(Pk,k+15k,k+1 —€))

+ X ® (Pk7k+15k,k+1h51k)E(,k;f,1L) — g% h(k+1)Pk,k+ISk7k+l>

—n,n'’—n

IThe explicit calculations are available in the appendix of the version of this paper available on the second author’s web
page.
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+ X,;}l ® ((Pk,k+1Sk,k+1 — eJ(k>J(k+1))Efjj> B+ h(k)Egjij> (Pe k41K k41 — eJ(k)J(k+1)))

—_n'"—n n

n,—

+X'® ((Pk,k+15k,k+1 —e(1+ J(k)J(k“)))hglk)E(Hi)

_ g% plk+1) (Pr o161 — €(1+ J(k)J(Hl))))

Using that the inverse of Py 115k g1 — €JF TETD is Py 1Sk g1 — e(1 4+ J® JEFD) and the inverse
of Py k+1Sk k+1 15 Pi k+15k,k+1 — €, we have reduced the problem to showing that

Pk,k+15k,k+1h%k)E£krtrlz) —E®) VP Sk =0

—n,n'"—n

and

(Pro1Skp41 — €(1+ J(k)J(k+1)))h£Lk)ET(L’fir,1L) =g® h(,k;rl) (Pr,ie+1Sk,k41 — €(1+ J(k)J(kH)))

n,—n
Using formula (39) for S k41, we can compute directly that

(k)E(—kJ:z) _ E(k) h(k‘f‘l)

Py 1Sk k41hy, g Uiy —o.

Pl Pekr 1Sk k1 = Prpri (B2, “nn

As for the second equality, it follows from the first one:
(Pojes1Skisr — (1 + J® JEED) 0 gD pl) , (8D (g G in — e(1+ TR gkDy)
- _ _ (k) g(k+1)y) g(k) (k+1) p (k) p(k+1) 7(k) 7(k+1)
(Pk k+1Sk k41 6(1+J J ))J J hn E,nn JV T
+ g0 JEED ) IR g0 70D (P g1 Sk — e(1 4+ JW gDy
- _ (k) gkt+1) _ (k) jlkt1) _ (k) p(k+1) 7(k) j(k+1)
(Pr,k41Sk, k1 T e(J™J D)hy,EZ T T
+ JEgEHD R REED (W) 0D P S — e(TR gD 1))
- _J(k+1)J(k)P/c,IHlSk,k+1h;k)E£krtyll)J(k)J(k+1) + J(k)J(k—H)E(fkr)hnh(ijl)Pk,k+15k7k+1c](k+l)J(k)
_ J(k)J(k+1)Pk7k+1(Sk)k+1h;k)E(7krjrll) _ h(lcr)LE(k+1)Sk7k+l)J(k)J(k+1) -0

—n,n

We have thus proved that the action of t on M ®c(q) Cq(n|n)®" descends to the quotient M @4, ,

n,—n

Cqy(n|n)®!. Therefore, from theorem 5.2 in [O]], we deduce that M @4, , Cq(n|n)®" is a left module over ﬁq.

To obtain a functor SW : mod} — H,; — mod“gl — Uy Lt dn, we are left to specify how SW acts on
morphisms. If My, My € mody;, — Hy; and f € Homp, (M), My), then SW(f) : SW(M;) — SW(My) is
defined on pure tensors as SW(f)(m ®@v) = f(m) @ v.

In the second part of the proof, we have to show that, given a module N € mod%’:}o - iNl]F, there exists
M € mod}, — Hp, such that N = SW(M). We must also explain why SW is bijective on morphisms. By
hypothesis, N is a direct sum of submodules of F(n|n)®! when viewed as a module over Ugq,,. It follows
from the explanations given before theorem 7.1 that N = My ®3,, F(n|n)®' for some My € mod%, — Hy,.
We now have to explain how to turn My into a right module over Hp ;; for the affine Hecke algebra of .S,
this was done in [ChPr] and we follow similar ideas. We will need the next lemma, which follows from its
non-quantum (classical) analog.

Lemma 7.1. Suppose that v;,,...,v;, € F(n|n) are such that v;; # v, for distinct j, k. Then v generates
F(n|n)®l as a module over Urq,. Consequently, if My is a right irreducible module over Hg,; such that
My @74, , F(n|n)®' # 0 and m € My, then m @ v =0=m = 0.

For 1 < j <l set v0) =01 @ ®vj 1 @ v, ®vj11 @--- @1 (v, is in the 5™ spot), and wl) =

VMO QUj—1 ®V—p ®Vj41 @--- @ ;. Forany 7 € A® % S, let W(Tj) be the vector obtained from w(?) by
applying 7 to it. (S; acts by permuting the factors in F(n|n)®!, whereas the non-trivial element in the k"
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copy of A in A®" acts by J*).) By considering the weights of tE?) on F(n|n)®! for 1 < i < n, we see that we

can write tﬁ)_n(m @VW) =3 rorys, Mr @ w?) for some m, € M. (Here, we are also using the relation

tg?)té{ln = tfl{lntgg) for 1 <4 < n, which can be deduced from (45).) w) can be obtained from w() by
applying to it the action of an element of Hp ;. Therefore, tgll,)_n(m@v(j)) =mew) for some m € M. Since
w9 satisfies the condition of the previous lemma, we can see that the assignment m — m determines a linear

function ¢; € Endc(Mp) such that m = (—1)P(™)¢;(m). Similarly, one can define a function &; € Ende (M)
by considering the action of t,(zl)_n on wl/); more precisely, t;l)_n(m @wl)) = (=1)Pm¢;(m) @ vO).
The next lemma is fundamental. Let 7" € Endg(F(n|n)®") be nif(v) = qak(")_ﬂk(")E:(szin(v).
Lemma 7.2. For all homogeneous m € M and v € F(n|n)®!, t,(ll)_n(m ®v) = (=1)rtm 22:1 ¢i(m) ®
m) s -
0 (v) + (=DPO 35 (m) @5 (v)

Proof. As in the proof of lemma 4.5 in [ChPr], we will proceed via a double induction. First of all, though,
ifv=wv ®  -®uv, and if i; # £n for any 1 < j < [, then ¢ (m ® v) = 0. This is where we need

the technical assumption in our theorem. From (45), we deduce that (t;”_n)? = o (( 2 — (t(_O,)L,_n)2).
Since ) (v) = t(for)hfn(v) = v for such a v, (tfllln)Q(m ® v) = 0, hence by hypothesis it must be the case

that (" (m®v)=0.

n,—n

Let r > 0,s > 1,1 <jy <+ <jr <11 <34 <. <jl <, and suppose that {ji1,...,5-} N
{3y =¢. Set j = (i, jr), §' = (s, %), and denote by F(n|n)i4 the subspace of F(n|n)®
spanned by the vectors v =v; ® - - - ® v; with v_,, in positions ji, ..., j., v, in positions j1,... j. and vectors
{v1,v-1,...,9p_1,v_(n,—1)} in the other positions. By the previous paragraph, we can now suppose that
r+s>1.

It is enough to consider an element v € F(n|n)j’j/ which has the vectors v, ...,v,_2 in positions other
than j,j’. (This is possible since we are assuming that n > [ + 1.) The lemma is true for r = 1,s = 0 or
r =0,s =1 by the definition of (; and &;. Let us prove by induction that it is true also for any » > 1 when
s = 0, so let’s assume it’s true for r — 1 and that » > 2. Let v/ be obtained from v by replacing v_, in

positions jr_1,jr With v_(,_1), so that v = ¢ a +©

W( ol n)2v’. We now need one more lemma.
,

Lemma 7.3. The following relation holds in Uy Lyyqn:

1 0 14,0 1 0 0 1
R G L (B T S S (i (52)
Proof. jFrom (45) with ¢ = n,j = —n,r = 1,k = n — 1,1 = n,s = 0, we deduce that qtﬁL{)_ntsmoll,n =
t,(zo_)lmt;l’)fn + et;o,%tﬂl,_n. Multiplying by tflo_)lm on the right on both sides and using tgllzl,_ntflo_)lm =
tgzof)l,ntgzlll,fnﬂ we obtain qtﬁl{ln(tioll,n)Q = tnozl,ntfll,)fntglof)l’n + etsl%tglof)l’ntszlﬁn. We need also the equa-
tion q*lt;%ffjl’n = t;of)l,ntslorz which, when substituted into the previous one, yields qtﬁi )—n,(t£1021,n)2 =
tglo_)17nt5117)_nt£10_)17n + eqtiozljn 7(107275;1217_71. Finally, we substitute et%ts_)lv_n = qt;{)_ntglo_)lm — t;oll,ntg,)_n in
the previous equation and simplify to obtain (52). O
Using this lemma, we can now write that
-1
) mev) = ——t® D 0 (mev') - ! (b1 )t (m @ V),

(q o q71)2 n—1n"n,—n"n—1n

(=g 1) (g+qt)

Let v" (resp. v"”) be obtained from v’ by replacing v_(,_1) in position j._1 (resp. j,) by v_,. By the
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inductive assumption, (fl)p(m)ts)_n(m ® v) equals
(_1)p(nL)q 1 -1

(0) (1) " 1 q
n ntn -n mev' +gnmev - — f ®77
¢—qt "7 ( P E PR Z anl (V)

—1
q 0 0
= _1t£L)1nZ§M m) @, (v )+q _1tfz)1n Z & (m) @, (V')

q—
k;ﬁr 1
1 r—2
q o (v — e (v .
_W n 1n€7k( ) ®q ik (V)= B3 ( )(Eflj”i) (v ”)_|_qE(Jk) (v ///))
k=1
r—1
— qfl anjk(v//)fﬁjk(v/’)gj ( )®E7(7,jk_)n +q Z qafk ﬁJk(v /)g ( )®ET(L.7k_)n( )

k;ér—l

n 125% ) ® ¢ BB, (v) + PEYY, (v)
q q ’ '

= Z qo‘jk (V)=Bi), (V)gjk (m) ® Efzj,k—)n (V) + qajr(v)*ﬁjr(v)gjr( ) E(Jw Z g] ® 77] )

This proves the lemma when s = 0. The case r = 0,s > 1 is very similar. Let us now assume that
r,s > 1; we use relation (52) again and argue by induction.

Let v be as above and assume, without loss of generality that j._; < j, < j.. Let v/ be obtained from v
by replacing v_,, in position j. by v_(,_1) and v, in position j; by v, 1. We need also v'" and v" which are
obtained from v’ by replacing, respectively, v,,_1 in position ji and v_(,_1 in position j. by v, and v_,.

¢ )2v/, we now get that (—1)p(m)t£ll’)7n(m ® v) equals

Starting from the observation that v = W( n—-1n

(=P (g+47") 0 1) (0 (—1)Pm) o 1
(14 g2)e? t;)1 ntfz )—nt; ) 1, p(mev') — W %21n)2t51)7n(m ® V’)

r—1
_ (_1)p(m) (q + qil) (0) (1) " " 1 (0) 2 —
- (1+q2)€ tn lntn —n(qm@v +mev ) - (1+q2)62 (tnfl,n) ;gjk(m)(gn]k(v)

1 !
OT t) 1n ZCgk (v)
= ftif”ln (Z@k m) @ n;, (v +Z<Jk +<v">>
s—1
+L tﬁ? I (ngk m) @15, (V") + Y Gy (m) @nj, (v”’))

k=1
0 _ _
R nZs]k (05, (") + (")
(0) ZC ( //) +ant (V'”))
(1 + q n 1,n jk QU]]/C

(Z & (m) @y (v) + i ¢’y (m) @y (V) + ¢y (m) @ 1, (V)>
k=1
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+q (qu‘jk( ®@n;, (v +quk ), (v )>

k=1

1+q Z&k (a"n;, (V) + ¢*nj (v 1+q Z@k il (V) + & (v)

= ijk ) 15, (v) + 3 Gy (m) © 7 ()
k=1

This completes by induction the proof of lemma 7.2. O

Now that lemma 7.2 has been proved, we can complete the proof of theorem 7.1. We have that M is a
Z/27Z-graded right module over Hy ; and we have to explain how to turn it into a right module over Hp ;. Set
mX; = 1¢;(m) and ij_l = 1¢;(m). We have to check that ijXj_1 = ij_lXj =m, mX;X; = mX;X,,
and the other relations coming from definition 4.1.

To prove Xij_l = Xj_lXj = 1, we need the following relation: (q—i—q_l)(tgll)fn)2 = e((t,(lor)b)2 - (t(f),)hfn)2).
Applying both sides to m®@ v with v=v1 ® -+ @ vj_1 ® v, @ Vj41 ® - - - @ v;, we deduce, since n > [, that
(¢ + q71)627anXj_1 ®@v =¢€(¢®> — ¢%)m ® v. Therefore, by lemma 7.1, ijXj_1 = m. Replacing v,, by
v_p, yields mX;lXj = m. The proof that mX;X; = mX;X; for i # j uses the same relation and a v with
vy as its i*" and j** factors.

Since N = Mo @, F(n|n)®' and ti}ln acts on this space, t,(1 ln(mcj ®V) = té ln(m ® JU)v); letting v

be as in the previous paragraph, we find that (—1)?"™*mc; X; @ E(]) v =(-1 )7"(’”)mX—1 ® Eflj;)_n,](j)v,
so mc; X; ® E(_J%nv = ij_lcj ®E(]) V. It follows, by lemma 7.1, that mc; X; = mX 'c;. The proof that
mcrX; = mXjcy if k # j is similar.
Finally, we also need to verify that mT; X,; = m(XiHTi —e(Xiy1 — cicin1 X; )) and mT; X; = mX,T; if
j #i,i+1. We prove only the former, the latter being easier. Since tgl) WML v) = tgl )7n(m® (PS);it1v),
fv=01® - Qu_1 U, ®Vit1 Q- Qv then (PS); i+1Vv=01Q - Q@01 QU1 QUp @+ QU — €1 ®
QU1 QU QU_i_1 ® -+ Ry, and hence (—1)p(m)tg’ln(m ® (PS)i,i+1V) equals

MmXi 1 QU@ @V @Vt @V, @ QU+ emX; ' QU@ QU1 RV, ®V_j_1 @ @
= mX; 1 QU Q QU1 QUi QU_p @ -

+emX; M CiCi1 QU ® - Vi QV_p @ Vip1 @ DYy
= mXip1 —eXi)Ti @ @ @ Vi1 ®V_p @ Vig1 @+ @Yy

+emCiCi 1 X QU @ QUi QV_p @Uig1 @+ @y

Since (—1)p(m)tfll,)7n(mﬂ @v) =mLX,;v® - QU1 @ U_yp @ Vit1 ® -+ @ vy, lemma 7.1 implies that
mTiXZ- = mXZ'+1TZ‘ — 6m(Xi+]_ — CiCiJrlXi); as desired.

Finally, to complete the proof of theorem 7.1, we should explain why SW is bijective on sets of morphisms.
Injectivity follows from the finite case: see the remarks at the beginning of this section. (Here, the assumption
that n is large enough, e.g. n > 1+ 1, is needed.) Now let g : SW(M;) — SW(M3) be a homomorphism
of graded left fl]F—modules. Then g is also a homomorphism of Z/2Z-graded Lpq,-modules of level I, so is

equal to SW(f) for some f € Homsy, (M1, M3). We have to see that f is actually a homomorphism of
Hp;-modules. Fix 1 < j<landset v=v®  ®@vj_1 Q@ Vp ®Vjt1 ® - @ . Since g(ts)_n(m ®vVv)) =
tﬁ}[n( (m ® v)) because g is a homomorphism of g-modules, it follows that f(mX;)®@v =f(m)X; ®v
where v=v1 Q- Quj_1 ®v_p, @41 ® --- @ vy; lemma 7.1 implies that f(mX;) = f(m)X,. Therefore, f
is a homomorphism of right H ;-modules. O

The following proposition gives us a property of the Schur-Weyl functor that is also true in the previously
studied affine cases ([Dr, ChPr, Na2]). Note that, if I +lo = [, then Hy;, ®c(q) Hyy, embeds into Hy ;.
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Suppose that M7 and M, are right modules over Hy;, and Hg,. Then (M ®c(q) M2) ®m, ;| 00 H,.1,) Hel
is a right module over H,;, so we can apply the Schur-Weyl functor to it. On the other hand, SW(M)
and SW(M;) are modules over ,L;,,qy, which is a Hopf superalgebra, so SW (M) ®c(q) SW(My) is also a
module over U, Ly,

Proposition 7.1. The left modules SW((M1 ®c(q) M2) ®H, ,, ©c(Hyu,) Hat) and SW(Mi) ®@c(q) SW(M2)
over Uy Ly, qy are isomorphic.

Proof. Since
~ +1 +1 ~
Hy =2 C(g)[XT - X7 ] ®c(q) Hat = (Hy, 1, @c(q) Hol) ® 3,1, @0 H115) Hals
we have an isomorphism of super vector spaces

(My ®c(q) Ma) @H,.,, ®c(gyHary) Hat @4, Co(n|n)®' = (My @c(q) M2) @ (a1, 1, @0y Hauy) Ca(n|n)®
> M @ (Cq(n|n)®l1 Qc M @94 (Cq(n|n)®l2

a,lq a,l2

which is also an isomorphism of left modules over ,L;,,qy: this follows from (50) and the observation that
iper S 2pasr = (Mikper, SXo 2 ) (T r2pet S 2paia )- O

We end this section by giving information about SW(M) when M is irreducible. See [Na2] for a similar
result for Yangians of type Q.

Proposition 7.2. Let M be a finite dimensional right module over Hy ; which is irreducible as a Z/27Z-graded
module. If SW(M) # {0}, then SW(M) is an irreducible module over Ug Ly, qy, .

Proof. The first half of the proof consists in reducing the problem to the classical (non quantum) setting
using proposition 6.1. Suppose that SW(M) # 0 and let Vi C SW(M) be a non-zero Z/2Z-graded subspace
invariant under Ugqy,.

Corollary 6.6 in [GJKK] states that C,(n|n)®! is completely reducible as a module over i,q,,; moreover,
Hp, is a semisimple algebra over F [JoNa]. These two facts, combined with theorem 5.3 in [Ol], imply that
]F(n|n)®l can be decomposed as a direct sum of irreducible Hr; ®@r Urg,-modules. It follows that V; equals
SW(My) where My C M is an Hp -submodule.

Furthermore, since M is irreducible, it is a quotient of the induced module M, Q@ Hry. We have to
prove that V; generates SW( ) as a module over Llpﬁtqu, by the previous observation, we can replace M

by the induced module M = MO ®ny, Hry and My by MO = Mo ®n,, Hry C M. We thus have to show
that SW(MO) generates SW(M ) as a module over ULy, .

Without loss of generality, we can assume that My and ]\70 are irreducible. Let R be the C-subalgebra
of F generated by Clg,q~!] and by the square roots added to C(q) to obtain F (see [JoNa]); let A be the
localization of R at the ideal generated by ¢—1. Let Ha; (resp. Ha ) be the subalgebra of Hg; (resp. Hy))
which is equal to the A-submodule generated by T1,...,7Tj—1,¢1,...,¢; (resp. and by Xlﬂ7 e ,Xlil). Let
{m1,...,mq} be a basis of My over F and let My 4 be the Hj, ;-submodule of My generated by mq,. .., mq.

Let MA be the induced module Mg 4 ®+, , Ha,; and let MOA be Mo s @, , Ha C MA. SW can be defined as
before simply by replacing F(n|n)®! by A®c C(n|n)®L. SW(MA) is a module over Uy L4, g, and it is enough
to show that it is generated by SW(MO a). This will follow if we can show that SW(MO a)/(q— l)SW(Z\,ZO’A)
generates all of SW(MA)/(q - l)SW(MA) as a module over ULy, q,, (see theorem 6.1).

Note that SW(My.a)/(q — 1)SW(My.a) 2= Mo @5, C(n|n)® where Mo = Moa/(g — 1)Mo and also
SW(My)/(q—1)SW(My) = My ®¢ CIXEL, ... XM ®7, C(n|n)®!. We can deduce our claim from section 4
in [Ar] after making the following observation. M, can be viewed as a module over the subalgebra C[S;] of
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H, and splits into a direct sum Mo = @F_, My ; of C[Sj]-modules. Set N; = My ; @c C[X{, ..., X ®csi]
(C")® and N = @F_, N;; both are modules over Ugl,, (C[u,u]). Tt follows from the proofs in section 4 in
[Ar] that N; is generated by Mo ; ®c(s,] (C™)®' as a module over Ugl, (Clu, u™!]). Therefore, N is generated
by Mo ®cs,) (C")®! as a module over Ugl, (Clu,u"']). Consider the natural linear map N — M, ®¢
ClXE, ..., XM ®7, C(n|n)®" (we view C™ as the even part of C(n|n)): it is onto and also a homomorphism
of Ugl,, (C[u, u=1])-modules. (We view gl,,(Clu,u1]) as the even part of gl,,(A), which is isomorphic to L4,y
see lemma 3.2.) Tt follows that My @5, C(n|n)®" generates Mo ©c CIX;H, .. X @5, C(n|n)®*. O
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8 Appendix

To prove the existence of the functor SW : modr — Hy; — mody — 4;Lswqy, we have to show that

€

——— ®Pi3+
(X1 P

(M®1elel) (1@513—1— ®P13J1J3>

(Xlz — 1)

. (1®Szg+ ® Pos + ®P23J2J3>

(X;'2—1) (X222 —1)

® P13+

€ €
(128 - -
( ® 13 + (Xflz—l) Xiz—1)

®P13J1J3)

® Pz +

€ €
(1® 8oy + ——— —_
( BT (Xaz — 1)

0

(9 P23J2J3> (1 ® P12512 ® 1)

where the symbol = denotes equivalence modulo the right ideal in End%p(g)(M ) ®c(q) Ende(q)(Cq(n|n))®?

generated by 1 ® 1®1®1-1® (PS)j2®1land by ¢; ®1®1®1—-1®J% @ 1,i = 1,2. Expanding the
products, we find that the difference above is equal to:

1
T ® S13523 + €11 ————
1 13023 1(X{12— 1)

1 1
——— ® S13PasJods + €It ————
(Xaz — 1) 13£23J2J3 I(Xflz—l)

1 1
+€2T1 3 1
(X1 (X2 - 1)

® S13Po3

+eTy ® Py13S23

1 1
(X712 —1) (Xaz—1)
1 1
(X1z—1) (X512 —1)

® P13 J1J3Pa3JaJs — 1 ® S13523P12512

® Pi3Pas + €Ty

® P13 Po3JyJ3

1
+€2T1m ® P13 J1J3S03 + €T}
1z —

1 1

o 1

(X312 —1) (X2z—1)
1 1 1

 ® Pi3S53P1sSis — €2

(X;lz—1) 7R T O R T T (G e )
1 1

J— 2 —

X)) (X2 - 1) (X1z—1)

€2 1 €2 1

KXo D) (X, 2-1) ® P13J1J3Pa3P12Sio — (X2 —1) (Xaz — 1) ® P13J1J3Py3J2J3P12S12
2

® P13J1J3Po3

+62T1

—€ ® S13P23P12512 — € ® S13Pa3JoJ3P12512

—€

® P13 P23 P12 512

® P13 P23 JaJ3P12S12 — € ® P13J1J3523P12512

1
1® P12512513523 + ¢ ( Ty + ze —

B X7
Xz 1) ex o e

1
(,2’)(21—1)> (24 513P23

1 1 1
+e€ <(Z)(1_1)T1 — 62(7(1 + C1C2)X2(Z)(2—1)) ® S13PagJaJs

1 1 1
el ———— T —e2—————— (X1 = Xo)—— | @ Pi3S
e(( 1 — €z <~ (X C1C2 2)(2X11—1)) 13023

1 1 1
4+ | ———— T —ez———— (X7 — X ® P3P
(= oo e ) g © PP

1 1 _ 1 1
+€? ((Tl - erf(X1 '~ cicXo) X1 1)> oz —1) ® P13 PagJaJ3
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1 1 1
<(ZX2 — 1)T1 + ZG( Xo— 1) (X2 — C1C2X1)(ZX1_1)> ® P13 J1J3593

1 ) 1
(X1 -1) (X{lz —-1)

1 1 1
2(_ - s .
+e€ ((ZXQ — 1)T1 + z€ Xo— 1) (X2 —c1c0Xy) (X — 1)) (Xoz—1) ® P13 J1J3Pa3JoJ3

T1+Z€
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