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Abstract. We study twisted Yangians of type AIII which have appeared in the literature under the name of reflection

algebras. They admit q-versions which are new twisted quantum loop algebras. We explain how these can be defined
equivalently either via the reflection equation or as coideal subalgebras of Yangians of gln (resp. of quantum loop

algebras of gln). The connection with affine Hecke algebras of type BC comes from a functor of Schur-Weyl type

between their module categories.

1. Introduction

Yangians are quantum groups of affine type with a plethora of applications in theoretical physics. They are Hopf
algebras which are quantizations of the enveloping algebra of g ⊗C C[t], where g is a finite dimensional, complex,
semisimple Lie algebra (or gln). Twisted Yangians appeared almost twenty years ago in the work of G. Olshanski
[Ol] and have been quite studied since then for the classical symmetric pairs (gln(C), on(C)), (gl2n(C), spn(C)), that
is, gln(C) = k ⊕ p with k = on(C), p = symn(C) in the first case (where symn(C) is the space of n × n symmetric
matrices), and k = spn(C), p = gln(C) ⊕ son(C) ⊕ son(C) (as vector spaces only) in the second case. These are
two of the three families of classical symmetric pairs of type A. In this paper, we focus on type AIII, which is the
symmetric pair (gln, glp⊕gln−p) with 0 ≤ p ≤ n−1. (The numbering of these types originates from the classification
of Riemannian symmetric spaces due to E. Cartan.) More precisely, gln(C) = k ⊕ p with k = glp ⊕ gln−p and
p = Mp,n−p(C)⊕Mn−p,p(C).

The twisted Yangians of type AIII were studied in [MoRa] under the name of reflection algebras (where they were
denoted B(n, l), l playing the role of p here), following the work of E. Sklyanin [Sk], and even more general twisted
Yangians are the subject of the articles [Ma1, Ma2] of N. MacKay. However, it was not yet known if these two kinds
of twisted Yangians for the symmetric pair (gln, glp ⊕ gln−p) were (almost) isomorphic. This is one of the results of
this paper (see Theorem 3.2 for the precise statement). In Section 3.5, we give a presentation in terms of generators
and relations of MacKay’s twisted Yangians when n = 2p. It should be noted that we consider twisted Yangians
which depend on two deformation parameters: they appear, a priori, to be new algebras, but this is not really the
case since one is a rescaling parameter and the dependency on the other parameter can be eliminated via a simple
isomorphism (see Corollary 3.1). However, the two parameters in question are important for the construction of the
Drinfeld functor in Section 4. The twisted Yangians are also coideal subalgebras inside the Yangian of gln, but are
not Hopf algebras: see Proposition 3.2. An interesting recent paper about coideal subalgebras from the point of view
of Manin triples is [BeCr].

The impetus for this paper came from a desire to generalize to the twisted Yangians of type AIII the work of
S. Khoroshkin and M. Nazarov [KhNa1, KhNa2, KhNa3, KhNa4]. A starting point is the joint paper [EFM] of
the third author in which a functor is constructed from a category of Harish-Chandra modules for the symmetric
pair (gln, glp ⊕ gln−p) to the category of modules over a degenerate affine Hecke algebra of type BC, extending
the construction in [ArSu], which is originally due to I. Cherednik [Ch2] and was used by S. Khoroshkin and M.
Nazarov in their aforementioned work. A second ingredient used by these authors (in the case of gln) is a functor,
due originally to V. Drinfeld [Dr], which generalizes the classical Schur-Weyl functor to Yangians and degenerate
affine Hecke algebras of type A. Another of our results is the construction of an analog of the Drinfeld functor from
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modules over the degenerate affine Hecke algebra of type BC to the category of left modules over a twisted Yangian
of type AIII - see Theorem 4.1. (It should be noted, as pointed out in [KhNa3, KhNa4], that no such functor exists
for the other two classical symmetric pairs of type A above.) It is simpler to obtain this functor using MacKay’s
presentation of twisted Yangians, but we are also able to define it in terms of the generators used by A. Molev and
E. Ragoucy in [MoRa]: this is done in Theorem 4.2.

In trying to extend the work of S. Khoroshkin and M. Nazarov, one of the first obstacles is that the composite
of the two functors discussed in the previous paragraph does not seem to correspond to a homomorphism from the
twisted Yangian of type AIII to an algebra of the form Ug⊗CPD(Cl⊗Ck), where g should be a Lie algebra part of a
certain Howe dual pair and PD(Cl⊗Ck) is the algebra of polynomial differential operators on Cl⊗Ck. It is not clear
what is the proper substitute for Ug⊗CPD(Cl⊗Ck), so we do not have an analogue of proposition 1.3 in [KhNa1] in
type AIII. This appears to be essentially due to the fact that no simple formula like (1.14) in [KhNa1] is known for
the Drinfeld functor studied below. The extension of the work of S. Khoroshkin and M. Nazarov to the symmetric
pair (gln, glp ⊕ gln−p) will hopefully be the subject of future work. At least, we can provide one application of the
Drinfeld functor, namely, the construction in Section 5 of a Fock space representation of the twisted Yangian of type
AIII, thus extending work of D. Uglov for the Yangian of gln [Ug].

In the second part of the current article, we introduce new twisted quantum loop algebras of type AIII which can be
viewed as q-versions of the twisted Yangians of type AIII. This answers at least partially a question raised in [MRS].
Recently, a general framework for understanding twisted quantum loop algebras has been developed by S. Kolb via
quantum symmetric pairs for Kac-Moody algebras [Ko]. We prove that our new twisted quantum loop algebras can
be defined equivalently as either coideal subalgebras of the quantum loop algebra of gln or using a reflection equation
with parameters (Theorem 6.3). We also show that their quasi-classical limit is the enveloping algebra of a certain
twisted loop algebra (Corollary 6.1). The second main result related to these new twisted quantum loop algebras
Upq(Lgln) is the construction of a Drinfeld functor between categories of modules over affine Hecke algebras of type
BC and over Upq(Lgln) (Theorem 7.2). The two parameters on which this affine Hecke algebra depends match exactly
the two parameters q and ξ which enter the formula for the embedding of Upq(Lgln) in Ugln. In the last section, we
determine a family of central elements in Upq(Lgln) via an approach similar to the one used in [MRS] for twisted
q-Yangians.

It is suggested in [NSS] to call generalized Onsager algebra any twisted loop algebra obtained as the fixed-point
set of an automorphism ρ of sln(C[t, t−1]) of the form ρ(X ⊗ p(t)) = ρ0(X) ⊗ p(t−1), where p(t) ∈ C[t, t−1] and
ρ0 is an automorphism of sln. (sln could be replaced by gln.) Our twisted quantum loop algebras can thus be
viewed as generalized q-Onsager algebras. Other such algebras are studied in [BaBe, BeFo], where a very broad
class of reflection algebras associated to quantum affine algebras is considered. The paper [NSS] provides general
results about irreducible finite dimensional representations of equivariant map algebras and the classification of such
representations for generalized Onsager algebras is contained there: we include this result in Theorem 6.1.
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2. Affine Hecke algebras of type BC

We need to recall a couple of definitions and results about the affine Hecke algebras of type BC and their degenerate
version. The symmetric group on l elements will be denoted Sl and we set Γ = Z/2Z, so that the wreath product
Wl = Γ oSl is the Weyl group of type BCl. The non-reduced root system of type BCl consists of the following set
of vectors:

{±ei + ej ,±ei − ej |1 ≤ i 6= j ≤ l} ∪ {±ei,±2ei|1 ≤ i ≤ l} ⊂ Rl = SpanR{e1, . . . , el},
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where {ei}li=1 is the standard basis of Rl. Let σij be the reflection corresponding to the root ei − ej , set σi = σi,i+1

and let γi be the reflection corresponding to ei.

Definition 2.1. Let κ1, κ2 ∈ C. The degenerate affine Hecke algebra Hlκ1,κ2
of type BCl is the algebra generated by

the group algebra C[Wl] and a set of pairwise commuting elements y1, . . . , yl such that

σiyi − yi+1σi = κ1 for 1 ≤ i ≤ l − 1, σiyj = yjσi if j 6= i, i+ 1,

γlyl + ylγl = κ2, γlyj = yjγl if j 6= l.

Lemma 2.1. The subalgebra of Hlκ1,κ2
generated by yi, 1 ≤ i ≤ l, and Sl is isomorphic to the degenerate affine Hecke

algebra Hlκ1
of type GLl.

Note that, for any 1 ≤ l2 ≤ l, we have an embedding ι2 : Hl2κ1,κ2
↪→ Hlκ1,κ2

by considering the generators

yl−l2+1, . . . , yl, γl−l2+1, . . . , γl and σl−l2+1, . . . , σl−1 of Hlκ1,κ2
. For any 1 ≤ l1 ≤ l, we also have an embedding

ι1 : Hl1κ1
↪→ Hlκ1,κ2

by considering the generators y1, . . . , yl1 , σ1, . . . , σl1−1 of Hlκ1,κ2
. Moreover, if l1 + l2 ≤ l, we can

combine ι1 and ι2 to obtain an embedding ι1 ⊗ ι2 : Hl1κ1
⊗C Hl2κ1,κ2

↪→ Hlκ1,κ2
. However, ι1 ⊗ ι2 does not extend to an

embedding Hl1κ1,κ2
⊗C Hl2κ1,κ2

↪→ Hlκ1,κ2
because, if i < j, [γi, yj ] = κ1σij(γi − γj).

We will need an equivalent definition of the degenerate affine Hecke algebra Hlκ1,κ2
.

Lemma 2.2 ([EFM], lemma 3.1). Hlκ1,κ2
is isomorphic to the algebra generated by elements ỹi, 1 ≤ i ≤ l, and by

C[Wl] with the following relations:

σiỹi = ỹi+1σi, σiỹj = ỹjσi if j 6= i, i+ 1, ỹlγl = −γlỹl, ỹiγl = γlỹi if i 6= l,

[ỹi, ỹj ] =
κ1κ2

2
σij(γj − γi) +

κ2
1

4

l∑
k=1

k 6=i,j

(
(σjkσik − σikσjk)

+σikσjk(−γiγk + γiγj + γjγk)− σjkσik(γiγj − γjγk + γiγk)
)
.(1)

Proof. The connection between the two presentations is given by

ỹi = yi −
κ2

2
γi −

κ1

2

l∑
k=i+1

σik +
κ1

2

i−1∑
k=1

σik −
κ1

2

l∑
k=1

k 6=i

σikγiγk.

�

Lemma 2.3 ([Lu], 3.12). The center of the degenerate affine Hecke algebra Hlκ1
(resp. of Hlκ1,κ2

) is generated by the

Sl-symmetric polynomials in the variables y1, . . . , yl (resp. in the variables y2
1 , . . . , y

2
l ).

Let us now move on to the non-degenerate case. Strictly speaking, the next definition is the one for the affine
Hecke algebra of type gll, which is also called the extended affine Hecke algebra of type Al−1. To simplify the
terminology and the notation, we will say that it is the one of type Al−1.

Definition 2.2. Let κ ∈ C×. The affine Hecke algebra of type Al−1, denoted Hl
κ, is the unital associative algebra

with generators σ±1
1 , . . . , σ±1

l−1, Y ±1
1 , . . . , Y ±1

l satisfying the relations:

(a) σiσ
−1
i = σ−1

i σi = 1 for 1 ≤ i ≤ l − 1, YjY
−1
j = Y −1

j Yj = 1, YiYj = YjYi for all 1 ≤ i, j ≤ l;
(b) σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ l − 2, σiσj = σjσi if |i− j| > 1 (braid relations of type A);
(c) (σi + 1)(σi − κ2) = 0 for 1 ≤ i ≤ l − 1 (Hecke relations);
(d) Yjσi = σiYj if j 6= i, i+ 1, σiYiσi = κYi+1 1 ≤ i ≤ l − 1.

If we delete the generators Y ±1
i and the corresponding relations, we obtain a subalgebra Hlκ which is the finite Hecke

algebra of type Al−1. If we also delete the Hecke relations, we get the group ring of the braid group BAl .

Definition 2.3. Let κ1, κ2 ∈ C×. The affine Hecke algebra Hl
κ1,κ2

of type Bl is the associative algebra with generators

σ±1
1 , . . . , σ±1

l , Y ±1
1 , . . . , Y ±1

l such that
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(a) the generators σ±1
1 , . . . , σ±1

l−1, Y ±1
1 , . . . , Y ±1

l satisfy the same relations as those in the definition of Hl
κ1

;

(b) σlσ
−1
l = σ−1

l σl = 1;
(c) σlσl−1σlσl−1 = σl−1σlσl−1σl, σlσi = σiσl if i 6= l − 1 (braid relations of type B);
(d) (σl + 1)(σl − κ2

2) = 0 (Hecke relation);
(e) σlYlσl = κ2l

1 κ
2
2Y
−1
l , σlYi = Yiσl if i 6= l.

If we delete the generators Y ±1
i and the corresponding relations, we obtain a subalgebra Hlκ1,κ2

which is the finite
Hecke algebra of type Bl. If we do not impose the Hecke relations on σi for i = 1, . . . , l, we get the group ring of the
braid group BBl of type B.

We will need the following lemma later.

Lemma 2.4 (See [KaLu], 4.4). (1) Let C[x±1
1 , . . . , x±1

l ]Sl be the ring of Laurent polynomials invariant under

the permutation action of Sl. Then f(κ∓1Y ±1
1 , . . . , κ∓lY ±1

l ) lies in the center of the affine Hecke algebra

Hl
κ for any f(x1, . . . , xl) ∈ C[x±1

1 , . . . , x±1
l ]Sl .

(2) Let C[x±1
1 , . . . , x±1

l ]Wl be the polynomials invariant under the action of Wl. Then f(κ∓1
1 Y ±1

1 , . . . , κ∓l1 Y ±1
l )

lies in the center of the affine Hecke algebra Hl
κ1,κ2

for any f(x±1
1 , . . . , x±1

l ) ∈ C[x±1
1 , . . . , x±l ]Wl . Here σi

acts by permutation of the indices and σl(x
±1
l ) = x∓1

l , σl(x
±1
i ) = x±1

i if i = 1, . . . , l − 1.

3. Twisted Yangians of type AIII and the reflection equation with parameters

3.1. Yangians for gln(C) and sln(C).

Definition 3.1. Suppose that n ≥ 3, λ ∈ C. Let {zα}α∈I be an orthonormal basis of sln(C) with respect to the
Killing form and indexed by some set I. The Yangian Yλ(sln) is the complex, unital, associative algebra generated
by elements z, J(z) for z ∈ sln(C) satisfying the relations

J(az1 + bz2) = aJ(z1) + bJ(z2), [J(z1), z2] = J([z1, z2]),

[J(z1), J([z2, z3])] + [J(z2), J([z3, z1])] + [J(z3), J([z1, z2])] = λ2
∑

α,β,γ∈I

(
[z1, zα],

[
[z2, zβ ], [z3, zγ ]

])
{zα, zβ , zγ}

where {zα, zβ , zγ} =
1

24

∑
σ∈S3

zσ(α)zσ(β)zσ(γ) and S3 is the permutation group of {α, β, γ}.

Note that Yλ1
(sln) ∼= Yλ2

(sln) if λ1λ2 6= 0. It will be more convenient to work with the following slightly bigger
algebra.

Definition 3.2. We let Ỹλ(gln) be the algebra which is defined exactly as Yλ(sln), except that the elements z can be
taken in all of gln(C) and the set {zα}α∈I should be an orthonormal basis of gln(C) with respect to the Killing form.

Definition 3.3. The Yangian Y (gln) is the complex, unital, associative algebra generated by elements T
(r)
ij for

1 ≤ i, j ≤ n, r ∈ Z≥0 with T
(0)
ij = δij and satisfying the following relation:

(2) [Tij(u), Tst(v)] =
1

u− v
(
Tsj(u)Tit(v)− Tsj(v)Tit(u)

)
,

where Tij(u) =
∑∞
r=0 T

(r)
ij u

−r ∈ Y (gln)[[u−1]].

The defining relations of Y (gln) can be rewritten in terms of the R-matrix

R(u) = 1− 1

u

n∑
i,j=1

Eij ⊗ Eji, where Eij is the usual elementary matrix

and T (u) =
∑n
i,j=1 Tij(u)⊗ Eij ∈ Y (gln)[[u−1]]⊗C End C(Cn) as

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).
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Proposition 3.1. [MNO] If λ 6= 0, Yλ(sln) is isomorphic to the subalgebra of Y (gln) (denoted Y (sln)) which consists
of the elements fixed under all automorphisms of the type T (u) 7→ f(u)T (u) where f(u) ∈ 1 + u−1C[[u−1]]. This

isomorphism can be extended to an embedding Ỹλ(gln) ↪→ Y (gln). Moreover, if Z denotes the center of Y (gln), then
Y (gln) ∼= Z ⊗C Y (sln).

3.2. Symmetric pair of type AIII in classical Lie theory. Let n ≥ 2 and let 1 ≤ p ≤ n/2 with p an integer.
Denote by Θp the n × n diagonal matrix Θp = diag(ε1, . . . , εn), where εi = 1 for i = 1, . . . , p and εi = −1 for
i = p + 1, . . . , n. Θp can be used to construct a Lie algebra involution θ of gln(C): we set θ(X) = ΘpXΘp for
X ∈ gln(C). Let k = {X ∈ gln(C)|θ(X) = X} ∼= glp ⊕ gln−p and p = {X ∈ gln(C)|θ(X) = −X}, so that
gln(C) = k⊕ p. The involution θ restricts to sln(C) and we set k0 = k ∩ sln(C).

Definition 3.4. The pair (gln(C), k) (or (sln(C), k0)) is called the symmetric pair of type AIII. (This terminology
comes from the classification of Riemannian symmetric spaces by E. Cartan.)

Definition 3.5. The twisted current Lie algebra slθn(C[t]) is equal to {X ⊗ p(t) ∈ sln(C) ⊗C C[t]|θ(X) ⊗ p(t) =
X ⊗ p(−t)}. glθn(C[t]) is defined similarly.

3.3. Twisted Yangians of type AIII. We will denote by T̃ij(u) the matrix entries of T−1(u).

Definition 3.6. Assume that τ1 6= 0. The twisted Yangian of type AIII, Bτ1,τ2(n, p), is the subalgebra of Y (gln)

generated by b
(r)
ij , 1 ≤ i, j ≤ n, r ∈ Z≥0 with b

(0)
ij = εiδij and, if r ≥ 1,

b
(r)
ij = τ r−1

1

r∑
s=0

n∑
k=1

(−1)r−sεkT
(s)
ik T̃

(r−s)
kj − τ r−1

1 τ2

r−1∑
s=0

n∑
k=1

(−1)r−sT
(s)
ik T̃

(r−s−1)
kj .

Definition 3.7. SBτ1,τ2(n, p) is defined as the intersection of Bτ1,τ2(n, p) with Y (sln).

Set bij(u) = δijεi +
∑∞
r=1 τ

1−r
1 b

(r)
ij u

−r and B(u) =
∑n
i,j=1 bij(u) ⊗ Eij ∈ Bτ1,τ2(n, p)[[u−1]] ⊗C End C(Cn). Then

we can express the embedding Bτ1,τ2(n, p) ↪→ Y (gln) via

B(u) = T (u)Θp,τ2(u)T−1(−u),

where Θp,τ2(u) = 1⊗
(
Θp + τ2u

−1
)
∈ Y (gln)[[u−1]]⊗C End (Cn).

It follows immediately that the equation

(3) B(u)B(−u) = (1− τ2
2u
−2)

is satisfied.

Proposition 3.2 (Proposition 3.3 in [MoRa]). Bτ1,τ2(n, p) is a left coideal subalgebra in Y (gln) with coproduct given
by

∆(bij(u)) =

n∑
s,t=1

Tis(u)T̃tj(−u)⊗ bst(u).

Furthermore, we have the following result.

Proposition 3.3. The twisted Yangian Bτ1,τ2(n, p) satisfies the reflection equation

(4) R(u− v)B1(u)R(u+ v)B2(v) = B2(v)R(u+ v)B1(u)R(u− v),

where B1(u) =
∑
ij bij(u)⊗ Eij ⊗ 1, B2(u) =

∑
ij bij(u)⊗ 1⊗ Eij ∈ Bτ1,τ2(n, p)[[u−1]]⊗C End C(Cn)⊗2.

Proof. Following the same steps as in the proof of theorem 3.1 in [MoRa], we are reduced to proving the following
equality:

R(u− v)Θ1
p,τ2(u)R(u+ v)Θ2

p,τ2(v) = Θ2
p,τ2(v)R(u+ v)Θ1

p,τ2(u)R(u− v).
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This can be proved by direct calculation as follows:

(u2 − v2)R(u− v)Θ1
p,τ2(u)R(u+ v)Θ2

p,τ2(v)

=
(

(u− v)−
n∑

i,j=1

Eij ⊗ Eji
)( n∑

i=1

(εi + τ2u
−1)Eii ⊗ Id

)(
(u+ v)−

n∑
i,j=1

Eij ⊗ Eji
)( n∑

i=1

(εi + τ2v
−1)Id⊗ Eii

)
=

n∑
i,j=1

(u2 − v2)(εi + τ2u
−1)(εj + τ2v

−1)Eii ⊗ Ejj −
n∑

i,j=1

(u+ v)(εi + τ2u
−1)(εj + τ2v

−1)Eji ⊗ Eij

−
n∑

i,j=1

(u− v)(εi + τ2u
−1)(εi + τ2v

−1)Eij ⊗ Eji +

n∑
i,j=1

(εi + τ2u
−1)(εi + τ2v

−1)Ejj ⊗ Eii

=

n∑
i,j=1

(εj + τ2v
−1)(τ2u

−1(1 + u2 − v2) + εj + εi(u
2 − v2))Eii ⊗ Ejj

−
n∑

i,j=1

(εi + τ2v
−1)(2τ2 + εi(u− v) + εj(u+ v))Eij ⊗ Eji,

(u2 − v2)Θ2
p,τ2(v)R(u+ v)Θ1

p,τ2(u)R(u− v)

=
( n∑
i=1

(εi + τ2v
−1)Id⊗ Eii

)(
(u+ v)−

n∑
i,j=1

Eij ⊗ Eji
)( n∑

i=1

(εi + τ2u
−1)Eii ⊗ Id

)(
(u− v)−

n∑
i,j=1

Eij ⊗ Eji
)

=

n∑
i,j=1

(u2 − v2)(εj + τ2v
−1)(εi + τ2u

−1)Eii ⊗ Ejj −
n∑

i,j=1

(u− v)(εi + τ2v
−1)(εi + τ2u

−1)Eji ⊗ Eij

−
n∑

i,j=1

(u+ v)(εj + τ2v
−1)(εi + τ2u

−1)Eij ⊗ Eji +

n∑
i,j=1

(εi + τ2v
−1)(εi + τ2u

−1)Ejj ⊗ Eii

=

n∑
i,j=1

(εj + τ2v
−1)(τ2u

−1(1 + u2 − v2) + εj + εi(u
2 − v2))Eii ⊗ Ejj

−
n∑

i,j=1

(εj + τ2v
−1)(2τ2 + εj(u− v) + εi(u+ v))Eij ⊗ Eji.

Notice that

(εi + τ2v
−1)(2τ2 + εi(u− v) + εj(u+ v))− (εj + τ2v

−1)(2τ2 + εj(u− v) + εi(u+ v)) = 0,

which implies the conclusion. �

Theorem 3.1. Assume τ1 6= 0. The reflection equation (4), the unitary relation (3), and b
(0)
ij = δijεi (1 ≤ i, j ≤ n)

are the defining relations for the twisted Yangian Bτ1,τ2(n, p).

Proof. The argument is the same as in the proof of theorem 3.1 in [MoRa]. �

In [MoRa] (see also [Sk]), the authors also consider the algebra B̃(n, p) which is generated by b
(r)
ij with defining

relation given only by the reflection equation (4). They prove that, in B̃(n, p), B̃(u)B̃(−u) = f(u)Id where f(u)

is an even series in u−1 with coefficients in the center of B̃(n, p), B̃(u) is the matrix
∑n
i,j=1

∑∞
r=0 b̃

(r)
ij u

−r ⊗ Eij ∈
B̃(n, p)[[u−1]]⊗CEnd C(Cn) and {b̃(r)

ij } is the set of generators of B̃(n, p). The quotient of B̃(n, p) by the ideal (f(u)−1)

is the reflection algebra denoted B(n, p) in [MoRa]. Our twisted Yangian Bτ1,τ2(n, p) is exactly the quotient of B̃(n, p)
by the relation B(u)B(−u) = (1−τ2

2u
−2)Id. In particular, when τ2 = 0, we get the algebra B(n, p) studied in [MoRa].

More generally, we have the following corollary.
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Corollary 3.1. For τ1 6= 0 and any τ2 ∈ C, we have an isomorphism Bτ1,τ2(n, p) ∼= B(n, p).

Proof. Set g(u) = 1 − τ2u−1. An isomorphism ψ : Bτ1,τ2(n, p)
∼−→ B(n, p) is given by ψ(B(u)) = g(u)B(u), where

B(u) is defined similarly to B̃(u). �

Corollary 3.2 (PBW basis for twisted reflection algebra). The set of ordered monomials (under arbitrary total
ordering) in the generators

b
(2k−1)
ij , 0 ≤ i, j ≤ p or p+ 1 ≤ i, j ≤ n,

b
(2k)
ij , 1 ≤ i ≤ p < j ≤ n or 1 ≤ j ≤ p < i ≤ n,

for k ≥ 1 form a PBW-type basis of the twisted reflection algebra Bτ1,τ2(n, p).

Proof. Let {b(r)
ij } be the set of generators of B(n, p) as in [MoRa]. Using the isomorphism in Corollary 3.1, we have

ψ(b
(0)
ij ) = b

(0)
ij , ψ(b

(r)
ij ) = τ r−1

1 (b
(r)
ij − τ2b

(r−1)
ij ) for r ≥ 1. The corollary follows from corollary 3.2 in [MoRa]. �

Now define a filtration on Bτ1,τ2(n, p) by setting deg(b
(r)
ij ) = r− 1 for r ≥ 1 and deg(b

(0)
ij ) = 0. Then we can define

the associated graded algebra grBτ1,τ2(n, p). Using the isomorphism ψ in Corollary 3.1 and the results from [MoRa]
Section 3.2, we have the following consequence.

Corollary 3.3. We have an isomorphism of algebras

Uglθn(C[t])
∼−→ grBτ1,τ2(n, p), τ r−1

1 (εj + (−1)r−1εi)Eijt
r−1 7→ b

(r)

ij .

3.4. MacKay’s twisted Yangians of type AIII. The twisted Yangians that we study in this subsection were
introduced by N. MacKay in [Ma1, Ma2]. One novelty here is that the algebras that we define are a bit more general
because they depend on two deformation parameters.

Definition 3.8. [Ma1, Ma2] The MacKay twisted Yangian Ỹλ1,λ2(gln, k) of type AIII is the subalgebra of the Yangian

Ỹλ1
(gln) generated by the elements Eab ∈ k and by J̃(Eij) with Eij ∈ p, where

J̃(Eij) = J(Eij)− εi
(
λ2

2
+
λ1(n− 2p)

4

)
Eij −

λ1

4
[C,Eij ],

where C =
∑p
i,j=1EijEji +

∑n
i,j=p+1EijEji is the quadratic Casimir operator of k. We will denote by Yλ1,λ2

(sln, k0)
the algebra obtained by allowing only the matrices Eij , Eii − Ejj ∈ k0 for i 6= j.

Note that, if λ1 6= 0, then Ỹλ1,λ2
(gln, k) ∼= Ỹ

1,
λ2
λ1

(gln, k) by rescaling the generators.

Lemma 3.1. The MacKay twisted Yangian Ỹλ1,λ2(gln, k) is a left coideal subalgebra of the Yangian Ỹλ(gln); that is,

∆(Ỹλ1,λ2
(gln, k)) ⊂ Ỹλ1

(gln)⊗C Ỹλ1,λ2
(gln, k) where ∆ is the coproduct on Y (gln).

Proof. The proof is essentially contained in subsection 2.3 in [DMS]. �

Lemma 3.2. The following relation holds in Ugln:
∑n
k=1 εkEikEkj = 2p−n

2 Eij + εi
2 [C,Eij ], where 1 ≤ i ≤ p < j ≤ n

or 1 ≤ j ≤ p < i ≤ n.
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Proof. Assume that i, j satisfy one of the two conditions in the statement of this lemma:

[C,Eij ] =

 p∑
h,k=1

+

n∑
h,k=p+1

 [EhkEkh, Eij ]

=

 p∑
h,k=1

+

n∑
h,k=p+1

 ([Ehk, Eij ]Ekh + Ehk[Ekh, Eij ])

= εi

p∑
k=1

(EikEkj + EkjEik)− εi
n∑

k=p+1

(EikEkj + EkjEik).

So
p∑
k=1

EikEkj −
n∑

k=p+1

EikEkj

=
1

2

p∑
k=1

(EikEkj + [Eik, Ekj ] + EkjEik)− 1

2

n∑
k=p+1

(EikEkj + [Eik, Ekj ] + EkjEik)

=
2p− n

2
Eij +

εi
2

[C,Eij ].

�

Proposition 3.4. Let λ1 = 1, τ2 = (n− 2p)/2 + λ2/2. The algebra Ỹλ1,λ2(gln, k) is isomorphic to the subalgebra of

Bτ1,τ2(n, p) generated by b
(1)
ij with 1 ≤ i, j ≤ n and by b

(2)
ij for all 1 ≤ i ≤ p < j ≤ n and all 1 ≤ j ≤ p < i ≤ n.

Proof. The two twisted Yangians Ỹλ1=1,λ2
(gln, k) and Bτ1,τ2(n, p) are subalgebras of Y (gln), and to understand how

they are connected, we need to use the following relation in Y (gln) [ChPr1] when i 6= j:

(5) J(Eij) = T
(2)
ij −

1

2

n∑
k=1

EikEkj ,

where we have identified Eik, Ekj with T
(1)
ik , T

(1)
kj .

We need to know the coefficients of T̃kj(u). A general expression for the coefficients of T̃kj(u) can be found in
[MoRa], and the first few terms are the following (see also [MNO]):

(6) T̃
(1)
ij = −T (1)

ij , T̃
(2)
ij = −T (2)

ij +

n∑
k=1

T
(1)
ik T

(1)
kj .

We can now compute that

(7) b
(1)
ij = εjT

(1)
ij + εiT

(1)
ij + τ2δij = (εi + εj)Eij + τ2δij .

When 1 ≤ i ≤ p < j ≤ n or 1 ≤ j ≤ p < i ≤ n, we have

b
(2)
ij = (εj − εi)τ1T (2)

ij + 2τ1τ2T
(1)
ij + εiτ1

n∑
k=1

T
(1)
ik T

(1)
kj + τ1

n∑
k=1

εkT
(1)
ik T

(1)
kj(8)

= −2τ1εiJ(Eij) + 2τ1τ2Eij + τ1

n∑
k=1

εkEikEkj

( using Lemma 3.2)

= −2εiτ1

(
J(Eij) + εi

(
(n− 2p)

4
− τ2

)
Eij −

1

4
[C,Eij ]

)
= −2εiτ1J̃(Eij).
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We have embeddings Ỹλ1,λ2
(gln, k) ↪→ Y (gln) and Bτ1,τ2(n, p) ↪→ Y (gln) and the preceding computations show

that the image of the former lands in the image of the latter if τ2 =
(n− 2p)

2
+
λ2

2
(and τ1 6= 0 as usual) and that

it can be identified with the subalgebra of Bτ1,τ2(n, p) generated by all b
(1)
ij with 1 ≤ i, j ≤ n, and by b

(2)
ij with

1 ≤ i ≤ p < j ≤ n, 1 ≤ j ≤ p < i ≤ n. �

Corollary 3.4. Suppose that n ≥ 3 and λ2, τ2 are related as in Proposition 3.4. Then Y1,λ2(sln, k0) is equal to
SBτ1,τ2(n, p).

Proof. By definition, the algebra Y1,λ2(sln, k0) is generated by elements in k0 and by J̃(Eij) with Eij ∈ p.

Then from (7), (8), it can be identified with the subalgebra of SBτ1,τ2(n, p) generated by

b
(1)
ij (1 ≤ i 6= j ≤ p, p+ 1 ≤ i 6= j ≤ n), b

(1)
ii − b

(1)
jj (1 ≤ i 6= j ≤ n), b

(2)
ij (1 ≤ i ≤ p < j ≤ n, 1 ≤ j ≤ p < i ≤ n).

Thus Y1,λ2
(sln, k0) is contained in SBτ1,τ2(n, p). Both have filtrations inherited from the one on Y (gln) obtained

by giving t
(r)
ij degree r. So we have gr(Y1,λ2

(sln, k0)) ⊂ gr(SBτ1,τ2(n, p)) ∼= Uslθn(C[t]), where the last isomorphism

can be deduced from Section 3 in [MoRa] and from Corollary 3.1.

Uslθn(C[t]) is generated as an algebra by its subspaces spanned by k0 and p ⊗C Ct, so gr(Y1,λ2
(sln, k0)) contains

generators of Uslθn(C[t]) and hence both are equal. It follows that gr(Y1,λ2
(sln, k0)) = gr(SBτ1,τ2(n, p)) and therefore

Y1,λ2(sln, k0) = SBτ1,τ2(n, p). �

3.5. Presentation of the twisted Yangian of type AIII by generators and relations. In this section, we

give a presentation in terms of generators and relations of the Mackay twisted Yangian Ỹλ1=1,λ2(gln, k) with n = 2p.
The initial idea which led to this section is the observation that an isomorphism given explicitly in [GHL] allows
one to view slθ2p(C[t]) as being isomorphic to slp(C[t] o Γ). We can then apply ideas from [Gu2, Gu3] to obtain a
presentation for a deformation of the enveloping algebra of slp(C[t] o Γ)⊕ CIp (Ip being the identity matrix) which

turns out to be isomorphic to Ỹλ1=1,λ2
(gln, k) for k = glp(C)⊕ glp(C).

We introduce an action of Γ on the polynomial ring C[t] (where Γ = Z/2Z): if γ ∈ Γ, γ 6= 1Γ and p(t) ∈ C[t], then
γ(p(t)) = p(−t). We can form the semi-direct product (also called smash product) C[t] o Γ. Moreover, the kernel of
the universal central extension of slp(C[t]oΓ) is isomorphic to HC1(C[t]oΓ) and it is known that HC1(C[t]oΓ) = 0.
Since C[t] o Γ is not a commutative ring, it may be a good idea to recall the following definition.

Definition 3.9. Let A be an associative algebra over C, not necessarily commutative. The Lie algebra slp(A) is
defined as slp(A) = [glp(A), glp(A)]. slp(A) is also the space of matrices in glp(A) with trace in [A,A].

Let us assume that p ≥ 4.

Proposition 3.5. [Gu2] The Lie algebra slp(C[t] o Γ) is isomorphic to the Lie algebra generated by the elements
Fab(t), Fab(γ) for γ ∈ Γ, 1 ≤ a 6= b ≤ p and satisfying the following relations: If 1 ≤ a, b, c ≤ p are all distinct and
1 ≤ a, c, d ≤ p are also all distinct, and if γ, γ1, γ2 ∈ Γ, then

[Fab(t), Fbc(t)] = [Fad(t), Fdc(t)], [Fab(1), Fbc(t)] = Fac(t);

[Fab(γ
i), Fbc(t)] = [Fad((−1)it), Fdc(γ)] γ 6= 1Γ, i = 0, 1, [Fab(γ1), Fbc(γ2)] = Fac(γ1γ2).

If 1 ≤ a, b, c, d ≤ p and a 6= b 6= c 6= d 6= a, then

[Fab(t), Fcd(t)] = 0, [Fab(γ), Fcd(t)] = 0, [Fab(γ1), Fcd(γ2)] = 0.

In [GHL], it was explained that slp(C[t, t−1] o Γ) is isomorphic to sln(C[w,w−1]) (w should be thought of as u2),
so that slp(C[t] o Γ) gets identified with the Lie subalgebra g of sln(C[w,w−1]) spanned by all matrices of the form
Eijw

r, (Eii − Ejj)wr for any 1 ≤ i 6= j ≤ n if r ≥ 1 and all the matrices Eij , Eii − Ejj with 1 ≤ i 6= j ≤ n except
those with p+ 1 ≤ i ≤ n, 1 ≤ j ≤ p. The next proposition was missed in [GHL].

Proposition 3.6. sln(C[w±1]) is isomorphic to slθn(C[t±1]) and g is isomorphic to slθn(C[t]).
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Proof. An isomorphism ρ : sln(C[w,w−1])
∼−→ slθn(C[t, t−1]) can be described explicitly in the following way. If

εi = εj , then ρ(Eijw
r) = Eijt

2r; if εi = −1 and εj = 1, then ρ(Eijw
r) = Eijt

2r+1; if εi = 1 and εj = −1, then
ρ(Eijw

r) = Eijt
2r−1. �

Let e0 and e1 be the two primitive idempotents of Γ. Composing ρ with the isomorphism slp(C[t, t−1] o Γ)
∼−→

sln(C[w,w−1]) given in [GHL] yields the isomorphism τ : slp(C[t, t−1] o Γ)
∼−→ slθn(C[t, t−1]) given by τ(Eijt

2re0) =
Eijt

2r, τ(Eijt
2re1) = Ei+p,j+pt

2r, τ(Eijt
2r+1e0) = Ei+p,jt

2r+1, τ(Eijt
2r+1e1) = Ei,j+pt

2r+1, which restricts to an

isomorphism slp(C[t] o Γ)
∼−→ slθn(C[t]).

The previous proposition implies that Yλ1,λ2
(sln, k0) can be viewed as a deformation of Uslp(C[t]oΓ); this is part

of the content of Theorem 3.2 below. We set Hab(γ
i) = Faa(γi)− Fbb(γi), i = 0, 1.

Definition 3.10. We denote by Y pλ2
the algebra generated by elements Fab(t) with 1 ≤ a 6= b ≤ p and by Fab(γ) for

γ ∈ Γ, 1 ≤ a, b ≤ p and satisfying [Fab(1), Fbc(t)] = Fac(t) = [Fab(t), Fbc(1)] if c 6= a, b and the following relations:

If 1 ≤ a, b, c ≤ p are all distinct and 1 ≤ a, c, d ≤ p are also all distinct, then

[Fab(t), Fbc(t)]− [Fad(t), Fdc(t)] =

p∑
j=1

(
Hbd(e1)Faj(e0)Fjc(e0)−

(
Fbj(e0)Fjb(e0)− Fdj(e0)Fjd(e0)

)
Fac(e1)

)
+

p∑
j=1

(
Hbd(e0)Faj(e1)Fjc(e1)−

(
Fbj(e1)Fjb(e1)− Fdj(e1)Fjd(e1)

)
Fac(e0)

)
+2λ2(Hbd(e1)Fac(e0)−Hbd(e0)Fac(e1)).

For a 6= b 6= c, a 6= d 6= c and for γ, γ1, γ2 ∈ Γ,

[Fab(γ
i), Fbc(t)] = [Fad((−1)it), Fdc(γ)] γ 6= 1Γ, i = 0, 1, [Fab(γ1), Fbc(γ2)] = Fac(γ1γ2).

If 1 ≤ a, b, c, d ≤ p and a 6= b 6= c 6= d 6= a, then

[Fab(t), Fcd(t)] =

p∑
j=1

(
Fcj(e1)Fjb(e1)Fad(e0)− Fcb(e1)Faj(e0)Fjd(e0)

)
− λ2Fad(e0)Fcb(e1)

+

p∑
j=1

(
Fcj(e0)Fjb(e0)Fad(e1)− Fcb(e0)Faj(e1)Fjd(e1)

)
+ λ2Fad(e1)Fcb(e0).

If a 6= d, b 6= c, then

[Fab(γ), Fcd(t)] = 0, [Fab(γ1), Fcd(γ2)] = 0.

Finally, Ip =
∑p
i=1 Fii(1) is central.

Theorem 3.2. The algebras Y pλ2
and Ỹλ1=1,λ2

(gln, k) are isomorphic.

Proof. We can define an algebra epimorphism ψ : Y pλ2
� Ỹλ1=1,λ2

(gln, k) by setting ψ(Fab(1Γ)) = Eab + Ea+p,b+p,

ψ(Fab(γ)) = Eab−Ea+p,b+p for 1 ≤ a, b ≤ p and ψ(Fab(t)) = J̃(Ea,b+p) + J̃(Ea+p,b) for 1 ≤ a 6= b ≤ p. To check that
this does indeed define an algebra homomorphism, one should use equation (8) along with the reflection equation
and the unitary condition. We will not include the relevant computations. Passing to the associated graded algebras,

we obtain a homomorphism gr(ψ) : gr(Y pλ2
) � gr(Ỹλ1=1,λ2

(gln, k)). Here, the filtration on Ỹλ1=1,λ2
(gln, k) is the

one induced from the filtration on Ỹλ1=1(gln) obtained by giving J(Eab) degree one. We thus have an embedding

gr(Ỹλ1=1,λ2
(gln, k)) ↪→ gr(Ỹλ1=1(gln)) and a quotient map U(slp(C[t] o Γ) ⊕ CIp) � gr(Y pλ2

) (see Proposition 3.5).

The composite of all these maps is the monomorphism U(slp(C[t] o Γ)⊕CIp) ↪→ U(sln(C[t])⊕CIn) which identifies
U(slp(C[t] o Γ) ⊕ CIp) with U(slθn(C[t]) ⊕ CIn). (See Proposition 3.6 and the paragraph just below it.) Therefore,
gr(ψ) is an isomorphism, hence so is ψ. �
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4. Drinfeld functors

4.1. Preliminaries. Let the symmetric group Sl act on the space (Cn)⊗l by permutation of the l tensor components.

If Eij ∈ gln(C) and v ∈ (Cn)⊗l, we denote by E
(k)
ij (v) the element obtained by applying Eij to the k-th factor in

the tensor product. Then, as an element in End C((Cn)⊗l), the permutation σks ∈ Sl equals
∑n
i,j=1E

(k)
ij E

(s)
ji . Set

Pk =
∑n
i,j=1E

(k)
ij E

(k+1)
ji ∈ End C((Cn)⊗l) and Ik =

∑n
i,j=1E

(k)
ij ⊗ Eij ∈ End C((Cn)⊗l)⊗C End C(Cn).

Lemma 4.1. View Pk as the linear operator Pk ⊗ 1 ∈ End C(Cn)⊗l ⊗C End C(Cn). We have

[Ik+1, Pk] = −[Ik, Ik+1], [Ik, Pk] = [Ik, Ik+1].

Proof. The proof is based on direct calculations:

[Ik+1, Pk] =

n∑
s,t,r=1

E
(k)
rt ⊗ E(k+1)

sr ⊗ Est −
n∑

s,t,m=1

E(k)
sm ⊗ E

(k+1)
mt ⊗ Est,

[Ik, Ik+1] =

n∑
s,t,m=1

E
(k)
st ⊗ E

(k+1)
tm ⊗ Esm −

n∑
s,t,r=1

E
(k)
st ⊗ E(k+1)

rs ⊗ Ert,

and [Ik, Pk] = IkPk − PkIk = PkIk+1 − Ik+1Pk = −[Ik+1, Pk]. �

Let γk ∈ Wl act on (Cn)⊗l by multiplication on the k-th component by the matrix Θp (this operator will be

denoted by Θ
(k)
p ). This defines a Wl-module structure on (Cn)⊗l. Thus for any Hlκ1

-module (resp. Hlκ1,κ2
-module)

M , the space M ⊗C (Cn)⊗l has an Sl (resp. Wl) module structure obtained from the diagonal action. From now on,
let ε = 1 or −1.

4.2. Drinfeld functor for Y (gln). In this section, we recall the construction of the Drinfeld functor in type A.

Let M be any Hlκ1
-module and set D̃A(M) = M ⊗C (Cn)⊗l. For constants λ and ck (k = 1, . . . , l), define

Tλ(u) = Tλ1 (u) · · · Tλl (u) ∈ Hlκ1
[[u−1]]⊗C End C((Cn)⊗l)⊗C End C(Cn),

where Tλk(u) = 1 +
1

u− λyk + ck
⊗ Ik, k = 1, . . . , l.

Then the map T (u) 7→ Tλ(u) defines an action of Y (gln) on D̃A(M). As was mentioned in Section 4.1, D̃A(M)
has a Sl-module structure. Define the space DA,ε(M) as

DA,ε(M) = D̃A(M)/

l−1∑
i=1

Im(σi − ε), where Im means image.

Proposition 4.1 ([Ar] proposition 2, [Dr] theorem 1). Assume ck = c for (k = 1, . . . , l) and κ1 6= 0. Let M be any
left Hlκ1

-module. When λ = ε/κ1, the map T (u) → Tλ(u) defines an action of Y (gln) on DA,ε(M). Thus we have a
functor

DA,ε : Hlκ1
−modL −→ Y (gln)−modL, M 7→ DA,ε(M).

When ε = −1, a condensed version of the proof is contained in [Ar]; we give a few more details for completeness.

Proof of Proposition 4.1. We need the following relations:

Iiσj = σjIi, if j 6= i− 1, i, Iiσi = σiIi+1, Iiσi−1 = σi−1Ii−1.

We can write
∏l
k=1(u + c − λyk)Tλ1 (u)Tλ2 (u) · · · Tλl (u) = T̃λ1 (u) · · · T̃λl (u), where T̃λk(u) = u + c − λyk + 1 ⊗ Ik.

Since
∏l
k=1(u+ c− λyk) is in the center of Hlκ1

(Lemma 2.3), it is enough to show that, for λ = ε/κ1, the image of
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T̃λ1 (u) · · · T̃λl (u)σk − σkT̃λ1 (u) · · · T̃λl (u) is contained in the image of σk − ε. First notice that σk commutes with T̃λs (u)
for s 6= k, k + 1. We also have

T̃λk(u)T̃λk+1(u)σk

= T̃λk(u) (σk(u+ c)− σkλyk + λκ1 ⊗ Pk + σk1⊗ Ik)

= T̃λk(u)σk(u+ c− λyk + 1⊗ Ik) + T̃λk(u)λκ1 ⊗ Pk

= (σk(u+ c)− λσkyk+1 − λκ1 ⊗ Pk + σk1⊗ Ik+1)(u+ c− λyk + 1⊗ Ik) + T̃λk(u)λκ1 ⊗ Pk

= σk(u+ c− λyk+1 + 1⊗ Ik+1)(u+ c− λyk + 1⊗ Ik)− λκ1 ⊗ Pk(u+ c− λyk + 1⊗ Ik) + T̃λk(u)λκ1 ⊗ Pk

= σkT̃
λ
k(u)T̃λk+1(u) + σk ⊗ [Ik+1, Ik] + λκ1 ⊗ [Ik, Pk]

= σkT̃
λ
k(u)T̃λk+1(u) + (σk − λκ1)1⊗ [Ik+1, Ik] (by Lemma 4.1).

Thus we have

T̃λ1 (u) · · · T̃λl (u)σk − σkT̃λ1 (u) · · · T̃λl (u) = (σk − λκ1)T̃λ1 (u) · · · T̃λk−1(u)[Ik+1, Ik]T̃λk+2(u) · · · T̃λl (u).

We get the desired conclusion when λκ1 = ε.

As for homomorphisms, suppose that f ∈ Hom Hlκ1
(M1,M2). Then f extends to a homomorphism f ⊗ 1 :

D̃A(M1) −→ D̃A(M2); since f is a homomorphism of modules over Hlκ1
, (f⊗1)(

∑l−1
i=1 Im(σi−ε)) ⊂

∑l−1
i=1 Im(σi−ε). �

4.3. Drinfeld functor for MacKay’s twisted Yangians. In this section, we explain how to construct a functor
from the category of modules over the degenerate affine Hecke algebra of type BCl to the category of modules for

the MacKay twisted Yangian Ỹλ1,λ2(gln, k).

Consider a left module M over Hlκ1,κ2
. From Section 4.2, since Hlκ1,κ2

contains Hlκ1
, we know that DA,ε(M) is a left

module over Y (gln). So, by restriction, it is also a left module over Ỹλ1,λ2(gln, k).

Now consider the following space:

DBC,ε(M) = DA,ε(M)/Im(γl − ε) = M ⊗C (Cn)⊗l/

(
l−1∑
k=1

Im(σk − ε) + Im(γl − ε)

)
.

DBC,ε(M) is not a left module over Y (gln), but we have the following result which is an analog of theorem 1 in
[Dr] and of Proposition 4.1.

Theorem 4.1. DBC,ε(M) is a left module over Ỹλ1,λ2
(gln, k) if λ1 = κ1 and λ2 = κ2. Therefore, we have a functor

DBC,ε : Hlκ1,κ2
−modL −→ Ỹλ1,λ2(gln, k)−modL.

If f ∈ Hom Hlκ1,κ2
(M1,M2), then DBC,ε(f) ∈ Hom Ỹλ1,λ2 (gln,k)

(DBC,ε(M1),DBC,ε(M2)) is defined by DBC,ε(f)(m ⊗
v) = f(m)⊗v. Moreover, if p, n−p ≥ l+1, DBC,ε provides an equivalence between the category of finite dimensional

modules over Hlκ1,κ2
and the category of finite dimensional modules over Ỹλ1,λ2

(gln, k) which are of level l in the sense

that they decompose over glp ⊕ gln−p as direct sums of submodules of (Cn)⊗l (so in particular the identity matrix In
acts by the scalar l).

Proof. It is enough to show that the generators J̃(Eij) ∈ Ỹλ1,λ2
(gln, k), which act on DA,ε(M) by Proposition 4.1,

descend to operators on DBC,ε(M). Set

Rk = −κ2

2
γk −

κ1

2

l∑
j=1

j 6=k

σjkγkγj .
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It can be deduced from [Dr] (or from formula (5) and the proof of Proposition 4.1) that J(Eij) with 1 ≤ i, j ≤ n
acts on DA,ε(M) in the following way:

J(Eij)(m⊗ v) = ελ1

l∑
k=1

(
1

κ1
yk +

1

2

k−1∑
s=1

σsk −
1

2

l∑
s=k+1

σsk

)
m⊗ E(k)

ij (v).

For Eij ∈ p, we can make the following computations:

l∑
k=1

m⊗RkE(k)
ij (v) = −1

2

l∑
k=1

m⊗

κ2Θ(k)
p + κ1

l∑
h=1

h6=k

n∑
s,t=1

E
(h)
st E

(k)
ts Θ(h)

p Θ(k)
p

E
(k)
ij (v)

= −κ2

2

l∑
k=1

m⊗ εiE(k)
ij (v)− κ1

2

l∑
k=1

l∑
h=1

h6=k

n∑
s,t=1

m⊗
(
(Est)

(h)εt(EtsEij)
(k)εs

)
(v)

= −κ2εi
2
Eij(m⊗ v)− κ1

2

l∑
k=1

l∑
h=1

h 6=k

n∑
t=1

εtεim⊗ (Eit)
(h)E

(k)
tj (v)

= −κ2εi
2
Eij(m⊗ v)− κ1

2

l∑
k,h=1

n∑
t=1

εtεim⊗
(
E

(h)
it E

(k)
tj

)
(v) +

κ1

2

l∑
k=1

n∑
t=1

εtεim⊗ E(k)
it E

(k)
tj (v)

= −εi
2

(κ2 + κ1(n− 2p))Eij(m⊗ v)− κ1εi
2

(
p∑
t=1

EitEtj −
n∑

t=p+1

EitEtj

)
(m⊗ v)

(using Lemma 3.2)

= −εi
2

(κ2 + κ1(n− 2p))Eij(m⊗ v) +
κ1εi

2

(
n− 2p

2
Eij −

εi
2

[C,Eij ]

)
(m⊗ v)

= −
(
εi

(
κ2

2
+
κ1(n− 2p)

4

)
Eij +

κ1

4
[C,Eij ]

)
(m⊗ v).

Since

(9) J̃(Eij) = J(Eij)− εi
(
λ2

2
+
λ1(n− 2p)

4

)
Eij −

λ1

4
[C,Eij ],

we see that if λ1 = κ1, λ2 = κ2, we can define the action of J̃(Eij) on DA,ε(M) to be

(10) J̃(Eij)(m⊗ v) = ε

l∑
k=1

(
yk +

λ1

2

k−1∑
s=1

σsk −
λ1

2

l∑
s=k+1

σsk +Rk

)
m⊗ E(k)

ij v = ε

l∑
k=1

ỹkm⊗ E(k)
ij v.

We now want to see that it descends to an operator on DBC,ε(M), so we have to show that it stabilizes the

subspace Vl spanned by γlm⊗ v − εm⊗Θ
(l)
p v for any m ∈M,v ∈ (Cn)⊗l:

J̃(Eij)(γlm⊗ v − εm⊗Θ(l)
p v) = ε

l∑
k=1

(ỹkγlm⊗ E(k)
ij v − εỹkm⊗ E(k)

ij Θ(l)
p (v))

= ε

l∑
k=1

(−1)δkl
(
γlỹkm⊗ E(k)

ij v − εỹkm⊗Θ(l)
p E

(k)
ij (v)

)
∈ Vl.

We have thus shown that J̃(Eij) descends to an operator on DBC,ε(M). The space DBC,ε(M) is thus a left module

over the MacKay twisted Yangian Ỹλ1,λ2
(gln, k).

The proof that DBC,ε provides an equivalence of categories follows from similar arguments as those used in
[ChPr2, Gu1, VaVa], so we just outline the main ideas. The tensor space (Cn)⊗l decomposes as a direct sum of
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irreducible modules over GLp(C) × GLn−p(C) ×Wl (see [ATY] for a precise statement), hence any left module N

over Ỹλ1,λ2
(gln, k) of level l is of the form N = M ⊗C (Cn)⊗l/

∑l−1
i=1 Im(σi − ε) + Im(γl − ε) for some Wl-module M .

To transform M into a module over Hlκ1,κ2
, we need to find commuting operators Yk ∈ End C(M) for k = 1, . . . , l

such that Y1, . . . ,Yl, σ1, . . . , σl−1, γl satisfy the defining relations of Hlκ1,κ2
given in Lemma 2.2. To determine how

Yj should act on m ∈ M , pick a primitive tensor v = vk1 ⊗ · · · ⊗ vkl with k1, . . . , kl all distinct and {v1, . . . , vn}
the standard basis of Cn and consider how J̃(Ei,kj ) acts on it, where i 6= k1, . . . , kl. (Here, the assumption that
n ≥ max{p, n − p} ≥ l + 1 is needed.) To deduce that the commutator [Yi,Yj ] (for, say, i < j) is given by formula

(1), one should apply [J̃(Eai,bi), J̃(Eaj ,bj )] to m ⊗ v for an appropriate choice of ai, bi, aj , bj ,v (for instance, take

bi = ki, bj = kj and k1, . . . , kl, ai, aj all distinct). The assumption p, n− p ≥ l+ 1 ensures that DBC,ε(M) is non-zero
if M is non-zero: see [ATY]. �

4.4. Drinfeld functor for twisted Yangians of type AIII. In this section, we will construct a functor from the
category of left modules over the degenerate affine Hecke algebra of type BC to the category of left modules over the
twisted Yangian of type AIII which was introduced in Section 3.3. We will use the same notation for this functor as
in the previous section.

For any β ∈ C, denote by Bβ(n, p) the twisted Yangian Bτ1,τ2(n, p) with parameters τ1 = 1, τ2 = β. For any left
Hlκ1,κ2

-module M , view it as an Hlκ1
-module and set DBC,ε(M) = DA,ε(M)/Im(γl − ε).

For k = 1, . . . , l, define the following elements in Hlκ1,κ2
[[u−1]]⊗C End C((Cn)⊗l)⊗C End C(Cn):

Tλk(u) = 1 +
1

u− n/2− λyk
⊗ Ik, Sλk(u) = 1− 1

u+ n/2− λyk
⊗ Ik.

Lemma 4.2. We have Tλk(u)Sλk(u) = 1.

Proof. Using Ik · Ik = nIk, we get

Tλk(u)Sλk(u) =

(
1 +

1

u− n/2− λyk
⊗ Ik

)(
1− 1

u+ n/2− λyk
⊗ Ik

)
= 1 +

u+ n/2− λyk − u+ n/2 + λyk − n
(u− n/2− λyk)(u+ n/2− λyk)

⊗ Ik = 1.

�

Set

(11) Bλ(u) = Tλ1 (u) · · · Tλl (u)Θp,β(u)Sλl (−u) · · · Sλ1 (−u).

Here we regard Bλ(u) as an n× n-matrix whose entries, denoted bλij(u), are power series in u−1. Θp,β(u) is shorter

notation for 1⊗ 1⊗Θp,β(u) ∈ Hlκ1,κ2
[[u−1]]⊗C End ((Cn)⊗l)⊗C End (Cn).

From Proposition 4.1, when λ = ε
κ1

, the map T (u)→ Tλ(u) defines an action of Y (gln) on DA,ε(M), so from the

definition of Bβ(n, p) and Lemma 4.2, the map B(u)→ Bλ(u) defines a representation of Bβ(n, p) on the same space.

Theorem 4.2. Let M be any Hlκ1,κ2
-module and β =

κ2

2κ1
+
n− 2p

2
. If λ = ε/κ1, the map B(u)→ Bλ(u) defines a

representation of the twisted Yangian Bβ(n, p) on the space DBC,ε(M).

Proof. Assume ε = 1. (The proof is similar when ε = −1.) From Lemma 2.3, we know that the element
∏l
k=1

(
(u−

n/2)2−λ2y2
k

)
lies in the center of Hlκ1,κ2

. Thus we can multiply both sides of (11) by this central element and we get

B̃λ(u) =

l∏
k=1

((u− n/2)2 − λ2y2
k)Bλ(u) = T̃λ1 (u) · · · T̃λl (u)Θp,β(u)S̃λl (−u) · · · S̃λ1 (−u),
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where T̃λk(u) = u− n/2− λyk + 1⊗ Ik, S̃
λ
k(−u) = u− n/2 + λyk + 1⊗ Ik. It is enough to show that the commutator

of B̃λ(u) and γl on DA,ε(M) has its image contained in the image of γl − 1.

For each Ik, let Iak =
∑

1≤i,j≤pE
(k)
ij ⊗ Eij +

∑
p<i,j≤nE

(k)
ij ⊗ Eij and Ibk = Ik − Iak. Notice that we have the

following commutation relations:

γlIj = Ijγl, if j 6= l, Ial γl = γlI
a
l , I

b
lγl = −γlIbl , [γl,Θp,β(u)] = 0.

From these, we can see that γl commutes with T̃λk and S̃λk if k 6= l.

Thus we only need to check the commutator of γl and T̃λl (u)Θp,β(u)S̃λl (−u) on DA,ε(M). Set R = u−n/2 + 1⊗Ial .
Then [R, γl] = 0, [R,Θp,β(u)] = 0.

T̃λl (u)Θp,β(u)S̃λl (−u)γl

= (R− λyl + 1⊗ Ibl )Θp,β(u)(R + λyl + 1⊗ Ibl )γl

= (R− λyl + 1⊗ Ibl )Θp,β(u)(γlR + λ(−γlyl + κ2)⊗Θ(l)
p − γl(1⊗ Ibl ))

= (R− λyl + 1⊗ Ibl )Θp,β(u)γl(R− λyl − 1⊗ Ibl ) + (R− λyl + 1⊗ Ibl )Θp,β(u)(λκ2 ⊗Θ(l)
p )

= (γlR− λ(−γlyl + κ2)⊗Θ(l)
p − γl(1⊗ Ibl ))Θp,β(u)(R− λyl − 1⊗ Ibl )

+ (R− λyl + 1⊗ Ibl )Θp,β(u)(λκ2 ⊗Θ(l)
p )

= γl(R + λyl − 1⊗ Ibl )Θp,β(u)(R− λyl − 1⊗ Ibl )− (λκ2 ⊗Θ(l)
p )Θp,β(u)(R− λyl − 1⊗ Ibl )

+ (R− λyl + 1⊗ Ibl )Θp,β(u)(λκ2 ⊗Θ(l)
p ).

Since

(R + λyl − 1⊗ Ibl )Θp,β(u)(R− λyl − 1⊗ Ibl )− T̃λl (u)Θp,β(u)S̃λl (u)

= (R + λyl − 1⊗ Ibl )Θp,β(u)(R− λyl − 1⊗ Ibl )− (R− λyl + 1⊗ Ibl )Θp,β(u)(R + λyl + 1⊗ Ibl )

= −2
(
RΘp,β(u)(1⊗ Ibl ) + (1⊗ Ibl )Θp,β(u)R

)
= −2

(
(Θp + βu−1)(u− n/2 + 1⊗ Ial )(1⊗ Ibl ) + (−Θp + βu−1)(1⊗ Ibl )(u− n/2 + 1⊗ Ial )

)
= −2

(
β(2− nu−1)Ibl + Θp(I

a
l I
b
l − IblI

a
l ) + βu−1(Ial I

b
l + IblI

a
l )
)

= −2β(2− nu−1)(1⊗ Ibl )− 2(Θp + βu−1)

p ∑
i≤p,j>p

E
(l)
ij ⊗ Eij + (n− p)

∑
i>p,j≤p

E
(l)
ij ⊗ Eij


+ 2(Θp − βu−1)

(n− p)
∑

i≤p,j>p

E
(l)
ij ⊗ Eij + p

∑
i>p,j≤p

E
(l)
ij ⊗ Eij


= −2(2β + 2p− n)(1⊗ Ibl )

and

−(λκ2 ⊗Θ(l)
p )Θp,β(u)(R− λyl − 1⊗ Ibl ) + (R− λyl + 1⊗ Ibl )Θp,β(u)(λκ2 ⊗Θ(l)

p )

= (λκ2 ⊗Θ(l)
p )Θp,β(u)(1⊗ Ibl ) + (1⊗ Ibl )Θp,β(u)(λκ2 ⊗Θ(l)

p )

= 2λκ2(1⊗ Ibl ),

we have

T̃λl (u)Θp,β(u)S̃λl (−u)γl − γlT̃λl (u)Θp,β(u)S̃λl (−u) = −2γl(2β + 2p− n)(1⊗ Ibl ) + 2λκ2(1⊗ Ibl ) = 2λκ2(1− γl)(1⊗ Ibl ),

because β =
κ2

2κ1
+
n− 2p

2
and λ = ε

κ1
. This proves that the entries of the coefficients of Tλl (u)Θp,β(u)Sλl (−u)

descend to endomorphisms of DBC,ε(M). �



16 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

The Drinfeld functor is compatible with the coproduct in the following sense. Recall Lemma 3.1 and the observation
after Lemma 2.1.

Proposition 4.2. Choose l1, l2 ∈ Z≥1 such that l1+l2 = l. Let M1 be an Hl1κ1
-module and let M2 be an Hl2κ1,κ2

-module.

Set M1 �M2 = Hlκ1,κ2
⊗

H
l1
κ1
⊗Hl2κ1,κ2

(M1 ⊗C M2), which is an Hlκ1,κ2
-module. Then DBC,ε(M1 �M2) is isomorphic

to DA,ε(M1) ⊗C DBC,ε(M2) as a module over Bβ(n, p), where DA,ε(M1) ⊗C DBC,ε(M2) becomes a left module over
Bβ(n, p) via the coideal structure given in Proposition 3.2.

Proof. As Wl-modules, Hlκ1,κ2
∼= C[Wl]⊗C[Sl1 ]⊗CC[Wl2

] H
l1
κ1
⊗C Hl2κ1,κ2

, so DBC,ε(M1 �M2) ∼= DA,ε(M1)⊗C DBC,ε(M2)

as modules over glp⊕gln−p. To complete the proof, it is enough to check that the action of Bλ(u) on DBC,ε(M1�M2)
comes from the coproduct ∆: this follows from Proposition 3.2 and formula (11). �

The following theorem was proved in [Na1] by M. Nazarov. An analogous result also holds for Yangians in type A
[Ar] and for super Yangians of type Qn [Na2]. Actually, the proof presented below is similar to the proof of theorem
5.5 in [Na2].

Theorem 4.3. [Na1] Let κ1, κ2, λ, β be as in Theorem 4.2. Let M be an irreducible module over Hlκ1,κ2
. Then

DBC,ε(M) is either 0 or an irreducible module over Bβ(n, p).

Proof. One of the ideas is to reduce to the case of the twisted current algebra. Suppose that DBC,ε(M) 6= {0} for
some irreducible module M over Hlκ1,κ2

. We want to show that DBC,ε(M) is irreducible. Let N0 ⊂ DBC,ε(M) be a
subspace preserved by the action of Bβ(n, p). Since we have glp(C) ⊕ gln−p(C) ⊂ Bβ(n, p), N0 is also preserved by
glp(C)⊕gln−p(C). From the classical Schur-Weyl duality between glp(C)⊕gln−p(C) and Wl (see [ATY]), there exists
a Wl-submodule M0 of M such that N0 = DBC,ε(M0). Assume that for any non-zero vector b ∈M0 the image of the
subspace Cb⊗C(Cn)⊗l is not zero in N0. Notice that since M is irreducible, we have Hlκ1,κ2

·M0 = M . We only need to

show that N0 generates DBC,ε(M) under the action of Bβ(n, p). Let M ′ = Hlκ1,κ2
⊗C[Wl]M0

∼= C[y1, . . . , yl]⊗CM0 be

the left module over Hlκ1,κ2
induced from M0. Then M is a quotient of M ′. After identifying M0 with the submodule

1⊗M0 ⊂M ′, we see that it is enough to show that DBC,ε(1⊗M0) generates DBC,ε(M ′) under the action of Bβ(n, p).

Define a grading on Hlκ1,κ2
by letting deg(yi) = 1 for i = 1, . . . , l, and deg(σ) = 0 for σ ∈ Wl. Then M ′ becomes

a filtered module. This induces a filtration on M ′ ⊗C (Cn)⊗l and so on the quotient DBC,ε(M ′) which is compatible
with the one on Bβ(n, p) defined in Section 3.3. After passing to the associated graded spaces and using Corollary
3.3, we are reduced to proving the theorem with Hlκ1,κ2

replaced by gr Hlκ1,κ2
∼= C[ȳ1, . . . , ȳl] oWl, Bβ(n, p) replaced

by grBβ(n, p) ∼= Uglθn(C[t]) and M ′ replaced by C[ȳ1, . . . , ȳl] ⊗C M0. Here we use ȳi to denote the image of the
element yi in gr Hlκ1,κ2

. Set W = DBC,ε(C[ȳ1, . . . , ȳl] ⊗C M0). We only need to show that DBC,ε(1 ⊗M0) generates

W under the action of Uglθn(C[t]). The rest of the proof follows the argument in [Na2]. �

In light of the previous theorem, it may be useful to have a criterion which gives a sufficient condition for certain
modules over the degenerate affine Hecke algebra to be irreducible. Such a criterion for principal series modules is
proved in [KrRa]; see also [Ka] for the analogous result for affine Hecke algebras.

Definition 4.1. Let a = (a1, . . . , al) ∈ Cl and let Ca = C[y1, . . . , yl]/(yi − ai)li=1. The module Hlκ1,κ2
⊗C[y1,...,yl] Ca

is called a principal series module and is denoted Ma.

Theorem 4.4. [KrRa] Ma is irreducible if and only if ai 6= κ2 ∀ i = 1, . . . , l and ai ± aj 6= κ1,−κ1 ∀ 1 ≤ i < j ≤ l.

Combining Theorems 4.3 and 4.4, we obtain a family of irreducible finite dimensional representations of Bβ(n, p).

We thank M. Nazarov for bringing Kato’s theorem to our attention.
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4.5. Compatibility of the two Drinfeld functors. In this section, we will show that the construction in Section
4.4 recovers the one in Section 4.3. This is to be expected in light of Proposition 3.4, but doesn’t follow immediately

from this isomorphism since it is necessary to find an explicit formula for the operator through which b
(2)
ij acts (if

possible in terms of ỹk instead of yk) and then compare it with the formula we already have for J̃(Eij), namely (10),
which involves ỹk.

Let us denote by “≡” the equivalence modulo u−3. We have

Bλ(u) ≡
(

1 + u−1 ⊗ I1 + u−2
(n

2
+ λy1

)
⊗ I1

)
· · ·
(

1 + u−1 ⊗ Il + u−2
(n

2
+ λyl

)
⊗ Il

)
·(Θp + βu−1) ·

(
1 + u−1 ⊗ Il + u−2

(n
2
− λyl

)
⊗ Il

)
· · ·
(

1 + u−1 ⊗ I1 + u−2
(n

2
− λy1

)
⊗ I1

)

≡ Θp + u−1

(
β + 1⊗

l∑
k=1

(IkΘp + ΘpIk)

)
+ u−2

2β

(
1⊗

l∑
k=1

Ik

)
+

∑
1≤k<s≤l

(1⊗ IkIs)Θp

+
∑

l≥k>s≥1

Θp(1⊗ IkIs) +

(
1⊗

l∑
k=1

Ik

)
Θp

(
1⊗

l∑
s=1

Is

)

+

l∑
k=1

(
Θp

((n
2
− λyk

)
⊗ Ik

)
+
((n

2
+ λyk

)
⊗ Ik

)
Θp

))
.(12)

So if we set Bλ(u) =
∑n
i,j=1 b

λ
ij(u)⊗ Eij and bλij(u) =

∑∞
r=0 b

(r)
ij u

−r, we have

(13) b
(0)
ij = εiδij , b

(1)
ij = βδij + (εi + εj)

l∑
k=1

1⊗ E(k)
ij .

In order to calculate b
(2)
ij , we need the following lemma.

Lemma 4.3. Assume 1 ≤ i ≤ p < j ≤ n or 1 ≤ j ≤ p < i ≤ n. As operators on (Cn)⊗l, we have

l∑
k=1

(
−

l∑
t=k+1

σtk +

k−1∑
t=1

σtk

)
E

(k)
ij = −εi

 ∑
1≤k<s≤l

(IkIs)Θp +
∑

l≥k>s≥1

Θp(IkIs)


ij

(14)

l∑
k=1

 l∑
t=1

t6=k

σktγtγk + (2p− n)γk

E
(k)
ij = εi

((
l∑

k=1

Ik

)
Θp

(
l∑

s=1

Is

))
ij

.(15)

Here by (·)ij, we mean the (i, j)-th entry, i.e., for an element G ∈ End C((Cn)⊗l)⊗CEnd C(Cn), G =
∑n
i,j=1(G)ij⊗Eij.

Proof. The proof is based on direct calculations. Since σsk =
∑n
m1,m2=1E

(s)
m1,m2 ⊗ E

(k)
m2,m1 , we can rewrite the left

hand side of (14) as

−
∑
s>k

n∑
m=1

E
(s)
imE

(k)
mj +

∑
s<k

n∑
m=1

E
(s)
imE

(k)
mj .

On the other hand, we have∑
k>s

Θp(IkIs) +
∑
k<s

(IkIs)Θp =
∑
k>s

n∑
i,j,m=1

εiE
(k)
imE

(s)
mj ⊗ Eij +

∑
k<s

n∑
i,j,m=1

εjE
(k)
imE

(s)
mj ⊗ Eij

which implies the equality (14) (after switching k and s) since εi = −εj .
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Similarly, the left hand side of (15) can be written as

l∑
k,s=1

s6=k

n∑
m=1

εmεiE
(k)
mjE

(s)
im + (2p− n)

l∑
k=1

εiE
(k)
ij .

On the other hand, we have(
l∑

k=1

Ik

)
Θp

(
l∑

s=1

Is

)
=
∑
s6=k

n∑
i,j,m=1

εmE
(k)
imE

(s)
mj ⊗ Eij +

l∑
k=1

n∑
i,j,m=1

εmE
(k)
ij ⊗ Eij

which implies the equality (15). �

Now from (12) and the previous lemma, we have, for 1 ≤ i ≤ p < j ≤ n or 1 ≤ j ≤ p < i ≤ n,

b
(2)
ij = 2β

l∑
k=1

E
(k)
ij − εiε

l∑
k=1

(
−

l∑
t=k+1

σtk +

k−1∑
t=1

σtk

)
⊗ E(k)

ij

+εiε

l∑
k=1

 l∑
t=1

t6=k

σktγtγk + (2p− n)γk

⊗ E(k)
ij − 2λεi

l∑
k=1

yk ⊗ E(k)
ij

= −2εi

l∑
k=1

λyk +
ε

2

k−1∑
t=1

σtk −
ε

2

l∑
t=k+1

σtk −
ε

2

l∑
t=1

t 6=k

σktγtγk + ε

(
−2p− n

2
− β

)
γk

⊗ E(k)
ij .

If we take λ = ε/κ1, β = κ2/2κ1 − (2p− n)/2, we have

εκ1b
(2)
ij = −2εi

l∑
k=1

yk +
κ1

2

k−1∑
t=1

σtk −
κ1

2

l∑
t=k+1

σtk −
κ1

2

l∑
t=1

t 6=k

σktγtγk −
κ2

2
γk

⊗ E(k)
ij(16)

= −2εi

l∑
k=1

ỹk ⊗ E(k)
ij .

Comparing (7), (8), (10) and (16), we have the compatibility of the Drinfeld functor for the twisted Yangian of
type AIII and of the Drinfeld functor for MacKay’s twisted Yangian.

5. Fock space representation for the twisted Yangian Bτ1,τ2(n, p)

5.1. Preliminaries. We will need to work with a different presentation of the degenerate affine Hecke algebra of
type BCl.

Definition 5.1. Let Ȟlκ1,κ2
be the algebra generated by the group algebra C[Wl] and a set of pairwise commuting

elements y̌1, . . . , y̌l such that

(17) σiy̌i − y̌i+1σi = κ1, σiy̌j = y̌jσi if j 6= i, i+ 1,

(18) γ1y̌1 + y̌1γ1 = κ2, γ1y̌j = y̌jγ1 if j 6= 1.

Lemma 5.1. Ȟlκ1,κ2
is isomorphic to Hl−κ1,κ2

.

Proof. An isomorphism Hl−κ1,κ2
−→ Ȟlκ1,κ2

is given by yi 7→ y̌l−i+1, γi 7→ γl−i+1, 1 ≤ i ≤ l and by σi 7→ σl−i for
1 ≤ i ≤ l − 1. �
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Ȟlκ1,κ2
acts on Pl = C[z±1

1 , . . . , z±1
l ] in the following way: the action of σ ∈ Sl is by permuting the variables z±1

i ;

the action of γi is by sending z±1
i to z∓1

i ; the commuting elements y̌1, . . . , y̌l act via trigonometric Cherednik-Dunkl
operators Di,l of type Cl:

Di,l = zi
∂

∂zi
+

∑
1≤k<i≤l

κ1

1− ziz−1
k

(1− σik)−
∑

1≤i<k≤l

κ1

1− z−1
i zk

(1− σik)

+
∑

1≤k 6=i≤l

κ1

1− zkzi
(1− σikγiγk)− κ2

1− z2
i

(1− γi)− (i− 1)κ1 +
κ2

2
.

Remark 5.1. Here we make a rather unusual choice of simple roots for a root system of type Cl: εi − εi+1 for
i = 1, . . . , l − 1 and −2ε1.

Because of Lemma 5.1, any module over Ȟlκ1,κ2
can be viewed as a module over Hl−κ1,κ2

. We thus have a version

of the Drinfeld functor with Ȟlκ1,κ2
instead of Hlκ1,κ2

. However, it will be necessary for us not only to change the
degerate affine Hecke algebra, but also to consider a slightly different twisted Yangian.

Definition 5.2. Let B̌β(n, p) be the coideal subalgebra of Y (gln) generated by the coefficients b̌
(r)
ij of the entries of

B̌(u) which is given by B̌(u) = T−1(−u)Θp,βT (u).

B̌β(n, p) is isomorphic as an algebra (but not as a coideal subalgebra) to Bβ(n, p) via the automorphism of the
Yangian given by T (u) 7→ T (−u)−1.

Set ε = −1, κ1 = 1, λ = 1 and β = κ2

2 + n−2p
2 . (Here we view κ1 and κ2 as the parameters of Ȟlκ1,κ2

.) If we set

DBCl,−1(Pl) = Pl ⊗C (Cn)⊗l/

(
l−1∑
k=1

Im(σk + 1) + Im(γ1 + 1)

)
,

an analog of Theorem 4.2 holds and we have an algebra homomorphism

ρl,−1 : B̌β(n, p)→ EndC
(
DBCl,−1(Pl)

)
which is given by ρl,−1(B̌(u)) = Šl(−u)Šl−1(−u) · · · Š1(−u)Θp,β(u)Ť1(u)Ť2(u) · · · Ťl(u) as in equation (11) with λ = 1.
Ťi(u) is defined as Ti(u), but with y̌i instead of yi, and similarly for Ši(−u).

As vector spaces, Pl ⊗C (Cn)⊗l ∼=
⊗l

i=1

(
C[z±1

i ] ⊗C Cn
)
. Let eη (η = 1, . . . , n) be the standard basis for the

vector space Cn and set eη,k = z−keη for k ∈ Z. Then {eη,k|1 ≤ η ≤ n, k ∈ Z} forms a basis of C[z±1] ⊗C Cn and
{eη1,k1 ⊗ eη2,k2 ⊗ · · · ⊗ eηl,kl |1 ≤ ηi ≤ n, ki ∈ Z ∀ i = 1, . . . , l} forms a basis of Pl ⊗C (Cn)⊗l. The action of Wl on
Pl ⊗C (Cn)⊗l can be written as

σ : eη1,k1 ⊗ eη2,k2 ⊗ · · · ⊗ eηl,kl 7→ eησ(1),kσ(1) ⊗ eησ(2),kσ(2) ⊗ · · · ⊗ eησ(l),kσ(l) for σ ∈ Sl,

γl : eη1,k1 ⊗ eη2,k2 ⊗ · · · ⊗ eηl,kl 7→ eη1,k1 ⊗ eη2,k2 ⊗ · · · ⊗ εηleηl,−kl .

Let V ∧laff be the subspace of
∧l
i=1

(
C[z±1

i ] ⊗C Cn
)

spanned by {eη1,k1 ∧ eη2,k2 ∧ · · · ∧ eηl,kl |ki ∈ Z≥0, ηi = 1, . . . , n}
where

∧
is the usual wedge product. (If V l = (Cn)⊗l, then V laff is its affinization Pl ⊗C (Cn)⊗l, but we will not use

this notation here.) The quotient map Pl ⊗C (Cn)⊗l � DBCl,−1(Pl) induces a vector space isomorphism between
V ∧laff and DBCl,−1(Pl). This allows us to view V ∧laff as a representation of B̌β(n, p). We also use ρl,−1 to denote the

algebra homomorphism B̌β(n, p)→ EndC(V ∧laff ) corresponding to this representation.

We introduce a function φ on the set {(η, k)|η = 1, . . . , n, k ∈ Z≥0} by φ(η, k) := η − n(k + 1). Then φ defines a
one-to-one correspondence between the index set in question and the set of non-positive integers; it induces an order
on the index set by (η1, k1) > (η2, k2) if and only if φ(η1, k1) > φ(η2, k2). In the future, when we write a wedge
product (either finite or infinite), we will always use a decreasing order on each monomial part.
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5.2. Fock space. Let us recall the Fock space F considered in [Ug]. It is defined as the vector space spanned by
semi-infinite wedge products eη1,k1 ∧ eη2,k2 ∧ · · · with the asymptotic condition that φ(eηi,ki) = φ(eηi+1,ki+1) + 1
for all but a finite number of i ∈ N. For any non-positive integer M , define FM as the subspace of F spanned by
eη1,k1 ∧ eη2,k2 ∧ · · · with φ(η1, k1) > φ(η2, k2) > · · · and the asymptotic condition that φ(eηi,ki) = M − i+ 1 for all
but a finite number of i ∈ N. We call M the charge of the wedge product; observe that F =

⊕
M∈Z FM . In each

space FM , there is a special element |M〉 called the vacuum vector of charge M defined by

|M〉 = eη1,k1 ∧ eη2,k2 ∧ · · · , where φ(eηi,ki) = M − i+ 1 for all i.

From now on, we fix a charge M = s − n(k + 1) for some integers k ∈ Z≥0 and 1 ≤ s ≤ n. Set ϑ(d) = s + nd
for d ∈ Z≥0. By definition, we have |M〉 = es,k ∧ es−1,k ∧ · · · ∧ e1,k ∧ en,k+1 ∧ en−1,k+1 ∧ · · · . For any vector
v = eη1,k1 ∧ eη2,k2 ∧ · · · in FM , define its M -degree to be

degM (v) :=

s∑
j=1

(k − kj) +

∞∑
m=0

n∑
j=1

(k +m+ 1− ks+mn+j).

From the asymptotic condition for the vectors in FM , we can see that the M -degree is well-defined and degM(|M〉) =
0. Denote by FdM the subspace spanned by the homogeneous elements of degree ϑ(d) in FM and by FM,− the
subspace of FM formed by vectors ei1,k1 ∧ ei2,k2 ∧ · · · where all ki ≥ 0. Thus FM,− =

⊕
d FdM,− =

⊕
d(FdM ∩FdM,−).

We denote V
∧ϑ(h)
aff by V haff . It has a basis formed by ordered wedges: {eη1,k1 ∧ eη2,k2 ∧ · · · ∧ eηl,ks+nh |1 ≤ ηi ≤

n, ki ∈ Z≥0}. Define the M -degree for these vectors by

degM (eη1,k1 ∧ eη2,k2 ∧ · · · ∧ eηl,ks+nh) =

s∑
j=1

(k − kj) +

h−1∑
m=0

n∑
j=1

(k +m+ 1− ks+mn+j).

Let V haff(d) be the subspace of V haff spanned by wedge products with M -degree equal to ϑ(d). It is a B̌β(n, p)-module,
i.e., the twisted Yangian action preserves the M -degree.

Define ιd,hM : V haff(d) → FM by sending any vector v ∈ V haff(d) to the vector v ∧ | − n(k + h + 1)〉. From the

definition, we can see that degM (v) = degM (v ∧ | − n(k + h+ 1)〉). Thus we have a map ιd,hM : V haff(d)→ FdM,− and

the following result analogous to proposition 3.3 and corollary 3.4 in [Ug].

Lemma 5.2. For 0 ≤ d ≤ h, ιd,hM is an isomorphism of vector spaces. Moreover, if d ≤ h1 ≤ h2, then the map

ιd,h1,h2

M = (ιd,h2

M )−1 ◦ ιd,h1

M : V h1

aff (d)→ V h2

aff (d) is an isomorphism.

5.3. Twisted Yangian action on a Fock space. For any positive integer m, define a subspace in C[z−1
1 , . . . , z−1

l+n]:

Ll,n,m := SpanC{z
−m1
1 z−m2

2 · · · z−ml+nl+n |0 ≤ |mi| ≤ m ∀ i and ]{i : |mi| = m} < n}.

Let

(19) f = z−k11 · · · z−kll (zl+1 · · · zl+n)−m, where 1 ≤ ki < m for all i = 1, . . . , l.

The following lemma can be seen from direct calculations.

Lemma 5.3. Let σij and γi be the usual reflections in Wl. For s, t ∈ Z≥0 and s < t, we have the following identities:

1

1− z−1
i zj

(1− σij)(z−si z−tj ) = z−si z−tj + z−s−1
i z−t+1

j + · · ·+ z−t+1
i z−s−1

j ;

1

1− zizj
(1− σijγiγj)(z−si z−tj ) = z−si z−tj + z−s+1

i z−t+1
j + · · ·+ zt−1

i zs−1
j ;

1

1− z2
i

(1− γi)(z−si ) = z−si + z−s+2
i + · · ·+ zs−2

i .

From Lemma 5.3 and the definition of the trigonometric Dunkl operators, we have

(20) Di,l+n(f) ≡ Di,l(f) mod Ll,n,m for i = 1, . . . , l;
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(21) Di,l+n(f) ≡
(
−m+ (2l + n− i)κ1 −

κ2

2

)
f mod Ll,n,m for i = l + 1, . . . , l + n.

Set C(i, l, n) = −m+ (2l + n− i)− κ2

2 . (Recall that we assume κ1 = 1.)

Besides the previous two equivalences, we will also need a corollary of Lemma 5.4 below.

Let

Tij(u) =
∑

1≤k1,...,kn−1≤n

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n)
kn−1,j

(u), T
(k)
ab (u) = δab +

E
(k)
ab

u+ ck
,

where the ck’s are constant such that ck+1 = ck − 1. Define also Sij(u) and S
(k)
ij by

Sij(u) =
∑

1≤k1,...,kn−1≤n

S
(n)
i,k1

(u)S
(n−1)
k1,k2

(u) · · · S(1)
kn−1,j

(u), S
(k)
ab (u) = δab +

E
(k)
ab

u+ dk
,

where the dk’s are also constant such that dk+1 = dk + 1.

We view the coefficients of T
(k)
ij (u) and S

(k)
ij (u) as linear endomorphisms of (Cn)⊗n. The coefficients of Tij(u)

and Sij(u) are also endomorphisms of (Cn)⊗n and they descend to the quotient ΛnCn. (Note that ΛnCn can be
identified with DA,−1(triv), where triv is the trivial representation of the degenerate affine Hecke algebra.) Set
ωn = en ⊗ en−1 ⊗ · · · ⊗ e1, where {e1, e2, . . . , en} is the standard basis of Cn. Let Ln be the subspace of (Cn)⊗n

spanned by elements of the form vi1 ⊗ vi2 ⊗ · · · ⊗ vin with vij1 = vij2 for at least one pair of distinct indices ij1 , ij2 ,

so that ΛnCn = (Cn)⊗n/Ln.

Lemma 5.4.

Tii(u)(ωn) ≡
(

1 +
1

u+ c1

)
ωn modLn, Tij(u)(ωn) ≡ 0 modLn, 1 ≤ i 6= j ≤ n,

Sii(u)(ωn) ≡
(

1 +
1

u+ dn

)
ωn modLn, Sij(u)(ωn) ≡ 0 modLn, 1 ≤ i 6= j ≤ n.

Proof. The proof is by induction on n. Let’s assume first that n = 2. By direct calculations, we have

T
(1)
11 (u)T

(2)
11 (u)(e2 ⊗ e1) =

(
1 +

1

u+ c2

)
e2 ⊗ e1, T

(1)
12 (u)T

(2)
21 (u)(e2 ⊗ e1) =

1

(u+ c1)(u+ c2)
e1 ⊗ e2,

so T11(u)(ω2) ≡
(

1 + 1
u+c2

− 1
(u+c1)(u+c2)

)
ω2 =

(
1 +

1

u+ c1

)
ω2 modLn, where the last equality was obtained

using the assumption that c2 = c1 − 1.

We have

T
(1)
12 (u)T

(2)
22 (u)(e2 ⊗ e1) =

1

u+ c1
e1 ⊗ e1, T

(1)
11 (u)T

(2)
12 (u)(e2 ⊗ e1) = 0,

so T12(u)(ω2) = 1
u+c1

e1⊗e1 ≡ 0 modLn. Similarly, T22(u)(ω2) ≡
(

1 +
1

u+ c1

)
ω2 modLn and T21(ω2) ≡ 0 modLn.

Let’s now consider the induction step. We consider a few subcases.

Suppose that i = j 6= 1. Then

Tij(u)(ωn) =
∑

2≤k1,...,kn−1≤n

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n)
kn−1,i

(u)(ωn)

≡
∑

2≤k1,...,kn−2≤n

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n−1)
kn−2,i

(u)T
(n)
ii (u)(ωn)

≡
(

1 +
1

u+ c1

)
ωn by induction.
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Suppose that i = j = 1 and let ω′n = en ⊗ en−1 ⊗ · · · ⊗ e3 ⊗ e1 ⊗ e2. Then

T11(u)(ω′n) =
∑

1≤k1,...,kn−1≤n
k1,...,kn−1 6=2

T
(1)
1,k1

(u)T
(2)
k1,k2

(u) · · ·T(n)
kn−1,1

(u)(ω′n)

=
∑

1≤k1,...,kn−2≤n
k1,...,kn−2 6=2

T
(1)
1,k1

(u)T
(2)
k1,k2

(u) · · ·T(n−1)
kn−2,1

(u)T
(n)
11 (u)(ω′n)

≡
(

1 +
1

u+ c1

)
ω′n by induction.

It follows that T11(u)(ωn) ≡
(

1 + 1
u+c1

)
ωn.

Suppose now that i 6= j and j 6= 1. Then

Tij(u)(ωn) ≡
∑

2≤k1,...,kn−1≤n

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n)
kn−1,j

(u)(ωn)

≡
∑

2≤k1,...,kn−2≤n

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n−1)
kn−2,j

(u)T
(n)
jj (u)(ωn)

≡ 0 by induction.

Finally, let’s consider the case i 6= j and j = 1. Then

Tij(u)(ω′n) =
∑

1≤k1,...,kn−1≤n
k1,...,kn−1 6=2

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n)
kn−1,1

(u)(ω′n)

≡
∑

1≤k1,...,kn−2≤n
k1,...,kn−2 6=2

T
(1)
i,k1

(u)T
(2)
k1,k2

(u) · · ·T(n−1)
kn−2,1

(u)T
(n)
11 (u)(ω′n)

≡ 0 by induction.

It follows that Ti1(u)(ωn) ≡ 0.

The proof is the same for S instead of T. �

Corollary 5.1. For ω∧n = en ∧ en−1 ∧ · · · ∧ e1, the following equalities hold in ΛnCn:

Tii(u)(ω∧n ) =

(
1 +

1

u+ c1

)
ω∧n , Tij(u)(ω∧n ) = 0, 1 ≤ i 6= j ≤ n.

Sii(u)(ω∧n ) =

(
1 +

1

u+ dn

)
ω∧n , Sij(u)(ω∧n ) = 0, 1 ≤ i 6= j ≤ n.

Now take l = ϑ(h), so l + n = ϑ(h + 1). Let w ∈ V haff(d) and let ≡ be the equivalence modulo
⊕

d′>d V
h+1
aff (d′).

From the definition of ιd,h,h+1
M ,

ιd,h,h+1
M (w) = w ∧ en,(h+k+1) ∧ · · · ∧ e1,(h+k+1) ∈ V h+1

aff (d).

Let b̌
(r)
ij be the generators of the twisted reflection algebra B̌β(n, p) and b̌ij(u) be its generating series. We denote

the polynomial generators of Ȟ`κ1,κ2
by y̌k,` since we will need to consider different values of `. In this section, we set

T
`,(k)
ij (u) = δi,j +

E
(k)
ij

u− n
2 + y̌k,`

, S
`,(k)
ij (u) = δi,j +

E
(k)
ij

u− n
2 − y̌k,`

, β =
κ2

2
+
n− 2p

2
, as(u) = εs − βu−1,

ξ±l (u) =

(
1 +

2

2u− n± 2C(l + 1, l, n)

)
, ξl(u) = ξ+

l (u)ξ−l (u).
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Thus we have:

ρl+n,−1(b̌ij(u))
(
ιd,h,h+1
M (w)

)
=

∑
s

i1,i2,...,il+n−1

j1,j2,...,jl+n−1

as(u)
(
S
l+n,(l+n)
i,il+n−1

(u)S
l+n,(l+n−1)
il+n−1,il+n−2

(u) · · · Sl+n,(l+1)
il+1,il

(u)S
l+n,(l)
il,il−1

(u) · · · Sl+n,(1)
i1,s

(u)

· Tl+n,(1)
s,j1

(u) · · · Tl+n,(l)jl−1,jl
(u)T

l+n,(l+1)
jl,jl+1

(u) · · · Tl+n,(l+n)
jl+n−1,j

(u)
)(
ιd,h,h+1
M (w)

)
≡

∑
s

i1,i2,...,il+n−1

j1,j2,...,jl+n−1

as(u)
(
S
l+n,(l+n)
i,il+n−1

(u)S
l+n,(l+n−1)
il+n−1,il+n−2

(u) · · · Sl+n,(l+1)
il+1,il

(u)S
l+n,(l)
il,il−1

(u) · · · Sl+n,(1)
i1,s

(u)

· Tl+n,(1)
s,j1

(u) · · · Tl+n,(l)jl−1,jl
(u)T̃

l+n,(l+1)
jl,jl+1

(u) · · · T̃l+n,(l+n)
jl+n−1,j

(u)
)(
ιd,h,h+1
M (w)

)
by (21) where T̃

l+n,(k)
ab (u) = δab +

E
(k)
ab

u−n/2+C(k,l,n) . It is possible to simplify the expression on the last line using

Corollary 5.1: we get

ρl+n,−1(b̌ij(u))
(
ιd,h,h+1
M (w)

)
≡ ξ+

l (u)
∑
s

i1,i2,...,il+n−1

j1,j2,...,jl−1

as(u)
(
S
l+n,(l+n)
i,il+n−1

(u)S
l+n,(l+n−1)
il+n−1,il+n−2

(u) · · · Sl+n,(l+1)
il+1,il

(u)

· Sl+n,(l)il,il−1
(u) · · · Sl+n,(1)

i1,s
(u) · Tl+n,(1)

s,j1
(u) · · · Tl+n,(l)jl−1,j

(u)
)(
ιd,h,h+1
M (w)

)
≡ ξ+

l (u)
∑
s

i1,i2,...,il+n−1

j1,j2,...,jl−1

as(u)
(
S
l+n,(l+n)
i,il+n−1

(u)S
l+n,(l+n−1)
il+n−1,il+n−2

(u) · · · Sl+n,(l+1)
il+1,il

(u)

· Sl,(l)il,il−1
(u) · · · Sl,(1)

i1,s
(u) · Tl,(1)

s,j1
(u) · · · Tl,(l)jl−1,j

(u)
)(
ιd,h,h+1
M (w)

)
by (20)

= ξ+
l (u)

∑
il,il+1,...,il+n−1

(
S
l+n,(l+n)
i,il+n−1

(u)S
l+n,(l+n−1)
il+n−1,il+n−2

(u) · · · Sl+n,(l+1)
il+1,il

(u)
)(
ιd,h,h+1
M (ρl,−1(b̌il,j(u))(w))

)
≡ ξ+

l (u)
∑

il,il+1,...,il+n−1

(
S̃
l+n,(l+n)
i,il+n−1

(u)S̃
l+n,(l+n−1)
il+n−1,il+n−2

(u) · · · S̃l+n,(l+1)
il+1,il

(u)
)(
ιd,h,h+1
M (ρl,−1(b̌il,j(u))(w))

)
by (21), where S̃

l+n,(k)
ab (u) = δab +

E
(k)
ab

u−n/2−C(k,l,n) . Using Corollary 5.1 again, we see that this last expression is

congruent to ξ+
l (u)ξ−l (u)ιd,h,h+1

M

(
ρl,−1(b̌ij(u))(w)

)
.

The previous computations lead to the following proposition:

Proposition 5.1. Assume d ≤ h. For any w ∈ V haff(d) and 1 ≤ i, j ≤ n,

ρs+(h+1)n,−1(b̌ij(u))
(
ιd,h,h+1
M (w)

)
= ξϑ(h)(u)ιd,h,h+1

M

(
ρs+hn,−1(b̌ij(u))(w)

)
.

Set Ξh(u) =
∏h−1
i=0 ξϑ(i)(u) and define the following renormalized action of the twisted Yangian on the space

V haff(d):

ρ̄h =
1

Ξh(u)
ρϑ(h),−1 : B̌β(n, p)→ EndC(V haff(d)).

From Proposition 5.1, we can get the following conclusion.

Proposition 5.2. For d ≤ h1 ≤ h2, ιd,h1,h2

M ◦ ρ̄h1
= ρ̄h2

◦ ιd,h1,h2

M . Moreover, ιd,h1,h2

M induces an isomorphism between

the B̌β(n, p)-modules V h1

aff (d) and V h2

aff (d) with renormalized actions.

The following theorem is the main conclusion of this section and is a corollary of the previous proposition.
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Theorem 5.1. For 0 ≤ d ≤ h, set ρ̄d(b̌
(r)
ij ) = ιd,hM ◦ ρ̄h(b̌

(r)
ij ) ◦ (ιd,hM )−1 ∈ EndC(FdM,−). Then ρ̄d(b̌

(r)
ij ) does not depend

on h, so we have a well-defined (independent of h) action of B̌β(n, p) on each degree d piece of the Fock space FM,−,
and hence on all of FM,−.

6. Twisted quantum loop algebra of type AIII

6.1. Twisted loop algebra and Onsager algebra.

Definition 6.1. The twisted loop algebra gln(C[s, s−1])θ is defined as {f(s) ∈ gln(C[s, s−1]) | θ(f(s)) = f(s−1)}.

The twisted quantum loop algebra of type AIII to be introduced later is a quantization of the enveloping algebra
of gln(C[s, s−1])θ. The twisted loop algebra gln(C[s, s−1])θ (or rather sln(C[s, s−1])θ) can be viewed as a generalized
Onsager algebra as suggested in example 3.10 in [NSS]. Note that gln(C[s, s−1])θ = sln(C[s, s−1])θ⊕CIn⊗CC[s, s−1]Γ

where Γ acts on C[s, s−1] by γ(p(s, s−1)) = p(s−1, s), so that C[s, s−1]Γ is a polynomial ring in the variable s+ s−1.

Affine Kac-Moody algebras (without the derivation) are universal central extensions of loop algebras. It is thus
natural to wonder if the twisted loop algebra sln(C[s, s−1])θ admits a non-trivial central extension. At least when
n = 2p, we can show that the answer is negative: see Proposition 6.1 below and the paragraph just above it.

Lemma 6.1. If n = 2p, then gln(C[s, s−1])θ is isomorphic to glp(Λ), where Λ = C〈t, t−1, γ〉/(γ2 − 1, γt− t−1γ).

Proof. Define a linear map ψ : glp(Λ) −→ gln(C[s, s−1])θ by

ψ
(
Eij
(
(tk + (−1)at−k)eb

))
= Ei+ap+bp,j+bp

(
sk + (−1)as−k

)
,

where a, b = 0, 1 and the indices of Ei+ap+bp,j+bp should be taken modulo n.

This is a linear isomorphism and is a homomorphism of Lie algebras since ψ
([
Eij
(
(tr1 +(−1)at−r1)eb

)
, Ekl

(
(tr2 +

(−1)ct−r2)ed
)])

equals

ψ
(
δjkδb+c,dEil

(
(tr1 + (−1)at−r1)(tr2 + (−1)ct−r2)ed

)
− δilδd+a,bEkj

(
(tr2 + (−1)ct−r2)(tr1 + (−1)at−r1)eb

))
= δjkδb+c,dψ

(
Eil
(
(tr1+r2 + (−1)a+ct−r1−r2)ed

))
+ δjkδb+c,dψ

(
Eil
(
((−1)ctr1−r2 + (−1)atr2−r1)ed

))
− δilδd+a,bψ

(
Ekj

(
(tr2+r1 + (−1)a+ct−r2−r1)eb

))
− δilδd+a,bψ

(
Ekj

(
((−1)atr2−r1 + (−1)ctr1−r2)eb

))
= δjkδb+c,dEi+(a+c)p+dp,l+dp

(
sr1+r2 + (−1)a+cs−r1−r2 + (−1)csr1−r2 + (−1)asr2−r1

)
− δilδd+a,bEk+(a+c)p+bp,j+bp

(
sr2+r1 + (−1)a+cs−r2−r1 + (−1)asr2−r1 + (−1)csr1−r2

)
(22)

whereas
[
ψ
(
Eij
(
(tr1 + (−1)at−r1)eb

))
, ψ
(
Ekl
(
(tr2 + (−1)ct−r2)ed

))]
equals[

Ei+ap+bp,j+pb(s
r1 + (−1)as−r1), Ek+cp+dp,l+dp(s

r2 + (−1)cs−r2)
]

= δjkδb,c+dEi+ap+bp,l+dp
(
sr1+r2 + (−1)a+cs−r1−r2 + (−1)asr2−r1 + (−1)csr1−r2

)
− δilδd,a+bEk+cp+dp,j+bp

(
sr1+r2 + (−1)a+cs−r1−r2 + (−1)asr2−r1 + (−1)csr1−r2

)
,

(23)

and (22) is the same as (23) (a, b, c, d should be viewed modulo 2). �

It is known from the work of C. Kassel and J.-L. Loday [KaLo] that the center of the universal central extension
of slp(Λ) is isomorphic to the first cyclic homology group HC1(Λ). That slp(Λ) does not admit a non-trivial central
extension is thus a corollary of the next proposition.

Proposition 6.1. HC1(Λ) = {0}.
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Proof. HC1(Λ) is the kernel of the map 〈Λ,Λ〉 −→ [Λ,Λ], where 〈Λ,Λ〉 is the quotient of the space Λ ⊗C Λ by the
subspace spanned by a⊗ b+ b⊗ a and by ab⊗ c+ bc⊗ a+ ca⊗ b ∀a, b, c ∈ Λ.

A spanning set for 〈Λ,Λ〉 is {tiγj ⊗ t, tiγj ⊗ t−1, tiγj ⊗ γ} for i ∈ Z, j = 0, 1; let’s find a smaller spanning set.
ti ⊗ t = 0 ∀ i ∈ Z \ {−1} since HC1(C[t, t−1]) = Ct−1 ⊗ t. Moreover,

tiγ ⊗ t−1 = γt−i ⊗ t−1 = t−i ⊗ t−1γ + γ ⊗ t−i−1 = t−i ⊗ γt+ γ ⊗ t−i−1 = t−iγ ⊗ t+ t−i+1 ⊗ γ + γ ⊗ t−i−1,

so tiγ ⊗ t−1 can be removed from the spanning set. The elements (ti + t−i)γ ⊗ γ and (ti + t−i)⊗ γ are in the kernel,
but actually they equal 0 in 〈Λ,Λ〉 since

0 = (ti + t−i)⊗ 1 = (ti + t−i)⊗ γ2 = (ti + t−i)γ ⊗ γ + γ(ti + t−i)⊗ γ = 2(ti + t−i)γ ⊗ γ
and similarly with (ti + t−i)γ instead of (ti + t−i).

What is more surprising is that t⊗ t−1 = 0:

t⊗ t−1 = t⊗ γ2t−1 = t⊗ γtγ = tγ ⊗ tγ + tγt⊗ γ = 0 + γ ⊗ γ = 0.

The conclusion of all these computations is that 〈Λ,Λ〉 is spanned by tiγ ⊗ t, (ti − t−i)⊗ γ and (ti − t−i)γ ⊗ γ for
i ∈ Z. It is even possible to restrict i to i ∈ Z≥1 and still obtain a spanning set because

tiγ ⊗ t = γt−i ⊗ t = t−i ⊗ tγ + γ ⊗ t1−i = t−i−1 ⊗ tγt+ t⊗ t−iγ − t1−i ⊗ γ
= t−i−1 ⊗ γ − t−iγ ⊗ t− t1−i ⊗ γ.

It follows that the kernel of 〈Λ,Λ〉 −→ [Λ,Λ] is trivial. �

Remark 6.1. Λ can be given a Z/2Z-grading with deg(t) = 0 and deg(γ) = 1. Denote by Λgr the resulting super

algebra. The Lie superalgebra sln(Λgr) was studied in [ChGu1] and it was determined that HC
Z/2Z
1 (Λgr) is one

dimensional, where HC
Z/2Z
1 is a Z/2Z-graded version of cyclic homology. It follows from [ChGu2] that sln(Λgr)

possesses a universal central extension with a one dimensional center.

sln(C[s, s−1])θ is a generalized Onsager algebra in the sense of [NSS], so proposition 6.2 of loc.cit. can be applied to
it. Set RC× =

⋃
x∈C× Rx, where Rx is the set of isomorphism classes of irreducible finite dimensional representations

of slxn and slxn = sln if x 6= ±1 whereas sl±1
n = slθn.

Theorem 6.1 ([NSS] proposition 6.2). Any finite dimensional irreducible representation of sln(C[s, s−1])θ is an eval-
uation representation (in the terminology of [NSS]; in more standard terminology, it is a tensor product of evaluation
representations: see remark 4.6 in loc. cit.) and irreducible finite dimensional representations of sln(C[s, s−1])θ are
parametrized by the set of finitely supported Γ-equivariant functions Ψ : C× −→ RC× such that Ψ(x) ∈ Rx.

6.2. Quantum loop algebra. Let P be the permutation operator P (v1 ⊗ v2) = v2 ⊗ v1. Let us recall the RTT-
presentation of the quantum group Uq(gln). We will view q as a variable and work over C(q), unless stated otherwise.
Set Cnq = Cn ⊗C C(q).

Definition 6.2. The quantum R-matrix of finite type, which is an element of End C(q)(Cnq )⊗2, is given by

(24) R =

n∑
i,j=1

qδijEii ⊗ Ejj + (q − q−1)

n∑
i,j=1

i>j

Eij ⊗ Eji.

Set R̃ = R− (q − q−1)P = PR−1P .

Definition 6.3. The quantum group Uq(gln) is the associative C(q)-algebra generated by tij , t̄ij , i, j = 1, . . . , n, with
relations:

RT2T1 = T1T2R, RT 2T 1 = T 1T 2R, RT2T 1 = T 1T2R;

tij = t̄ji = 0 if 1 ≤ j < i ≤ n, tiit̄ii = t̄iitii = 1, i = 1, . . . , n.

Here T =
∑n
i,j=1 tij ⊗ Eij and T =

∑n
i,j=1 t̄ij ⊗ Eij belong to Uq(gln)⊗C(q) End C(q)(Cnq ).
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Remark 6.2. Our R-matrix is the conjugate by P of the quantum R-matrix of finite type considered in [MRS]. We
will stick with the definition used in [JoMa].

Definition 6.4. The affine quantum R-matrix is the element of End C(q)(Cnq )⊗2 ⊗C C[u, v] given by (see [MRS])

(25) R(u, v) = uR̃− vR.

We will need the RTT-presentation of the quantized enveloping algebra of gln(C[s, s−1]), so we recall its definition.
Set Lgln = gln(C[s, s−1]).

Definition 6.5. Uq(Lgln) is the C(q)-algebra generated by t
(r)
ij , t

(r)
ij with 1 ≤ i, j ≤ n, r ∈ Z≥0 such that

t
(0)
ij = t

(0)
ji = 0, if 1 ≤ j < i ≤ n, t

(0)
ii t

(0)
ii = t

(0)
ii t

(0)
ii = 1, 1 ≤ i ≤ n,(26)

R(u, v)T2(v)T1(u) = T1(u)T2(v)R(u, v),(27)

R(u, v)T 2(v)T 1(u) = T 1(u)T 2(v)R(u, v),(28)

R(u, v)T2(v)T 1(u) = T 1(u)T2(v)R(u, v),(29)

where we have set T (u) =
∑n
i,j=1 tij(u) ⊗ Eij , T (u) =

∑n
i,j=1 tij(u) ⊗ Eij and tij(u) =

∑∞
r=0 t

(r)
ij u

−r, tij(u) =∑∞
r=0 t

(r)
ij u

r.

Uq(Lgln) is a Hopf algebra with coproduct given by

∆(tij(u)) =

n∑
k=1

tik(u)⊗ tkj(u), ∆(tij(u)) =

n∑
k=1

tik(u)⊗ tkj(u).

Later, in order to understand that the twisted quantum loop algebras of type AIII provide a quantization of the
enveloping algebra of a twisted loop algebra, we will need to know how Uq(Lgln) specializes to U(Lgln). We follow
the explanations given in [MRS]. Let A be the localization of C[q, q−1] at the ideal (q − 1). Let UA(Lgln) be the

A-subalgebra of Uq(Lgln) generated by the elements τ
(r)
ij , τ

(r)
ij given by

τ
(r)
ij =

t
(r)
ij

q − q−1
, τ

(r)
ij =

t
(r)
ij

q − q−1
for r ≥ 0, 1 ≤ i, j ≤ n,

except that, when r = 0 and i = j, we set

τ
(0)
ii =

t
(0)
ii − 1

q − q−1
, τ

(0)
ii =

t
(0)
ii − 1

q − q−1
.

Theorem 6.2 (Section 3 of [MRS]). The assignment Ejis
r 7→ τ

(r)
ij , −Ejis−r 7→ τ

(r)
ij ∀ r ≥ 0, 1 ≤ i, j ≤ n except if

r = 0 and 1 ≤ j < i ≤ n induces an isomorphism U(Lgln)
∼−→ UA(Lgln) ⊗A C, where C is viewed as an A-module

via A/(q − 1)
∼−→ C.

6.3. Twisted quantum loop algebra of type AIII. The twisted quantum loop algebra of type AIII is a quanti-
zation of the twisted loop algebra gln(C[s, s−1])θ.

We will need to consider another involution θ′ obtained as θ, but from the matrix Θ′p given by (see [DiSt, JoMa])

Θ′p = gΘpg
−1 = −

n−p∑
k=p+1

Ekk +

p∑
k=1

Ek,n−k+1 +

p∑
k=1

En−k+1,k,

where

g =

p∑
k=1

Ekk −
n∑

k=p+1

Ekk +

p∑
k=1

En−k+1,k +

p∑
k=1

Ek,n−k+1.
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We need a deformation of the matrix Θ′p. As suggested in [NoSu, DiSt, JoMa], for a new variable ξ, set

(30) Jξ = (ξ − ξ−1)

p∑
k=1

Ekk − ξ−1

n−p∑
k=p+1

Ekk +

p∑
k=1

Ek,n−k+1 +

p∑
k=1

En−k+1,k.

Two useful properties of Jξ are that it satisfies the Hecke relation (Jξ − ξ)(Jξ + ξ−1) = 0 and is a solution of the
reflection equation (see [DiSt, JoMa]). Set

(31) Gξ(u) =
uJξ − u−1(Jξ)−1

u− u−1
.

Lemma 6.2. Gξ(u) satisfies the reflection equation with parameters:

(32) R21(v, u)Gξ1(u)R(u−1, v)Gξ2(v) = Gξ2(v)R21(u−1, v)Gξ1(u)R(v, u).

Proof. Since R(u, v) = uR̃− vR, (32) is equivalent to

(vR̃21 − uR21)Gξ1(u)(u−1R̃− vR)Gξ2(v) = Gξ2(v)(u−1R̃21 − vR21)Gξ1(u)(vR̃− uR).

We thus have to check the following relations:

R21J
ξ
1RJ

ξ
2 = Jξ2R21J

ξ
1R,(33)

R̃21(Jξ1 )−1R̃(Jξ2 )−1 = (Jξ2 )−1R̃21(Jξ1 )−1R̃, R21(Jξ1 )−1R̃(Jξ2 )−1 = (Jξ2 )−1R̃21(Jξ1 )−1R,(34)

R̃21(Jξ1 )−1RJξ2 = Jξ2R21(Jξ1 )−1R̃, R21J
ξ
1R(Jξ2 )−1 = (Jξ2 )−1R21J

ξ
1R, R̃21(Jξ1 )−1R̃Jξ2 = Jξ2 R̃21(Jξ1 )−1R̃,(35)

R̃21J
ξ
1RJ

ξ
2 = Jξ2R21J

ξ
1 R̃, R21J

ξ
1 R̃(Jξ2 )−1 = (Jξ2 )−1R̃21J

ξ
1R,(36)

−R̃21(Jξ1 )−1R(Jξ2 )−1 +R21(Jξ1 )−1R̃Jξ2 = −(Jξ2 )−1R21(Jξ1 )−1R̃+ Jξ2 R̃21(Jξ1 )−1R,(37)

−R̃21J
ξ
1 R̃(Jξ2 )−1 +R21(Jξ1 )−1R(Jξ2 )−1 = −(Jξ2 )−1R̃21J

ξ
1 R̃+ (Jξ2 )−1R21(Jξ1 )−1R,(38)

−R21J
ξ
1 R̃J

ξ
2 + R̃21J

ξ
1R(Jξ2 )−1 = −Jξ2 R̃21J

ξ
1R+ (Jξ2 )−1R21J

ξ
1 R̃,(39)

−R21(Jξ1 )−1RJξ2 + R̃21J
ξ
1 R̃J

ξ
2 = −Jξ2R21(Jξ1 )−1R+ Jξ2 R̃21J

ξ
1 R̃.(40)

Identity (33) holds according to [JoMa]. Using R̃ = PR−1P = R − (q − q−1)P and the Hecke relation for Jξ, it
is possible to get the first equation in each of (34), (35) and (36) from (33). The other equations on each of these
three lines follow from the first one on the same line.

Using R̃ = R− (q − q−1)P , the Hecke relation for Jξ and (33), (35), one can show that (37) holds. Similarly one
can prove (38) using (34) and (35), and (39), (40) using (33) and (35). �

Definition 6.6. The twisted quantum loop algebra Upq(Lgln) is the associative C(q, ξ)-algebra generated by elements

s
(r)
ij , 1 ≤ i, j ≤ n, r ∈ Z, such that the matrix S(u) =

∑n
i,j=1 sij(u)⊗ Eij, where sij(u) =

∑∞
r=0 s

(r)
ij u

−r, satisfies the
reflection equation

(41) R21(v, u)S1(u)R(u−1, v)S2(v) = S2(v)R21(u−1, v)S1(u)R(v, u).

Moreover, we require that s
(0)
ij =

 ∗ ∗ X
∗ ∗ 0
Y 0 0


ij

, where the blocks are of size (p, n− 2p, p)× (p, n− 2p, p), X and Y

are upper triangular with respect to their second diagonal and Xi,p−i = Yp−i,i. (See [JoMa], proposition 7.6.)

We will later deduce that Upq(Lgln) has a PBW-type basis. For the moment, we state one half of this fact.

Introduce on the generators s
(r)
ij a total order ≺ via s

(r)
ij ≺ s

(p)
kl if and only if r < p or r = p but i < k or r = p, i = k

but j < l.

Proposition 6.2. The set of monomials in the generators s
(r)
ij ordered with respect to � is a spanning set for

Upq(Lgln).
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Proof. Set ζ = q−q−1. We need to start by writing the defining relation (41) in terms of the generating series sij(u):

(u−1q−δik − v−1qδik)

q−δjksij(u)skl(v)− ζδjk
∑
e<j

sie(u)sel(v)


+(uqδik − vq−δik)

qδjksij(u)skl(v) + δjkζ
∑
e>j

sie(u)sel(v)


−ζ(u−1δi>k + v−1δi<k)

q−δijskj(u)sil(v)− ζδij
∑
e<j

ske(u)sel(v)


+ζ(uδi<k + vδi>k)

qδijskj(u)sil(v) + ζδij
∑
e>j

ske(u)sel(v)



= (u−1q−δjl − v−1qδjl)

(
q−δilskl(v)sij(u)− δilζ

∑
i>e

ske(v)sej(u)

)

+(uqδjl − vq−δjl)

(
qδilskl(v)sij(u) + δilζ

∑
i<e

ske(v)sej(u)

)

−ζ(u−1δl<j + v−1δl>j)

(
q−δijskj(v)sil(u)− δijζ

∑
i>e

ske(v)sel(u)

)

+ζ(uδl>j + vδl<j)

(
qδijskj(v)sil(u) + δijζ

∑
i<e

ske(v)sel(u)

)
.

Set fab(u, v) = (uqδab − vq−δab), gab(u, v) = uδb>a + vδb<a and

H±abcd(u, v) = q±δbcsab(u)scd(v)± δbcζ
n∑
e=1

±e>±b

sae(u)sed(v).

The defining relation (41) can be rewritten as

fik(u, v)H+
ijkl(u, v)− fik(v−1, u−1)H−ijkl(u, v) + ζgik(u, v)H+

kjil(u, v)− ζgik(v−1, u−1)H−kjil(u, v)

= fjl(u, v)H+
klij(v, u)− fjl(v−1, u−1)H−klij(v, u) + ζgjl(u, v)H+

kjil(v, u)− ζgjl(v−1, u−1)H−kjil(v, u)
(42)

for 1 ≤ i, j, k, l ≤ n.

All these relations give us straightening rules to express any monomial in the generators s
(r)
ij into a sum of

monomials ordered with respect to �. Considering the coefficient of uv−r in (42), we deduce that, for any r ≥ 0,

qδik

qδjks(0)
ij s

(r)
kl + δjkζ

∑
e>j

s
(0)
ie s

(r)
el

+ ζδi<k

qδijs(0)
kj s

(r)
il + ζδij

∑
e>j

s
(0)
ke s

(r)
el


= qδjl

(
qδils

(r)
kl s

(0)
ij + δilζ

∑
i<e

s
(r)
ke s

(0)
ej

)
+ ζδl>j

(
qδijs

(r)
kj s

(0)
il + δijζ

∑
i<e

s
(r)
ke s

(0)
el .

)(43)

Suppose that s
(0)
ij ≺ s

(r)
kl and r ≥ 1. We see that s

(r)
kl s

(0)
ij can be written as the sum of a scalar multiple of s

(0)
ij s

(r)
kl

and scalar multiples of monomials of the form s
(0)
ab s

(r)
cd and of the form s

(r)
ab s

(0)
cd with c > i, so that s

(0)
ij ≺ s

(0)
cd . (Note

that such terms do not occur if i = n.) By repeatedly applying this relation, we can eventually write s
(0)
ij s

(r)
kl as the

sum of a scalar multiple of s
(0)
ij s

(r)
kl and scalar multiples of properly ordered monomials of the form s

(0)
ab s

(r)
cd .
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Assume now that r = 0 and s
(0)
kl ≺ s

(0)
ij , so that k ≤ i. (Because of our choice for the relation (43), it is preferable

to consider s
(0)
kl ≺ s

(0)
ij instead of s

(0)
ij ≺ s

(0)
kl .) If i = k and l < j, relation (43) shows that s

(0)
ij s

(0)
kl can be written as

the sum of a scalar multiple of s
(0)
kl s

(0)
ij and scalar multiples of monomials of the form s

(0)
ab s

(0)
cd with a = k and c > i.

If k < i, relation (43) shows that s
(0)
ij s

(0)
kl can be written as the sum of a scalar multiple of s

(0)
kl s

(0)
ij , of s

(0)
kj s

(0)
il and

scalar multiples of monomials of the form s
(0)
ab s

(0)
cd with either k = a < c or i = a, c > k. In this last case (which does

not occur if k = n), it is possible to reuse relation (43) finitely many times to be able to express s
(0)
ij s

(0)
kl as a sum of

properly ordered monomials.

The rest of the proof proceeds by induction. We have to show that s
(r1)
kl s

(r2)
ij with r1 ≥ r2 can always be written as

a sum of properly ordered monomials. Induction is on r2, the case r2 = 0 having been dealt with already. Suppose

that r1 > r2; considering the coefficient of v−r1u−r2+1 in (42) and removing the monomials of the form s
(m1)
ab s

(m2)
cd

with min{m1,m2} < r2 (since the inductive assumption can be applied to them) yields the following relation:

qδik

qδjks(r2)
ij s

(r1)
kl + δjkζ

∑
e>j

s
(r2)
ie s

(r1)
el

+ ζδi<k

qδijs(r2)
kj s

(r1)
il + ζδij

∑
e>j

s
(r2)
ke s

(r1)
el


≡ qδjl

(
qδils

(r1)
kl s

(r2)
ij + δilζ

∑
i<e

s
(r1)
ke s

(r2)
ej

)
+ ζδl>j

(
qδijs

(r1)
kj s

(r2)
il + δijζ

∑
i<e

s
(r1)
ke s

(r2)
el

)
.

We see from this that if l ≤ j, then s
(r1)
kl s

(r2)
ij can be expressed as a sum of a scalar multiple of s

(r2)
ij s

(r1)
kl and as a

sum of scalar multiples of monomials of the form s
(m1)
ab s

(m2)
cd with m1 = r2 < r1 = m2, or min{m1,m2} < r2 or with

m1 = r1 > m2 = r2, c > i. The monomials of the latter type can be shown, by induction on c, to be sums of properly
ordered monomials. (Note that this latter case does not occur if i = n, so induction is on decreasing values of c from

n to 1.) If l > j, then s
(r1)
kl s

(r2)
ij can also be expressed as a sum of similar monomials to which a scalar multiple of

s
(r1)
kj s

(r2)
il must be added: this last monomial is not properly ordered, by since j < l, it falls into the previous case

just considered. Therefore, when r1 > r2, s
(r1)
kl s

(r2)
ij can be expressed as a sum of ordered monomials.

Suppose now that r1 = r2 and s
(r1)
kl ≺ s

(r2)
ij (so either k < i or k = i, l < j). For this last case, we switch

the roles of i, j, r2 and k, l, r1. We want to see that s
(r2)
ij s

(r1)
kl can be expressed as a sum of properly ordered

monomials. Considering the coefficient of u−r2v−r1+1 in (42) and removing the monomials of the form s
(m1)
ab s

(m2)
cd

with min{m1,m2} < r2 (since the inductive assumption can be applied to them) yields the following relation:

−q−δik
qδjks(r2)

ij s
(r1)
kl + δjkζ

∑
e>j

s
(r2)
ie s

(r1)
el

+ ζδi>k

qδijs(r2)
kj s

(r1)
il + ζδij

∑
e>j

s
(r2)
ke s

(r1)
el


≡ −q−δjl

(
qδils

(r1)
kl s

(r2)
ij + δilζ

∑
i<e

s
(r1)
ke s

(r2)
ej

)
+ ζδl<j

(
qδijs

(r1)
kj s

(r2)
il + δijζ

∑
i<e

s
(r1)
ke s

(r2)
el

)
.

We see from this that if k ≤ i, then s
(r2)
ij s

(r1)
kl can be expressed as a sum of a scalar multiple of s

(r1)
kl s

(r2)
ij and as a

sum of scalar multiples of monomials of the form s
(m1)
ab s

(m2)
cd with min{m1,m2} < r2 or with m1 = r1 = r2 = m2 and

s
(m1)
ab ≺ s

(m2)
cd , or with c > k. The monomials with c > k can be shown, by induction on c, to be sums of properly

ordered monomials. (Note that this case does not occur if k = n, so induction is on decreasing values of c from n to
1.) A similar argument works when i = k, l < j.

Having proved that the product of any two generators of Upq(Lgln) can be expressed as a sum of properly ordered
monomials in two generators, it follows immediately that the same is true of the product of any number of generators.

�

6.4. Embedding in the quantum loop algebra. In [MRS], q-twisted Yangians were realized as subalgebras of
the quantum loop algebra Uq(Lgln). This is also possible for Upq(Lgln).
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Theorem 6.3. The twisted quantum loop algebra Upq(Lgln) can be realized as a subalgebra of Uq(Lgln)⊗C(q) C(q, ξ)

via the embedding ι : S(u) 7→ T (u)Gξ(u)T
−1

(u−1).

Proof. We have to check that ι gives a well-defined homomorphism Upq(Lgln) −→ Uq(Lgln) ⊗C(q) C(q, ξ), that is,

it respects the relation (41). (As for the vanishing condition on s
(0)
ij , see proposition 7.6 in [JoMa].) The proof

eventually relies on the fact that Gξ(u) satisfies the reflection equation. We have to substitute T (u)Gξ(u)T
−1

(u−1)
into (41) and check that it is satisfied.

R21(v, u)T1(u)Gξ1(u)T
−1

1 (u−1)R(u−1, v)T2(v)Gξ2(v)T
−1

2 (v−1)

= R21(v, u)T1(u)Gξ1(u)T2(v)R(u−1, v)T
−1

1 (u−1)Gξ2(v)T
−1

2 (v−1) by (29)

= R21(v, u)T1(u)T2(v)Gξ1(u)R(u−1, v)Gξ2(v)T
−1

1 (u−1)T
−1

2 (v−1)

= T2(v)T1(u)R21(v, u)Gξ1(u)R(u−1, v)Gξ2(v)T
−1

1 (u−1)T
−1

2 (v−1) by (27)

= T2(v)T1(u)Gξ2(v)R21(u−1, v)Gξ1(u)R(v, u)T
−1

1 (u−1)T
−1

2 (v−1) by (32)

(using R(u, v) = uvR(v−1, u−1))

= u−1vuvT2(v)T1(u)Gξ2(v)R21(v−1, u)Gξ1(u)R(u−1, v−1)T
−1

1 (u−1)T
−1

2 (v−1)

= v2T2(v)Gξ2(v)T1(u)R21(v−1, u)Gξ1(u)T
−1

2 (v−1)T
−1

1 (u−1)R(u−1, v−1) by (28)

= v2T2(v)Gξ2(v)T1(u)R21(v−1, u)T
−1

2 (v−1)Gξ1(u)T
−1

1 (u−1)R(u−1, v−1)

= u−1vuvT2(v)Gξ2(v)T
−1

2 (v−1)R21(v−1, u)T1(u)Gξ1(u)T
−1

1 (u−1)R(u−1, v−1) by (29)

(using R(u, v) = uvR(v−1, u−1))

= T2(v)Gξ2(v)T
−1

2 (v−1)R21(u−1, v)T1(u)Gξ1(u)T
−1

1 (u−1)R(v, u).

This proves that ι is a homomorphism of algebras. We have to see why it is injective. We can argue as in [MRS]
by passing to the limit q 7→ 1. (See [JoMa] for the finite case.) Recall that A is the localization of C[q, q−1] at the
prime ideal (q − 1).

We can view Upq(Lgln) as an algebra over C(q) if we set ξ = q` for some ` ∈ Z. Set σ
(r)
ij =

s
(r)
ij

q−q−1 if r > 0 or

i 6= j, n−j+1 or if r = 0, 1 ≤ i = j ≤ p; set σ
(0)
i,n−i+1 =

s
(0)
i,n−i+1−1

q−q−1 if 1 ≤ i ≤ p or n−p+1 ≤ i ≤ n and σ
(0)
ii =

ξ−1+s
(0)
ii

q−q−1

if p+ 1 ≤ i ≤ n− p. (See the proof of claim 10.5 in [JoMa].)

Let UpA(Lgln) be the A-subalgebra of Upq(Lgln) generated by the elements σ
(r)
ij . Let ιA be defined as ι, but from

UpA(Lgln) to UA(Lgln). Since UA(Lgln)/(q − 1)UA(Lgln) ∼= U(Lgln), Image(ιA)/(q − 1)Image(ιA) can be mapped
to a subalgebra of the enveloping algebra of Lgln: we want to see that this subalgebra is the enveloping algebra

of gln(C[s, s−1])θ. Let L : UpA(Lgln) −→ U(Lgln) be the map which is the composite of ιA with L̃ : UA(Lgln) −→
UA(Lgln)/(q − 1)UA(Lgln) ∼= U(Lgln).

It is instructive to compute the limit of ιA(σ
(r)
ij ) when q 7→ 1, that is, to identify L(σ

(r)
ij ) as an element of U(Lgln).

When r = 0, this was done in Section 10.4 in [JoMa]. We could remove the assumption that ξ = q` if we followed
the approach in [JoMa] and worked over C[[h]], in which case q and ξ should be of the form eh, ech for some constant

c ∈ C. Set T̃ (u) = T (u)−1 and denote its matrix entries by
∑∞
r=0 t̃

(r)
ij u

−r. Denote by jkm and j̃km the entries of Jξ

and (Jξ)−1. When r > 0,

ι(s
(r)
ij ) =

n∑
k,m=1

br/2c∑
d=0

r−2d∑
s=0

t
(s)
ik jkmt̃

(r−2d−s)
mj −

b(r−2)/2c∑
d=0

r−2d−2∑
s=0

t
(s)
ik j̃kmt̃

(r−2d−2−s)
mj

 ,
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so, for r ≥ 1, L(σ
(r)
ij ) equals

L̃

 n∑
k,m=1

br/2c∑
d=0

(
t
(0)
ik jkmt̃

(r−2d)
mj

q − q−1
+
t
(r−2d)
ik jkmt̃

(0)
mj

q − q−1

)
−
b(r−2)/2c∑

d=0

(
t
(0)
ik j̃kmt̃

(r−2d−2)
mj

q − q−1
+
t
(r−2d−2)
ik j̃kmt̃

(0)
mj

q − q−1

) .

Therefore, to compute L(σ
(r)
ij ), it is enough to determine L̃

(∑n
k,m=1

(
t
(0)
ik jkm t̃

(r)
mj

q−q−1 +
t
(r)
ik jkm t̃

(0)
mj

q−q−1

))
when r ≥ 1. More-

over, since r ≥ 1, jkm and j̃km can be replaced by the entry Θ′km of Θ′p. (Note that Θ′p = (Θ′p)
−1.) It is necessary

to consider several separate cases as in the proof of claim 10.5 in [JoMa]. Set

L = L̃

 n∑
k,m=1

(
t
(0)
ik Θ′kmt̃

(r)
mj

q − q−1
+
t
(r)
ik Θ′kmt̃

(0)
mj

q − q−1

) .

In the computations below, we also give gLg−1 since this is useful in understanding how the image of L is isomorphic
to Ugln(C[s, s−1])θ. Note that

g−1 =
1

2

p∑
k=1

Ekk −
n−p∑
k=p+1

Ekk −
1

2

n∑
k=n−p+1

Ekk +
1

2

p∑
k=1

En−k+1,k +
1

2

p∑
k=1

Ek,n−k+1.

Case 1. 1 ≤ i, j ≤ p.

L1 = L

(
t
(0)
ii Θ′i,n−i+1t̃

(r)
n−i+1,j

q − q−1
+
t
(r)
i,n−j+1Θ′n−j+1,j t̃

(0)
jj

q − q−1

)
= Ej,n−i+1s

−r + En−j+1,is
r,

gL1g
−1 =

1

2
Eji(s

r + s−r)− 1

2
En−j+1,n−i+1(sr + s−r)− 1

2
En−j+1,i(s

r − s−r) +
1

2
Ej,n−i+1(sr − s−r).

Case 2. 1 ≤ i ≤ p, p+ 1 ≤ j ≤ n− p.

L2 = L

(
t
(0)
ii Θ′i,n−i+1t̃

(r)
n−i+1,j

q − q−1
+
t
(r)
ij Θ′jj t̃

(0)
jj

q − q−1

)
= Ej,n−i+1s

−r − Ejisr,

gL2g
−1 =

1

2
Eji(s

r − s−r) +
1

2
Ej,n−i+1(sr + s−r).

Case 3. 1 ≤ i ≤ p, n− p+ 1 ≤ j ≤ n.

L3 = L

(
t
(0)
ii Θ′i,n−i+1t̃

(r)
n−i+1,j

q − q−1
+
t
(r)
i,n−j+1Θ′n−j+1,j t̃

(0)
jj

q − q−1

)
= Ej,n−i+1s

−r + En−j+1,is
r,

gL3g
−1 =

1

2
Eji(s

r − s−r) +
1

2
En−j+1,n−i+1(sr − s−r) +

1

2
En−j+1,i(s

r + s−r) +
1

2
Ej,n−i+1(sr + s−r).

Case 4. p+ 1 ≤ i ≤ n− p, 1 ≤ j ≤ p.

L4 = L

(
t
(0)
ii Θ′iit̃

(r)
ij

q − q−1
+
t
(r)
i,n−j+1Θ′n−j+1,j t̃

(0)
jj

q − q−1

)
= −Ejis−r + En−j+1,is

r,

gL4g
−1 = −Eji(sr − s−r) + En−j+1,i(s

r + s−r).

Case 5. p+ 1 ≤ i, j ≤ n− p.
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L5 = L

(
t
(0)
ii Θ′iit̃

(r)
ij

q − q−1
+
t
(r)
ij Θ′jj t̃

(0)
jj

q − q−1

)
= −Ejis−r − Ejisr,

gL5g
−1 = −Eji(sr + s−r).

Case 6. p+ 1 ≤ i ≤ n− p, n− p+ 1 ≤ j ≤ n.

L6 = L

(
t
(0)
ii Θ′iit̃

(r)
ij

q − q−1
+
t
(r)
i,n−j+1Θ′n−j+1,j t̃

(0)
jj

q − q−1

)
= −Ejis−r + En−j+1,is

r,

gL6g
−1 = −Eji(sr + s−r)− En−j+1,i(s

r − s−r).

Case 7. n− p+ 1 ≤ i ≤ n, 1 ≤ j ≤ p.

L7 = L

(
t
(0)
ii Θ′i,n−i+1t̃

(r)
n−i+1,j

q − q−1
+
t
(r)
i,n−j+1Θ′n−j+1,j t̃

(0)
jj

q − q−1

)
= Ej,n−i+1s

−r + En−j+1,is
r,

gL7g
−1 = −1

2
Eji(s

r − s−r)− 1

2
En−j+1,n−i+1(sr − s−r) +

1

2
En−j+1,i(s

r + s−r) +
1

2
Ej,n−i+1(sr + s−r).

Case 8. n− p+ 1 ≤ i ≤ n, p+ 1 ≤ j ≤ n− p.

L8 = L

(
t
(0)
ii Θ′i,n−i+1t̃

(r)
n−i+1,j

q − q−1
+
t
(r)
ij Θ′jj t̃

(0)
jj

q − q−1

)
= Ej,n−i+1s

−r − Ejisr,

gL8g
−1 = −1

2
Eji(s

r + s−r) +
1

2
Ej,n−i+1(sr − s−r).

Case 9. n− p+ 1 ≤ i, j ≤ n.

L9 = L

(
t
(0)
ii Θ′i,n−i+1t̃

(r)
n−i+1,j

q − q−1
+
t
(r)
i,n−j+1Θ′n−j+1,j t̃

(0)
jj

q − q−1

)
= Ej,n−i+1s

−r + En−j+1,is
r,

gL9g
−1 = −1

2
Eji(s

r + s−r) +
1

2
En−j+1,n−i+1(sr + s−r) +

1

2
Ej,n−i+1(sr − s−r)− 1

2
En−j+1,i(s

r − s−r).

It follows from all this that the quasi-classical limit of the image of ιA is the enveloping algebra of the Lie algebra
gln(C[s, s−1])θ

′
, which is isomorphic to gln(C[s, s−1])θ via conjugation by the matrix g. For instance, if we denote

by Lk the limit computed in case k (1 ≤ k ≤ 9), and if 1 ≤ i, j ≤ p, then we can write (after relabeling the indices
in the case of gL3g

−1 and gL7g
−1)

gL1g
−1

gL3g
−1

gL7g
−1

gL9g
−1

 =


1
2 − 1

2
1
2 − 1

2
1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

− 1
2 − 1

2
1
2

1
2




Eji(s
r + s−r)

En−j+1,i(s
r − s−r)

Ej,n−i+1(sr − s−r)
En−j+1,n−i+1(sr + s−r)

 .

Since the matrix is invertible, we see that we can express Eji(s
r + s−r), En−j+1,i(s

r − s−r), Ej,n−i+1(sr − s−r) and
En−j+1,n−i+1(sr + s−r) in terms of gL1g

−1, gL3g
−1, gL7g

−1 and gL9g
−1.

Under the specialization q 7→ 1, the spanning monomials provided by Proposition 6.2 are mapped by L to a PBW
basis of the enveloping algebra of gln(C[s, s−1])θ

′
. Therefore, they must be linearly independent. It follows that

ι is injective and we can conclude that it is an isomorphism. (See [MRS] for the analogous result for orthogonal
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and symplectic twisted q-Yangians.) In more detail, if
∑
i∈I cMi

Mi = 0 is a relation of linear dependence where
Mi is one of the monomials in Proposition 6.2 and cMi

∈ C(q, ξ), then we can clear denominators and assume that
cMi
∈ C(q)[ξ, ξ−1]. We can find ` ∈ Z such that some cMi

does not belong to the ideal of C(q)[ξ, ξ−1] generated by

ξ−q`. Passing to the quotient C(q)[ξ, ξ−1]/(ξ−q`) and replacing s
(r)
ij by σ

(r)
ij , we can obtain a relation for monomials

in UpA(Lgln) with coefficients in A and we can assume that not all the coefficients belong to the ideal (q−1). Applying
ιA and passing to UpA(Lgln)/(q − 1)UpA(Lgln), we obtain a contradiction because of the linear independence of the
images of the monomials Mi in UA(Lgln)/(q − 1)UA(Lgln). Therefore, all the coefficients cMi must vanish. �

Let us collect the last part of the previous proof inside a corollary.

Corollary 6.1. The A-subalgebra of UA(Lgln) generated by the coefficients of the entries of T (u)Gξ(u)T
−1

(u−1)
specializes to the enveloping algebra U(gn(C[s, s−1])θ) as q 7→ 1 when ξ = q`, ` ∈ Z.

Corollary 6.2. The ordered monomials from Proposition 6.2 constitute a vector space basis of Upq(Lgln) over C(q, ξ).

Corollary 6.3. Upq(Lgln) is a coideal subalgebra of Uq(Lgln)⊗C(q) C(q, ξ) with coproduct given by

∆(sij(u)) =

n∑
k,l=1

tik(u)t̃lj(u
−1)⊗ skl(u).

7. Drinfeld functor for twisted quantum loop algebras of type AIII

7.1. From affine Hecke algebra modules to representations of quantum loop algebras: the gln case. In
this section, we present the construction of a functor between categories of modules over the affine Hecke algebra
of type A and over Uq(Lgln). This is essentially the functor studied in [ChPr2], although we are using a different
set of generators for Uq(Lgln). Similar constructions can be found in [Ch1] and the current section should not be
considered original work, but we have decided to keep it since it makes the relevant construction in type A more
understandable for our purposes.

Let V = Cn⊗CC(q, ξ) be the vector representation of Uq(gln) used in [JoMa], section 7.2 and extended to C(q, ξ).
Consider the tensor product V ⊗l. There is an Hlq−1-module structure on it given by

(44) σi 7→ q−1R−1
i,i+1Pi,i+1 ∈ End C(q,ξ)(V

⊗l), i = 1, . . . , l − 1,

where Pi,j =
∑n
s,t=1E

(i)
st E

(j)
ts is the permutation operator and

Ri,j =

n∑
s,t=1

s6=t

qδstE(i)
ss E

(j)
tt + (q − q−1)

n∑
s,t=1
s>t

E
(i)
st E

(j)
ts .

Moreover, if we define an action of σl on V ⊗l by

σl(v1 ⊗ v2 ⊗ · · · ⊗ vl) = v1 ⊗ v2 ⊗ · · · ⊗ (ξ−1(Jξ)−1vl),

where Jξ is the n by n matrix defined in (30), we obtained an Hlq−1,ξ−1-module structure on V ⊗l. For more details,

see [JoMa].

Remark 7.1. In the future, we will use the braid group module structure where the braid group action is obtained
from the natural quotient map of the group algebra of the braid group onto the finite Hecke algebra.

From lemma 2.1 in [FrMu], we deduce that, for any commutative C(q)-algebra A and any invertible element
a ∈ A, the following formula defines a homomorphism eva : Uq(Lgln)→ A⊗C(q) Uq(gln), given by

(45) eva(tij(u)) =
atij − u−1t̄ij
a− u−1

, eva(t̄ij(u)) =
a−1t̄ij − utij
a−1 − u

.
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Let ρ : Uq(gln)→ End C(q)(V ) be the vector representation, and ρk = id⊗ · · · ⊗ id⊗ ρ⊗ id⊗ · · · ⊗ id : Uq(gln)→
End C(q)(V

⊗l) ∼= End C(q)(V )⊗l with ρ as the k-th tensor factor. Then for k = 1, . . . , l, set

I+
k =

n∑
i,j=1

(ρk ⊗ ρ)
(
(tij)k ⊗ Eij

)
, I−k =

n∑
i,j=1

(ρk ⊗ ρ)
(
(t̄ij)k ⊗ Eij

)
∈ End C(q)(V

⊗l)⊗C End C(Cn).

We index the last tensor factor in End C(q)(V )⊗l ⊗C End C(Cn) by l + 1, so that I+
k = (ρk ⊗ ρ)(Rk,l+1) and I−k =

(ρk ⊗ ρ)(Pk,l+1R
−1
k,l+1Pk,l+1) (where the last ρ denotes the natural representation of gln).

For any left Hl
q−1 -module M , consider the tensor product M ⊗C(q) V

⊗l. It has a BAl -module structure through the

diagonal action, where the BAl -module structures on M and V ⊗l are given by the natural projection C[BAl ] � Hlq−1 .

Define the quotient space DA(M) as:

(46) DA(M) = M ⊗C(q) V
⊗l/

l−1∑
i=1

Im(σi + q−2).

Now for k = 1, . . . , l, introduce the following elements in Hl
q−1 [[u−1]] ⊗C(q) End C(q)(V

⊗l) ⊗C End C(Cn) and in

Hl
q−1 [[u]]⊗C(q) End C(q)(V

⊗l)⊗C End C(Cn) respectively:

(47) T+
k (u) =

q−kY −1
k

q−kY −1
k − u−1

⊗ I+
k −

u−1

q−kY −1
k − u−1

⊗ I−k ,

(48) T−k (u) =
(qkYk − u)qkYk

(qkYk)2 − (q2 + q−2)uqkYk + u2
⊗ I−k −

(qkYk − u)u

(qkYk)2 − (q2 + q−2)qkuYk + u2
⊗ I+

k .

Theorem 7.1. The map

(49) T (u) 7→ T+
1 (u)T+

2 (u) · · ·T+
l (u), T (u) 7→ T−1 (u)T−2 (u) · · ·T−l (u),

defines a Uq(Lgln)-module structure on DA(M). Thus we have a functor DA from the category of left Hl
q−1-modules

to the category of left Uq(Lgln)-modules.

The proof of this theorem requires the next lemma.

Lemma 7.1. Let V be the vector representation of Uq(gln) and let Hlq−1 act on V ⊗l by (44). Then we have the

following identities for k = 1, . . . , l−1, the first two holding in End C(q)(V
⊗l)⊗C End C(Cn) and the last one in Hl

q−1 :

(1) I±k I
±
k+1σk = σkI

±
k I
±
k+1;

(2) I+
k I
−
k+1σk = σkI

−
k I

+
k+1, I−k I

+
k+1σk = σkI

+
k I
−
k+1 + (1− q−2)(I+

k I
−
k+1 − I

−
k I

+
k+1);

(3) Ykσk = (qσk + q − q−1)Yk+1, Yk+1σk = (q−2 − 1)Yk+1 + q−1σkYk, Y ±1
k Y ±1

k+1σk = σkY
±1
k Y ±1

k+1, Y −1
k+1σk =

(qσk + q − q−1)Y −1
k , Y −1

k σk = (q−2 − 1)Y −1
k + q−1σkY

−1
k+1.

Proof. From the definition,

q[I+
k I

+
k+1, σk] = Rk,l+1Rk+1,l+1R

−1
k,k+1Pk,k+1 −R−1

k,k+1Pk,k+1Rk,l+1Rk+1,l+1

= (Rk,l+1Rk+1,l+1R
−1
k,k+1 −R

−1
k,k+1Rk+1,l+1Rk,l+1)Pk,k+1,

which is 0 since R is a solution of the Yang-Baxter equation. Similarly,

q[I−k I
−
k+1, σk] = R−1

l+1,kR
−1
l+1,k+1R

−1
k,k+1Pk,k+1 −R−1

k,k+1Pk,k+1R
−1
l+1,kR

−1
l+1,k+1

= Pk,k+1(R−1
l+1,k+1R

−1
l+1,kR

−1
k+1,k −R

−1
k+1,kR

−1
l+1,kR

−1
l+1,k+1) = 0.

So (1) holds, and the proof that I+
k I
−
k+1σk = σkI

−
k I

+
k+1, I−k I

+
k+1σ

−1
k = σ−1

k I+
k I
−
k+1 is analogous. Using σ−1

k =

q2σk + q2 − 1, we can prove (2). (3) can be obtained directly from the defining relations in the Hecke algebra
Hl
q−1 . �
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Proof of Theorem 7.1. From the commutativity of Y ±i and the evaluation homomorphism (45), it is enough to
show that the map (49) factors through the quotient (46). From Lemma 2.4, the coefficients of u−1 and of u,

respectively, in
∏l
k=1(q−kY −1

k − u−1) and in
∏l
k=1

(qkYk)2−(q2+q−2)uqkYk+u2

(qkYk−u)
, are in the center of Hl

q−1 . So we only

need to show that T̃+
1 (u)T̃+

2 (u) · · · T̃+
l (u) and T̃−1 (u)T̃−2 (u) · · · T̃−l (u) factor through the quotient DA(M), where

T̃±k (u) = (qkYk)∓1 ⊗ I±k − u∓1 ⊗ I∓k .

Using Lemma 7.1, we have

T̃+
k (u)T̃+

k+1(u) ◦ σk − σk ◦ T̃+
k (u)T̃+

k+1(u)

= −u−1q−k−1Y −1
k+1σk ⊗ I

−
k I

+
k+1σk − u

−1q−kY −1
k σk ⊗ I+

k I
−
k+1σk

+ u−1q−k−1σkY
−1
k+1 ⊗ σkI

−
k I

+
k+1 + u−1q−kσkY

−1
k ⊗ σkI+

k I
−
k+1

= −u−1q−k(1− q−2)(q2σk + 1)
(

(σk + 1− q−2)Y −1
k ⊗ (I+

k I
−
k+1 − I

−
k I

+
k+1)

)
and

T̃−k (u)T̃−k+1(u) ◦ σk − σk ◦ T̃−k (u)T̃−k+1(u)

= −uqk+1Yk+1σk ⊗ I+
k I
−
k+1σk − uq

kYkσk ⊗ I−k I
+
k+1σk

+ uqk+1σkYk+1 ⊗ σkI+
k I
−
k+1 + uqkσkYk ⊗ σkI−k I

+
k+1

= −uqk+1(1− q−2)(σk + q−2)
(

(q2σk + q2 − 1)Yk+1 ⊗ (I+
k I
−
k+1 − I

−
k I

+
k+1)

)
.

So the image of u−1(T̃±k (u)T̃±k+1(u) ◦ σk − σk ◦ T̃±k (u)T̃±k+1(u)) (as an element in End C(q)(M ⊗C(q) V
⊗l)) belongs to

the image of σk + q−2, which implies that the action defined by (49) induces an action on the quotient (46).

Finally, any homomorphism f : M1 −→ M2 between two Hl
q−1 -modules induces a homomorphism f ⊗ id :

DA(M1) −→ DA(M2). �

7.2. From affine Hecke algebra modules to representations of twisted quantum loop algebras: The
type BC case. Let M be a left Hl

q−1,ξ−1 -module and let V be the vector representation of Uq(gln). Then we know

that M ⊗C(q) V
⊗l is a BBl -module. Define

DB(M) = M ⊗C(q) V
⊗l/

(
l−1∑
i=1

Im(σi + q−2) + Im(σl + ξ−2)

)
.

Let T±i (u) be the elements defined in (47), (48). Let Gξ(u) = Id⊗ Id⊗Gξ(u) ∈ Hl
q−1,ξ−1 ⊗C(q) End C(q)(V

⊗l)⊗C(q)

End C(q)V [[u−1]], where Gξ(u) is the matrix defined in (31). Define

Sξ(u) = T+
1 (u)T+

2 (u) · · ·T+
l (u)Gξ(u)(T−l (u−1))−1(T−l−1(u−1))−1 · · · (T−1 (u−1))−1.

Theorem 7.2. For any Hl
q−1,ξ−1-module M , the map S(u)→ Sξ(u) defines a Upq(Lgln)-module structure on DB(M).

Thus we get a functor DB from the category of Hl
q−1,ξ−1-modules to the category of Upq(Lgln)-modules.

In order to prove the theorem, we need the following lemmas.

Lemma 7.2. In End C(q)(M ⊗C(q) V
⊗l)[[u−1]], we have

(T−k (u−1))−1 =
qkYk

qkYk − u−1
⊗Rl+1,k −

u−1

qkYk − u−1
⊗R−1

k,l+1.

Proof. This lemma can be proved by direct calculations. �

Lemma 7.3. Denote by Jξk the operator in End C(q)(V
⊗l) ⊗C End C(Cn) defined by applying Jξ to the k-th tensor

factor in V ⊗l. We have the following identities:

(1) Jξl Rl,l+1J
ξ
l+1Rl+1,l = Rl,l+1J

ξ
l+1Rl+1,lJ

ξ
l ;
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(2) (Jξl )−1R−1
l+1,l(J

ξ
l+1)−1Rl+1,l = Rl,l+1(Jξl+1)−1R−1

l,l+1(Jξl )−1;

(3) R−1
l+1,lJ

ξ
l+1Rl+1,l(J

ξ
l )−1 = (Jξl )−1Rl,l+1J

ξ
l+1R

−1
l,l+1 + (ξ − ξ−1)Φ where

Φ = Rl,l+1J
ξ
l+1R

−1
l,l+1 −R

−1
l+1,lJ

ξ
l+1Rl+1,l;

(4) R−1
l+1,l(J

ξ
l+1)−1Rl+1,l(J

ξ
l )−1 = (Jξl )−1Rl,l+1(Jξl+1)−1R−1

l,l+1 + (ξ − ξ−1)Ψ where

Ψ = Rl,l+1(Jξl+1)−1R−1
l,l+1 −R

−1
l+1,l(J

ξ
l+1)−1Rl+1,l;

(5) in Hl
q−1,ξ−1 , we have Ylσl = (1− ξ−2)q−2lY −1

l + q−2lσlY
−1
l and Y −1

l σl = (ξ−2 − 1)Y −1
l + q2lσlYl.

Proof. From [JoMa], lemma 7.4, we know that (1) holds. (2) can be obtained from (1).

Using Jξ − (Jξ)−1 = ξ− ξ−1 and (1), we can get (3). Similarly, we have (4). (5) can be checked directly from the
definition. �

Proof of Theorem 7.2. From Theorem 6.3 and Theorem 7.1, we deduce that it is enough to show that the map
S(u)→ Sξ(u) factors through the quotient by the image of σl + ξ−2. From Lemma 7.2, we have

Sξ(u) =

(
q−1Y −1

1

q−1Y −1
1 − u−1

⊗R1,l+1 −
u−1

q−1Y −1
1 − u−1

⊗R−1
l+1,1

)
· · ·
(

q−lY −1
l

q−lY −1
l − u−1

⊗Rl,l+1 −
u−1

q−lY −1
l − u−1

⊗R−1
l+1,l

)
·Gξ(u) ·

(
qlYl

qlYl − u−1
⊗Rl+1,l −

u−1

qlYl − u−1
⊗R−1

l,l+1

)
· · ·
(

qY1

qY1 − u−1
⊗Rl+1,1 −

u−1

qY1 − u−1
⊗R−1

1,l+1

)
.

From the definition of the σl and the fact that all the coefficients of powers of u−1 in the expansion of
∏l
i=1(qiYi −

u−1)(q−iY −1
i − u−1) lie in the center of the Hecke algebra Hl

q−1,ξ−1 by Lemma 2.4, it is enough to show that the

coefficients of the powers of u−1 in

(q−lY −1
l ⊗Rl,l+1 − u−1 ⊗R−1

l+1,l)G
ξ(u)(qlYl ⊗Rl+1,l − u−1 ⊗R−1

l,l+1)σl(50)

−σl(q−lY −1
l ⊗Rl,l+1 − u−1 ⊗R−1

l+1,l)G
ξ(u)(qlYl ⊗Rl+1,l − u−1 ⊗R−1

l,l+1)

belong to the right ideal generated by σl + ξ−2 in End C(q)(M ⊗C(q) V
⊗l). This is equivalent to the following

congruences modulo this ideal:

(i) σl ⊗Rl,l+1J
ξ
l+1Rl+1,l(J

ξ
l )−1 ≡ σl ⊗ (Jξl )−1Rl,l+1J

ξ
l+1Rl+1,l;

(i’) σl ⊗R−1
l+1,lJ

ξ
l+1R

−1
l,l+1(Jξl )−1 − σl ⊗Rl,l+1(Jξl+1)−1Rl+1,l(J

ξ
l )−1

≡ σl ⊗ (Jξl )−1R−1
l+1,lJ

ξ
l+1R

−1
l,l+1 − σl ⊗ (Jξl )−1Rl,l+1(Jξl+1)−1Rl+1,l;

(ii) σl ⊗R−1
l+1,l(J

ξ
l+1)−1R−1

l,l+1(Jξl )−1 ≡ σl ⊗ (Jξl )−1R−1
l+1,l(J

ξ
l+1)−1R−1

l,l+1;

(iii) qlYlσl ⊗R−1
l+1,lJ

ξ
l+1Rl+1,l(J

ξ
l )−1 + q−lY −1

l σl ⊗Rl,l+1J
ξ
l+1R

−1
l,l+1(Jξl )−1

≡ qlσlYl ⊗ (Jξl )−1R−1
l+1,lJ

ξ
l+1Rl+1,l + q−lσlY

−1
l ⊗ (Jξl )−1Rl,l+1J

ξ
l+1R

−1
l,l+1;

(iv) qlYlσl ⊗R−1
l+1,l(J

ξ
l+1)−1Rl+1,l(J

ξ
l )−1 + q−lY −1

l σl ⊗Rl,l+1(Jξl+1)−1R−1
l,l+1(Jξl )−1

≡ qlσlYl ⊗ (Jξl )−1R−1
l+1,l(J

ξ
l+1)−1Rl+1,l + q−lσlY

−1
l ⊗ (Jξl )−1Rl,l+1(Jξl+1)−1R−1

l,l+1.

(i), (i’) and (ii) can be easily obtained from Lemma 7.3. For (iii), we have

qlYlσl ⊗R−1
l+1,lJ

ξ
l+1Rl+1,l(J

ξ
l )−1 + q−lY −1

l σl ⊗Rl,l+1J
ξ
l+1R

−1
l,l+1(Jξl )−1

− qlσlYl ⊗ (Jξl )−1R−1
l+1,lJ

ξ
l+1Rl+1,l − q−lσlY −1

l ⊗ (Jξl )−1Rl,l+1J
ξ
l+1R

−1
l,l+1 (by Lemma 7.3 (3))
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= (qlYlσl − q−lσlY −1
l )⊗ (Jξl )−1Rl,l+1J

ξ
l+1R

−1
l,l+1 + (ξ − ξ−1)qlYlσl ⊗ Φ

+ (q−lY −1
l σl − qlσlYl)⊗ (Jξl )−1R−1

l+1,lJ
ξ
l+1Rl+1,l

(by Lemma 7.3 (5))

= q−l(1− ξ−2)Y −1
l ⊗ (Jξl )−1Φ + (ξ − ξ−1)qlYlσl ⊗ Φ

= (σl + ξ−2)(ξ − ξ−1)
(
q−lξ2(σlY

−1
l ⊗ Φ) + q−l(ξ2 − 1)(Y −1

l ⊗ Φ)
)
.

Similarly, for (iv), we have

qlYlσl ⊗R−1
l+1,l(J

ξ
l+1)−1Rl+1,l(J

ξ
l )−1 + q−lY −1

l σl ⊗Rl,l+1(Jξl+1)−1R−1
l,l+1(Jξl )−1

− qlσlYl ⊗ (Jξl )−1R−1
l+1,l(J

ξ
l+1)−1Rl+1,l − q−lσlY −1

l ⊗ (Jξl )−1Rl,l+1(Jξl+1)−1R−1
l,l+1 (by Lemma 7.3 (4))

= (qlYlσl − q−lσlY −1
l )⊗ (Jξl )−1Rl,l+1(Jξl+1)−1R−1

l,l+1 + ql(ξ − ξ−1)Ylσl ⊗Ψ

+ (q−lY −1
l σl − qlσlYl)⊗ (Jξl )−1R−1

l+1,l(J
ξ
l+1)−1Rl+1,l (by Lemma 7.3 (5))

= q−l(1− ξ−2)Y −1
l ⊗ (Jξl )−1Ψ + ql(ξ − ξ−1)Ylσl ⊗Ψ

= (σl + ξ−2)(ξ − ξ−1)
(
q−lξ2(σlY

−1
l ⊗Ψ) + q−l(ξ2 − 1)(Y −1

l ⊗Ψ)
)
.

Therefore, (iii) and (iv) hold. Finally, any homomorphism f : M1 −→M2 between two Hl
q−1,q2l -modules induces

a homomorphism f ⊗ id : DB(M1) −→ DB(M2). �

8. Center of the twisted quantum loop algebra Upq(Lgln)

The method that we use to determine the center of Upq(Lgln) is similar to the one used in [MRS] via the Sklyanin
determinant.

For any choice of indices i, j, k with 1 ≤ i < j < k ≤ n, the affine quantum R-matrix R(u, v) satisfies the
Yang-Baxter equation

Rij(u, v)Rik(u,w)Rjk(v, w) = Rjk(v, w)Rik(u,w)Rij(u, v).

From the definition of Upq(Lgln), we have

Rji(uj , ui)Si(ui)Rij(u
−1
i , uj)Sj(uj) = Sj(uj)Rji(u

−1
i , uj)Si(ui)Rij(uj , ui).

Using these identities, we derive the following relation for S(u):

[Rn,n−1(un, un−1) · · ·R21(u2, u1)]S1(u1)
(
R12(u−1

1 , u2) · · ·R1n(u−1
1 , un)

)
S2(u2) · · ·Rn−1,n(u−1

n−1, un)Sn(un)

= Sn(un)Rn,n−1(u−1
n−1, un) · · · (Rn1(u−1

1 , un) · · ·R21(u−1
1 , u2))S1(u1)[Rn−1,n(un, un−1) · · ·R12(u2, u1)].

We set

R(un, . . . , u1) = Rn,n−1(un, un−1)
(
Rn,n−2(un, un−2)Rn−1,n−2(un−1, un−2)

)
· · ·
(
Rn1(un, u1) · · ·R21(u2, u1)

)
and

S(un, . . . , u1) = Rn−1,n(un, un−1)
(
Rn−2,n(un, un−2)Rn−2,n−1(un−1, un−2)

)
· · ·
(
R1n(un, u1) · · ·R12(u2, u1)

)
.

As in [MRS], consider the q-permutation operator P q ∈ End C(Cn ⊗C Cn) defined by

P q =

n∑
i=1

Eii ⊗ Eii + q
∑

n≥i>j≥1

Eij ⊗ Eji + q−1
∑

1≤i<j≤n

Eij ⊗ Eji.

An action of the symmetric group Sn on the space (Cn)n can be defined by setting si 7→ P qi,i+1 for i = 1, . . . , n− 1,

where si denotes the transposition (i, i + 1). If σ = si1 · · · sil is a reduced decomposition of an element σ ∈ Sn, we
set P qσ = P qsi1 · · ·P

q
sil

where P qsi = P qi,i+1. We denote by Aqn the q-antisymmetrizer

Aqn =
∑
σ∈Sn

sgn(σ) · P qσ .
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Proposition 8.1. The relations

R(q2n−2, . . . , q2, 1) =

( ∏
0≤i<j≤n−1

(q2j − q2i)

)
·Aqn

and

S(q2n−2, . . . , q2, 1) =

( ∏
0≤i<j≤n−1

(q2j − q2i)

)
·Aq

−1

n

hold in End C(Cn)⊗n.

Proof. This can be deduced from proposition 4.1 in [MRS]. �

For 1 ≤ i, j ≤ n, we set ui = uq2i−2 and

Rij = Rij(ui, uj); R†ij = Rij(u
−1
i , uj); Sij = Rij(uj , ui); S†ij = Rij(u

−1
j , ui); Si = Si(ui).

Now the above proposition implies

(51) AqnS1(R†12 · · ·R
†
1n)S2(R†23 · · ·R

†
2n)S3 · · ·Sn−1R

†
n−1,nSn = Sn(S†n,n−1)Sn−1 · · ·S2(S†n1 · · ·S

†
21)S1A

q−1

n .

Since the q-antisymmetrizer Aqn is proportional to an idempotent (indeed (Aqn)2 = n!Aqn) and maps the space (Cn)⊗n

into a one dimensional subspace, both sides of (53) must be equal to Aqn times a series sdetS(u) in u−1 with
coefficients in Upq(Lgln), i.e.,

AqnS1(R†12 · · ·R
†
1n)S2(R†23 · · ·R

†
2n)S3 · · ·Sn−1R

†
n−1,nSn = AqnsdetS(u).

We call this series the Sklyanin determinant of S(u).

For π ∈ Sn, set wπ = eπ(1) ⊗ eπ(2) ⊗ · · · eπ(n) and let l(w) be the length of the permutation w. We have

Aqnwπ = (−q)−l(π)Aqnwid and Aq
−1

n wπ = (−q)l(π)Aq
−1

n wid.

Hence

sdetS(u)Aqnwπ =(−q)−l(π)sdetS(u)Aqnwid

=(−q)−l(π)AqnS1(R†12 · · ·R
†
1n)S2(R†23 · · ·R

†
2n)S3 · · ·Sn−1R

†
n−1,nSnwid

=(−q)−l(π)Sn(S†n,n−1)Sn−1 · · ·S2(S†n1 · · ·S
†
21)S1A

q−1

n wid

=(−q)−2l(π)Sn(S†n,n−1)Sn−1 · · ·S2(S†n1 · · ·S
†
21)S1A

q−1

n wπ

=q−2l(π)AqnS1(R†12 · · ·R
†
1n)S2(R†23 · · ·R

†
2n)S3 · · ·Sn−1R

†
n−1,nSnwπ.

The following theorem provides an expression of sdetS(u) in terms of quantum determinants.

Theorem 8.1. We have

(52) sdetS(u) = θn,ξ(u)qdetT (uq2n−2)(qdetT (u−1))−1,

where θn,ξ(u) is the Sklyanin determinant of Gξ(u) and the quantum determinant is defined by

qdetT (u) =
∑
σ∈Sn

(−q)−l(σ)tσ(1)1(uq−2n+2)tσ(2)2(uq−2n+4) · · · tσ(n)n(u).

Proof. We follow the arguments of [MNO]. We regard Upq(Lgln) as a subalgebra of Uq(Lgln); see their theorem 6.3.

We substitute S(u) = T (u)Gξ(u)T
−1

(u−1) into the identity (53) and transform the left hand side using the relations

T
−1

i (u−1
i )Rij(u

−1
i , uj)Tj(uj) = Tj(uj)Rij(u

−1
i , uj)T

−1

i (u−1
i ),

which is equivalent to (29). Then the left hand side of (53) becomes

(53) AqnT1(u)T2(uq2) · · ·Tn(uq2n−2)R̃(u)T
−1

1 (u−1)T
−1

2 (u−1q−2) · · ·T−1

n (u−1q−2n+2),
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where

R̃(u) = Gξ1(u)R†12 · · ·R
†
1nG

ξ
2(uq2) · · ·Gξn−1(uq2n−4)R†n−1,nG

ξ
n(uq2n−2).

By the definition of the quantum determinant qdetT (u), we have

(54) AqnT1(u)T2(uq2) · · ·Tn(uq2n−2) = AqnqdetT (q2n−2u).

Therefore, we can bring (55) to the form

qdetT (q2n−2u)AqnR̃(u)T
−1

1 (u−1)T
−1

2 (u−1q−2) · · ·T−1

n (u−1q−2n+2).

By Lemma 6.2, the mapping S(u) 7→ Gξ(u) defines a representation of the twisted quantum loop algebra Upq(Lgln).
Therefore, (53) gives

AqnR̃(u) = S̃(u)Aq
−1

n = AqnsdetGξ(u) = Aqnθn,ξ(u),

where

S̃(u) = Gξn(uq2n−2)(S†n,n−1)Gξn−1(uq2n−4) · · ·Gξ2(uq2)(S†n1 · · ·S
†
21)Gξ1(u).

Now we write (55) as

qdetT (q2n−2u)S̃(u)

(
Aq
−1

n T
−1

1 (u−1)T
−1

2 (u−1q−2) · · ·T−1

n (u−1q−2n+2)

)
.

Furthermore, we have

(55) Aq
−1

n T
−1

1 (u−1)T
−1

2 (u−1q−2) · · ·T−1

n (u−1q−2n+2) = Aq
−1

n (qdetT (u−1))−1.

This follows from (56) (with T instead of T ) if we multiply both sides by T
−1

n (uq2n−2)T
−1

n−1(uq2n−4) · · ·T−1

1 (u) from
the right, replace u with u−1q−2n+2 and then conjugate the two sides by the permutation of the indices 1, . . . , n

which sends i to n− i+ 1. (Notice that Aqn becomes Aq
−1

n after the conjugation). Now (55) becomes

qdetT (q2n−2u)
(
S̃(u)Aq

−1

n

)
(qdetT (u−1))−1 = qdetT (q2n−2u)(qdetT (u−1))−1Aqnθn,ξ(u).

�

Corollary 8.1. The coefficients of the series sdetS(u) belong to the center of the algebra Upq(Lgln).

Proof. This is an immediate consequence of the previous theorem and of the centrality of qdetT (u) and qdet T̄ (u)
in Uq(Lgln). �

Introduce the series c(u) and the elements ck of the center of the algebra Upq(Lgln) by the formula

(56) c(u) = θn,ξ(u)−1sdetS(u) = 1 +

∞∑
k=1

cku
−k.

Proposition 8.2. The coefficients ck, k ≥ 1, are algebraically independent.

Proof. Use an argument similar to the one in proposition 4.4 in [MRS]. �

Now we try to find an explicit expression for the scalar function θn,ξ(u). We have (n − 1)!Aqn = AqnÃ
q
n−1, where

Ãqn−1 is the quantum antisymmetrizer in the tensor product of the copies of End CCn corresponding to the indices

2, . . . , n. Note that Ãqn−1 commutes with Gξ1(u). Furthermore, we have the identity

Ãqn−1R
†
12 · · ·R

†
1n = R†1n · · ·R

†
12Ã

q
n−1.



40 HONGJIA CHEN, NICOLAS GUAY, AND XIAOGUANG MA

This follows from the Yang-Baxter relation and Proposition 8.1. Similarly we define the operators Ãqi for i =
1, 2, . . . , n− 2. Now we have:(

n−1∏
i=1

i!

)
Aqnθn,ξ(u) =

(
n−2∏
i=1

i!

)
AqnÃ

q
n−1G

ξ
1(u)R†12 · · ·R

†
1nG

ξ
2(uq2) · · ·Gξn−1(uq2n−4)R†n−1,nG

ξ
n(uq2n−2)

=

(
n−2∏
i=1

i!

)
AqnG

ξ
1(u)R†1n · · ·R

†
12

(
Ãqn−1G

ξ
2(uq2) · · ·Gξn−1(uq2n−4)R†n−1,nG

ξ
n(uq2n−2)

)
=

...
...

...
...

=AqnG
ξ
1(u) · · ·

(
Ãqn−1G

ξ
2(uq2) · · ·

(
Ãq2G

ξ
n−1(uq2n−4)R†n−1,n

(
Ãq1G

ξ
n(uq2n−2)

)))
.

Now consider the action of the operators on w = ep+1 ⊗ · · · ⊗ en−p ⊗ (ep ⊗ en−p+1)⊗ · · · ⊗ (e1 ⊗ en), where {ei}ni=1

denotes the canonical basis of Cn. We obtain

q2p(n−p−1)

(
n−1∏
i=1

i!

)
Aqnθn,ξ(u)w =

(
AqnG

ξ
1(u) · · ·

(
Ãqn−1G

ξ
2(uq2) · · ·

(
Ãq2G

ξ
n−1(uq2n−4)R†n−1,n

(
Ãq1G

ξ
n(uq2n−2)

))))
w

=

(
AqnG

ξ
1(u) · · ·

(
Ãqn−1G

ξ
2(uq2) · · ·

(
Ãq2Ã

q
1G

ξ
n−1(uq2n−4)R†n−1,nG

ξ
n(uq2n−2)

)))
w

=AqnG
ξ
1(u) · · ·

(
Ãq4G

ξ
n−3(uq2n−8) · · ·

(
Ãq3G

ξ
n−2(uq2n−6) · · ·

(
Ãq2θ

′
2,ξ(u)w

)))
=θ2,ξ(u)

(
AqnG

ξ
1(u) · · ·

(
Ãq4Ã

q
3Ã

q
2G

ξ
n−3(uq2n−8) · · ·Gξn−2(uq2n−6) · · ·

)
w

)
=2!3!θ′2,ξ(u)

(
AqnG

ξ
1(u) · · ·

(
Ãq4G

ξ
n−3(uq2n−8) · · ·Gξn−2(uq2n−6) · · ·

)
w

)
=

...
...

...
...

=

(
2p∏
i=1

i!

)(
p∏
j=1

θ2j,ξ(u)

)(
AqnG

ξ
1(u) · · ·

(
Ãq2p+1G

ξ
n−2p(uq

2n−4p−2) · · ·
)
w

)

=

(
2p∏
i=1

i!

)(
p∏
j=1

θ2j,ξ(u)

)(
AqnG

ξ
1(u) · · · Ãq2p+1θ

′
2p+1,ξ(u)w

)
=

...
...

...
...

=

(
n−1∏
i=1

i!

)(
p∏
j=1

θ2j,ξ(u)

)(
n∏

k=2p+1

θ′k,ξ(u)

)
Aqnw.

This implies that

θn,ξ(u) =

(
p∏
i=1

θ2i,ξ(u)

)(
n∏

j=2p+1

θ′j,ξ(u)

)
,

where θ2i,ξ(u) satisfies

Ãq2iθ2i,ξ(u)w = Ãq2iG
ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·G

ξ
n−2i+2(uq2n−4i+2)R†n−2i+2,n−2i+3 · · ·R

†
n−2i+2,nw

for 1 ≤ i ≤ p, and θ′j,ξ(u) satisfies

Ãqjθ
′
j,ξ(u)wp = ÃqjG

ξ
n−j+1(uq2n−2j)R†n−j+1,n−j+2 · · ·R

†
n−j+1,nwp

for 2p + 1 ≤ j ≤ n. It suffices to find θ2,ξ(u), θ4,ξ(u), . . . , θ2p,ξ(u), θ′2p+1,ξ(u), θ′2p+2,ξ(u), . . . , θ′n,ξ(u). We will give
details of one case below and simply state the formulae for the others because computations are quite long and
tedious.
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If p = 0 and 1 ≤ j ≤ n, we have

θ′j,ξ(u) =
ξu−1
n−j+1 − ξ−1un−j+1

un−j+1 − u−1
n−j+1

·

(
j−1∏
k=1

(u−1
n−j+1 − un−k)

)
and

θn,ξ(u) =

n∏
j=1

θ′j,ξ(u) =

n∏
j=1

(
ξu−1
n−j+1 − ξ−1un−j+1

un−j+1 − u−1
n−j+1

·

(
j−1∏
k=1

(u−1
n−j+1 − un−k)

))
.

If p ≥ 1, then

θ̄2,ξ(u) = un − u−1
n −

(ξ − ξ−1)2

un − u−1
n

.

We also need to consider the tensor product

wi = ep+1 ⊗ · · · ⊗ en−p ⊗ (ep ⊗ en−p+1)⊗ · · · ⊗ (ei ⊗ en−i+1)⊗ e1 ⊗ · · · ei−1 ⊗ en−i+2 ⊗ · · · ⊗ en.
Then

(2i− 2)!Ãq2iθ̄2i,ξ(u)wi = (−q)(i−1)(i−2)Ãq2iθ̄2i,ξ(u)w

=(−q)(i−1)(i−2)Ãq2iG
ξ
n−2i+1(uq2n−4i)R†n−2i+1,n · · ·G

ξ
n−2i+2(uq2n−4i+2)R†n−2i+2,n · · ·R

†
n−2i+2,n−2i+3Ã

q
2i−2w

=(2i− 2)!Ãq2iG
ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·G

ξ
n−2i+2(uq2n−4i+2)R†n−2i+2,n−2i+3 · · ·R

†
n−2i+2,nwi,

i.e.,

Ãq2iθ̄2i,ξ(u)wi = Ãq2iG
ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·G

ξ
n−2i+2(uq2n−4i+2)R†n−2i+2,n−2i+3 · · ·R

†
n−2i+2,nwi.

Now assume that 2 ≤ i ≤ p. By the property of Ãq2i−1, we have

Ãq2i−1G
ξ
n−2i+2(uq2n−4i+2)R†n−2i+2,n−2i+3 · · ·R

†
n−2i+2,nwi = Ai ·

(
Ãq2i−1(wi)

)
+Bi ·

(
Ãq2i−1(w′i)

)
,

where
w′i = ep+1 ⊗ · · · ⊗ en−p ⊗ (ep ⊗ en−p+1)⊗ · · · ⊗ (ei ⊗ ei)⊗ e1 ⊗ · · · ei−1 ⊗ en−i+2 ⊗ · · · ⊗ en,

Bi =

2i−3∏
k=0

(u−1
n−2i+2 − un−k) and Ai = −

(
2i−3∏
k=1

(u−1
n−2i+2 − un−k)

)
u−1
n−2i+2(ξ − ξ−1).

Let
wi = ep+1 ⊗ · · · ⊗ en−p ⊗ (ep ⊗ en−p+1)⊗ · · · ⊗ ei ⊗ e1 ⊗ · · · ei−1 ⊗ en−i+1 ⊗ en−i+2 ⊗ · · · ⊗ en

and
w̃i = ep+1 ⊗ · · · ⊗ en−p ⊗ (ep ⊗ en−p+1)⊗ · · · ⊗ (ei+1 ⊗ en−i)⊗ e1 ⊗ · · · ei ⊗ en−i+1 ⊗ · · · ⊗ en.

Now we have

(2i− 1)!Ãq2iθ̄2i,ξ(u)wi =Ãq2iG
ξ
n−2i+1(uq2n−4i)R†n−2i+1,n · · ·R

†
n−2i+1,n−2i+2

(
Ai · Ãq2i−1(wi) +Bi · Ãq2i−1(w′i)

)
=(−q)1−i(2i− 1)!Ai · Ãq2iG

ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·R

†
n−2i+1,nwi

+ (2i− 1)!Bi · Ãq2iG
ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·R

†
n−2i+1,nw

′
i

=(2i− 1)!
(

(−q)1−iAi · Ci +Bi ·Di

)
Ãq2iw̃i,

where
CiÃ

q
2iw̃i = Ãq2iG

ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·R

†
n−2i+1,nwi

and
DiÃ

q
2iw̃i = Ãq2iG

ξ
n−2i+1(uq2n−4i)R†n−2i+1,n−2i+2 · · ·R

†
n−2i+1,nw

′
i.

Rather long computations lead to

Ci = (−q)1−iun(ξ−1 − ξ)
( 2i−2∏
k=1

(u−1
n−2i+1 − un−k)

)
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and

Di = (un−i+1 − u−1
n−i+1)

( 2i−2∏
k=1

(u−1
n−2i+1 − un−k)

)
.

Therefore

θ̄2i,ξ(u) =q2i−2
(

(−q)1−iAi · Ci +Bi ·Di

)
=

(
3∏
r=2

2i−r∏
k=3−r

(u−1
n−2i+r−1 − un−k)

)
·

((
un − u−1

n−2i+2

)
− q4i−4(ξ − ξ−1)2

u−1
n−2i+2 − un

)
.

For 2p+ 1 ≤ j ≤ n, we replace w by

wj = ep+1 ⊗ · · · ⊗ en−j+p+1 ⊗ e1 ⊗ · · · ep ⊗ en−j+p+2 ⊗ · · · ⊗ en

and let w̃j be

w̃j = ep+1 ⊗ · · · ⊗ en−j+p ⊗ e1 ⊗ · · · ep ⊗ en−j+p+1 ⊗ · · · ⊗ en.

We have

(−q)−pÃqjθ
′
j,ξ(u)w̃j = Ãqjθ

′
j,ξ(u)wj = ÃqjG

ξ
n−j+1(uq2n−2j)R†n−j+1,n−j+2 · · ·R

†
n−j+1,nwj .

Set

J (r) = {r + 1, r + 2, . . . , j − 2}, J
(r)
1 = {r + 1, r + 2, . . . , p− 1}, J

(r)
2 = {p, p+ 1, . . . , j − 2},

J
(r)
3 = {j − p− 1, j − p, . . . , j − 2}, J

(r)
4 = {r + 1, r + 2, . . . , j − p− 2}

and

Fj(1) = (−q)−p
(
j−2∏
k=0

(u−1
n−j+1 − un−k)

)
·
u−1
n−j+1ξ − un−j+1ξ

−1

un−j+1 − u−1
n−j+1

,

Fj(2) =

p−1∑
r=0

(
r−1∏
k=0

(u−1
n−j+1 − un−k)

)(
− un−r(q − q−1)

) ∑
I⊆J(r)

1

((
− u−1

n−j+1(q − q−1)
)|I|
·

( ∏
k∈(J

(r)
1 \I)∪J

(r)
2

(u−1
n−j+1 − un−k)

)
(−q−1)2(j−r)−p−3−|I|

)

=(−q)p(q2p − 1)un−j+1

(
j−2∏
k=1

(u−1
n−j+1 − un−k)

)
.

Let’s explain from where this formula for Fj(2) comes, the other ones being obtained via similar considerations.

The value of r indicates the first index in R†n−j+1,n−r where we consider the operator
∑n

i,j=1

i>j
Eij⊗Eji. This explains

the product
(∏r−1

k=0(u−1
n−j+1 − un−k)

) (
− un−r(q − q−1)

)
since for k < r only the operator

∑n
i,j=1Eii ⊗ Ejj in

R†n−j+1,n−k is applied. The index set I indices the factors R†n−j+1,n−k where the operator
∑n

i,j=1

i<j
Eij ⊗ Eji is

applied, so if k 6∈ I, then instead it is the operators
∑n
i,j=1 q

δijEii⊗Ejj and
∑n
i,j=1 q

−δijEii⊗Ejj which are applied.

The factor (−q−1)2(j−r)−p−3−|I| comes by applying Ãqj to the resulting tensor to bring it back to wj and by counting
the number of inversions.
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Fj(3) =

j−p−2∑
r=0

(
r−1∏
k=0

(u−1
n−j+1 − un−k)

)(
− un−r(q − q−1)

) ∑
I⊆J(r)

4

((
− u−1

n−j+1(q − q−1)
)|I|
·

( ∏
k∈J(r)

4 \I∪J
(r)
3

(u−1
n−j+1 − un−k)

)
(−q−1)2j−2r−p−3−|I|

)

=(−q)p(q2j−2p−2 − 1)un−j+1

(
j−2∏
k=1

(u−1
n−j+1 − un−k)

)
,

Fj(4) =

j−p−2∑
r=0

(
r−1∏
k=0

(u−1
n−j+1 − un−k)

)(
− un−r(q − q−1)

) ∑
I⊆J(r)

((
− u−1

n−j+1(q − q−1)
)|I|
·

( ∏
k∈J(r)\I

(u−1
n−j+1 − un−k)

)
(−q−1)2j−2r−p−3−|I|

)

=

(−q)p(1− q2+2p−2j)un

(
j−1∏
k=1

(u−1
n−j+1 − un−k)

)
u−1
n−j+1 − un−j+p+1

,

Fj(5) =

j−2∑
r=j−p−1

(
r−1∏
k=0

(u−1
n−j+1 − un−k)

)(
− u−1

n−j+1(q − q−1)
) ∑
I⊆J(r)

((
− u−1

n−j+1(q − q−1)
)|I|
·

( ∏
k∈J(r)\I

(u−1
n−j+1 − un−k)

)
(−q−1)p−1−|I|

)

=

(−q)−p(q2p − 1)u−1
n−j+1

(
j−2∏
k=0

(u−1
n−j+1 − un−k)

)
u−1
n−j+1 − un−j+p+1

.

Using these, we can compute

(−q)−pθ′j,ξ(u) =Fi(1) + Fj(2)
u−1
n−2i+1(ξ − ξ−1)

un−2i+1 − u−1
n−2i+1

+ (Fj(3)− Fj(2))
u−1
n−j+1ξ − un−j+1ξ

−1

un−j+1 − u−1
n−j+1

+ (Fj(4)− Fj(3))
un−2i+1(ξ − ξ−1)

un−2i+1 − u−1
n−2i+1

+ Fj(5)
un−2i+1(ξ − ξ−1)

un−2i+1 − u−1
n−2i+1

=Fi(1) + Fj(2)ξ−1 − Fj(3)ξ + (Fj(4) + Fj(5))
un−2i+1(ξ − ξ−1)

un−2i+1 − u−1
n−2i+1

=
(

(−q)pun−j+p+1ξ
−1 − (−q)−pu−1

n−j+1ξ
)(j−2∏

k=1

(u−1
n−j+1 − un−k)

)
.
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