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ABSTRACT. We study twisted Yangians of type AIII which have appeared in the literature under the name of reflection
algebras. They admit g-versions which are new twisted quantum loop algebras. We explain how these can be defined
equivalently either via the reflection equation or as coideal subalgebras of Yangians of gl, (resp. of quantum loop
algebras of gl,). The connection with affine Hecke algebras of type BC' comes from a functor of Schur-Weyl type
between their module categories.

1. INTRODUCTION

Yangians are quantum groups of affine type with a plethora of applications in theoretical physics. They are Hopf
algebras which are quantizations of the enveloping algebra of g ®c CJ[t], where g is a finite dimensional, complex,
semisimple Lie algebra (or gl,). Twisted Yangians appeared almost twenty years ago in the work of G. Olshanski
[O]] and have been quite studied since then for the classical symmetric pairs (gl,,(C), 0,(C)), (gl2,(C), sp,,(C)), that
is, gl,(C) = @ p with £ = 0,(C), p = sym,,(C) in the first case (where sym,, (C) is the space of n x n symmetric
matrices), and ¢ = sp,, (C), p = gl,,(C) @ 50,(C) @ s0,(C) (as vector spaces only) in the second case. These are
two of the three families of classical symmetric pairs of type A. In this paper, we focus on type AIII, which is the
symmetric pair (gl,, gl, ® gl,,—p) with 0 < p < n—1. (The numbering of these types originates from the classification
of Riemannian symmetric spaces due to E. Cartan.) More precisely, gl,,(C) = ¢ & p with € = gl, ¢ gl,—, and
p=Mpnp(C)®Mp_pp(C).

The twisted Yangians of type AIII were studied in [MoRa] under the name of reflection algebras (where they were
denoted B(n,1), I playing the role of p here), following the work of E. Sklyanin [Sk], and even more general twisted
Yangians are the subject of the articles [Mal, Ma2] of N. MacKay. However, it was not yet known if these two kinds
of twisted Yangians for the symmetric pair (gl,, gl, ® gl,—,) were (almost) isomorphic. This is one of the results of
this paper (see Theorem 3.2 for the precise statement). In Section 3.5, we give a presentation in terms of generators
and relations of MacKay’s twisted Yangians when n = 2p. It should be noted that we consider twisted Yangians
which depend on two deformation parameters: they appear, a priori, to be new algebras, but this is not really the
case since one is a rescaling parameter and the dependency on the other parameter can be eliminated via a simple
isomorphism (see Corollary 3.1). However, the two parameters in question are important for the construction of the
Drinfeld functor in Section 4. The twisted Yangians are also coideal subalgebras inside the Yangian of gl,,, but are
not Hopf algebras: see Proposition 3.2. An interesting recent paper about coideal subalgebras from the point of view
of Manin triples is [BeCr].

The impetus for this paper came from a desire to generalize to the twisted Yangians of type AIII the work of
S. Khoroshkin and M. Nazarov [KhNal, KhNa2, KhNa3, KhNad]. A starting point is the joint paper [EFM] of
the third author in which a functor is constructed from a category of Harish-Chandra modules for the symmetric
pair (gl,, gl, ® gl,—p) to the category of modules over a degenerate affine Hecke algebra of type BC, extending
the construction in [ArSu], which is originally due to I. Cherednik [Ch2] and was used by S. Khoroshkin and M.
Nazarov in their aforementioned work. A second ingredient used by these authors (in the case of gl,,) is a functor,
due originally to V. Drinfeld [Dr], which generalizes the classical Schur-Weyl functor to Yangians and degenerate
affine Hecke algebras of type A. Another of our results is the construction of an analog of the Drinfeld functor from

MSC 2010: 17B37, 20C08 (primary)



2 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

modules over the degenerate affine Hecke algebra of type BC' to the category of left modules over a twisted Yangian
of type AIII - see Theorem 4.1. (It should be noted, as pointed out in [KhNa3, KhNa4], that no such functor exists
for the other two classical symmetric pairs of type A above.) It is simpler to obtain this functor using MacKay’s
presentation of twisted Yangians, but we are also able to define it in terms of the generators used by A. Molev and
E. Ragoucy in [MoRa]: this is done in Theorem 4.2.

In trying to extend the work of S. Khoroshkin and M. Nazarov, one of the first obstacles is that the composite
of the two functors discussed in the previous paragraph does not seem to correspond to a homomorphism from the
twisted Yangian of type AIII to an algebra of the form Ug®c PD(C! @ CF), where g should be a Lie algebra part of a
certain Howe dual pair and PD(C! ® C*) is the algebra of polynomial differential operators on C!' @ C*. It is not clear
what is the proper substitute for Ug ®c PD(C! ® C*), so we do not have an analogue of proposition 1.3 in [KhNal] in
type AIIIL. This appears to be essentially due to the fact that no simple formula like (1.14) in [KhNal] is known for
the Drinfeld functor studied below. The extension of the work of S. Khoroshkin and M. Nazarov to the symmetric
pair (gl,, gl, @ gl,,—p) will hopefully be the subject of future work. At least, we can provide one application of the
Drinfeld functor, namely, the construction in Section 5 of a Fock space representation of the twisted Yangian of type
ATII, thus extending work of D. Uglov for the Yangian of gl,, [Ug].

In the second part of the current article, we introduce new twisted quantum loop algebras of type AIII which can be
viewed as ¢-versions of the twisted Yangians of type AIIL. This answers at least partially a question raised in [MRS].
Recently, a general framework for understanding twisted quantum loop algebras has been developed by S. Kolb via
quantum symmetric pairs for Kac-Moody algebras [Ko]. We prove that our new twisted quantum loop algebras can
be defined equivalently as either coideal subalgebras of the quantum loop algebra of gl,, or using a reflection equation
with parameters (Theorem 6.3). We also show that their quasi-classical limit is the enveloping algebra of a certain
twisted loop algebra (Corollary 6.1). The second main result related to these new twisted quantum loop algebras
UP(Lgly) is the construction of a Drinfeld functor between categories of modules over affine Hecke algebras of type
BC and over illq’(ﬁg[n) (Theorem 7.2). The two parameters on which this affine Hecke algebra depends match exactly
the two parameters ¢ and § which enter the formula for the embedding of {7 (Lgl,,) in tgl,. In the last section, we
determine a family of central elements in U5(Lgl,) via an approach similar to the one used in [MRS] for twisted
g-Yangians.

It is suggested in [NSS] to call generalized Onsager algebra any twisted loop algebra obtained as the fixed-point
set of an automorphism p of sl,(C[t,t71]) of the form p(X ® p(t)) = po(X) @ p(t~'), where p(t) € C[t,t7!] and
po is an automorphism of sl,. (sl, could be replaced by gl,.) Our twisted quantum loop algebras can thus be
viewed as generalized ¢-Onsager algebras. Other such algebras are studied in [BaBe, BeFo|, where a very broad
class of reflection algebras associated to quantum affine algebras is considered. The paper [NSS] provides general
results about irreducible finite dimensional representations of equivariant map algebras and the classification of such
representations for generalized Onsager algebras is contained there: we include this result in Theorem 6.1.
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2. AFFINE HECKE ALGEBRAS OF TYPE BC

We need to recall a couple of definitions and results about the affine Hecke algebras of type BC' and their degenerate
version. The symmetric group on ! elements will be denoted &; and we set T' = Z/27Z, so that the wreath product
W, =116 is the Weyl group of type BC;. The non-reduced root system of type BC; consists of the following set
of vectors:

{£ei +ej,te; — el <i#j <1} U{Fe;, +2e;]1 <i <1} C R' = Spang{ey,..., e},
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where {ei}ﬁzl is the standard basis of R, Let 0;; be the reflection corresponding to the root e; — e;, set 0; = 0 ;41
and let 7; be the reflection corresponding to e;.

Definition 2.1. Let k1,k9 € C. The degenerate affine Hecke algebra HN1 w, Of type BCYy is the algebra generated by
the group algebra C[W)] and a set of pairwise commuting elements yi,...,y; such that

03 — Yit10; = k1 for 1 <i <1 —1, owy; =y,0 if j #4,1+ 1,
YL+ Y = K2, Ny =y if J# L

Lemma 2.1. The subalgebra of H. generated by y;, 1 < i <1, and S; is isomorphic to the degenerate affine Hecke

algebra Hfil of type GL;.

K1,R2

Note that, for any 1 < Iy < [, we have an embedding io : Hffl ke < Hf{1 «, Dy comsidering the generators
Yllgt1y -y Yl Vielg+1s- -y and 07j—jy41,...,071—1 of HK1 wor For any 1 < Iy < [, we also have an embedding
L Hfgl — Hm x, Dy comsidering the generators yi,...,y;,,01,...,01, -1 of HNl xy- Moreover, if [1 + 1z < [, we can
combine ¢; and ¢ to obtain an embedding ¢t ® to : Hfgl Rc Hffl oy Hf\i1 1,- HOWever, t1 ® 12 does not extend to an
embedding HY,  ®cHZ . < HL _ because, if i < j, [vi,y;] = k104 (v — 75)-

We will need an equivalent definition of the degenerate affine Hecke algebra HK1 ro

Lemma 2.2 ([EFM], lemma 3.1). H
C[W,] with the following relations:

is isomorphic to the algebra generated by elements y;,1 < i < I, and by

ffl K2

OiYi = Yix104, 03y = Yjoi if § F 4,0+ 1, gy = =y, Y =y if i £ 1

l

o~ R1Kk2 H%
[9i, Y51 9 ——0ij(v — Vi) + 1 Z ((ojkoir — oirajk)
oy
(1) ik (—Yive + Vi + V) — Tikoik(Viv; — Vive + ¥ivk))-

Proof. The connection between the two presentations is given by

i—1 l
~ K1 R1
Yi =Yi —*% Z Tik + ];Uik_7zaik%‘7k-

k=i+1 k=1
o k#i
O

Lemma 2.3 ([Lu], 3.12). The center of the degenerate affine Hecke algebra H., (resp. of H. . ) is generated by the
&;-symmetric polynomials in the variables y1,...,y; (resp. in the variables y3, . .. ,ylz)

Let us now move on to the non-degenerate case. Strictly speaking, the next definition is the one for the affine
Hecke algebra of type gl;, which is also called the extended affine Hecke algebra of type A;_;. To simplify the
terminology and the notation, we will say that it is the one of type A;_1.

Definition 2.2. Let k € (CX The affine Hecke algebra of type A;_1, denoted H!

.., 15 the unital associative algebra
with generators ail al 1, Ylil, ey Ylil satisfying the relations:

(a) oio; ' =0, loy =1 for1<i<i—1, YY;'=Y'Y;=1, YY;=Y;Y; foralll<ij<lI;
(b) 0;0i410; = 014100541 if 1 <i<1—2, 0,0; =0j0; if |i — j| > 1 (braid relations of type A);
(c) (o; +1)(0; — k?) =0 for 1 <i <1— 1 (Hecke relations);

(d) Y}'O'i:O'iY} Zf]#l,lﬁ*l, UiYViO}:I{Y;‘ﬁ_llg’L‘Sl*l.

If we delete the generators YijEl and the corresponding relations, we obtain a subalgebra H.. which is the finite Hecke
algebra of type A;_1. If we also delete the Hecke relations, we get the group ring of the braid group Bf‘.

Definition 2.3. Let ky, ko € C*. The affine Hecke algebra H
Ufl, cee alﬂ, Ylil7 e ,Ylil such that

w11 OF type By is the associative algebra with generators
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(a) the generators Ulil,. ‘71 1, YjEl Ylil satisfy the same relations as those in the definition of Hfﬂ,
() oot =0, oy = 1;

(¢) 0101-10101—1 = 01—10101—101, 010; = 0,01 if i # 1 — 1 (braid relations of type B);

(d) (o1 +1)(0; — k3) = 0 (Hecke relation);

(e) oY1 = ﬁf%%Yl_l, oY, =Yop if i £ 1.

If we delete the generators YjEl and the corresponding relations, we obtain a subalgebra ’HR ry Which is the finite
Hecke algebra of type B;. If we do not impose the Hecke relations on o; fori=1,... 1, we get the group ring of the
braid group B of type B.

We will need the following lemma later.

Lemma 2.4 (See [KaLu], 4.4). (1) Let Clzi!, ..., xSt be the ring of Laurent polynomials invariant under
the permutation action of &;. Then f(/ﬁlYlil, cee ijlYlﬂ) lies in the center of the affine Hecke algebra

H' for any f(x1,... ;) € ClzF ,...,xlil]es".
(2) Let ClzT!, .. xlil]W’ be the polynomials invariant under the action of VVl Then f( FvEL L RTYEY

lies in the center of the affine Hecke algebra HH1 wy JOT any f(ac1 ) ) € (C[ml ,...,xli]Wl. Here o

acts by permutation of the indices and oy(zi) = xfl oy(ztt) = ot ifz = 1, s l—1.

3. TWISTED YANGIANS OF TYPE AIIl AND THE REFLECTION EQUATION WITH PARAMETERS

3.1. Yangians for gl,(C) and sl,(C).

Definition 3.1. Suppose that n > 3, A € C. Let {z4}aer be an orthonormal basis of sl,(C) with respect to the
Killing form and indexed by some set I. The Yangian Yy (sl,,) is the complex, unital, associative algebra generated
by elements z, J(z) for z € s1,(C) satisfying the relations

J(azy + bze) = aJ(z1) +bJ(22), [J(21),22] = J([21, 22]),
[J(Zl)v J([ZQa 23])} + [J(Z2)a J([ZSa Zl])] + [J(Z3)a J([Zla 22])] = >‘2 Z ([Zla Za]a HZQ’ Zﬁ]a [Z3a Z’Y”){ZOHZﬁ’ Z’Y}

a,B,v€El

1
where {zq, 28, 2y} = 21 20663 Zo(a)Z0(8) %0 () and &3 is the permutation group of {c, B,7}.

Note that Yy, (sl,) = Yy, (sl,) if Ay Aa # 0. It will be more convenient to work with the following slightly bigger
algebra.

Definition 3.2. We let Y (gl,,) be the algebra which is defined exactly as Yx(sl,), except that the elements z can be
taken in all of gl,,(C) and the set {za tacr should be an orthonormal basis of gl,,(C) with respect to the Killing form.
Definition 3.3. The Yangian Y (gl,) is the complex, unital, associative algebra generated by elements Ti(f) for
1<, <n,r € Z>o with Ti(JQ) = §;; and satisfying the following relation:

1
(2) (T35 (), Tt (0)] = —— (T ()Tt (v) = Ty (v) Tt (w)),

v
where Tiy(u) = Y2020 T u™ € Y (gl [[u™"])-

The defining relations of Y (gl,,) can be rewritten in terms of the R-matrix
1 . .
u)=1—-— Z E;; ® Ej;, where I;; is the usual elementary matrix
ij=1
and T'(u) = szzl T;j(u) ® E;; € Y(gl,)[[u™']] ®c End ¢(C") as
R(u —v)T1 (w)Te(v) = To(v)T1 (u)R(u — v).
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Proposition 3.1. [MNO] If A # 0, Y\ (sl,,) is isomorphic to the subalgebra of Y (gl,) (denoted Y (sl,)) which consists
of the elements fized under all automorphisms of the type T(u) + f(u)T(u) where f(u) € 1+ u~'C[lu~t]]. This

isomorphism can be extended to an embedding Yy (gl,) — Y (gl,,). Moreover, if Z denotes the center of Y (gl,), then
Y(gl,) = Z ®c Y(sl,).

3.2. Symmetric pair of type AIII in classical Lie theory. Let n > 2 and let 1 < p < n/2 with p an integer.
Denote by ©, the n x n diagonal matrix ©, = diag(es,...,€,), where ¢, = 1 for i = 1,...,p and ¢, = —1 for
i=p+1,...,n. O, can be used to construct a Lie algebra involution 8 of gl,,(C): we set §(X) = ©,X0, for
X € gl,(C). Let £t = {X € gl,(C)|0(X) = X} = gl, @ gl,—p and p = {X € ¢[,(C)|§(X) = —X}, so that
gl,,(C) = ¢ @ p. The involution 6 restricts to sl,(C) and we set ¢ = £ N sl,(C).

Definition 3.4. The pair (g1, (C),€) (or (s1,(C),¥y)) is called the symmetric pair of type AIIL. (This terminology
comes from the classification of Riemannian symmetric spaces by E. Cartan.)

Definition 3.5. The twisted current Lie algebra sI%(C[t]) is equal to {X @ p(t) € s1,(C) ®c C[t]|0(X) @ p(t) =
X ®@p(—t)}. gl?(C[t)) is defined similarly.
3.3. Twisted Yangians of type AIIL. We will denote by ﬁ](u) the matrix entries of T71(u).

Definition 3.6. Assume that 71 # 0. The twisted Yangian of type AIIl, B; ,,(n,p), is the subalgebra of Y (gly,)
generated by bl(;)7 1<4,5<n,recZsy with bg?) =€;0;; and, if r > 1,

[

r—

b =Y S () G TP Y - T e Y S ()T
s=0 k=1 =0 k=1

w

Definition 3.7. SB., ,,(n,p) is defined as the intersection of Br, +,(n,p) with Y (sl,).

Set by (u) = ie; + 3202, 0w and B(u) = Y75_, bij(w) @ Eij € By ry(n,p)[[u~)] @c End ¢(C™). Then
we can express the embedding B, -, (n,p) — Y (gl,) via

B(u) = T(u)Op,r, ()T~ (—u),
where O, ,,(u) =1® (0, + 2u™t) € Y(gl,)[[u""]] ®c End (C™).
It follows immediately that the equation
3) B(u)B(~u) = (1 = m3u™?)
is satisfied.
Proposition 3.2 (Proposition 3.3 in [MoRa]). By, +,(n,p) is a left coideal subalgebra in Y (gl,,) with coproduct given
by

Ay () = 3 Tiu(w)Tiy(—u) @ b ().
s,t=1
Furthermore, we have the following result.
Proposition 3.3. The twisted Yangian B, -,(n,p) satisfies the reflection equation
(4) R(u — v)B;i(u)R(u 4+ v)B2(v) = Ba(v)R(u + v) By (u) R(u — v),
where By (u) =32, bij(u) ® Ej; @ 1, Ba(u) = 32, bij(u) ® 1® Eij € Bry 7, (n,p)[[u”"]] ®c End ¢ (C")#2.

Proof. Following the same steps as in the proof of theorem 3.1 in [MoRa], we are reduced to proving the following
equality:
R(u—v)0) _(w)R(u+v)02_ (v) =02 _(v)R(u+v)0} (u)R(u—wv).

p,7T2 b,72 D,72 D,72
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This can be proved by direct calculation as follows:

(u? = v*)R(u — )6, ., (u)R(u+v)6; _, (v)

p,T2 D, T2
( U — U Z E;® E]Z) <Z(€l + Tzu_l)EZ‘i ® Id) ((u +v) — Z E;; ® Eji) (Z(Ei + Tzv_l)ld ® Eii)
b=l i=1 ij=1 i—1
= Z (u? — v?)(e; + Tgu_l)(Ej + v By ® E;; — Z (u+v)(e + Tgu_l)(ej + Tgv_l)E]‘i ® E;j
ij=1 ij=1

— Z (u—v)(€; + TouY) (e + Tov™ EU QFE; + Z €+ ou ) (e; + Tgv_l)Ejj ® B

4,j=1 1,j=1

= Z (6 + v N (mu ' (1 +u? —v?) + €5 + € (u® —v?)Ey; @ Ejj
5,j=1

- Z €z+7—21} 27—2"’61( —v)—&—ej(u—&-v))Eij@Eﬂ,

1,0=1

(u —v )@2 (V)R(u+v)0) _ (u)R(u — v)

p,T2 p,T2
n n
= (Z(el +TQU*1)Id®Eii>< u+v) Z E;®F )(Z(€’ —l—TQu*l)Eﬁ ®Id)< u—v) Z E;®F )
=1 1,7=1 =1 1,9=1

Z u? —v?)(e; + v (6 + u B ® By — Z (u—v)(&; + v N (e; + mu ) Ej; @ Ejj
=1 ig=1

n
— Z (U + U)(Ej + TQ’Ufl)(CZ‘ + Tguil)Eij X Eji + Z (CZ‘ + 7’2’[171)(61‘ + Tguil)Ejj (24 Eii
i,j=1 i,j=1

= Z €+ v ) (mu T (1 +u? —v?) + 6 + 6 (u? — v?)Ey ® Ejj
7,7=1

— Z €+ ) (272 + €j(u —v) + €i(u+v)Eij @ Ej;.
4,J=1

Notice that
(€; + v 1) (279 + €i(u — v) + €j(u—+v)) — (¢ + v 1) (21 + €j(u—v)+e€(utv)) =0,

which implies the conclusion. O

Theorem 3.1. Assume 71 # 0. The reflection equation (4), the unitary relation (3), and bl(-?) =d;5¢; (1 <4,5<n)
are the defining relations for the twisted Yangian B., -,(n,p).

Proof. The argument is the same as in the proof of theorem 3.1 in [MoRa)]. O

In [MoRa] (see also [Sk]), the authors also consider the algebra B(n, p) which is generated by b(r)
relation given only by the reflection equation (4). They prove that, in B(n,p), B(u)B(—u) = f(u )Id where f(u)
is an even series in u~! with coefficients in the center of B(n,p), B(u) is the matrix E” L 2o by T @ By €
B(n, p)[[u="]]®cEnd ¢(C") and {b(r)} is the set of generators of B(n, p). The quotient of B(n, p) by the ideal (f(u)—1)

is the reflection algebra denoted B(n,p) in [MoRa]. Our twisted Yangian B, -,(n,p) is exactly the quotient of B(n,p)
by the relation B(u)B(—u) = (1—73u~2)Id. In particular, when 7, = 0, we get the algebra B(n, p) studied in [MoRa].
More generally, we have the following corollary.

with defining
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Corollary 3.1. For 7 # 0 and any 7 € C, we have an isomorphism B, -,(n,p) = B(n,p).

Proof. Set g(u) = 1 — 7u~!. An isomorphism 1 : By, -,(n,p) — B(n,p) is given by ¥(B(u)) = g(u)B(u), where
B(u) is defined similarly to B(u). O

Corollary 3.2 (PBW basis for twisted reflection algebra). The set of ordered monomials (under arbitrary total
ordering) in the generators

bV, 0<ij<por p+l<ij<n,

p(2k)

ij

for k> 1 form a PBW-type basis of the twisted reflection algebra B, ;,(n,p).

I<i<p<j<nor 1<j<p<i<n,

Proof. Let {bg)} be the set of generators of B(n,p) as in [MoRa]. Using the isomorphism in Corollary 3.1, we have

1/)(b§g)) = bz(.;.)), w(bg)) = T{il(bl(;) — Ty bg;_l)) for r > 1. The corollary follows from corollary 3.2 in [MoRa]. O

Now define a filtration on B, ,(n,p) by setting deg(bg)) =r—1forr>1and deg(bgg)) = 0. Then we can define
the associated graded algebra grB;, -,(n,p). Using the isomorphism ¢ in Corollary 3.1 and the results from [MoRa]
Section 3.2, we have the following consequence.

Corollary 3.3. We have an isomorphism of algebras

Ul (CH]) =5 grBrym(mop), 71 e + (1)) Byt o By

3.4. MacKay’s twisted Yangians of type AIII. The twisted Yangians that we study in this subsection were
introduced by N. MacKay in [Mal, Ma2]. One novelty here is that the algebras that we define are a bit more general
because they depend on two deformation parameters.

Definition 3.8. [Mal, Ma2] The MacKay twisted Yangian ff)\lm (gln, ®) of type AIII is the subalgebra of the Yangian
Yy, (gl) generated by the elements Eqp, € € and by J(E;;) with E;; € p, where

~ A A -2 A
J(Eij) = J(Eij) — € (22 + W) Eij — Zl[ca Eijl,

where C' = Zf,j:l Ei;E;; + sz:pﬂ E;;Ej; is the quadratic Casimir operator of €. We will denote by Yy, x,(sln, &)

the algebra obtained by allowing only the matrices Ey;, By — Ej; € ¥ for i # 7.

Note that, if A; # 0, then 17,\1,,\2 (gl, ¢) = )71 2 (gln, ) by rescaling the generators.
T A1

>

Lemma 3.1. The MacKay twisted Yangian 57,\17,\2 (gln, ®) is a left coideal subalgebra of the Yangian Ya (glyn); that is,
A(Ya (80, 8) C Yy, (gly) @c Yo, ., (000, E) where A is the coproduct on Y (gly,).

Proof. The proof is essentially contained in subsection 2.3 in [DMS]. O

Lemma 3.2. The following relation holds in tgl,,: > ) _, €xEixExj = %%"Eij +S[C, Eyj], where 1 <i<p<j<n
orl <j<p<i<n.
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Proof. Assume that 7, j satisfy one of the two conditions in the statement of this lemma;:

C,Eij] = Z Z [EnkExn, Eij]

I
Mﬁ
M

([Erks Eij|Exn + En[Exn, Eij))

p n
= g Z EixExj + Ey;Eir) — Z (EivExj + Ex;Eir).
k=1 k=p+1

So

p
> EixEy; — Z EixEi;
k=1 —p+1

1
3 Z(EikEkj + [Eik, Exj] + Erj Eir) — 3 Z (EikExj + [Eig, Eyj] + ExjE)
— k=p+1

2p—n €;
= 5 Eij + 5[0, E”]

O

Proposition 3.4. Let Ay =1, 79 = (n — 2p)/2 + A2/2. The algebra ?)\1’)\2 (gln, ¥) is isomorphic to the subalgebra of
B, -, (n,p) generated by bz(-;) with 1 < 4,7 <n and by bg) foralll<i<p<j<mandall<j<p<i<n.

Proof. The two twisted Yangians 37)\1:1, a0 (800, 8) and B, ., (n,p) are subalgebras of Y (gl,,), and to understand how
they are connected, we need to use the following relation in Y (gl,,) [ChPr1] when i # j:

(5) J(Ey) =TS — - Z EinEyj,

where we have identified Ej, Ey; with TZ-(,C1 ), T,gjl-).

We need to know the coefficients of Ty;(u). A general expression for the coefficients of Ty;(u) can be found in
[MoRa], and the first few terms are the following (see also [MNO]):

(1) _ () 7@ (2 (D)D)
(6) ) =-1, 177 =-17+ Z 13T,
We can now compute that

(7) bgl = EJT(U + €zT(1 + 7'2(5 = (6,‘ + Ej)Eij + T26ij.
When 1 <i<p<j<norl<j<p<i<n,we have

(8) b(.z.) = (¢ — 61)7'1T( ) + 2717'2T( +€;711 ZT(I + s ZekT(l

)

= —27’162‘J(Eij) + 27’17‘2E¢j + 71 Z EkEikEkj
k=1
( using Lemma 3.2)

_9 1 ~
= —2¢7 (J(Eij) + € (W — Tz) E;; — Z[C’ Eij]) = —2¢,11J(E;j).
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We have embeddings 17}\1)\2 (gln,¥) — Y(gl,) and B, -,(n,p) — Y (gl,) and the preceding computations show

-2 A
that the image of the former lands in the image of the latter if 75 = w + ?2 (and 71 # 0 as usual) and that

it can be identified with the subalgebra of By, r,(n,p) generated by all b} with 1 < 4,j < n, and by b with
1<i<p<j<nl<j<p<i<n 0

Corollary 3.4. Suppose that n > 3 and A2, T2 are related as in Proposition 8.4. Then Y1 x,(sl,, %) is equal to
SBr, (0, D).

Proof. By definition, the algebra Y7 ,(sl,, o) is generated by elements in & and by J(E;;) with E;; € p.
Then from (7), (8), it can be identified with the subalgebra of SB;, -,(n,p) generated by
1) . . ) o, (2) . ‘ . .
by M<i#j<pp+l<iFj<n) by —byy (1<i#j<n) by 1<i<p<j<n 1<j<p<i<n).

Thus Y7z, (80, ) is contained in SB, -,(n,p). Both have filtrations inherited from the one on Y'(gl,,) obtained
by giving tz(;) degree r. So we have gr(Y1 ., (sl,, %)) C gr(SBy, . (n,p)) = Usl (C[t]), where the last isomorphism
can be deduced from Section 3 in [MoRa] and from Corollary 3.1.

Usl? (C[t]) is generated as an algebra by its subspaces spanned by €, and p ®@c Ct, so gr(Yi x,(sl,, %)) contains
generators of 4sl% (C[¢]) and hence both are equal. It follows that gr(Y; ,(sl,, €)) = gr(SBy, -, (n,p)) and therefore
Y1»>\2 (E[n,EO) = SBTI;Q(TL,]D). O

3.5. Presentation of the twisted Yangian of type AIII by generators and relations. In this section, we
give a presentation in terms of generators and relations of the Mackay twisted Yangian 17}\1:1, 2 (gln, 8) with n = 2p.
The initial idea which led to this section is the observation that an isomorphism given explicitly in [GHL] allows
one to view sl (C[t]) as being isomorphic to sl,(C[t] x I'). We can then apply ideas from [Gu2, Gu3] to obtain a
presentation for a deformation of the enveloping algebra of sl,(C[t] x I') @ CI, (I, being the identity matrix) which

turns out to be isomorphic to Yx,—1 x, (g, t) for € = g0, (C) & gl,(C).

We introduce an action of I' on the polynomial ring C[t] (where I' = Z/2Z): if v € T, v # 1p and p(t) € C[t], then
v(p(t)) = p(—t). We can form the semi-direct product (also called smash product) C[t] x T. Moreover, the kernel of
the universal central extension of s, (C[t] xT") is isomorphic to HC1(C[t] xT') and it is known that HC(C[¢] xT") = 0.
Since C[t] x T" is not a commutative ring, it may be a good idea to recall the following definition.

Definition 3.9. Let A be an associative algebra over C, not necessarily commutative. The Lie algebra sl,(A) is

defined as sl,(A) = [gl,(A), gl,(A)]. sl,(A) is also the space of matrices in gl,(A) with trace in [A, A].

Let us assume that p > 4.

Proposition 3.5. [Gu2] The Lie algebra sl,(C[t] x T") is isomorphic to the Lie algebra generated by the elements
Fop(t), Fap(y) for v € T, 1 < a # b < p and satisfying the following relations: If 1 < a,b,c¢ < p are all distinct and
1 <a,e,d < p are also all distinct, and if v,v1,72 € ', then

[Fab(t)a Fbc(t)] = [Fad(t)a ch(t)]v [Fab(l)a Fbc(t)] = Fac(t)§

[Fab(7"), Foe(t)] = [Faa((—1)"t), Fac(7)] ¥ # 1r,i = 0,1,  [Fap(1), Foc(72)] = Fac(1172)-
If1<a,b,c,d<panda#b#c+#d+#a, then

[Fab(t), Fea(t)] = 0, [Fap(7), Fea(t)] = 0, [Fap(11), Fea(12)] = 0.

In [GHL], it was explained that sl,(C[t,t~1] x T) is isomorphic to sl, (C[w,w™!]) (w should be thought of as u?),
so that sl,(C[t] x T') gets identified with the Lie subalgebra g of sl,, (C[w,w™!]) spanned by all matrices of the form
Ejw", (Ey — Ejj)w” for any 1 <14 # j <nif r > 1 and all the matrices E;;, Fy; — Ej; with 1 < # j < n except
those with p+1 < i < mn,1 < j < p. The next proposition was missed in [GHL].

Proposition 3.6. sl,,(Clw*!]) is isomorphic to sl (C[t*]) and g is isomorphic to sI?(C[t]).
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Proof. An isomorphism p : sl,(C[w,w™]) = sl¢(C[t,t~!]) can be described explicitly in the following way. If
€; = €5, then p(EZ]wT) = Eijtzr; if € = —1 and €; = ].7 then p(E”U}T) = Eijt2r+1; if € = 1 and €; = —1, then
p(Eiij) = Ez‘thT'_l. O

Let ey and e; be the two primitive idempotents of I'. Composing p with the isomorphism sl,(C[t,t71] x ') —
51, (Clw, w™!]) given in [GHL] yields the isomorphism 7 : sl,(C[t,¢t71] x T') = sl (C[t,t~1]) given by 7(E;;t*"eq) =
Ei 12", 7(Eijt*Ter) = Eigp j1pt>", T(Eijt* Tleg) = EH_pth”'l T(Eijt*le) = E; j4pt* ™!, which restricts to an
isomorphism sl,(C[t] x T') = sl% (C[t]).

The previous proposition implies that Y}, x, (sln, €o) can be viewed as a deformation of tUsl,(C[t] x I'); this is part
of the content of Theorem 3.2 below. We set Hup (V') = Fuu(v') — Fyp(7%),i =0, 1.

Definition 3.10. We denote by Y the algebra generated by elements Fop(t) with 1 < a # b < p and by Fap(7) for
veT, 1<a,b<p and satisfying [Fap(1), Foc(t)] = Fac(t) = [Fap(t), Foe(1)] if ¢ # a,b and the following relations:

If1 <a,b,c<p are all distinct and 1 < a,c,d < p are also all distinct, then

(Huaer)Fuj(eo) Fieleo) = (Fi(eo) Fjn(eo) = Fuj(eo) Fia(eo)) Fuc(er))

NE

[Fab(t); Fbc(t)] - [Fad(t)7 ch(t)} =

.
Il

+ Z (Hbd eo)Faj(e1)Fjc(er) — (Fyj(er) Fjp(er) — Fdj(el)Fjd(el))Fac(eo))
+2>\2(Hbd(e1)Fac(eo) — Hyq(eo)Fuc(er)).

Fora#b#c,a#d#c and for v,v1,7v2 €T,
[Fab(’yi)a Fbc(t)} - [Fad((_l)it)7 ch(’)’)] Y 7& ]-Fai = Oa ]-7 [Fab(’)/l)v Fbc(’yZ)] = Fac(71’72)~

If1<a,b,c,d<panda#b#c+#d#a, then

[Fab(t), Foa(t)] = Y (Fej(e1)Fjp(e1)Fua(en) — Fey(e1)Fuj(eo) Fja(en)) — AaFaa(eo)Fev(e1)
j=1

p
+Z vj(€0) Fjp(€0) Fua(er) — Fuy(eo)Fuj(er)Fia(er)) + AaFua(er)Fap(eo).
j=1

If a # d,b # ¢, then
[Fab(fy)a ch(t)] = Oa [Fab(’}/l)a ch(’h)] =0.
Finally, I, = %_, F;;(1) is central.

Theorem 3.2. The algebras Yy and )N’M:LAQ (gln, t) are isomorphic.

Proof. We can define an algebra epimorphism ¢ : Y — }7,\1=17,\2 (gly, ®) by setting Y(Fyup(1r)) = Eap + Eatpptps
V(Fap (7)) = Eap — Eatpptp for 1 < a,b < pand ¢(Fy(t)) = j(Ea)b+p) + J( Eyipp) for 1 < a#b < p. To check that
this does indeed define an algebra homomorphism, one should use equation (8) along with the reflection equation
and the unitary condition. We will not include the relevant computations. Passing to the associated graded algebras,
we obtain a homomorphism gr(¢) : gr(Yy) — gr(f/,\FL)\Z (gl,,8)). Here, the filtration on EN/,\FL)\Z (gl,, ) is the
one induced from the filtration on Yy, _;(gl,) obtained by giving J(E,;) degree one. We thus have an embedding
gr(f/,\FL)\Q (g1, 8)) < gr(Ya,—1(gln)) and a quotient map U(sl,(C[t] x T') @ CI,) — gr(Yy)) (see Proposition 3.5).
The composite of all these maps is the monomorphism $((sl,(C[t] x T') & CI,,) — 4U(sl,,(C[t]) @ CI,,) which identifies
U(sl,(C[t] x T) & CI,) with $U(sl? (C[t]) & CI,,). (See Proposition 3.6 and the paragraph just below it.) Therefore,
gr(v)) is an isomorphism, hence so is . O
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4. DRINFELD FUNCTORS

4.1. Preliminaries. Let the symmetric group &, act on the space (C")®! by permutation of the / tensor components.
If E;; € gl,(C) and v € (C™)®!, we denote by Ez(jk)(v) the element obtained by applying F;; to the k-th factor in
the tensor product. Then, as an element in End ¢((C")®), the permutation oy, € &; equals szzl Eff)E](:) Set
P =30 EWVESTY € Ende((C)®) and I = Y7, BiY @ Eyj € End c((C")®') ®c Endc(C™).

Lemma 4.1. View Py as the linear operator P, @ 1 € End ¢(C™)®! ®c End ¢(C"). We have

Trt1,Pe] = —[Tn, Tns1), [T, Pr) = [Tk, Tiga]-

Proof. The proof is based on direct calculations:

n n

TPl = Y BY @BV eE. - Y ER e B e By,
s,t,r=1 s,t,m=1
T Tea] = Y. EY@ENY @B - Y EY @ BE @ By,
s,t,m=1 s,t,r=1
and [Iy,Pr] = IxPr — PrIr = Prlrq1 — Ikt1Pr = —[Tky1, Pil. U

Let 7, € W act on (C™)®! by multiplication on the k-th component by the matrix ©, (this operator will be
denoted by @ék)). This defines a W;-module structure on (C")®. Thus for any H. -module (resp. H. . -module)
M, the space M ®c (C™)®! has an &; (resp. W;) module structure obtained from the diagonal action. From now on,

let e=1or —1.

4.2. Drinfeld functor for Y (gl,,). In this section, we recall the construction of the Drinfeld functor in type A.

Let M be any H, -module and set DA(M) = M ¢ (C™)®!. For constants A and ¢, (k= 1,...,1), define
T (u) = T3 (u) - T (u) € HY [[u™")] ®c End ¢((C")®) @c¢ End ¢(C"),
1

where T)(u) =14+ —————— Q@ I, k=1,...,L
k() U — Ay + ¢k b

Then the map T'(u) — T*(u) defines an action of Y (gl,) on DA(M). As was mentioned in Section 4.1, D*(M)

has a &;-module structure. Define the space D4 (M) as

n

-1
DA (M) = E)A(M)/ Z Im(o; — €), where Im means image.
i=1

Proposition 4.1 ([Ar] proposition 2, [Dr] theorem 1). Assume ¢, = ¢ for (k=1,...,1) and k1 # 0. Let M be any
left H, -module. When X\ = /K1, the map T(u) — T*(u) defines an action of Y (gl,)) on DA¢(M). Thus we have a
functor

DA€ :H. —mod, — Y(gl,) —mod, M ~— D*(M).

When ¢ = —1, a condensed version of the proof is contained in [Ar]; we give a few more details for completeness.

Proof of Proposition 4.1. We need the following relations:

IiO'j = O'jIZ', lf] 7£ 7 — ].,’i, IiO'i = O—iIi+1, IiO'Z',1 = UiflIifl.

We can write H2:1(“ + ¢ — Ayp)TH (W) T (u) - - T (w) = Tp(u)---TM(w), where T (u) = u + ¢ — Ay, + 1 @ Ij.
Since Hic:1<“ + ¢ — Ayg) is in the center of H,, (Lemma 2.3), it is enough to show that, for A = £/k1, the image of
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T} (u) - - TM(u)og — ok T3 (u) - - - T (u) is contained in the image of oy — . First notice that o commutes with T (u)
for s # k,k+ 1. We also have

T (W) Ty (u)or
=\

=Ty (u) (o (u+ ¢) — oRAYr + Ak1 @ Pp, + 031 ® Ij,)

Tg( )Uk(u +c— )\yk + 1 & Ik) +T2(U)>\FL1 ®Pk
ok(u—+c¢) — AopyYr+1 — A1 @ P + 051 @ Tpq1)(u+ ¢ — Ay + 1 @ Iy) —|—f2(u))\/<;1 ® Pg

=op(utc—Mp F1@ L) (utc—Myp + 1@ 1) — Mg @Pr(u+c— Ayp + 1@ 1) + Tp(u) vy @ Py

= 0% Ty (W) Ty () + 0k @ [Trp1, Te] + Ay @ [Tx, Py
= kaz(u)fl)c‘+l(u) + (0 — Ak1)1 ® [I41,Ix] (by Lemma 4.1).

/\

Thus we have

T} (u) - T (w)or — ok Ty (u) - T (w) = (o5 — Ak) T (w) - To_y () [Tar, Tl TRsa (u) - - T ().
We get the desired conclusion when Ak = e.

As for homomorphisms, suppose that f € Hompy . (My, Ms). Then f extends to a homomorphism f®l:
DA(M;) —» DA(Ms); since f is a homomorphism of modules over H. , (f®1)(2£; Im(c;—¢€)) C El 1 'Im(o;—€). O

4.3. Drinfeld functor for MacKay’s twisted Yangians. In this section, we explain how to construct a functor
from the category of modules over the degenerate affine Hecke algebra of type BCj to the category of modules for
the MacKay twisted Yangian Yy, »,(gl,, ).

Consider a left module M over H., , . From Section 4.2, since H, . contains H, , we know that DAE(M) is a left

module over Y (gl,,). So, by restrlctlon it is also a left module over Y>\1 2o (800, B).

Now consider the following space:

-1
DBCE (M) = DA4(M)/Im(y; — &) = M ®¢ (C*)®!/ <Z Im(op — ) 4+ Im(y — 5)) :
k=1

DBC¢(M) is not a left module over Y (gl,,), but we have the following result which is an analog of theorem 1 in
[Dr] and of Proposition 4.1.

Theorem 4.1. DBC¢(M) is a left module over }7,\1,>\2 (gln, ) if A1 = K1 and Mg = Kka. Therefore, we have a functor

DBC,E . Hl

R1,R2

If f e Homy (My, My), then DBC(f) € Hom%MZ(g[mk)(DBC’E(Ml), DBCE(M,)) is defined by DECE(f)(m ®
v) = f(m)®v. Moreover, if p,n—p > 1+1, DBY provides an equivalence between the category of finite dimensional
modules over Hf{1 x, and the category of finite dimensional modules over lN/AL)\z (gln, ®) which are of level I in the sense
that they decompose over gl, @ gl,,—, as direct sums of submodules of (C™®! (s0 in particular the identity matriz I,,
acts by the scalarl).

modL — ?)\1’)\2(9[”,?) — modL.

Proof. Tt is enough to show that the generators J(E;;) € Yx, x,(gln, ), which act on D4<(M) by Proposition 4.1,
descend to operators on DP%#(M). Set
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It can be deduced from [Dr] (or from formula (5) and the proof of Proposition 4.1) that J(E;;) with 1 < 4,5 <n
acts on D4¢(M) in the following way:
l 1

k—1
1 1 1
J(Eij)(m®v) = 6/\1 E (Iﬁ:lyk + 5 E Osk — 5 E Usk) m®Ei(]l,c)(v).
s=1

k=1 s=k+1
For E;; € p, we can make the following computations:
Zm@RkEU =_Z Zm@ k20 + Ky Z Z EQEReMe® | EX (v)
k=1 h=1 s,t=1
h#k
K l l n
=—Z Y meaEP V) =5y > Y me (Ba)Pa(BuEy)Ye) (v)
k=1 k=1 het st=1
K€ K l l n
= %E”(méav) - ?1 Z ZZete m® (B )(h)E(k)( )
k=1 h=1 t=1
h#k
K€ K l n K l n
- Z’Ezj(m@)v) - 51 S aeme (EPER) (v) + éZZete m @ EWE® (v)
k,h=1t=1 k=1 t=1
p n
€; R1€;
= —5(,%2 +K1(n —2p))Eij(m®@v) — 12 (Z Ei By Z E,tEtj> (m®v)
t=1 t=p+1

(using Lemma 3.2)

€ K1€ [(n— 2
— _i(;@—l—m(n—Qp))Eij(m@v)—k 1% ( pEij _

2 2 2
B ke  Ki(n —2p) K1
=—\G\lgT— 51— Eij+z[07Eij} (m@v).

Since

9) J(Eij) = J(Eij) — € ()\22 + >\1(n42p)> Ei; — %[C, Eij,

we see that if A\; = k1, A2 = k2, we can define the action of j(E ;) on DA¢(M) to be

l
(10) f(Eij)(m®v):sZ<yk+ Zask Z ask+Rk>m®E( v—sZym@E” v.

k=1 s=k+1 k=1

We now want to see that it descends to an operator on DB¢(M), so we have to show that it stabilizes the
subspace V; spanned by ym ® v —em ® (91(,l)v for any m € M,v € (C™)®"
!
~ - k ~ k
J(Eij)(yym @ v —em ® G)Z(,l)v) = ¢ Z(ykwm ® Ei(j v — eim ® EZ-(]- )G)Z(,l)(v))
k=1

= gz St ’ylykm®E( )v—eﬂkm®@g)Ei(f)(v)) eV.

We have thus shown that J(E;;) descends to an operator on DB%¢(M). The space DP¢(M) is thus a left module
over the MacKay twisted Yangian Yy, x, (gl £).

The proof that DBE< provides an equivalence of categories follows from similar arguments as those used in
[ChPr2, Gul, VaVa], so we just outline the main ideas. The tensor space (C™)®! decomposes as a direct sum of
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irreducible modules over GL,(C) x GL,,—,(C) x W; (see [ATY] for a precise statement), hence any left module N
over Yy, x,(gln, &) of level [ is of the form N = M ®¢ (C")®!/ Z 1 Im(o; — €) + Im(y;, — €) for some Wi-module M.

To transform M into a module over H., | koo We need to find commuting operators YV € Endc(M) for k = 1,...,1
such that Yy,..., )V, 01,...,01_1,7 satisfy the defining relations of H,€1 x, given in Lemma 2.2. To determine how
Y; should act on m € M, pick a primitive tensor v = vy, ® -+ ® vy, with ky,..., k& all distinct and {vy,...,v,}

the standard basis of C™ and consider how j(ElkJ) acts on it, where i # ki,...,k;. (Here, the assumption that
n > max{p,n —p} > [+ 1 is needed.) To deduce that the commutator [};,);] (for, say, i < j) is given by formula
(1), one should apply [J( Eu, ;) J(Ea] b;)] to m @ v for an appropriate choice of a;,b;, a;,b;, v (for instance, take
b; = ki,b; = kj and k1, ..., ki, a;,a; all distinct). The assumption p,n —p > [+ 1 ensures that DBC: £(M) is non-zero
if M is non-zero: see [ATY]. O

4.4. Drinfeld functor for twisted Yangians of type AIII. In this section, we will construct a functor from the
category of left modules over the degenerate affine Hecke algebra of type BC to the category of left modules over the
twisted Yangian of type AIIl which was introduced in Section 3.3. We will use the same notation for this functor as
in the previous section.

For any 8 € C, denote by Bg(n,p) the twisted Yangian B, ,,(n,p) with parameters 71 = 1,70 = 8. For any left
H, . -module M, view it as an H, -module and set DP%<(M) = DA¢(M)/Im(y, — ¢).

R1,R2

For k =1,...,1, define the following elements in H,  [[u™']] ®c Endc((C")®") @c End ¢ (C"):

1 1

Tg(u):1+—yk®lk7 SQ(U)Zl—m

Ig.
u—n/2— A © Ik

Lemma 4.2. We have T}(u)Sp(u) = 1.

Proof. Using Iy - Iy = nl, we get

A N 1 1
Tp(w)Sg(u) = 1+m®lk 1—m®lk

u+n/2—Ayp —u+n/2+ Ay —n

SR CYRS Y S v | PRy vy

®Ip=1.

Set
(11) BMu) = T (u) - T ()0, (w)S7 (—u) - - $7 (—u).

Here we regard B*(u) as an n x n-matrix whose entries, denoted bg\j(u)7 are power series in u~!. ©, s(u) is shorter

notation for 1® 1 ® 0, 5(u) € H, . [[u™!]] ®c End ((C")®!) ®¢c End (C").

R1,R2

From Proposition 4.1, when A = .=, the map T'(u) — T (u) defines an action of Y (gl,,) on D4#(M), so from the
definition of Bs(n,p) and Lemma 4.2, the map B(u) — B*(u) defines a representation of Bg(n, p) on the same space.

-2
Theorem 4.2. Let M be any Hf{w{2 -module and = ;721 + z 5 P

representation of the twisted Yangian Bg(n,p) on the space DB (M).

. If X\ =¢/k1, the map B(u) — B(u) defines a

Proof. Assume ¢ = 1. (The proof is similar when € = —1.) From Lemma 2.3, we know that the element Hi::l ((u—
n/2)? — A?y}) lies in the center of H, . . Thus we can multiply both sides of (11) by this central element and we get

l
= [T =n/2)% = Ny)B (u) = TH(w) - - TN ) Oy, (w)S} (—u) - - 57 (—u),
k=1
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where T (u) = u — /2 — Adyp + 1 ® I, Sp(—u) = u —n/2 + Ay + 1 ® Ij.. Tt is enough to show that the commutator
of BM(u) and ; on D¢(M) has its image contained in the image of 7; — 1.

For each Iy, let I = Zl<z]<p E(k) @ E; +> E(k) ® F;; and Ik = I, — I{. Notice that we have the

following commutation relations:

p<i,j<n

’lej = Ij'yla lf] 7é lv I?’Yl - ’VZI?a I?’W = _’le?v [’W,@pﬂ(u)] =0.
From these, we can see that +; commutes with Tg and gz if k#1L.

Thus we only need to check the commutator of y; and T} (1), s(u)S;(—u) on DA*(M). Set R = u—n/2+1RI¢.
Then [R,v] =0, R,0, 3(u)] =0.

T} (w)Op,5 ()7 (—u) v
=R- My +121)0,5u) R+ Iy + 12 Iy,
=R— M +1®1))0, 5(w) (R + A~y + £2) ® OF — 1 (1@ 1))

=R-Ay+1® I?)@Z,’ﬁ(u)'yl(R M- 1IN+ R- Ay +1® I;’)@p,g(u)()\,%g ® @1(,[))

= (WR = A~y + r2) ®OY — 3 (1®1}))0, 5(u)(R — Ay — 1 ® I})

+R= Ay +1®1))0, 5(u) Ak ® OF)
=R+ —1®1))0, 5w R — Ay — 1®I)) — (Ak2 @ ©1)O, s ()R — Ay — 1 ® 1))
+ R= Ay +181))0,5(u)(As2 @ OP).

Since

R+ —101))0, s(u)(R— Ay — 1@ I}) — T (u)Oy 5(u)S} (u)
=R+ - 1010, 5u)R Ay —12I) —R—- Ay +1RI1)0, s(u)R+ Ay + 1 ® 1Y)
= —2(RO, (1)1 ® I}) + (1® 1})6,,5(u)R)
=2 ((@p +Bu ™ u—n/24+10I)ARI) + (-0, +fu H1I)(u—n/2+1® I?))
= =2(B(2 = nu "I} + O,(17T} — 171}) + fu” (11} + [I}))

=-2802—nuH(1®1) 20, +pu")|p Z Ef?@Eij—&— (n—p) Z E()®E

i<p,j>p 1>p,j<p

+2(0, - fu ) | (n—p) Y EJ@E;+p Y EjeE,

i<p,j>p 1>p,j<p
—2(28+2p—n)(1®1})

and
~(Ar2 ® )0, 5(W)(R = Ay — 1@ 1)) + (R — Ay + 1® I7)O, 5(u) (Arz @ OF)
= (M2 ® 010, 5(w)(1® 1) + (1® I})0, 5(u)(Ak2 @ OV)
= 2r2(1® 1Y),
we have
TN (w)Op,5(w)S7 (—w)m — T} (1) Oyp,5(w)S] (—u) = =20 (28 + 2p — n)(1 @ 1)) + 2:ka (1 @ I}) = 2Ak2(1 = ) (1 @ I7),
because 8 = ;721 + 5 P and A = - This proves that the entries of the coefficients of TN (1), 5(u)S} (—u)

descend to endomorphisms of DPS¢(M). O
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The Drinfeld functor is compatible with the coproduct in the following sense. Recall Lemma 3.1 and the observation
after Lemma 2.1.

Proposition 4.2. Choose l1,ly € Z>1 such that iy +1y = 1. Let M; be an Hf_gl -module and let My be an Hfgl,,_c2 -module.
Set M, ® M, = H! (My ®c My), which is an H! -module. Then DBC¢(M; ® M>) is isomorphic

K1,k2 ®ng1 QHZ 1y K1,K2
to DAS(M;) ®c DBC(My) as a module over Bg(n,p), where DA (M) ®c DBC#(My) becomes a left module over
Bg(n,p) via the coideal structure given in Proposition 3.2.

Proof. As W;-modules, Hfﬂ’ﬁ2 >~ C[W] ®C[6l1]®cC[Wz2] Hfgl K¢ Hffl’,{z, o) DBC,e(M'1 © My) = DA’E(MI) Rc DBC,E(MQ)

as modules over gl, ® gl,—,. To complete the proof, it is enough to check that the action of B (u) on DBS¢(M; ® M,)
comes from the coproduct A: this follows from Proposition 3.2 and formula (11). g

The following theorem was proved in [Nal] by M. Nazarov. An analogous result also holds for Yangians in type A
[Ar] and for super Yangians of type @, [Na2]. Actually, the proof presented below is similar to the proof of theorem
5.5 in [Na2].

Theorem 4.3. [Nal] Let k1,k2,\, 8 be as in Theorem 4.2. Let M be an irreducible module over Hfﬂm. Then
DBCe(M) is either 0 or an irreducible module over Bs(n,p).

Proof. One of the ideas is to reduce to the case of the twisted current algebra. Suppose that DBS¢(M) # {0} for
some irreducible module M over H, . We want to show that DZ#(M) is irreducible. Let No C DP#(M) be a
subspace preserved by the action of Bg(n,p). Since we have gl,(C) & gl,,—,(C) C Bg(n,p), Ny is also preserved by
90, (C)@gl,—,(C). From the classical Schur-Weyl duality between gl,(C) @ gl,,—,(C) and W, (see [ATY]), there exists
a Wi-submodule My of M such that Ny = DBS¢(M;). Assume that for any non-zero vector b € My the image of the
subspace Cb®¢ (C™)®" is not zero in Ny. Notice that since M is irreducible, we have H., . -My = M. We only need to
show that Ny generates DB (M) under the action of Bg(n,p). Let M’ = Hfﬁ)NZ ®ciw,] Mo = Clyy, - - ., yi] ®c Mo be
the left module over H. 1., induced from Mq. Then M is a quotient of M’. After identifying Mo with the submodule

1® My C M’, we see that it is enough to show that DB (1® M) generates DB ¢(M’) under the action of Bg(n, p).

Define a grading on qu,m by letting deg(y;) = 1 for i = 1,...,1, and deg(c) = 0 for & € W;. Then M’ becomes
a filtered module. This induces a filtration on M’ ®@¢ (C™)®! and so on the quotient DB¢(M’) which is compatible
with the one on Bg(n,p) defined in Section 3.3. After passing to the associated graded spaces and using Corollary
3.3, we are reduced to proving the theorem with H replaced by grH! =~ Clyr, ..., 0] x Wi, Bg(n,p) replaced

R1,R2 K1,R2

by gr Bs(n,p) = Ugl? (C[t]) and M’ replaced by C[y1,..., 7] ®c Mo. Here we use g; to denote the image of the

clement y; in grHl, . . Set W = DB(Clyy,...,7] ®c Mp). We only need to show that DPC(1 @ M) generates
W under the action of Ugl? (C[t]). The rest of the proof follows the argument in [Na2]. O

In light of the previous theorem, it may be useful to have a criterion which gives a sufficient condition for certain
modules over the degenerate affine Hecke algebra to be irreducible. Such a criterion for principal series modules is
proved in [KrRal; see also [Ka] for the analogous result for affine Hecke algebras.

Definition 4.1. Let a = (a1,...,a;) € C and let Co = Cly1, ..., ]/ (yi — a;)!_,. The module Hfﬂm ®Cly;
is called a principal series module and is denoted M,.

,,,,,

Theorem 4.4. [KrRa] M, is irreducible if and only if a; # ko Vi=1,...,l and a; £ a; # k1,—rk1 V1 <i < j <L

Combining Theorems 4.3 and 4.4, we obtain a family of irreducible finite dimensional representations of Bg(n,p).

We thank M. Nazarov for bringing Kato’s theorem to our attention.
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4.5. Compatibility of the two Drinfeld functors. In this section, we will show that the construction in Section

4.4 recovers the one in Section 4.3. This is to be expected in light of Proposition 3.4, but doesn’t follow immediately

2)

from this isomorphism since it is necessary to find an explicit formula for the operator through which bl(-j acts (if

possible in terms of 7 instead of y;) and then compare it with the formula we already have for .J| (E;;), namely (10),
which involves 9.

Let us denote by “=” the equivalence modulo u~3. We have
n n
BMu) = (1 +ut @I +u? (5 + /\y1> ® 11> (1 +ut @I 4 u? (5 + )\yl) ® Il)

(0, + BuY) - (1 FuleL fu? (g - )\yl) ® Il) S (1 tul @I +u? (g - Ay1> ® 11)

l l
0, +u "t (5 +1® ) (10, + @,,Ik)) +u? |23 (1 Y 1k> + Y (18416,
k=1

k=1 1<k<s<I

l l
+ > 6l LI+ <1®Zlk> 0, (1@218)
k=1 s=1

I>k>s>1

(12 £3 (e (5w o1+ (5 +o) 03 @p)> |

So if we set BN (u) = Y7, bi(u) ® Eij and bjy(u) = 372 bf;) ~T we have

1
(13) b = cidiy, by = B0+ (et )Y 10 EY.
k=1

In order to calculate b'?, we need the following lemma.

ij

Lemma 4.3. Assume 1 <i<p<j<mnorl<j<p<i<n. As operators on (C")®, we have

l l k—1
(14) Z(— > Utk"‘zgtk) EY =—a| Y (Mo, + > 6,(LilL)
t=1

k=1 t=k+1 1<k<s<l I>k>s>1 ij

l l l l
(15 O A (9 I (ZISD '
k=1 s=1 ij

k=1 t=1
t#£k

Here by (-)ij, we mean the (i, j)-th entry, i.e., for an element G € End ¢ ((C")®!)®@cEnd ¢(C"), G = > i j=1(6)ij ® Eij.

Proof. The proof is based on direct calculations. Since o, = Y0 Eﬁif,mz ® Eﬁfz)’ml, we can rewrite the left
hand side of (14) as

s>k m=1 s<km=1

On the other hand, we have

ILHCRRED SERSTNED SIS SITCICATTINSD DI SRz IZ Lo

k>s k<s k>s,j,m=1 k<si,j,m=1

which implies the equality (14) (after switching k and s) since €; = —¢;.
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Similarly, the left hand side of (15) can be written as

l

l n
k k
Z Z EmEiEfn])'Ei(ja) +(2p—n) Z quj ),
k,s=1m=1 k=1

s#k
On the other hand, we have

(o (£5) 5§ ertston o 5 ror,

s=1 s#k i,j,m=1 k=114,5,m=1

which implies the equality (15). |

Now from (12) and the previous lemma, we have, for 1 <i<p<j<norl<j<p<i<n,

l l l
bg) = QBZEZ.(J’?) — eiez (— Z Ok + me) E(k
k=1 k=1

t=k+1

0 3] D o R PR o

t=1
t#k
! 2p—n
k
= =26 ) [+ Zatk -5 Z Otk — *Z%t%% +e < 5 —ﬁ> w|eEy.
k=1 250
ik
If we take A\ = €/k1, B = ko /2k1 — (2p — n)/2, we have
1
2 k
(16) enibly) = 26 | m + 2 Zo'tk - Z Otk — — Z%t%% - *% ®EY
k=1 t=k+1

2k
l

—261' Zyk ® E(k)
k=1

Comparing (7), (8), (10) and (16), we have the compatibility of the Drinfeld functor for the twisted Yangian of
type AIIT and of the Drinfeld functor for MacKay’s twisted Yangian.

5. FOCK SPACE REPRESENTATION FOR THE TWISTED YANGIAN By, ., (n,p)

5.1. Preliminaries. We will need to work with a different presentation of the degenerate affine Hecke algebra of
type BC;.

Definition 5.1. Let H be the algebra generated by the group algebra C[Wj] and a set of pairwise commuting

K1,Kk2
elements 91, ...,9; such that
(17) 0% — Yir10 = K1, 04; = P04 if j F 1,0+ 1,
(18) MY+ 917 = ke, MY =g ifj# L
Lemma 5.1. Hfi1 wy 18 1s0morphic to Hf,{1 ro -
Proof. An isomorphism Hf,i1 kg — Hf@1 w, 18 given by y; = Gi—iy1,7% = Yi—it1,1 <7 < [ and by o; — o, for

1<i<]—1. O
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I:Ifﬁhm2 acts on P, = (C[zlil, RN zlﬂ] in the following way: the action of ¢ € &; is by permuting the variables ziil;
the action of ; is by sending ziﬂ to z;" L. the commuting elements 1, ..., 9 act via trigonometric Cherednik-Dunkl
operators D;; of type Ci:

0 K1 K1
D;; = Zig‘i‘ Z ﬁ(l_aik)_ Z 17_1(1—%1@)
L <kai<l T PRk I<ick<l T Fi Pk
K1 K2 . K2
— (1= oavive) — 1—) = (i— 1k + =
+ Z 1 ZkZz( zk%%) 1_ 22( ’Yz) ( ) 1+ 9
1<k#i<l @

Remark 5.1. Here we make a rather unusual choice of simple roots for a root system of type Ci: €; — €;41 for
i=1,...,01—1 and —2¢;.

l

Because of Lemma 5.1, any module over Hmm can be viewed as a module over H. w1 ma- We thus have a version

of the Drinfeld functor with H. L.x, instead of HL 1.ky- However, it will be necessary for us not only to change the

degerate affine Hecke algebra, but also to consider a slightly different twisted Yangian.

Definition 5.2. Let Bﬁ(

n,p) be the coideal subalgebra of Y (gl,) generated by the coefficients IVJE;) of the entries of
B(u) which is given by B(u)

=T (—u)O, 5T (u).

Bs(n,p) is isomorphic as an algebra (but not as a coideal subalgebra) to Bg(n,p) via the automorphism of the
Yangian given by T'(u) — T(—u)~?.

Sete=—-1,ky =1, A=1and 8= "2+ ”_TQP. (Here we view k1 and k2 as the parameters of I:If{hﬁz.) If we set

-1
DBCl,fl(Pl) — P, ®¢ (Cn)®l/ (Z Im(og + 1) + Im(y; + 1)) )
k=1

an analog of Theorem 4.2 holds and we have an algebra homomorphism
Pl—1: B@(n,p) — Endc (DBC“_l(Pl))

which is given by p; _1(B(u)) = S;(—u)S;—1(—u) - - - §1(—u)Op 5 (u)T1 (w)Ta(u) - - - T;(u) as in equation (11) with A = 1.

T;(u) is defined as T;(u), but with ¢; instead of y;, and similarly for S;(—u).
As vector spaces, P, ®@c (C")®! = ®,li=1 ((C[zzil] ®c C"). Let e, (n = 1,...,n) be the standard basis for the
vector space C" and set e, = 2 e, for k € Z. Then {e, x|l <n < n, k € Z} forms a basis of C[z*!] ®c C" and

{emdr @ €k @+ @€ y|1 <mi <, ky € ZVi=1,...,1} forms a basis of P, ®c (C")®!. The action of W, on
P, ®c (C™)®! can be written as

O 1 €niky @ gk @ @ Eyyky (1) ko1 ® €no(2),ko(2) @@ €noy ke for o € Gy,

Vi Cniky @ Cnoky @ D Cpyky T Cypy kg @ Cpp ey D00 B €y iy

Let V¥ be the subspace of /\i:1 ((C[zlil] ®c C") spanned by {ey, &, A €nyis A+ Aen ki € Zso,m = 1,...,n}
where A is the usual wedge product. (If V! = (C")®!, then V) is its affinization P, ®¢ (C™)®!, but we will not use
this notation here.) The quotient map P, ®c (C")®! — DBCu~1(P)) induces a vector space isomorphism between
VAL and DBCe=1(Py). This allows us to view V/ as a representation of Bg(n,p). We also use p;,_1 to denote the
algebra homomorphism Bg(n,p) — Endc (V) corresponding to this representation.

We introduce a function ¢ on the set {(n,k)|n =1,...,n,k € Z>o} by ¢(n,k) :=n—n(k+1). Then ¢ defines a
one-to-one correspondence between the index set in question and the set of non-positive integers; it induces an order
on the index set by (n1,k1) > (2, k2) if and only if ¢(n1,k1) > ¢(n2,k2). In the future, when we write a wedge
product (either finite or infinite), we will always use a decreasing order on each monomial part.
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5.2. Fock space. Let us recall the Fock space F considered in [Ug]. It is defined as the vector space spanned by
semi-infinite wedge products e;, x, A €y, i, A --- with the asymptotic condition that ¢(e,, k) = d(en, 1 kivy) +1
for all but a finite number of i € N. For any non-positive integer M, define F,; as the subspace of F spanned by
€nr by N €y Ao with ¢(n1, k1) > @(n2,k2) > -+ and the asymptotic condition that ¢(ey, r,) = M — i+ 1 for all
but a finite number of i € N. We call M the charge of the wedge product; observe that 7 = @,,., Fm. In each
space Fys, there is a special element |M) called the vacuum vector of charge M defined by

M) = ey, ky A€y ko A=+, where ¢(ey, x,) = M —i+1 for all i.

From now on, we fix a charge M = s — n(k + 1) for some integers k € Z>¢ and 1 < s < n. Set J(d) = s+ nd
for d € Z>o. By definition, we have |M) = esr Aes—1x A+ A1k Aenkt1 Aen_1ks1 A---. For any vector
V =€ ks N €ny ko Ao in Fiy, define its M-degree to be

deg(v) = (k—k))+ D D (k+m+1—kermnsy).
j=1 m=0 j=1

From the asymptotic condition for the vectors in Fys, we can see that the M-degree is well-defined and deg™ (| M)) =
0. Denote by .7-']‘6[ the subspace spanned by the homogeneous elements of degree ¥(d) in Fas and by Fas— the
subspace of Fy formed by vectors ei, &, A e€iyk, A--- where all k; > 0. Thus Far - = @, Fiy - = @y(Fi N Fiy ).

We denote Va?fﬂ(h) by V. It has a basis formed by ordered wedges: {€, 5 A €noks A+ A €nyieinnll < i <
n, k; € Z>o}. Define the M-degree for these vectors by

S

h—1
degM(em,kl A€y ks Ao A enlvks+nh) = Z(k — k‘j) + Z Z(k +m+1—- ks+mn+j)-

j=1 m=0 j=1

n

Let V%.(d) be the subspace of V. spanned by wedge products with M-degree equal to ¥(d). It is a B/g(n,p)—module,
i.e., the twisted Yangian action preserves the M-degree.

Define 1% - Vi(d) — Fpr by sending any vector v € V/i(d) to the vector v A | — n(k + h + 1)). From the

definition, we can see that deg™ (v) = deg™ (v A | — n(k + h +1))). Thus we have a map Lﬁ\l’dh :Vh(d) — ]-'J‘\im_ and
the following result analogous to proposition 3.3 and corollary 3.4 in [Ug].

Lemma 5.2. For 0 < d < h, L}i\/’[h is an isomorphism of vector spaces. Moreover, if d < hy < hg, then the map

L;i\}fhl’hz = (L%hz)*l o Lﬁ}fhl : Va}g (d) — Va};f (d) is an isomorphism.

5.3. Twisted Yangian action on a Fock space. For any positive integer m, define a subspace in C[z; Lo, zl_fn]:

Linm = Spanc{z; "2y 2 ~z;$’+"|0 < |m;| <mViand #{i : |m;| = m} <n}.

Let
(19) f=zk -~-zl_k’ (z141 - 214n)” ", where 1 <k; <mforalli=1,...,1
The following lemma can be seen from direct calculations.

Lemma 5.3. Let 0;; and y; be the usual reflections in Wi. For s,t € Z>¢ and s < t, we have the following identities:
1

. —s_ _—t o —s_ —t —s—1_—t+1 L. —t+1_—s—1,
71_2712_(170”)(214 z; ) = z; z; 2 z; tot a2 ;
i ~j
1
—s _—t _ —s _—t —s4+1_—t+1 t—1 _s—1,
71_2_2‘(1—0’13‘%%)(% ziY) = oz tr A T T Ay 2
iZj
-5\ _ —s —s+2 5—2
1_2,_2(1*%)(21' ) = AT T
(3

From Lemma 5.3 and the definition of the trigonometric Dunkl operators, we have

(20) Di,l+n(f) = Di,l(f) mod El,n,m for i = 1, ey l;
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(21) D;14n(f) = (—m + @2l +n—i)k — %) fmod Lypmfori=1+1,...,14+n.
Set C(i,1,n) = —m 4+ (2l + n — i) — 2. (Recall that we assume x; = 1.)

Besides the previous two equivalences, we will also need a corollary of Lemma 5.4 below.

Let
(1) 2) (n) (k) Ey)
Tij(u) = Z T, Wy, (@) T i(w), Ty (w) = dap + ” Ji o
1<ki,....kn—1<n
where the ¢;’s are constant such that c¢;41 = ¢ — 1. Define also S;;(u) and SE;) by
(n) (e (n=1) (1) (k) By
Sij(u) = > St (WS () S (u), Sy (u) = dap + u:dk,

1§k1,...,kn_1§n

where the dj’s are also constant such that di; = dj + 1.

We view the coefficients of Tgf)(u) and ng)(u) as linear endomorphisms of (C™)®™. The coefficients of T;;(u)
and S;;(u) are also endomorphisms of (C™)®™ and they descend to the quotient A"C™. (Note that A"C™ can be
identified with D% ~1(triv), where triv is the trivial representation of the degenerate affine Hecke algebra.) Set
Wn =€, ®ep_1 @ ® e, where {e1,ea,...,¢e,} is the standard basis of C". Let L,, be the subspace of (C™)®"
spanned by elements of the form v;, ® v;, ® --- @ v;, with v;; =v;;  for at least one pair of distinct indices i;,,4;,,
so that A®C" = (C")®"/L,,.

Lemma 5.4.

Ti(u)(wn) = (1 + ) wpmod Ly, T;j(u)(wn) =0modL,, 1<i#j<n,

U+ cy

Sii(u)(wn) = <1 + —:d) wp mod Ly, Sij(u)(wn) =0modL,, 1<i#j<n.
u+dy

Proof. The proof is by induction on n. Let’s assume first that n = 2. By direct calculations, we have

S
(U + cl)(u —+ CQ)

TR ) TE (W) (e2 @ er) = (1 + ) ex®er, T (W)TH (w)(e2®er) = e1® ea,

U+ c2

m )wg mod L,,, where the last equality was obtained
u C1

so Ti1(u)(we) = (1 + uﬁ@ _ (u+c1)1(u+c2)> wy = (1 =+
using the assumption that co = ¢; — 1.

We have

1
T TR W(e2@e) = ——eaoa, TY@TE (@)(Eoe0)=0,

C1

50 T1a(u)(w2) = —t—e1®e; = 0 mod L,,. Similarly, Tos(u)(ws) = (1 +

u+cy

) wo mod Ly, and Tay(ws) = 0 mod L.
u—+c

Let’s now consider the induction step. We consider a few subcases.
Suppose that i = j # 1. Then

Tij(u)(wn) = S T @TE ) T () (wn)

2<ki e kpo1<n

oo TR @T @ T @) T () (wn)

1l
N |
—

+
N
+

) wy, by induction.
C1
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Suppose that i = j =1 and let w}, = ¢, ®e,,—1 - - ez ®e; ® ea. Then

Tiu(u)(w,) = S T @TE @) T () (wh)
1<ky,..., kp_1<n
k‘l ,,,,, kn71¢2
—1
= S T T @) T @) T () ()

1<ky,.cisky_o<n
ki, kn_2#2

1
= (1 + ) w!, by induction.
u—+cq

It follows that T1q(u)(wy) = (1 + L )wn.

u—+cy
Suppose now that i # j and j # 1. Then
1 2
Tyn) = 3 TR@TD, @ T w)w)

2§k1,‘..,kn,1§n
1 2 —1
S TR TR, @) T @) T8 () (wn)
2§k1,.“,kn,2§n

= 0 by induction.

Finally, let’s consider the case i # j and j = 1. Then

1 2 n
Ti(uw)(w),) = S T @T L@ T () wh)
1<kq,..., kp_1<n
kl ..... kn_1;£2

T @ T, @) TE D )T (w) ()

n—2,

(]

= 0 by induction.
It follows that T;1(u)(w,) = 0.
The proof is the same for S instead of T. |

Corollary 5.1. For w) =ep Aenp_1 A+ Aey, the following equalities hold in A™C":

1 . .
Ta(e) = (14 7o ) wh Tul@h) =0, 1<iZj<n
Sulw)wh) = (14 g ) Sl =0, 1<i#i<n

Now take I = J(h), so I +n = 9(h+1). Let w € V4(d) and let = be the equivalence modulo @, , Vi (d).

From the definition of Lﬁl\’;’hﬂ

)

d,h,h+1 h
o w) = w A Eny(hhkt1) N A€t (hinyr) € Vg (d).

Let EE;) be the generators of the twisted reflection algebra Bgs(n, p) and lv)w(u) be its generating series. We denote

the polynomial generators of ﬁf;lm by x,¢ since we will need to consider different values of £. In this section, we set

750 () — 5. Z(Jk) g0 ) 5 Ez(jk) ﬂ_fﬂ2+n—2p () = es — pu!
ij (u)_ld—'—m7 i (U)—w‘*‘mv =3 5 s as(u) =€ — fu,

2
+ —
o) = <1+ 2u—n=+2C(1+1,l,n)

) L&) = & (e (u).
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Thus we have:
pran,—1(bij () (157" (w))
= Y ab (st s @) s s O ) s )

LU +n—1 U+n—150+n—2 L+1,% 10,2 —1 11,8
. . S,
11522558 4n—1
J15J25-5 Jitn—1

l+n,(1) I+n,(1) I+n,(l+1) I+n,(l+n) d,h,h+1
’ T51j1 (u) e le—11jl ( )T]'z’j1,+1 (u) T le+n—1 \J ( )> (LM (w)>

> a@ (ST s @) s st O w) s w)

LU 4+n—1 U+n—150+n—2 L+1,U 5 —1 11,8

. . S,
11522558 4n—1
J15J25- Jitn—1

l+n,(1) I+n,(1) =l+n,(141) ~l4n,(l4+n) d,h,h+1
TS,jl (u) e le—lsjl (u)sz Ji+1 (u) e sz+n—1,j (u)> (LM (w))

)
by (21) where Tl+n (k) (u) = dap + % It is possible to simplify the expression on the last line using
Corollary 5.1: we get

Prin,—1(bij(u)) (Li&h’hﬂ (w))

— I+mn,(I+ I+n,(I+n—1 I+mn,(l+1
=g Y e (S s ) s )

S
01,02, 7Zl+n 1
J1:d255 Ji—1

Sé;fZ’_(i)(u)--~Sl-+n’(1)(u)-TH-"’(l)(u) ] Tl+’n,(l)(u))([/(]i\,4h,h+1(w))

11,8 $,71 Ji—1,]

_ I4+n,(l+ l4n,(l4+n—1 I+n,(l+1
=g Y a (s s ) s )
01,02, SﬂHn 1

J15J250-+s Ji—1

1,81 —1 Jl 1,J

I4+n,(l+n I4+n,(l+n—1 I+n,(l+1 d,h,h 1
=) Y (SEU @S @) s @) (G o (b () ()

G415l —1

SlHn,(l+n Sl4n,(l4n—1 Sl4n,(1+1
= gl—i_(u) Z (Si:;l+7(1j_l )(U)Si:nfl—;l+n7)2 (u) e Si;17gl+ )(u)) ( e h+1(pl _1(b” J(u))(w)))

U415l —1

S @) s ) 1) @) T3 () (47 ) by (20)

(k)
by (21), where sl+”’(k)( ) = Oap + % Using Corollary 5.1 again, we see that this last expression is

congruent to fl (w)& (u)e ;lwh h“(pl,_l(l;ij(u))(w)).
The previous computations lead to the following proposition:

Proposition 5.1. Assume d < h. For any w € V/4(d) and 1 <i,j <n,

Pt (ht1yn,—1(bij () (137" (w)) = Eogny (W) o3 (pshin,—1 (bij (w)) (w)).

Set Zp(u) = Hé;_ol £9(i)(u) and define the following renormalized action of the twisted Yangian on the space
Vaie(d):
_ 1 -
ph = %pﬁ(h)7_1 : Bg(n,p) — Endc (VY4 (d)).

From Proposition 5.1, we can get the following conclusion.

Proposition 5.2. Ford < h; < hg, 1y dh1sha O Phy = Phy oﬁw}“’ *. Moreover, L(Ji\/fh 2 induces an isomorphism between

the Bg(n, p)-modules Vit (d) and Va’}fz (d) with renormalized actions.

The following theorem is the main conclusion of this section and is a corollary of the previous proposition.



24 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

Theorem 5.1. For 0 <d < h, set ﬁd(f)g)) = L?l\’f oﬁh(l}g;)) o (L?l\’jl)71 € Endc(]-'l‘\i/h_), Then ﬁd(Z;E;)) does not depend

on h, so we have a well-defined (independent of h) action of Bg(n,p) on each degree d piece of the Fock space Fyr,—,
and hence on all of Far —.

6. TWISTED QUANTUM LOOP ALGEBRA OF TYPE AIII

6.1. Twisted loop algebra and Onsager algebra.

Definition 6.1. The twisted loop algebra gl,,(C[s,s™1])? is defined as {f(s) € gl.(C[s,s71]) | 0(f(s)) = f(s71)}.
The twisted quantum loop algebra of type AIII to be introduced later is a quantization of the enveloping algebra

of gl,,(C[s,s71])?. The twisted loop algebra gl,,(C[s,s™1])? (or rather sl,(C[s,s~!])?) can be viewed as a generalized

Onsager algebra as suggested in example 3.10 in [NSS]. Note that gl,,(C[s,s~!])? = sl,,(Cl[s, s7])? ®CI,,®cCl[s, s~ 1]T
where T' acts on C[s, s~!] by v(p(s, s 1)) = p(s71, 5), so that C[s, s !]" is a polynomial ring in the variable s + s~ 1.

Affine Kac-Moody algebras (without the derivation) are universal central extensions of loop algebras. It is thus
natural to wonder if the twisted loop algebra sl,,(C[s, s7!])? admits a non-trivial central extension. At least when
n = 2p, we can show that the answer is negative: see Proposition 6.1 below and the paragraph just above it.

Lemma 6.1. If n = 2p, then gl,(C[s,s™1])? is isomorphic to gl,(A), where A = C{t,t71,7)/(v* — 1,4t —t~1y).

Proof. Define a linear map 1 : gl,(A) — g, (C[s, s71])? by
¢(Eij((tk + (—1)“t_k)eb)) = Eivaprpjop(s* + (=1)%7"),
where a,b = 0,1 and the indices of Fj{qptbp,j+bp should be taken modulo n.
This is a linear isomorphism and is a homomorphism of Lie algebras since w([Eij (@ 4+ (=) )ep), B ((t7 +
(fl)ct*”)ed)D equals
9 (53000 Ba (7 + (C1)F ) + (C1°F2)eq) — GubaranBi (7 + (C1E)(E + (<1 )er))
— jk5b+c,d’¢} (Ezl ((tr1+7"2 + (_1)a+ct—7"1—7"2)ed)) + ajk§b+c,dw (E’Ll (((_1)Ct7"1 —T2 + (_1)atT2—7"1 )ed))

_ 5il5d+a,b1/1(Ekj ((trz+r1 + (_1)a+ctfr27r1)eb)) _ 5i15d+a,b¢ (Ekj (((—1)“#27” + (—1)ctT17T2)eb))
= jk5b+C,dEi+(a+c)p+dp,l+dp (ST1+T2 + (—1)a+CS_T1_T2 + (—1)CST1_T2 + (_1)GST2_T1)

_ 6il6d+a,bEk+(a+c)p+bp,j+bp (87'2+7'1 + (_1)a+cs—7-2_r1 + (_1)a87-2—7-1 + (_1)087»1_7.2)

(22)

whereas [w(El-j((t” + (=1)t)ey) ), v (B (872 + (—1)Ct7”)ed))} equals

[E’3-4-az>-~-111m'+pb(ST1 + (=1)%™"), Exgeprdpirdp(s™ + (=1)%7" )}

(23) — 01k0b.craBivapopirdp (s 4+ (—1)PTEeTTITTR 4 ()07 4 (—1)°6TT2)
= 000d,atb Bt eprdp jbp (8777 + (=1)" ST 4 (<178 4 (21)% ),
and (22) is the same as (23) (a, b, ¢, d should be viewed modulo 2). O

It is known from the work of C. Kassel and J.-L. Loday [KaLo] that the center of the universal central extension
of sl,(A) is isomorphic to the first cyclic homology group HC7(A). That sl,(A) does not admit a non-trivial central
extension is thus a corollary of the next proposition.

Proposition 6.1. HC,(A) = {0}.
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Proof. HCy(A) is the kernel of the map (A, A) — [A, A], where (A, A) is the quotient of the space A ®¢ A by the
subspace spanned by a ® b+ b® a and by ab® ¢+ be ® a + ca ® b Va, b, c € A.

~ A spanning set for (A, A) s {tiy) @ t,t'y7 @t iy @ 4} for i € Z, j = 0,1; let’s find a smaller spanning set.
t'@t=0VieZ\ {1} since HC;(C[t,t7!]) = Ct~! @ t. Moreover,
iy @t =t @t =t @t Iy @t =t @ty @t = iy @ttt @y @t
so t'y®@t~! can be removed from the spanning set. The elements (t' +¢~%)y® v and (t' +¢~%) ® v are in the kernel,
but actually they equal 0 in (A, A) since
0=+t 1=+t =+t )@y +yt +t7TH)@y=2t +t 7 )y® 7~y
and similarly with (' + %)y instead of (#* +t~¢).

What is more surprising is that ¢t ® t =% = 0:
t@t =ty =t@ ity =ty Rty + i1t @y=0+7®7 =0.

The conclusion of all these computations is that (A, A) is spanned by t'y @, (t* —t~ ") ® v and (t* — ¢t~ )y ® v for
1 € Z. It is even possible to restrict ¢ to ¢ € Z>; and still obtain a spanning set because
ty®t = M Rt=t""Qty+yt! i =t Qtvt+tRtT iy -t @y
= t7TTley—tTy@t—t T ®n.

It follows that the kernel of (A, A) — [A, A] is trivial. O

Remark 6.1. A can be given a Z/2Z-grading with deg(t) = 0 and deg(vy) = 1. Denote by AI" the resulting super
algebra. The Lie superalgebra sl,(A9") was studied in [ChGul] and it was determined that HC’lz/M(AgT) is one

dimensional, where HC’lz/QZ is a Z/2Z-graded version of cyclic homology. It follows from [ChGu2] that sl,(A9")
possesses a universal central extension with a one dimensional center.

sl,,(C[s, s71])? is a generalized Onsager algebra in the sense of [NSS], so proposition 6.2 of loc.cit. can be applied to
it. Set Rex = U ecx Ra, where R, is the set of isomorphism classes of irreducible finite dimensional representations
of 5I2 and sl = s, if x # +£1 whereas s = 519,

Theorem 6.1 ([NSS] proposition 6.2). Any finite dimensional irreducible representation of sl,,(Cls, s~ 1])? is an eval-
uation representation (in the terminology of [NSS|; in more standard terminology, it is a tensor product of evaluation
representations: see remark 4.6 in loc. cit.) and irreducible finite dimensional representations of sl,(C[s,s™1])? are
parametrized by the set of finitely supported I'-equivariant functions ¥ : C* — Rex such that U(z) € R,.

6.2. Quantum loop algebra. Let P be the permutation operator P(v; ® vy) = vg ® v1. Let us recall the RTT-
presentation of the quantum group 4,(gl,,). We will view ¢ as a variable and work over C(g), unless stated otherwise.
Set Cy; = C" ®c C(q).

Definition 6.2. The quantum R-matriz of finite type, which is an element of End C(q)((CZ)‘m, is given by

n n
(24) R= Z "By ® Ejj+ (¢ —q ) Z Ei; @ Ej;.
i,j=1 ig=1
1>

Set R=R—(q—q ‘)P = PR™'P.
Definition 6.3. The quantum group $,(gl,) is the associative C(q)-algebra generated by t;j,t;;,1,j =1,...,n, with
relations:
RTy,Ty = ThYTbR, RT.T,=T T2R, RI,T,=T TZR;
=t =0if1<j<i<n, tyly=rftuty=14i=1...n

Here T'= 3" _ tij @ Eij and T = Y7, tij ® Ejj belong to $4(gly) @c(q) End ¢ (g (CF).
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Remark 6.2. Our R-matriz is the conjugate by P of the quantum R-matriz of finite type considered in [MRS]. We
will stick with the definition used in [JoMa].

Definition 6.4. The affine quantum R-matriz is the element of End (c(q)(((:;l)@z ®c Clu, v] given by (see [MRS])

(25) R(u,v) = uR — vR.

We will need the RT T-presentation of the quantized enveloping algebra of gl,,(C[s, s71]), so we recall its definition.
Set Lgl, = gl,,(C[s,s™1]).

Definition 6.5. $(,(Lgl,) is the C(q)-algebra generated byt ) B with 1 <i,j <n,r € Lo such that

(26) =70 =0, f1<j<i<n, VR =0 =1, 1<i<n,
(27) R(u, v)To(v)T1(u) = T1(u) T (v) R(u, v),
(28) R(u,v)T2(v)T1(u) = T1(u)Ta(v)R(u,v),
(29) R(u,v)T2(v)T1(u) = T1(u)Ta2(v) R(u,v),

where we have set T(u) = Y27, tij(u) @ Eij, T(u) = 30 Tij(u) ® By and tij(u) = 07 =, tij(u) =
7y,
Zr OtU

g (Lgly,) is a Hopf algebra with coproduct given by

thk ) @ trj(u), Altiy(w)) = ) tik(u) ® tr;(u).

k=1

Later, in order to understand that the twisted quantum loop algebras of type AIII provide a quantization of the
enveloping algebra of a twisted loop algebra, we will need to know how 4, (Lgl,,) specializes to U(Lgl,,). We follow

the explanations given in [MRS]. Let A be the localization of C[g,¢~!] at the ideal (¢ — 1). Let f4(Lgl,) be the
(r) =(r)

A-subalgebra of t,(Lgl,,) generated by the elements 7,;”,7,,” given by
ot o iy
) _ 2] =(r ij .o
T _q—q—l’ Tij _q—q—l forr>0,1<i,5<n,

except that, when r = 0 and i = j, we set

-(0
o_t-1 o _h -1
W = 0 T — -1

q—q q9—dq
Theorem 6.2 (Section 3 of [MRS]). The assignment E;;s" — Tl(J ) —Ejis " ?E;) Vr>0,1<1i,j<n except if
r=0and 1 <j <i<n induces an isomorphism U(Lgl,) — Us(Lgl,) @4 C, where C is viewed as an A-module
via A/(g—1) = C.

6.3. Twisted quantum loop algebra of type AIIL. The twisted quantum loop algebra of type AIII is a quanti-
zation of the twisted loop algebra gl,,(C[s, s71])?.

We will need to consider another involution ¢’ obtained as ¢, but from the matrix ©}, given by (see [DiSt, JoMa])

6;:991,9_1 = Z Ekk+ZEkn k+1+ZEn k+1,k

k=p+1
where

Q—ZEkk— Z Ekk+ZEn k+1k+ZEkn k+1-

k=p+1
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We need a deformation of the matrix @’ . As suggested in [NoSu, DiSt, JoMa), for a new variable &, set

(30) ZEkk_€7 Z Ekk+ZEkn k+1+zEn k+1,k-

k=p+1

Two useful properties of J¢ are that it satisfies the Hecke relation (J¢ — &)(J¢ 4+ ¢71) = 0 and is a solution of the
reflection equation (see [DiSt, JoMa]). Set

uJs —u~1(JE) !
u—u-1!

(31) G*(u) =

Lemma 6.2. G¢(u) satisfies the reflection equation with parameters:

(32) Roy(0,u)GS (w) R(u™, 0) G5 (v) = G5(v) Roy (u™ Y, v) G5 (w) R(v, u).

Proof. Since R(u,v) = uR — vR, (32) is equivalent to
(vRg1 — uR21)GS (u)(u™ "R — vR)GS(v) = G5(v) (™' Ryy — vR21)GS (u)(vR — uR).

We thus have to check the following relations:

(33) Ro1 JSRJS = J5 Ry JER,

(34) Ror(J§) T R(J5) ™ = (J5) " Rar (J1) 'R, Raa(J§)T'R(J5) ™ = (J5) ™" Rar (J;) 'R,

(35)  Ro1(JS) " RJS = JSRyy (JS) 'R, RyyJSR(JS) ™ = (J$) 'Ry JER, Ry (J5)'RJS = J5Roy (JS) 'R,
(36) RorJS RIS = J5 Ry JSR, Rt JSR(J5) ™ = (J5) ' Ra1 Ji R,

(37) —Ro1 (J7) T R(J5) ™ 4 Ror(J§) T RIS = —(J5) T Rou (J7) T R + J5 Ron (J7) 'R,
(38) —Ror JYR(J5) ™ + Rt (J3) TP R(J5) ™ = —(J5) "' Rar J R+ (J5) ™' Ron (J7) 'R,
(39) —Ro1Jy RIS + Rot JY R(J3) ™ = —J5 R J{ R+ (J5) "' Ran Ji R,

(40) —Ro1 (J$)"'RJS 4+ Ry JSRJIS = —JSRoy (J&) 'R + JSRoy JER.

Identity (33) holds according to [JoMa]. Using R = PR™'P = R — (¢ — ¢ )P and the Hecke relation for J¢, it
is possible to get the first equation in each of (34), (35) and (36) from (33). The other equations on each of these
three lines follow from the first one on the same line.

Using R = R — (¢ — ¢~')P, the Hecke relation for J¢ and (33), (35), one can show that (37) holds. Similarly one
can prove (38) using (34) and (35), and (39), (40) using (33) and (35). O

Definition 6.6. The twisted quantum loop algebra U5 (Lgl,,) is the associative C(q, &)-algebra generated by elements

5]),1 <i,j <n,r € Z, such that the matriz S(u) = 377, sij(u) ® Eij, where sij(u) = 3372, f])u ", satisfies the

reflection equation

(41) Rop(v,u)S1(u)R(u™t,v)S(v) = Sa(v) Ry (u™t,v) S (u) R(v, u).
* % X

Moreover, we require that s( =% % 0 , where the blocks are of size (p,n — 2p,p) X (p,n—2p,p), X and Y
Y 0 O

ij
are upper triangular with respect to their second diagonal and X; p—; = Y,—; ;. (See [JoMal, proposition 7.6.)

We will later deduce that U} (Lgl,) has a PBW-type basis For the moment, we state one half of this fact.

() () ()

Introduce on the generators CHE'! total order < via 54 ifand only if r<porr=pbuti<korr=p,i=%k

but j <.

< skl

(r)

Proposition 6.2. The set of monomials in the generators s;;

Ur(Lgly).

ordered with respect to =X is a spanning set for
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Proof. Set ( = q—q~'. We need to start by writing the defining relation (41) in terms of the generating series s;;(u):

(U‘_lq_éik - /U_lqéik) q_6jk5ig( Sk:l <§jk Z Sze Sel
e<j
+(uq61k - vq_éik) qéjksi]( Skl + (sjkc Z Sze sel
e>j

—C(u™ im0 Sick) | @0 sk (w)sia (0) = COi5 > ske(u)ser (v

e<j

+((udick + v6i5r) | 6715 (W) (v) + (05 D ke (u)sar(v

e>j

_ (ufquéjl _ v*lqﬁjz,) <q5“$kl( SU 71<ZS]€€ Se] >

1>e

+(uq6jz _ ,Uq—éjz) <q6“3kl( S” )+ 0uC Z Ske(V Sej )

i<e

—C(u iy + 07 s ) (q % sk (0) s (1) = 6:5C D Ske(v)ser(u )

i>e

+((udi>; + vdi<y) (qéijskj( si(u) + 655> ske(v)ser(u ) .

i<e

Set fap(u,v) = (ug®® —vg %), gap(u,v) = Udy>q + VOp<q and

H(icd(uvv) :qi[sbcsab( )Scd i(sbcc Z Sae Sed

:te>:tb

The defining relation (41) can be rewritten as

fik(ua U)Hi—;kl(ua U) - fik(v_17 u_l)Hi;k;l(u7 U) + Cgik(u7 U)Hlj;il(ua U) - Cgik(v_17 u_l)Hk_jil(ua U)
= fjl(u,v)Hleij(va u) — fjl(vilauil)Hk_lij(Uau) + ngl(uaU)H/:}u(”»U) - ngl(vilauil)Hk_ju(U,U)
for 1 <i,j5,k, 1 <n.

(42)

All these relations give us straightening rules to express any monomial in the generators 51(;)

monomials ordered with respect to <. Considering the coefficient of uv~" in (42), we deduce that, for any r > 0,

into a sum of

qéik Jk ;))Skl +5 CZS el) + (i< qzﬂsk] E;)-Fcéwzske el

(43) e>j e>J
= %! ( ”s,(:l $O 45 CZSE;) Sej ) +Coi>; ( Skj )+, CZSE;) Sel )
i<e 1<e

Suppose that s( ) < s,(d) and r > 1. We see that s,(d)s(j) can be written as the sum of a scalar multiple of s(j sgfl)

and scalar multiples of monomials of the form s(%)s(d and of the form s(b)s(d) with ¢ > i, so that s( ) < s(d) (Note

that such terms do not occur if ¢ = n.) By repeatedly applying this relation, we can eventually write s(j)s,(d) as the

sum of a scalar multiple of sgj)sfd) and scalar multiples of properly ordered monomials of the form st b)s( d)
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(0) (0)
ij
0 .
instead of s;;" < Sl(d).) If i = k and I < j, relation (43) shows that S(J)S,(Cl) can be written as

the sum of a scalar multiple of SI(CZ)S(O and scalar multiples of monomials of the form sg%)sﬁz) with a = k and ¢ > 1.

If k < i, relation (43) shows that s; )s,(d) can be written as the sum of a scalar multiple of 5,(3)553), of sfcoj)s(?) and

scalar multiples of monomials of the form s b)s( d) with either k = a < c or i = a,c¢ > k. In this last case (which does

not occur if k = n), it is possible to reuse relation (43) finitely many times to be able to express sgg)sg) as a sum of

properly ordered monomials.

<s;
(0)

Assume now that r = 0 and s, so that k <i. (Because of our choice for the relation (43), it is preferable

to consider sl(;l)) < SZ(-j)

The rest of the proof proceeds by induction. We have to show that s(”) (Tz) with r; > 79 can always be written as
a sum of properly ordered monomials. Induction is on 75, the case ro =0 havmg been dealt with already. Suppose
that 71 > ro; considering the coefficient of v="14~"2*1 in (42) and removing the monomials of the form 52?1)552”2)

with min{m, ma} < ro (since the inductive assumption can be applied to them) yields the following relation:

q5ik ,k (Tz 5/(:11 Ny kCZ (r2) Jl) +Coick | g ”522) (T1)+C5 ZSI(;z) ((;1

e>j e>j

zq*< a5 4 aC Y 5 (”>+caz>a( 5875 16,0 Y ls W)

i<e i<e

We see from this that if I < j, then 5,(:11)51(;2) can be expressed as a sum of a scalar multiple of sgz)séll) and as a
(m1) (m2)

sum of scalar multiples of monomials of the form s, "’s.;*’ with m; = ry < ry = mg, or min{m,ma} < ro or with
my1 =11 > mg = rg,c¢ > 1. The monomials of the latter type can be shown, by induction on ¢, to be sums of properly
ordered monomials. (Note that this latter case does not occur if ¢ = n, so induction is on decreasing values of ¢ from

n to 1.) If I > j, then s(h)s(-?) can also be expressed as a sum of similar monomials to which a scalar multiple of

1
,(Jl) ("2) ust be added: this last monomial is not properly ordered, by since j < I, it falls into the previous case

(r1) ( 2)

just considered. Therefore, when r; > rg, s, s;;~ can be expressed as a sum of ordered monomials.

1)

Suppose now that r1 = 75 and s,(;; =< 8(-;2) (so either k < i or k = 4,1 < j). For this last case, we switch

the roles of ¢,j,70 and k,l,7;. We want to see that 5(;2)‘9;;[1) can be expressed as a sum of properly ordered

monomials. Considering the coeﬂiment of u=2v="*! in (42) and removing the monomials of the form s(rbnl)s(gm)

Ci
with min{m,,ms} < ry (since the inductive assumption can be applied to them) yields the following relation:

g0 g5 80 3 UG | 4 s (@25 + By Y s

e>j e>j

= _q—éjl <q6“sl(€7;1)5§;2) + 6il<zsl(:el)sg;2)> +<6l<j ( ”Skm) ZZ“z) + 6](:28(7”1 (7’2 > .

i<e i<e

We see from this that if k < 4, then 5(7"2)55;11) can be expressed as a sum of a scalar multiple of s(ﬁ) §j2) and as a

sum of scalar multiples of monomials of the form sg?l)sizh) with min{my, ma} < ro or with my = ry = r9 = my and

(ml) =< s(d 2), or with ¢ > k. The monomials with ¢ > k can be shown, by induction on ¢, to be sums of properly

ordered monomials. (Note that this case does not occur if k£ = n, so induction is on decreasing values of ¢ from n to
1.) A similar argument works when ¢ = k,1 < j.

Having proved that the product of any two generators of ﬂg(ﬁg[n) can be expressed as a sum of properly ordered

monomials in two generators, it follows immediately that the same is true of the product of any number of generators.
|

6.4. Embedding in the quantum loop algebra. In [MRS], ¢-twisted Yangians were realized as subalgebras of
the quantum loop algebra i,(Lgl,). This is also possible for 4 (Lgl,,).
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Theorem 6.3. The twisted quantum loop algebra U5(Lgl,) can be realized as a subalgebra of U, (Lgl,) ®c(q) C(g,§)
via the embedding ¢ : S(u) — T(u)Gg(u)Til(u’l).

Proof. We have to check that ¢ gives a well-defined homomorphism 2 (Lgl,) — U,(Lgl,) ®c(q) Clg, &), that is,
(0)

ij
eventually relies on the fact that G (u) satisfies the reflection equation. We have to substitute T(u)Gf(u)T_l(u_l)
into (41) and check that it is satisfied.

it respects the relation (41). (As for the vanishing condition on s;;’, see proposition 7.6 in [JoMa].) The proof

Ron (0, )Ty ()G ()T (™) R(u™ ) T (0) G5 (0) Ty (v

= Ro1 (v, u) T3 (u) G5 (w)Ta(0) R(u™" o) Ty (u™H)GS(0)T5 (v by (29)

= Ro1 (v,u) T3 () T2(0) G5 (w) R(u™" 0) GS (0) T (uw™ )Ty ' (v™)

= Ty(v)T1 (u) Ras (v, ) G5 (w) R(u™", 0) G (0) T (uw™H)T5 ' (v™1) by (27)

= Ty(0) T3 (w)GS (v) Ren (u™",0) G (w) R(v, )T (u™)T5 " (v™1) by (32)
(using R(u,v) = wwR(v™',u™1))

This proves that ¢ is a homomorphism of algebras. We have to see why it is injective. We can argue as in [MRS)]
by passing to the limit ¢ — 1. (See [JoMa] for the finite case.) Recall that A is the localization of C[g,q~!] at the
prime ideal (¢ — 1).

Ko
We can view UP(Lgl,) as an algebra over C(q) if we set & = ¢ for some £ € Z. Set U@ = q:{;,l ifr>0or
© ©
in—i 0 +s4;
i# j,n— j+10r1fr—01<z—]<p,setaz(7z l+1:$qT“1f1<z<porn p+1<z<nando() %

if p+1<i<n—p. (See the proof of claim 10.5 in [JoMa].)

Let 4% (Lgl,,) be the A-subalgebra of UP(Lgly,) generated by the elements ai(;). Let ¢4 be defined as ¢, but from
U (Lgl,) to Ua(Lgly). Since tha(Lgly)/(q — 1)Uha(Laly) = U(Lgl,), Image(rq)/(q — 1)Image(r4) can be mapped
to a subalgebra of the enveloping algebra of Lgl,: we want to see that this subalgebra is the enveloping algebra
of gl,,(Cls,s71]). Let L : 4%, (Lgl,) — (Lgl,) be the map which is the composite of 14 with L : £l4(Lgl,) —

It is instructive to compute the limit of LA( ) when ¢ — 1, that is, to identify L(o, (r )) as an element of Y(Lgl,,).

When r = 0, this was done in Section 10.4 in [JoMa]. We could remove the assumptlon that & = ¢° if we followed
the approach in [JoMa] and worked over C[[h]], in which case ¢ and ¢ should be of the form e”, e for some constant
c € C. Set T(u) = T(u)~! and denote its matrix entries by S-°° %" u=". Denote by jim and jim the entries of J¢

r=0 "ij
and (J¢)~!. When r > 0,

n [r/2] r—2d [(r=2)/2] r—2d—2

( E;)) Z Z Z t(k] m"(T;] 2d—s) Z Z t(k ]kmA(T 2d—2—3s) :

k,m=1 d=0 s=0 d=0 s=0
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so, for r > 1 L(o(r)) equals
) - iJ q

n r/2 0) . r—2d r—2d) . 0 (r—2)/2 0)~ r—2d—2 r—2d—2)7 0
A (tgk)]kmz(mj ) i tz('k )kag(m;> _ L /2 (t’gk).jkm%\(mj ) tz(k )jkmg(m;>
q 1

L Z Z q—q! q—q!

km=1 \ d=0

= —q! q-q"
") 0 B 4 T
Therefore, to compute L(a-- ), it is enough to determine L k met | 5 ol - when r > 1. More-

q—q~ q—q~

over, since 7 > 1, jpm and jrm can be replaced by the entry O of ©),. (Note that ©), = (@’p)_l.) It is necessary
to consider several separate cases as in the proof of claim 10.5 in [JoMa]. Set

n ( e F0 g ~<0>>

L:'I: Z kmm] km“mj
=\ a—a 7-q

In the computations below, we also give gLg~! since this is useful in understanding how the image of L is isomorphic
to Ugl, (C[s,s~1])?. Note that

ZEkk* Z Ekk** Z By + = ZEn k+1,k T = ZEkn E+1-

k=p+1 k n—p+1
Case 1. 1 <i,5 <p.
Ogr g0 M e 5O
L, = L( 'L;L_’L—;l n—i+1,j + z,nfjJrql_nq—_jl-i-LJ JJj > _ Ej,nfz#lsir +En7j+177;sr,

- 1 r —r 1 1 r —r 1 r —r
gL1g 1=§Ejz‘(8 + s )—5 “Bnji1i(s" —s )+§Ej,n7i+1(8 —s7").

En—jiin-it1(s"+s87") = 5

Case 2. 1 <i<p,p+1<j<n-—p.

0)@/ “(r) @, 2(0)
Ly = L < Z;L:J;l ;l i+1,j5 + ; 7qu -71j > — Ej,nfiJrlS_T _ Eji3T7
-1 1 r -r 1 s —r
9Log™ = 5 Eji(s" = s7") + 5 Bjn—in1(s" +577).

Case 3. 1 <i<p,n—p+1<j<n.

RORY g(r) 4 ;50
L3 - L i i,n—i+1"n—i+1,j + in—j+1~n—j5+1,5%55 :Ej,n—i—&-ls_r"'En—j—&-l,isrv

q—q- q—qt

1 —r
*Ejm_i_t,_l(Sr + s )

1 -Tr
7En_j+1,i(sr + s ) + 9

— 1 s —Tr 1 T —Tr
gLsg™' = 2 Bii(s" =7 + S Bnjiimia (s —s77) + 5

Case 4. p+1<i<n—p, 1<j<p.

O i {0 g 0
Ly L ( q_Z b 4 B0z J+ql_"q i1t > =—FEjis "+ Ep_ji18,

gLig™! = —Eji(s"—s")+ En_ji1:(s"+57).

Case 5. p+1<4,5<n—p.
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(0) 1 3(r) (Mg F0)
e e
Ly = L( - q7 + qjqjjlj>:—Eji8_r—EjiST7

gL5g71 = —Eji(Sr + Sir).

Case 6. p+1<i<n—p,n—p+1<j<n.

{Oerfn 4 e )
Leg = |_< q_;“lj + zn ]+ql_nqal+ »J ]j ) :_Ejis_T+Enfj+1,isra

ngg_l = —Eji(sr + S_T) — En_j+17i(ST — S_T).

Case 7. n—p+1<i<n,1<5<p.

(0) T) 70
L7 _ L( Qén 7,+1tn i+1,5 + zn j+1®{fl J+1,] 77

qa-q" q—q ) = Ejniv15"" + En_jy1is’
1 T -Tr 1 ' -r 1 T -r
SEn—jrin—ivi(s" —s7") + §Enfj+1,i(5 +s577)+ §Ej,n7i+1(5 +s577).

B 1.
gLrg™t = —SEji(s" — s )—2

2

Case 8. n—p+1<i<n,p+1<j<n-—p.

(0) F(r) g 70
t;; @Z n—i tn i t o
LS - L i+1 i+1,7 + Jj J] _ Ej,n—i—i—ls_r _ ji5T7
q9—q q q

_ 1 r ey, L R
ngg 1:7§Ej1’(5 + s )+§Ej7n_7;+1(s — S )

Case 9. n—p+1<i,j<n.

Ly =

0) ) (r) 7(0)
L @; n— z+1tnT i+1,5 + tiTnfjJrl@;l—j‘Flyjtjj
q—q q—q!

> =Ejn_iy15 "+ En_ji1:8,

1 -
7En7j+l’i(sr — S T).

1 T —-Tr
SEjn—ip1(s" —s7") = 5

En Jj+1ln— z+1(5 +S )+2

1
—1 T
gLog™" = —ani(S +s7)+ 5
It follows from all this that the quasi-classical limit of the image of ¢ 4 is the enveloping algebra of the Lie algebra
al,(C[s, s~1])?", which is isomorphic to gl,, (C[s,s™'])? via conjugation by the matrix g. For instance, if we denote
by Ly the limit computed in case k (1 < k <9), and if 1 <4, j < p, then we can write (after relabeling the indices

in the case of gL3g~! and gL7g™ 1)
1 _1 1 _1
gLig™! 2 T2 2 T2 Eji(s" +s77)

1 1 1 1 1 r —r
9Lsg _l2 2 2 2 Ep_ji1i(s" —s7")
gLzg™! e T Ejn—it1(s" —s7")

1 r -r
9gLog _% % % % En—j+1,n—i+1(5 +s77)

Since the matrix is invertible, we see that we can express E;i(s" +s77), En_jy1,:(s" — 8 7), Ejn_it1(s" — s~ ") and
En_jyim—it1(s" +s7") in terms of gLi1g~", gLsg™", gL7zg~" and gLog™!

Under the specialization ¢ — 1, the spanning monomials provided by Proposition 6.2 are mapped by L to a PBW
basis of the enveloping algebra of gl,,(C[s,s !])®. Therefore, they must be linearly independent. It follows that
¢ is injective and we can conclude that it is an isomorphism. (See [MRS] for the analogous result for orthogonal
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and symplectic twisted g-Yangians.) In more detail, if } ;. ; car, M; = 0 is a relation of linear dependence where
M; is one of the monomials in Proposition 6.2 and ¢y, € C(g,§), then we can clear denominators and assume that
e, € C(g)[€,€7 1. We can find £ € Z such that some ¢y, does not belong to the ideal of C(q)[¢,£7!] generated by

¢ —q*. Passing to the quotient C(q)[¢, €71/ (€ —¢%) and replacing s( ") by UZ(J), we can obtain a relation for monomials
in 4, (Lgl,,) with coefficients in A and we can assume that not all the coefficients belong to the ideal (¢—1). Applying
4 and passing to U5 (Lgl,)/(q — 1)U (Lgly,), we obtain a contradiction because of the linear independence of the

images of the monomials M; in L4 (Lgl,)/(qg — 1)U (Lgl,). Therefore, all the coefficients c¢js, must vanish. O

Let us collect the last part of the previous proof inside a corollary.

Corollary 6.1. The A-subalgebra of Ua(Lgl,) generated by the coefficients of the entries of T(u)G’%u)Tﬁ1

specializes to the enveloping algebra 4(g,,(C[s, s™'])?) as ¢+ 1 when & = ¢*, ¢ € Z.

(u™)

Corollary 6.2. The ordered monomials from Proposition 6.2 constitute a vector space basis ofilg(ﬁg[n) over C(gq,§).

Corollary 6.3. (Lgl,) is a coideal subalgebra of i,(Lgly) ®c(q) Clg,§) with coproduct given by

n
51] Z zk tl] ) ® Skl(u)-

7. DRINFELD FUNCTOR FOR TWISTED QUANTUM LOOP ALGEBRAS OF TYPE AIII

7.1. From affine Hecke algebra modules to representations of quantum loop algebras: the gl,, case. In
this section, we present the construction of a functor between categories of modules over the affine Hecke algebra
of type A and over U,(Lgl,). This is essentially the functor studied in [ChPr2], although we are using a different
set of generators for $,(Lgl,). Similar constructions can be found in [Chl] and the current section should not be
considered original work, but we have decided to keep it since it makes the relevant construction in type A more
understandable for our purposes.

Let V = C" ®c C(g, §) be the vector representation of £, (gl,,) used in [JoMa], section 7.2 and extended to C(g, &).
Consider the tensor product V&', There is an ’Hé,l—module structure on it given by

(44) oi ¢ 'R} Piiv1 € Endgge(VE),i=1,...,1-1,

where P, ; =Y ", _ Eg? Et(g) is the permutation operator and

s, t=1
Rig= . BOEY + (- S EYED.

s,t=1 st=1
s#t s>t

Moreover, if we define an action of o; on V®! by
Ul(vl RUa®--- & ’Ul) =01 QU2+ & (fil(Jg)ilvl),

where J¢ is the n by n matrix defined in (30), we obtained an ”Hé . E,l—module structure on V®'. For more details,
see [JoMa].

Remark 7.1. In the future, we will use the braid group module structure where the braid group action is obtained
from the natural quotient map of the group algebra of the braid group onto the finite Hecke algebra.

From lemma 2.1 in [FrMu], we deduce that, for any commutative C(q)-algebra A and any invertible element
a € A, the following formula defines a homomorphism ev, : 4, (Lgl,) = A ®¢(q) Uy (1), given by

at;; 7U71t71" — ailﬂ“ — uty;
(45) eva(tij(u) = ———- ev,(tii(u) = #.

a—u-1 —u
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Let p: Uy(gl,) — End g (V) be the vector representation, and pr =id® -+ ®id® p®id®--- ®@id : Uy (gl,) —
End ¢(¢)(V®!) = End ¢ (o) (V)®" with p as the k-th tensor factor. Then for k =1,...,1, set

n n

II: = Z (pk ® P)(( z])k & Ew) Ik = Z (Pk & ,0)(( 1])k (24 E”) S Endc(q)(V® ) &c Endc((C”)
ij=1 ij=1
We index the last tensor factor in End ¢(y)(V)®! @c End¢(C") by [ +1, so that I} = (pr @ p)(Rk,41) and I, =
(px ® P)(Pk,l+1R;;%+1Pk,l+1) (where the last p denotes the natural representation of gl,,).

For any left Hfl _i1-module M, consider the tensor product M ®c(q) V@, It has a Bf‘—module structure through the
diagonal action, where the B{*-module structures on M and V®! are given by the natural projection C[B{'] - Hé,l
Define the quotient space D4 (M) as:

-1
(46) Da(M) = M @cq) V)Y Tm(oi +q7°).
i=1
Now for k = 1,...,l, introduce the following elements in Hfz_l[[uflﬂ ®@c(q) End c(g)(V®") ®c End¢(C™) and in

Hfrl [[u]] ®c(q) End ¢(g)(V®') ®c End ¢(C") respectively:

*kY_1 4 u™!

47 T+ — T ®l, -
( ) ( ) _ky 1 u—! k q_kYk—l —y-1!

@I, ,
(@Y — u)q"Y}, oI

(@"Yi)? = (® + ¢ 2)ughY +u? ~7F  (¢PYR)? — (¢% + ¢ ) gFuYy + u?

Theorem 7.1. The map

(49) T(u) = TF ()T (u)---Tf (w),  T(u) = Ty ()Ty (u)--- T} (u),

(@"Yi —u)u n

(48) T, (u) = I

defines a Ugy(Lgl,)-module structure on Da(M). Thus we have a functor D4 from the category of left Hfz_l—modules
to the category of left ,(Lgl,,)-modules.

The proof of this theorem requires the next lemma.

Lemma 7.1. Let V' be the vector representation of U,(gl,) and let Hfl,l act on VO by (44). Then we have the
following identities for k =1,...,1—1, the first two holding in End ¢c(4)(V®") ®c End ¢(C") and the last one in Hf},l
(1) Iif,fﬂak = ox I} I,irl,
(2) i T y0n = okl Ik+1’ Lo =onli Ly + (L= ¢ )L Ty — I, Ik+1)
(3) Yeor = (qok +q — ¢ Y1, Y10k = (72 — 1)Yey1 + ¢ LowYs, Y Y+1Uk = oY} lykjil, Y;;rllUk =
(qox+a—q¢ )Y, Y o= (a2 = )Y+ tonYish

Proof. From the definition,
—1 —1
adLi L ok = Ry i1 Ricr 1,041 Ry o1 Prgkrr — By o1 Prer1 Bie i1 Riege1,041
-1 -1
= (Regr1Brsr01 Ry g1 — By B Rig) Prort,

which is 0 since R is a solution of the Yang-Baxter equation. Similarly,

- _ - - —1 -1 -1 -
ally, Iy oyl = Rz+1 le+1 k+1Rk,k+1Pk»k+1 - Rk,k+1pk7k+1Rl+1 le+1 k41

-1 -1 -1 -1 — _
= B k+1(Rl+1 k+1Rl+1 kRk+1 kT Rk+1 leH le+1 k+1) =0.

-1

So (1) holds, and the proof that I I o = okl Ik+17 I I,:'H = = o, 1[ I, is analogous. Using o, =

q?o1, + ¢* — 1, we can prove (2). (3) can be obtained dlrectly from the deﬁnlng relations in the Hecke algebra
H . d
q
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Proof of Theorem 7.1. From the commutativity of Yii and the evaluation homomorphism (45), it is enough to
show that the map (49) factors through the quotient (46). From Lemma 2.4, the coefficients of u~! and of wu,
0"Yi)? —(a®+q~*)ug" Yi+u®
-1 ! ~ k= (@)

need to show that T7 (u)T5 (v)---T; (u) and Ty (u)T5 (u) - T; (u) factor through the quotient D4 (M), where
TE(u) = (¢"Yi) T @ IF —uF @ I

respectively, in H;:l(q_kYk_1 —u~ 1) and in Hﬁczl ( , are in the center of Hfrl' So we only

Using Lemma 7.1, we have
Tz(u)’fz+1(“) 00k —0k© ;Iv‘;: (U)TLQ(U)
= —u_lq_k_lyk;llak ® I;Ilj+1ak — u_lq_kkalok ® Ilj[l;qak
+ u_lq_k_lakijrll ® akI,;I,jH + u_lq_k

= Tl (1= )P+ D (o + 1 YT @ (T — 1))

orYy @ ol Iy,

and
T, (u)T,;_H(u) oo —opoT, (u)T;_H(u)
= —uqk+1Yk+1Jk X I;I];_lok — uquka ® Ik_Ilj-&-lak
+ug" M op Y ® ka,jfk_ﬂ +ugt oYy, ® UkI];I];:_l
= _uqk+1(1 _ q_2)(0'k + q—Q)((q20.k 4 q2 _ 1)Yk+1 ® ([;_ k_+1 — Ik_ll:rl))
So the image of ufl(’f‘f (u)’i‘,i_l(u) 00K — 0} 0 'i‘,f (u)’i‘f_H(u)) (as an element in End ¢(q) (M ®c(q) V') belongs to
the image of o, + ¢ 2, which implies that the action defined by (49) induces an action on the quotient (46).

Finally, any homomorphism f : M; — My between two Hfl,l—modules induces a homomorphism f ® id :
DA(Ml) —)DA(MQ) O

7.2. From affine Hecke algebra modules to representations of twisted quantum loop algebras: The
type BC case. Let M be a left Hf},l g,l-module and let V be the vector representation of £,(gl,,). Then we know

that M ®@c(q) V" is a BP-module. Define

-1
Dp(M) = M ®c() V®'/ (Z Im(c; +¢~*) + Im(o; + 52)) :

i=1
Let T (u) be the elements defined in (47), (48). Let G&(u) = Id ® Id ® G¢(u) € Hf]_l,f_l ®c(q) End ciq) (V) ®c(g)
End ¢(y)V[[u™']], where G¢(u) is the matrix defined in (31). Define

S(u) = TY (u)T3 (u) - T (u)G* (u)(T; (=) (T (™))™ (T (w™ )~

Theorem 7.2. For any Hé,l ¢—1-module M, the map S(u) — St (u) defines a Uk (Lgly,)-module structure on Dp(M).
Thus we get a functor D from the category of Hfrl 5_1—m0dules to the category ofﬂg(ﬁg[n)—modules.

In order to prove the theorem, we need the following lemmas.

Lemma 7.2. In End ¢(g)(M ®c(q) VE)[[u™]], we have

k —1
— —1y\—1 q"Yy u -1
(Tk: (u )) quk: _ ufl ® Rl"!‘l k kYk: _ ufl ® Rk} l+1
Proof. This lemma can be proved by direct calculations. O

Lemma 7.3. Denote by J,f the operator in End c(q)(V®'") @c End ¢(C™) defined by applying J¢ to the k-th tensor
factor in VO, We have the following identities:

(1) Jle,lﬂJ5

_ 13
s Bt = R,

€.
l+1Rl+1,lJl )



36 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

(2) (Jlg)fle_ﬁ l(Jlg—i-l) "Rijiy = Rl,z+1(Jf+1)71Rz_ll+1(JE)fl
(9) R IE Rina ()™ = () Busa Ji By + (€ — €)@ where
¢ = Rl,l+1Jz+1Rl_l+1 Rz_+11 lJz+1Rl+1JJ
(4) Rl+1 1 l+1) lRlJrl,l(ng)_1 = (Jf)_lRl,l+1(Jz+1) zz+1 + (£ =& 1)V where
U= Rl,l+1(Jz£+1)71Rl_,zl+1 - Rl_+11,l(‘]l£+1)71Rl+1,l;

(5) in Hfrl ¢-1, we have Yoy = (1 — g2y g 2oy and Y oy = (672 - )Y+ Ployy.

Proof. From [JoMa], lemma 7.4, we know that (1) holds. (2) can be obtained from (1).

Using J& — (J&) 7t = ¢ — ¢ 1 and (1), we can get (3). Similarly, we have (4). (5) can be checked directly from the
definition. O

Proof of Theorem 7.2. From Theorem 6.3 and Theorem 7.1, we deduce that it is enough to show that the map
S(u) — S¢(u) factors through the quotient by the image of o; + ¢~2. From Lemma 7.2, we have

—1vy—1 —1
q Y] U -1
SS(u)=——1L @R - ®R )
( ) (qull _u-t 1,i+1 q*1Yfl _ w1 1+1,1

—ly -1 -1
Y, u
) (q_lYll o ® Ryji1— q—lYfl e T ® Rl+1 z)

lY -1
¢ qr u -1
-GS (u) - (qlYl—u_l ® Ryt1,0 — W (24 Rz,H—l)
qY1 u? —1
. (qYl—u_l @ Riy11 — W (24 Rl,l-i—l .

From the definition of the o; and the fact that all the coefficients of powers of u~! in the expansion of Hé:l(qu; —
u= N (g7, —u~1) lie in the center of the Hecke algebra Hf]_l ¢-1 by Lemma 2.4, it is enough to show that the

3
coefficients of the powers of u~! in

(50) (Y PO R —u @R, DG W) (@Y @ Ripy —uT @ R o
—o1(¢Y P @ Ry —uT @ R )G () (@Y @ Ripy —uT @ RL)

belong to the right ideal generated by o; + £~2 in End c(q) (M ®c(q) V@), This is equivalent to the following
congruences modulo this ideal:

i) o ® Rl7l+1Jl+1Rl+1 ()= @ (Jf)_le l+1Jl+1Rl+1 I
(i’) o0& Rz;l1 lJl+1Rl 11+1(J ) P 01 ® Rl,l+1(Jz+1) Rl+1 l(J£>
=0 (Jl )~ 1Rz+1 1J15+1Rl ll+1 o1 (Jlg) 'Ry l+1(Jl+1) FRij s
(ii) o ®Rl+1l(‘]l£+1) 'Ry, zl+1(J ) l=o® (Jg) 1Rz+111(=]l+1) 'Ry l1+17
(iif) ¢'Yion ® Rl+1 l‘]l+1Rl+1 l(']l )T +a lYl 0 ® Rlvl+1Jl+1Rl_,l+1(JE)
=daYi® (J5)” le+11 iR+l e (ng>_1Rl,l+1Jl+1Rl I+15
(iv) ¢'Vion ® R1+1 l(Jl+1) "R (5) 7Y o @ Ry l+1(‘]l+1) 1Rl_,l+1(‘]l£)71

=q'oY1 ® (J7) 'R (J5) T R+ a7 oY T @ () T R (5 ) TR, -

(i), (") and (ii) can be easily obtained from Lemma 7.3. For (iii), we have

¢'Yior ® Ry T R ()™ + a7 on © R I Ryl (7)™
— oY1 ® (JF)~ "R W R — ¢ lo YT e (J))” Rl,l+1Jl+1Rl I+1 (by Lemma 7.3 (3))
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= (¢Yior =g "'oY ) @ () R Ji Ry + (€= € )d Yo 0 @
+ (Y, o —day) ® (Jf)flRl_JrleJfHRHlJ
(by Lemma 7.3 (5))
=¢'(1-€)Y, o) e+ (- Yo
=(@+E)E-E (@Y @)+ (€ - DY @)

Similarly, for (iv), we have
¢Yio1 ® R (5 ) T R () T+ 7Y o ® R (Jf ) TR () 7!
—d' oY1 @ ()T R (i) T R — a7 'Y @ (JF) T Ry (Jpy ) T Ry (by Lemma 7.3 (4))
= (@Yior — ¢! Y, @ (J) T R (i) T B + 4 (€ - €Yo @ ¥
+ (g or—d'oYD) @ (J5) TR, (i) T Rigay (by Lemma 7.3 (5))
==Y ()T (E - T
= (@ +E)E-EN('E YT o) ¢ (€ - DY oY),

Therefore, (iii) and (iv) hold. Finally, any homomorphism f : M; — M> between two Hfl_l qgl-modules induces
a homomorphism f ®id : Dg(M;) — Dp(Ms). O

8. CENTER OF THE TWISTED QUANTUM LOOP ALGEBRA UP(Lgl,)

The method that we use to determine the center of (f(Lgl,,) is similar to the one used in [MRS] via the Sklyanin
determinant.

For any choice of indices 7,j,k with 1 < ¢ < j < k < n, the affine quantum R-matrix R(u,v) satisfies the
Yang-Baxter equation
Rij(u, v)Rik(u, w) Rk (v, w) = Rk (v, w)Rig(u, w)Ryj (u,v).
From the definition of $(0(Lgl,), we have
Rji(ujyui) Si(ui) Rij(uy*uy) S (ug) = Sj(ug) Rys(u ) Si(ug) Rij (ug, wi)-

Using these identities, we derive the following relation for S(u):

(R 1 (U, tn—1) -+ - Ro(uz, u1)]S1(wa) (Raz(ui ™, us) -+ Ry (ui ™, Up))S2(ug) - - Ry n(up s, un)Sn(un)

= Sn(un)Rn,n—l(ur_Lip un) e (Rnl (u1_17 un) T R21(u1_1a UQ))SI (ul)[Rn—l,n(una un—l) e ng(UQ, ul)]

We set

R(’una LR ul) = Rn,nfl(uny unfl) (Rn,n72(una Unf2)Rn71,n72(un717 un72)) e (Rnl(un; ul) e R21(U27 ul))

and

S(una e 7u1) = Rn—l,n(uny Un—l) (Rn—Q,n(una un—Q)Rn—Z,n—l(un—la un—2)) e (Rln(una Ul) T R12(u27 ul)) .
As in [MRS], consider the g-permutation operator P? € End ¢(C" ®¢ C™) defined by
P :ZEii®Eii+q Z Ei; ® Eji+q7! Z Ei; @ Ej;.
i=1 n>i>j>1 1<i<j<n

An action of the symmetric group &,, on the space (C™)™ can be defined by setting s; — P{fi+1 fori=1,...,n—1,
where s; denotes the transposition (4,7 +1). If 0 = s;, - - - 5;, is a reduced decomposition of an element o € &,,, we
set Pd = Pl L Py . where PJ = P? We denote by Al the g-antisymmetrizer

2,0+1"
Al = Z sgn(o) - PJ.

ceS,
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Proposition 8.1. The relations

R(an—Q’ . .7q27 1) _ < H (q2j _ q21)> . A%

0<i<j<n-—1

and

S, 45 1)

( [I @- q%)) Ay

0<i<j<n—1
hold in End ¢(C™)®™
Proof. This can be deduced from proposition 4.1 in [MRS]. -
For 1 <i,j <n, we set u; = ug?*~2 and

Rij = Rij(us,uz); Ry = Rij(u; ' vug); Sy = Rig(ugow); S = Riguj"yu);  S; = Sius).

i j oo
Now the above proposition implies

(51)  AZSi(Rl,-- R},)Sa(Rls-- RY,)S3 - Sn_1R]

1

S0 = $u(Sh 0SS SLS AL

n—1,n

Since the g-antisymmetrizer A¢ is proportional to an idempotent (indeed (A%)? = n!A%) and maps the space (C™)®"
into a one dimensional subspace, both sides of (53) must be equal to A4 times a series sdet S(u) in u~! with
coefficients in U2 (Lgl,,), i.e

ARSu(Rly - R],)So (Rl -+ BY,)Sa - Sua
We call this series the Sklyanin determinant of S(u).

Sp = Alsdet S(u).

n—1,n

For 7 € 6,,, set Wy = ex(1) @ ex(2) @ -+ - €x(n) and let [(w) be the length of the permutation w. We have
Alw, = (—q)_l(”)A;’Lwid and A?;lw,r = (—q)l(”)A;{lwd
Hence
sdet S(u) Al wy q) " ™sdet S (u) A% wiq

(—q)”
(—q) '™ ALS (R, RI,)S2(RY; -~ RY,) S5+ Sui R
(—q)~

=(~

Spwid

n—1,n

q) NS, (8] ) St Sa(Sh - S5 S1AL Wi
q) 21( ’TT)S (ST

n,n—1

)Sn-1++S2(Shy  S3)S1AL w,
= AL (Rl RS2 (Rl -+ BY,)Sa - Sua

n1, W

The following theorem provides an expression of sdet S(u) in terms of quantum determinants.
Theorem 8.1. We have
(52) sdetS(u) = 0, ¢ (w)qdetT (ug®"?)(qdetT(u1))~1,
where Oy, ¢(u) is the Sklyanin determinant of G*(u) and the quantum determinant is defined by

qdetT(u) = > (=q) Vo)1 (ug 2" ) to@2(ug ™" ) -+ tonyn (u).
ceS,

Proof. We follow the arguments of [MNO]. We regard U (Lgl,) as a subalgebra of &(,(Lgl,); see their theorem 6.3.

We substitute S(u) = T'(u)G* (u)T_l(u’l) into the identity (53) and transform the left hand side using the relations
_ _ _ =1, _

R (ug )Ty (ug) = Ty () Rig (ug g )Ty (ug ),

which is equivalent to (29). Then the left hand side of (53) becomes

(53) ALT () To(ug?) - T (ug™ ) R)Ty (w )Ty (g ?) - T, (g ),

n

T;l(u
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where
R(u) = G5 (u)Rl,--- R}, G5 (ug?) - G,

n—1

(ug® HR! | G (ug®?).

n—1,n~"n

By the definition of the quantum determinant qdet 7'(u), we have
(54) ATy (w)To(ug?) - - T (ug* ™ ?) = AlqdetT (¢*" *u).
Therefore, we can bring (55) to the form

_ S 1, =1, g _ =1, _1 _op
qdetT(¢*" u) AL R(u)T, (u Ty (u'q7?)---T, (u'q>"*?).

n

By Lemma 6.2, the mapping S(u) — G*(u) defines a representation of the twisted quantum loop algebra U#(Lgl,).
Therefore, (53) gives

A9 R(u) = S(u)AL " = Alsdet G&(u) = A6, ¢(u),

n
where

S(u) = G (ug®2)(S]

n,n—1

)G (ug® ) - G5 (ug?) (SL -+ S1) G (w).
Now we write (55) as

—1——1

qdet T(q2n72u)§(u) (A?l T, (Uil)T;I(u’lq”) - -T_l(ulq%”)).

n

Furthermore, we have

—1 -1

(55) AT (W Ty (g2 - T, (w2 42) = A9 (qdetT(u b))~

n

This follows from (56) (with T instead of T') if we multiply both sides by T;l(uq2"_2)Tni1(uq2"_4) - -T;l(u) from
the right, replace v with ©~'¢~2"*2 and then conjugate the two sides by the permutation of the indices 1,...,n
which sends i to n — i + 1. (Notice that A% becomes A%_l after the conjugation). Now (55) becomes

adetT(¢*" ) (S(u) A% ) (adetT(u ™))™ = adetT (¢~ 2u)(adetT (u)) " Ahf¢(w).

n

Corollary 8.1. The coefficients of the series sdet S(u) belong to the center of the algebra U (Lgly,).

Proof. This is an immediate consequence of the previous theorem and of the centrality of qdet T'(u) and qdet T'(u)
in 8, (Lgly). O

Introduce the series c(u) and the elements cj, of the center of the algebra UP(Lgl,,) by the formula
(56) c(u) = One(u) 'sdet S(u) =1+ > cpu".
k=1
Proposition 8.2. The coefficients ¢, k > 1, are algebraically independent.

Proof. Use an argument similar to the one in proposition 4.4 in [MRS]. O

q
n—1°

flfkl is the quantum antisymmetrizer in the tensor product of the copies of End ¢C™ corresponding to the indices

Now we try to find an explicit expression for the scalar function 6, ¢(u). We have (n — 1)!1A%2 = AZA where

2,...,n. Note that A? | commutes with Gi (u). Furthermore, we have the identity

AZ—1R12 T R—{n = R—{n U Rizi‘iq

n—1-
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This follows from the Yang-Baxter relation and Proposition 8.1. Similarly we define the operators flg for i =
1,2,...,n— 2. Now we have:

n—1 n—2
(Hil) Azen@(u):(Hﬂ) AL G )Ry -+ R, GS(0g7) -+~ G (g ) Ry, G (ua~?)

= i=1

n—2
- (Hi!) A%Gﬁu)RInmRiQ(Az1G§<uq2>-~Gi1< iyl lnaﬁwq%%)
=1

(R (A6 () ) ).

Now consider the action of the operators on w =ep41 Q@ - Q@ ep_p @ (€p @ €p—pt1) @ -+ R (€1 ® ey,), where {e;}7,
denotes the canonical basis of C*. We obtain

n—1
et (L) gt = (450560 - (45,800 (G5 o~ (A5G 0 2) )

i=1

n—1

—a36§ -+ (A8, G5l -+ (2265

(A%GE(U)'“ <AZ1G§(U‘12) (Ag/HGn 1(ug e 4)Rj1 1nG§L(U‘12n2))>>w
—ALGE () -+ (AZG23<uq2n-8> o (A9GE a(ug™ ) - (Aze;,,g(u)w)))
) (A165 )+ (ALAAGE () G5 ua™ =) )w)

=230, (0) (4365 )+ (AGS (0" )+ G ofug™ ) Ju

( )(ﬁeys )(A%Gf( ) (AngGg op(u 2n4p2)...)w>
( ﬁ 02j,£(u>> <A%G§(u) o Agp+19§p+1,§(u)w)

(Hej, )( 1 e;,gm)A
j=1 k=2p+1
)= (T T a0
=1 j=2p+1

2n— 4z+2)

This implies that

where 0s; ¢(u) satisfies

19 9 _ A 1S 2n—4i\ pt 13 1 T
Agi92i,£(u)w—AgiGn—ziH(uq "R, 2i4+1,n—2i+2 "Gn—2i+2(U‘I R, _ 2i42n—2i+3 "Rn—21+2,nw

for 1 <:<p, and ngg(u) satisfies

A 2n—2 T T
A‘?Q;,E( )wP_A Gn j+1( q " j)Rn j+ln—j+2° Rn7j+17nwp

for 2p +1 < j < n. It suffices to find O ¢(u), Oue(u), ..., 02pe(u), 0, 1 ¢(u), 0, 5 (u),.... 0, (u). We will give
details of one case below and simply state the formulae for the others because computations are quite long and
tedious.
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a1
Ifp=0and 1< j<n, we have

—1

wlo 5*1u L j—1
—j+1 n—j+1 4
03,5(1’6) = — . _ 1 ' <H(unj+1 - un—k)
Un—jtl = Un—jt1 k=1
and
n n 1 —1 j—1
§up i1 — & Un—jt1 1
On.g(u) = H Oj.¢(u) = < Z I ' H(Unfjﬂ —Up—g) | |-
j=1 j=1 n—j+1 = Un—j41 k=1
If p > 1, then
Nk
n — Un
We also need to consider the tensor product

Wi =€pr1® - Pen p®(epDen_pr1)® - @ (ei®en_it1)Ve1® - 1Qen_i12@---Qep
Then

(2 — 2)!Agi§2i75(u)wi = (—q)(ifl)(i”)ﬁgi@i,g(u)w

i—1)(i—2) F In—4i In—4i+2 i
(*‘1)(z )G )AgiGi—ziH(uq " z)RL—2i+1,n"'G§z—2i+2(uq nod )RL—2i+2,n"'R:rz—2i+2,n—2¢+3A2i—2w
=(2i — 2)][1‘1 G ( 2n74i)RT L GE ( 2nf4i+2)RT .. RI )

? Ao G 01\ UG n—2i+1,n—2i+2 n—2i+2\Uq n—2i+2,n—2i+3 n—2i+2,n Wi

ie.,

A9 n _ A9 € 2n—4i\ pt 13 2n—4i+2\ pf 1
A302i¢(uW)w; = AQiGn72i+1(uq " Z)Rn72i+1,n72i+2 ) "Gn72i+2(uQ e )Rnf2i+2,n72i+3 Ry g0 Wi

Now assume that 2 < i < p. By the property of ‘Zlgifl’ we have

- i - _
Agi71G§172i+2(uq2n Z“)Fijkziw,nfzwrg T Rizf2i+2,nwi =A;- (Agiq(wi)) +Bi- (Agiq(w/)))
where

i

Wi=ept1®  Benp®(ep@enpt1)® ®(e;i®e;)De1® €1 ®en—it2® B en,
2i—3

2i—3
B; H (u;12i+2 — Un—k) and A; = _< H (u;12i+2 - “n—k)>uglzi+2(§ —&h.
k=0 k=1
Let
Wi =e€pp1®  Qenp@(ep@enpi1) Qe RVEIV €1 Ven_it1 Veni42® - Vey
and

Wi =ep1®  Qenp®(ep®@en_pt1) D (i1 Ven_i) €1 @ i Qep_iy1 @ @ en.
Now we have
(20 — 1)!1‘1%@2@6(“)“}1‘ :AgiGifziH(“an_M)RT

n—2i+1n " R71;72i+1,n7275+2 (Ai ) Agiﬂ(wi) + B - Agiq(wg))

:(*Q)ki(% —1)!A; - Agin’L—%-i-l(uq2n74i)RL—2i+l,n—2i+2 T RL—2¢+1,nﬁi
+(2i = 1)!B; - AgiGi—2i+1(uq2n74z)RL—2i+1,n—2i+2 R ;

L—2i+1,nwi
2(22 — 1)' ((—q)l_iAi -C; + B; - Di)AgﬂDiy
where

CiAgiwi = AgiGi—2i+1(uq2n_4i)RT

T .
n—2i+1n—2i+2 """ Rn—2i+1,nw1
and

A9 v — A € 2n—4i\ pt T
DiAgiwi = AgiGn72i+1(Uq " 1)Rn72i+1,n72i+2 Tt Rn72i+1,nw'/i'
Rather long computations lead to

21—2

Ci= (-0 un(e ™ = O T] s~ 1a0))

k=1
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and
2i—2
D; = (up—it1 — u’r_Lli+1)< H (%712241 - Un—k))-
k=1
Therefore

02,6 (u) =¢*' 2 ((7(])14141_ -Ci + B; - Di)

(H 2ﬁr tnsaitr unk)) . ((u” _“;Lizwz) - W).

=3 k=3 — Up—2i4+2 — Un

For 2p 4+ 1 < j < n, we replace w by
wj:eerl®'.'®e’ﬂfj+p+l®el®"'ep®enfj+p+2®.'.®en

and let w; be

Wj=epr1 @ QenjrpQe1 @ ep@en_jipr1 @ @ en.

We have
(~a) P AL, (W) = A0 () = AJGE_ 4y (wa™ )Ry oo Ry 05
Set
JO =l 42,,5-2 I =421} B ={pp+1,...,5 -2},
I ={i—p—1—p,....i=24 JO={r+1r+2,....j-p—2}
and

Jj—2 - B
Fj(l) = (_Q)_p (H(u;1j+1 — Un—k)) . Uy — ]+1£ Un:Jl.Hf ,

k=0 Un—j+1 — U’nfj+1

B -5 <ﬁ<u;1j+l - uk>> (—tnrla—a)) 3 (( e —a)

k=0 rcs™

H (upljn — un—k)) (ql)Q(j’")pgm)

ke(I{MN\DuIS?

:(_q)p(q2p - 1>un*j+1 (H(unij+1 - unk:)) .

k=1

Let’s explain from where this formula for F;(2) comes, the other ones being obtained via similar considerations.

The value of r indicates the first index in R’

. n . .
n—j+1,n—r Where we consider the operator ZZJ;; E;; ® Ej;. This explains

the product ( o nliin — Un- k)) (= tp—r(qg — qil)) since for k < r only the operator ..

2,j=1
T
Rn j+1l,n—

applied, so if k ¢ I, then instead it is the operators }_' =14 %iE;QF ;5 and E?jzl ¢ % E;® Ej; Wthh are applied.

The factor (—g~")20—")=P=3=/| comes by applying ﬁ;’ to the resulting tensor to bring it back to w; and by counting
the number of inversions.

Eii (24 Ejj in

© is applied. The index set I indices the factors R! x Where the operator Zﬁjzl Ei; ® By is

n—j+1,n—
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Fj(B) :j§2 <7ﬁ(u;1J+1 Un— k)) ( - un—r(q - q_1)> Z (( - u;ij+1(q - q_l))lll'

1<

H (Ul — un—k)) (—q1)2j2TP3III>

ke Tug{”

j—2
()P (¢* 72772 = Duy—j1 (H(unij+1 - unk:)) ,

k=1

Bw-3 (ﬁ(u;ﬁw - m) (= tnerla—aM) > ((u,:iﬁl(qql))'”o

1CJ™

( H (“;1j+1—Un—k))(—q_l)Qj—Q’”—P—?)—I)

keJIN\T

=, (T = 0o

1 y
unqutl Un—j+p+1

F;(5) = S (ﬁ(unigﬂ Up— k)) ( —uy (g — q—l)) 3 (( (- q_l)) i
‘ 1CI™
< H (u;ij-i-l - un—k)) (ql)P11|>

keJ(MI\I

o = Dot (T - 0o

= _1
Up—j+1 = Un—j+p+1

Using these, we can compute

[Ar]

. -1
n 2z+1(§ 5 ) +(F_7(3) —FJ(Q)) n _]-',—15 un:jl-‘rlf

Un—2i+1 — Up_ 21+1 Un—j4+1 = Up_j41

Up—24 (5*571) Un—24 1(57571)
+ (Fj(4) - Fj(3)) 2252 + Fy(5) s
Un—2i+1 — Uy _9;11 Un—2i+1 — Up_2;41

_R(1) + Fy )¢ - Fy(3)¢ + (Fy(4) + Fy(5)) 21 ‘_f_l)

Un—2i4+1 — Wy 9511

:<(_q)pun—j+p+1§71 —(=9)Pu Uy, — J+1 ) (Jl_f Up i1 un—k)) .

(—=q) 7705 ¢ (u) =F,(1) + F;(2)

k=1
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