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Abstract

We prove how the Yangian of glN in its RTT presentation and Olshanski’s twisted Yangians for the
orthogonal and symplectic Lie algebras can be obtained by a degeneration process from the corresponding
quantum loop algebra and some of its twisted analogues.

1 Introduction

Yangians are quantum groups which appeared over thirty years ago. Since that time, it has been shown that
they play a role in the theory of integrable systems by controlling some of their symmetries [Be, HHTBP,
ChPr, BMM, MRSZ, Ma2]. It has been discovered that, for integrable systems with boundary, symmetries
are better captured by twisted Yangians, which are coideal subalgebras of Yangians [DMS, dRGMa, Ma1,
MaRe1, MaRe2]). This has provided motivation to mathematicians to study the representation theory of
Yangians and twisted Yangians: see [Mo] and references therein, in particular the work of A. Molev and M.
Nazarov.

It has been well known for a long time that quantum loop algebras and Yangians associated to complex
semisimple Lie algebras have similar representation theories although, until very recently, explicit connections
between their module categories (other than just analogies and similarities) were not available. The papers
[GaTL2, GaTL3] seem to be the first ones to establish rigorously important equivalences between certain
categories of modules for both of those quantum groups.

It is also commonly known that Yangians are limit forms of quantum loop algebras: this was explicitly
stated in [Dr1], but a proof appeared only much later in [GuMa] although such a proof was certainly known
to some experts. (One early result in that direction can be found in Appendix C in [BeLe].) Stronger results
were obtained at about the same time by V. Toledano Laredo and S. Gautam: see [GaTL1]. The results of
these two papers apply to Yangians associated to complex semisimple Lie algebras presented using what is
commonly called Drinfeld’s second realization [Dr2]. Our first goal in this article is to prove that the Yangian

of glN is isomorphic to a limit form Ỹ (glN ) of the quantum loop algebra of glN using the generators from
the RTT-presentation. (Some indications about how to show this are given in [Ch], but we follow a different
approach.) It is not clear if this could be used to deduce the main theorem of [GuMa] in the sln-case or
vice-versa: this would probably require checking that the isomorphisms in the main theorem of [GuMa] and
in Theorem 2.2 below are compatible with the isomorphisms between the two realizations of quantum loop
algebras and Yangians for gln established in [DiFr] and [BrKl].

In the second half of [GuMa], it was established that certain degenerate forms of twisted quantum
loop algebras associated to a complex semisimple Lie algebra g and a Dynkin diagram automorphism of
g are isomorphic to the ordinary Yangian of g. This explains partially why there is no known twisted
Yangian attached to such data in general. The two cases considered in section 3 below are however different:
the twisted quantum loop algebras of type AI and AII are associated to an involution θ of glN and are
quantizations of the enveloping algebra of the twisted loop algebra which is the fixed point of the involution
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Θ on glN ⊗CC[s, s−1] given by Θ(X⊗s) = θ(X)⊗s−1, not Θ(X⊗s) = −θ(X)⊗s as would be the case with
a twisted affine Kac-Moody algebra associated to a Dynkin diagram automorphism θ of order 2. Theorem
3.1 states that the isomorphism ϕ of Theorem 2.2 restricts to the twisted Yangian Y tw(gN ) (gN = oN or
gN = spN ), viewed as a subalgebra of Y (glN ), and provides an isomorphism with a certain subalgebra of

Ỹ (glN ) obtained from the generators of the corresponding twisted quantum loop algebra. Theorem 3.2 says
that Y tw(gN ) is isomorphic to a certain limit form of the twisted quantum loop algebra and is analogous to
Theorem 2.2 for Y (glN ). Results similar to Theorems 3.1 and 3.2 should hold for the twisted quantum loop
algebras and twisted Yangians of type AIII treated in [CGM] (resp. [MoRa]), and for the twisted quantum
loop superalgebra and twisted super-Yangians explored in [ChGu] (resp. [Na]). When g is a classical simple
Lie algebra other than sln, there is also a way to present its Yangian Y (g) using using an RTT-relation for
some appropriate matrix R, see [AMR]. (In loc. cit., Y (g) is obtained as a quotient of what the authors call
the extended Yangian X(g).) The main results of [AMR] should admit analogues for quantum loop algebras,
but the present authors ignore whether this has been worked out or not. If so, then Theorem 2.2 below
should have an analogue for Yangians and quantum loop algebras attached to g via RTT-relations when g
is of classical Dynkin type. Furthermore, twisted Yangians which are coideal subalgebras of Y (g) and of
X(g) have been studied recently in [GuRe] and hopefully admit q-analogues for which a version of Theorem
3.2 should hold also. As for more general twisted Yangians associated to an arbitrary symmetric pair (see
[Ma1] for instance), it is reasonable to think that they are also limit forms of certain twisted quantum loop
algebras: the quantum symmetric Kac-Moody pairs introduced in [Ko] may be relevant here.

One motivation for this paper is that it should help in establishing an isomorphism using the RTT-
generators between completions of the Yangian and quantum loop algebra of gln similar to the one obtained
in [GaTL1] using the generators from Drinfeld’s second realization. Once such a result is obtained, one may
hope that such an isomorphism would work also for twisted Yangians and twisted quantum loop algebras.
Eventually, the goal would be to establish equivalences between module categories for twisted Yangians and
twisted quantum loop algebras as in [GaTL2, GaTL3].
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2 Quantum loop algebra and Yangian for glN

We start by recalling the definition of the Yangian and of the quantum loop algebra of glN in the RTT
presentation [FRT]. We view ~ as a formal parameter.

Definition 2.1. Let R(u) = 1 ⊗ 1 − ~u−1
∑N
i,j=1Eij ⊗ Eji where Eij denotes the usual elementary ma-

trix. The Yangian Y (glN ) is the unital associative algebra over C[~] generated by elements t
(r)
ij for r ∈

Z+, i, j ∈ {1, . . . , N} satisfying t
(0)
ij = δij, together with the following relations: if tij(u) =

∑∞
r=0 t

(r)
ij u

−r ∈
Y (glN )[[u−1]] and t(u) =

∑N
i,j=1Eij ⊗ tij(u) , then

R(u− v)t1(u)t2(v) = t2(v)t1(u)R(u− v) (1)

where t1(u) (resp. t2(u)) is the element of EndC(CN )⊗C EndC(CN )⊗C Y (glN )[[u−1]] obtained by replacing
Eij by Eij ⊗ I (resp. I ⊗ Eij) in t(u). Here, we have also identified R(u − v) with R(u − v) ⊗ 1. Relation
(1) is equivalent to the system of relations

[t
(m+1)
ij , t

(n)
kl ]− [t

(m)
ij , t

(n+1)
kl ] = ~

(
t
(m)
kj t

(n)
il − t

(n)
kj t

(m)
il

)
.

2



Definition 2.2. The quantum affine R-matrix is the element of EndC(CN )⊗EndC(CN )⊗C C[u, v] given by

Rq(u, v) =

N∑
i,j=1

(uq−δij − vqδij )Eii ⊗ Ejj − (q − q−1)u

N∑
i,j=1

i>j

Eij ⊗ Eji − (q − q−1)v

N∑
i,j=1

i<j

Eij ⊗ Eji.

Set L(glN ) = glN ⊗C C[s, s−1].

Definition 2.3. The quantum loop algebra Uq(L(glN )) is the unital associative algebra over C(q) generated

by {T (r)
ij , T

(r)

ij | r ∈ Z+, i, j = 1, . . . , N} which must satisfy the following relations:

T
(0)
ij = 0 = T

(0)

ji if 1 ≤ i < j ≤ N

T
(0)
ii T

(0)

ii = 1 = T
(0)

ii T
(0)
ii ∀ 1 ≤ i ≤ N.

Rq(u, v)T1(u)T2(v) = T2(v)T1(u)Rq(u, v) (2)

Rq(u, v)T 1(u)T 2(v) = T 2(v)T 1(u)Rq(u, v) (3)

Rq(u, v)T 1(u)T2(v) = T2(v)T 1(u)Rq(u, v) (4)

Here, Ta(u) and T a(u) are obtained from T (u) :=
∑N
i,j=1Eij ⊗ Tij(u) and T (u) :=

∑N
i,j=1Eij ⊗ T ij(u) in

the same way as ta(u) in Definition 2.1; in this case, Tij(u), T ij(u) are the elements

Tij(u) =

∞∑
r=0

T
(r)
ij u

−r ∈ Uq(L(glN ))[[u−1]], T ij(u) =

∞∑
r=0

T
(r)

ij u
r ∈ Uq(L(glN ))[[u]].

Relations (2),(3) and (4) can be made more explicit in terms of the generators of Uq(L(glN )). For instance,
(2) is equivalent to the following family of relations:

(q−δikT
(r+1)
ij T

(s)
kl − q

δikT
(r)
ij T

(s+1)
kl )− (q−δjlT

(s)
kl T

(r+1)
ij − qδjlT (s+1)

kl T
(r)
ij )

= (q − q−1)(δi>kT
(r+1)
kj T

(s)
il + δi<kT

(r)
kj T

(s+1)
il )− (q − q−1)(δl>jT

(s)
kj T

(r+1)
il + δl<jT

(s+1)
kj T

(r)
il ) (5)

Let A be the localization of C[q, q−1] at the ideal (q − 1). Let UA(L(glN )) be the A-subalgebra of

Uq(L(glN )) generated by the elements τ
(r)
ij , τ

(r)
ij given by

τ
(r)
ij =

T
(r)
ij

q − q−1
, τ

(r)
ij =

T
(r)

ij

q − q−1
for r ≥ 0, 1 ≤ i, j ≤ N,

except that, when r = 0 and i = j, we set

τ
(0)
ii =

T
(0)
ii − 1

q − 1
, τ

(0)
ii =

T
(0)

ii − 1

q − 1
.

Theorem 2.1 (Section 3 of [MRS]). The assignment Eijs
r 7→ τ

(r)
ij ∀ r ≥ 0, 1 ≤ i, j ≤ n except if r = 0

and 1 ≤ i < j ≤ n, Eijs
−r 7→ −τ (r)

ij ∀ r ≥ 0, 1 ≤ i, j ≤ n except if r = 0 and 1 ≤ j < i ≤ n, induces an

isomorphism U(L(glN ))
∼−→ UA(L(glN ))⊗A C where C is viewed as an A-module via A/(q − 1)

∼−→ C.

We have the following sequence of algebra homomorphisms similar to the one considered in [GuMa]:

UA(L(glN )) � UA(L(glN ))/(q − 1)UA(L(glN ))
∼−→ U(L(glN ))

s 7→1
� U(glN ). (6)
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For m ≥ 0, denote by Km the Lie ideal of L(glN ) spanned by X ⊗ sr(s− 1)m ∀ r ∈ Z, ∀X ∈ glN . Let U

be the subspace of UA(L(glN )) spanned over C by the generators τ
(r)
ij , τ

(r)
ij and observe that

U ∩ (q − 1)UA(L(glN )) = spanC{τ
(0)
ii + τ

(0)
ii | i = 1, . . . , N}.

This is because (q − 1)UA(L(glN )) = Ker(ψ), where ψ is the composite

UA(L(glN )) � UA(L(glN ))/(q − 1)UA(L(glN ))
∼−→ U(L(glN )).

Moreover, notice that

τ
(0)
ii + τ

(0)
ii =

T
(0)

ii (T
(0)
ii − 1)2

q − 1
= (q − 1)((q − 1)τ

(0)
ii + 1)(τ

(0)
ii )2 ∈ (q − 1)UA(L(glN )).

Let K0 = UA(L(glN )). For m ≥ 1, let Km be the two-sided ideal of UA(L(glN )) generated by ψ−1(Km)∩U ,
and set Km to be the sum of the ideals (q − q−1)m0Km1 · · ·Kmk

with m0 + m1 + · · · + mk ≥ m. This is
slightly different from the definition of the analogous ideals Km in [GuMa] in the case of slN because, for
the glN case, Km

1 is strictly smaller than Km.

Let Ỹ (glN ) be the C-algebra

Ỹ (glN ) =

∞⊕
m=0

Km/Km+1.

Ỹ (glN ) can be viewed as a C[~]-algebra if we set ~ = q − q−1 ∈ K1/K2. Note that the first quotient is
isomorphic to U(glN ) by definition.

Theorem 2.2. Ỹ (glN ) is isomorphic to Y (glN ).

For the analogue of our first theorem for an arbitrary complex semisimple Lie algebra, see [Dr1] and
[GuMa].

For m, r ≥ 0, define recursively elements T
(r,m)
ij in the following way:

T
(r,0)
ij = τ

(r)
ij and T

(r,m+1)
ij = T

(r+1,m)
ij − T (r,m)

ij ,

except that if i < j, T
(0,0)
ij = −τ (0)

ij .

One can check by induction on m that, for every r, ψ(T
(r,m)
ij ) = Eijs

r(s− 1)m, hence T
(r,m)
ij ∈ Km. Set

ξ
(r,m)
ij = T

(r,m)
ij ∈ Km/Km+1.

Proof of theorem 2.2. We will prove that there is an isomorphism ϕ : Y (glN )
∼−→ Ỹ (glN ) given by t

(m+1)
ij 7→

ξ
(0,m)
ij for m ≥ 0.

Relation (5) can be rewritten in the following way:

q−δik
(
T

(r+1)
ij − T (r)

ij

)
T

(s)
kl − T

(r)
ij

(
qδikT

(s+1)
kl − q−δikT (s)

kl

)
−
(
q−δjlT

(s)
kl

(
T

(r+1)
ij − T (r)

ij

)
−
(
qδjlT

(s+1)
kl − q−δjlT (s)

kl

)
T

(r)
ij

)
= (q − q−1)

(
δi>kT

(r+1)
kj T

(s)
il + δi<kT

(r)
kj T

(s+1)
il

)
− (q − q−1)

(
δl>jT

(s)
kj T

(r+1)
il + δl<jT

(s+1)
kj T

(r)
il

)
.
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If r, s ≥ 1 then, after rearranging and dividing both sides by (q − q−1)2, we get:

q−δik
(
T

(r,1)
ij T

(s,0)
kl − T (r,0)

ij T
(s,1)
kl

)
− (qδik − q−δik)T

(r,0)
ij T

(s+1,0)
kl

− q−δjl
(
T

(s,0)
kl T

(r,1)
ij − T (s,1)

kl T
(r,0)
ij

)
+ (qδjl − q−δjl)T (s+1,0)

kl T
(r,0)
ij

= (q − q−1)
(
δi>kT

(r+1,0)
kj T

(s,0)
il + δi<kT

(r,0)
kj T

(s+1,0)
il

)
− (q − q−1)

(
δl>jT

(s,0)
kj T

(r+1,0)
il + δl<jT

(s+1,0)
kj T

(r,0)
il

)
.

Using T
(r+1,m)
ij − T (r,m)

ij = T
(r,m+1)
ij and T

(s+1,n)
kl − T (s,n)

kl = T
(s,n+1)
kl , we deduce by induction on m and

n that, for all r, s ≥ 1 and all m,n ≥ 0,

q−δik
(
T

(r,m+1)
ij T

(s,n)
kl − T (r,m)

ij T
(s,n+1)
kl

)
− (qδik − q−δik)T

(r,m)
ij T

(s+1,n)
kl

− q−δjl
(
T

(s,n)
kl T

(r,m+1)
ij − T (s,n+1)

kl T
(r,m)
ij

)
+ (qδjl − q−δjl)T (s+1,n)

kl T
(r,m)
ij

= (q − q−1)
(
δi>kT

(r+1,m)
kj T

(s,n)
il + δi<kT

(r,m)
kj T

(s+1,n)
il

)
− (q − q−1)

(
δl>jT

(s,n)
kj T

(r+1,m)
il + δl<jT

(s+1,n)
kj T

(r,m)
il

)
. (7)

Consider the case r = s = 1 in (7). Using T
(r+1,m)
ij = T

(r,m+1)
ij + T

(r,m)
ij and T

(r+1,n)
kl = T

(r,n+1)
kl + T

(r,n)
kl for

all r ≥ 0, we obtain, for all m,n ≥ 0:

q−δik
(
T

(0,m+2)
ij + T

(0,m+1)
ij

)
T

(0,n+1)
kl − q−δik

(
T

(0,m+1)
ij + T

(0,m)
ij

)
T

(0,n+2)
kl

− (qδik − q−δik)
(
T

(0,m+1)
ij + T

(0,m)
ij

)
T

(1,n+1)
kl + q−δik

(
T

(0,m+2)
ij + T

(0,m+1)
ij

)
T

(0,n)
kl

− q−δik
(
T

(0,m+1)
ij + T

(0,m)
ij

)
T

(0,n+1)
kl − (qδik − q−δik)

(
T

(0,m+1)
ij + T

(0,m)
ij

)
T

(1,n)
kl

− q−δjlT (0,n+1)
kl

(
T

(0,m+2)
ij + T

(0,m+1)
ij

)
+ q−δjlT

(0,n+2)
kl

(
T

(0,m+1)
ij + T

(0,m)
ij

)
+ (qδjl − q−δjl)T (1,n+1)

kl

(
T

(0,m+1)
ij + T

(0,m)
ij

)
− q−δjlT (0,n)

kl

(
T

(0,m+2)
ij + T

(0,m+1)
ij

)
+ q−δjlT

(0,n+1)
kl

(
T

(0,m+1)
ij + T

(0,m)
ij

)
+ (qδjl − q−δjl)T (1,n)

kl

(
T

(0,m+1)
ij + T

(0,m)
ij

)
= (q − q−1)

(
δi>k

(
T

(1,m+1)
kj + T

(1,m)
kj

)
T

(0,n+1)
il + δi<k

(
T

(0,m+1)
kj + T

(0,m)
kj

)
T

(1,n+1)
il

)
+ (q − q−1)

(
δi>k

(
T

(1,m+1)
kj + T

(1,m)
kj

)
T

(0,n)
il + δi<k

(
T

(0,m+1)
kj + T

(0,m)
kj

)
T

(1,n)
il

)
− (q − q−1)

(
δl>jT

(0,n+1)
kj

(
T

(1,m+1)
il + T

(1,m)
il

)
+ δl<jT

(1,n+1)
kj

(
T

(0,m+1)
il + T

(0,m)
il

))
− (q − q−1)

(
δl>jT

(0,n)
kj

(
T

(1,m+1)
il + T

(1,m)
il

)
+ δl<jT

(1,n)
kj

(
T

(0,m+1)
il + T

(0,m)
il

))
.

Notice that both sides of this last equality are in Km+n+1 (and some of the terms are even in Km+n+2

or in Km+n+3). Modulo Km+n+2, we obtain the congruence:

q−δik
(
T

(0,m+1)
ij T

(0,n)
kl − T (0,m)

ij T
(0,n+1)
kl

)
− (qδik − q−δik)T

(0,m)
ij T

(1,n)
kl

− q−δjl
(
T

(0,n)
kl T

(0,m+1)
ij − T (0,n+1)

kl T
(0,m)
ij

)
+ (qδjl − q−δjl)T (1,n)

kl T
(0,m)
ij

≡ (q − q−1)
(
δi>kT

(1,m)
kj T

(0,n)
il + δi<kT

(0,m)
kj T

(1,n)
il

)
− (q − q−1)

(
δl>jT

(0,n)
kj T

(1,m)
il + δl<jT

(1,n)
kj T

(0,m)
il

)
.

Moreover, modulo Km+n+2, we also have:

(qδik − q−δik)T
(0,m)
ij T

(1,n)
kl ≡ (qδik − q−δik)T

(0,m)
ij T

(0,n)
kl ,

(qδjl − q−δjl)T (1,n)
kl T

(0,m)
ij ≡ (qδjl − q−δjl)T (0,n)

kl T
(0,m)
ij
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(q − q−1)T
(1,m)
kj T

(0,n)
il ≡ (q − q−1)T

(0,m)
kj T

(0,n)
il , (q − q−1)T

(0,m)
kj T

(1,n)
il ≡ (q − q−1)T

(0,m)
kj T

(0,n)
il

(q − q−1)T
(0,n)
kj T

(1,m)
il ≡ (q − q−1)T

(0,n)
kj T

(0,m)
il , (q − q−1)T

(1,n)
kj T

(0,m)
il ≡ (q − q−1)T

(0,n)
kj T

(0,m)
il .

Therefore, passing to the quotient Km+n+1/Km+n+2, we obtain:(
ξ

(0,m+1)
ij ξ

(0,n)
kl − ξ(0,m)

ij ξ
(0,n+1)
kl

)
− δik~ξ(0,m)

ij ξ
(0,n)
kl

−
(
ξ

(0,n)
kl ξ

(0,m+1)
ij − ξ(0,n+1)

kl ξ
(0,m)
ij

)
+ δjl~ξ(0,n)

kl ξ
(0,m)
ij

= ~
(
δi>kξ

(0,m)
kj ξ

(0,n)
il + δi<kξ

(0,m)
kj ξ

(0,n)
il

)
− ~
(
δl>jξ

(0,n)
kj ξ

(0,m)
il + δl<jξ

(0,n)
kj ξ

(0,m)
il

)
.

This last relation is equivalent to:

[ξ
(0,m+1)
ij , ξ

(0,n)
kl ]− [ξ

(0,m)
ij , ξ

(0,n+1)
kl ] = ~

(
ξ

(0,m)
kj ξ

(0,n)
il − ξ(0,n)

kj ξ
(0,m)
il

)
.

This holds for all m,n ≥ 0.

All the previous computations prove that ϕ : Y (glN ) −→ Ỹ (glN ) given by ϕ(t
(m+1)
ij ) = ξ

(0,m)
ij for m ≥ 0

is an algebra homomorphism. We still have to show that ϕ is injective and surjective.

We will first demonstrate surjectivity. Towards this end, we define elements T
(r,m)

ij as follows. Let

T
(r,0)

ij = τ
(r)
ij , except that T

(0,0)

ij = −τ (0)
ij when i ≥ j. Then, for each m ≥ 0, let

T
(r,m+1)

ij = T
(r+1,m)

ij − T (r,m)

ij .

Also for each m ≥ 0, let T̃
(0,m)
ij = T

(0,m)

ij and T̃
(m,m)
ij = (−1)m+1T

(0,m)
ij , and for 1 ≤ r ≤ m define

recursively

T̃
(r,m+1)
ij = T̃

(r−1,m)
ij − T̃ (r,m)

ij .

Induction on m shows that the elements T
(r,m)
ij , T

(r,m)

ij and T̃
(r,m)
ij respectively map via ψ to the elements

Eijs
r(s− 1)m, (−1)m+1Eijs

−(m+r)(s− 1)m and (−1)m+1Eijs
−(m−r)(s− 1)m in U(L(glN )). It follows that,

for fixed m, the images of those elements under ψ span Km. Moreover, all those elements are in U by
definition.

Note that for any fixed X ∈ ψ−1(Km) ∩ U , there exists some element Y in

spanC{T
(r,m)
ij , T

(r,m)

ij , T̃
(r,m)
ij | i, j = 1, . . . , N, r ∈ Z+}

for which X − Y ∈ (q− 1)UA(L(glN )), because the map UAL(glN ))/(q− 1)UA(L(glN ))
∼−→ U(L(glN )) is an

isomorphism. Since X − Y is also in U , we have

X − Y ∈ spanC{τ
(0)
ii + τ

(0)
ii | i = 1, . . . , N} ⊂ K` ∀` ≥ 0.

That τ
(0)
ii + τ

(0)
ii is in K` for all ` ≥ 0 is a consequence of the fact that ψ(τ

(0)
ii + τ

(0)
ii ) = 0.

It follows that any element of Km is congruent modulo Km+1 to a sum of monomials of the form

f(q)(q − q−1)m0M where f(q) ∈ A is not divisible by q − 1 and M = τ
(r1,m1)
i1j1

· · · τ (rk,mk)
ikjk

with

τ
(rd,md)
idjd

∈ {T (rd,md)
idjd

, T
(rd,md)

idjd
, T̃

(rd,md)
idjd

}

and m0 + · · ·+mk ≥ m. Moreover, since T
(rd,md)
idjd

− T (rd−1,md)
idjd

= T
(rd−1,md+1)
idjd

∈ Kmd+1 (and similarly for

T
(rd,md)

idjd
and T̃

(rd,md)
idjd

), we can reduce modulo Km+1 to the case when rd = 0 for each d = 1, . . . , k.
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Observe that modulo Kmd+1, we have

T
(0,md)

ij ≡ (−1)md+1T
(0,md)
ij ≡ T̃ (0,md)

ij . (8)

To see this, just take the difference of the elements on each side (this difference is in U by definition) and
apply ψ. Finally, observe that we can replace f(q) by f(1) modulo K1.

In summary, we have shown that each of the monomials f(q)(q − q−1)m0M in Km is congruent modulo
Km+1 to

f(1)(q − q−1)m0T
(0,m1)
i1j1

· · ·T (0,mk)
ik,jk

up to a sign. The image modulo Km+1 of this element is

f(1)~m0ξ
(0,m1)
i1j1

· · · ξ(0,mk)
ikjk

and this is in the image of ϕ by definition. This completes the proof that ϕ is surjective.

To prove that ϕ is injective, it is enough to show that the basis of Y (glN ) given by ordered monomials

(for some fixed order) in the generators t
(m)
ij is mapped via ϕ to some linearly independent set in Ỹ (glN ).

By definition, any two ordered monomials ~m0t
(m1+1)
i1j1

· · · t(ma+1)
iaja

and ~n0t
(n1+1)
k1l1

· · · t(nb+1)
kblb

with each
md, nd ≥ 0 and m0 + m1 + · · · + ma 6= n0 + n1 + · · · + nb are mapped via ϕ to distinct graded pieces in
Ỹ (glN ). It therefore suffices to show that for each fixed m, the images under ϕ of all the ordered monomials

~m0t
(m1+1)
i1j1

· · · t(ma+1)
iaja

with m1 + · · ·+ma = m are linearly independent in Km/Km+1.

Consider any linear combination over C of ordered monomials of the form
(
q − q−1

)m0

ξ
(0,m1)
i1j1

· · · ξ(0,ma)
iaja

with m0 + m1 + · · · + ma = m, and suppose that this sum is zero in Km/Km+1. Then we have a linear

combination S of ordered monomials (q − q−1)m0T
(0,m1)
i1j1

· · ·T (0,ma)
iaja

which is not just in Km, but also in
Km+1. We can assume that the minimum of the exponents m0 is 0.

ψ(S) is a linear combination of some of the ordered monomials Ei1j1(s− 1)m1 · · ·Eiaja(s− 1)ma . On the
other hand, since S is also in Km+1, ψ(S) can be expressed as a linear combination of monomials of the form
Ek1l1s

r1(s − 1)n1 · · ·Ekblbsrb(s − 1)nb with r1, . . . , rb ∈ Z and n1 + · · · + nb ≥ m + 1. If r1 = · · · = rb = 0,
then this is impossible unless the coefficients of both linear combinations vanish. Let’s prove that the same
is true more generally.

For each r ≥ 1, we have a composite of algebra homomorphisms

U(L(glN ))
∆→ U(L(glN ))⊗r

f⊗r

→ EndC(CN )⊗r ⊗ C[x±1
1 , x±1

2 , . . . , x±1
r ]

where ∆ is the standard coproduct on the enveloping algebra of a Lie algebra and f : U(L(glN )) →
EndC(CN )⊗ C[x, x−1] is given by f(Eijx

t) = Eij ⊗ xt.

We also have for each choice of r nonnegative integers α1, . . . , αr a differential operator

∂α1,...,αr : EndC(CN )⊗r ⊗ C[x±1
1 , x±1

2 , . . . , x±1
r ]→ EndC(CN )⊗r

given by

∂α1,...,αr
=

∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂
αr

∂xαr
r

∣∣∣∣
x1,...,xr=1

.

Take r ≥ max{a, b} where the maximum is taken over all the monomials in ψ(S) (with a and b related to
the monomials in S and ψ(S) as above) and note that for any choice of α1, . . . , αr with α1 + · · ·+ αr = m,
ψ(S) is in the kernel of the composite ∂α1,...,αr

◦ f⊗r ◦∆ because n1 + · · ·+ nb ≥ m+ 1.

On the other hand, if S is nonzero, then we can find some α1, . . . , αr such that α1 + · · · + αr = m
and ψ(S) is not in the kernel of ∂α1,...,αr ◦ f⊗r ◦ ∆: just choose any of the ordered monomials Ei1j1(s −
1)m1 · · ·Eiaja(s− 1)ma in ψ(S) and set α1 = m1, . . . , αa = ma and αd = 0 for d > a.
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We have just obtained a contradiction, so S = 0 and the linear sum of ordered monomials ξ
(0,m1)
i1j1

· · · ξ(0,ma)
iaja

must in fact be trivial, as desired.

3 Twisted quantum loop algebras and Yangians of type oN and
spN

We will now prove an analogue of Theorem 2.2 for certain twisted Yangians and twisted quantum loop
algebras associated to the symmetric pairs (glN , oN ) and (glN , spN ). We will treat these two cases simulta-
neously and denote by gN either oN or spN . Whenever we use the symbols ± or ∓, it is understood that
the sign on the top is used for gN = oN and the sign on the bottom is used for gN = spN . In this section,
we will use t to denote transposition in the first factor of a tensor product of matrices.

In the orthogonal case, let G = (gij) be the N ×N identity matrix. For the symplectic case, we take

G =

N/2∑
k=1

(E2k−1,2k − E2k,2k−1)

which makes sense since spN is only defined when N is even. Similarly, let B = (bij) be the N ×N identity
matrix in the orthogonal case, while in the symplectic case we take

B =

N/2∑
k=1

(qE2k−1,2k − E2k,2k−1).

Definition 3.1. Let R(u) be as given in Definition 2.1. The twisted Yangian Y tw(gN ) is the unital asso-

ciative algebra over C[~] generated by {s(r)
ij | r ∈ Z+, i, j = 1, . . . , N} where s

(0)
ij = gij, together with the

following relations: if sij(u) =
∑∞
r=0 s

(r)
ij u

−r and s(u) =
∑N
i,j=1Eij ⊗ sij(u), then

R(u− v)s1(u)Rt(−u− v)s2(v) = s2(v)Rt(−u− v)s1(u)R(u− v) (9)

and

st(−u) = ±s(u) + ~
s(u)− s(−u)

2u
(10)

where s1(u) (resp. s2(u)) is the element of EndC(CN )⊗ EndC(CN )⊗ Y tw(gN )[[u−1]] obtained by replacing
Eij by Eij ⊗ I (resp. I ⊗ Eij) in s(u).

The twisted Yangian is a deformation of the universal enveloping algebra of the twisted current algebra
gtwN [s] which is defined in the following way.

Definition 3.2. Let σ be the automorphism of glN given by

σ(Eij) = −Eji (11)

if gN = oN , while
σ(Eij) = (−1)i+j−1Ej′i′ (12)

if gN = spN . Here, i′ = i − 1 if i is even and i′ = i + 1 is i is odd. The twisted current algebra is the
subalgebra of glN [s] given by

gtwN [s] = {A(s) ∈ glN [s] |σ(A(s)) = A(−s)}. (13)

The twisted Yangians can be regarded as subalgebras of the Yangian for glN :
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Proposition 3.1. [Ol] The assignment

s
(r)
ij 7→

N∑
k=1

(
gkjt

(r)
ik + (−1)rgikt

(r)
jk

)
+ ~

N∑
k,l=1

r−1∑
p=1

(−1)r−pgklt
(p)
ik t

(r−p)
jl

provides an embedding of Y tw(gN ) into Y (glN ).

Definition 3.3. [MRS] The twisted quantum loop algebra Uq(Ltw(oN )) is the unital associative algebra over

C(q) generated by {S(r)
ij | r ∈ Z+, 1 ≤ i, j ≤ N} which are subject to the relations

S
(0)
ij = 0 if 1 ≤ i < j ≤ n (14)

S
(0)
ii = 1 ∀ 1 ≤ i ≤ n (15)

Rq(u, v)S1(u)Rtq(u
−1, v)S2(v) = S2(v)Rtq(u

−1, v)S1(u)Rq(u, v) (16)

where Sa(u) is obtained from S(u) in the same way as in Definition 3.1, except that in this case we have

S(u) :=
∑N
i,j=1Eij ⊗ Sij(u) and Sij(u) :=

∑∞
r=0 S

(r)
ij u

−r.

Definition 3.4. [MRS] The twisted quantum loop algebra Uq(Ltw(spN )) is the unital associative algebra over

C(q) with generators {S(r)
ij | r ∈ Z+, 1 ≤ i, j ≤ N} and {(S(0)

ii′ )−1 | i = 1, 3, . . . , N − 1}, which are subject to
the relations

S
(0)
ij = 0 whenever i < j and j 6= i′ (17)

S
(0)
i′i′S

(0)
ii − q

2S
(0)
i′i S

(0)
ii′ = q3, i = 1, 3, . . . , N − 1 (18)

S
(0)
ii′ (S

(0)
ii′ )−1 = (S

(0)
ii′ )−1S

(0)
ii′ = 1, i = 1, 3, . . . , N − 1 (19)

Rq(u, v)S1(u)Rtq(u
−1, v)S2(v) = S2(v)Rtq(u

−1, v)S1(u)Rq(u, v) (20)

where Sa(u) is defined here in the same way as in Definition 3.3.

The twisted quantum loop algebra Uq(Ltw(gN )) is a deformation of the universal enveloping algebra of
the twisted loop algebra gtwN [s, s−1] which is defined in the following way:

Definition 3.5. The twisted loop algebra gtwN [s, s−1] is the Lie subalgebra of L(glN ) given by

gtwN [s, s−1] = {A(s) ∈ L(glN ) | σ(A(s)) = A(s−1)}

where σ is given by (11) for gN = oN and by (12) for gN = spN . This algebra is also denoted by Ltw(gN ).

The twisted quantum loop algebras can be regarded as subalgebras of Uq(L(glN )):

Proposition 3.2. [MRS] The assignment

S
(r)
ij 7→

N∑
k,l=1

r∑
p=0

bklT
(p)
ik T

(r−p)
jl

provides an embedding of Uq(Ltw(gN )) into Uq(L(glN )).

For each r > 0, let S
(r,0)
ij =

S
(r)
ij

q−q−1 . When gN = oN , we set S
(0,0)
ij =

S
(0)
ij

q−q−1 when i > j and S
(0,0)
ij = −S(0,0)

ji

when i ≤ j; when gN = spN , we set S
(0,0)
ij =

S
(0)
ij −bij
q−q−1 when i ≥ j or j = i′ and S

(0,0)
ij = −S(0,0)

ji when i < j

and j 6= i′.

We define inductively S
(r,m)
ij by:

S
(r,m+1)
ij = S

(r+1,m)
ij − S(r,m)

ij

for m ≥ 0.
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Lemma 3.1. Identify S
(r)
ij with its image under the embeddings of Proposition 3.2. For any r > 0 and

m ≥ 0, we have

S
(r,m)
ij =

N∑
k=1

(
bkjT

(r,m)
ik + bikT

(r,m)

jk

)
+ (q − q−1)

N∑
k,l=1

r−1∑
p=1

bklT
(p,0)
ik T

(r−p,m)

jl

+ (q − q−1)

 ∑
1≤k≤i

1≤l≤N

(
q

q + 1

)δik
bklT

(0,0)
ik T

(r,m)

jl +
∑

1≤k≤N

j≤l≤N

(
q

q + 1

)δjl
bklT

(r,m)
ik T

(0,0)

jl


+ (q − q−1)

N∑
k,l=1

∑
a+b=m−1

bklT
(r,a)
ik T

(1,b)

jl .

Proof. Since T
(0)
ik = 0 when i < k and T

(0)

jl = 0 when j > l, we have by definition:

S
(r,0)
ij = (q − q−1)

N∑
k,l=1

r−1∑
p=1

bkl

(
T

(p)
ik

q − q−1

) T
(r−p)
jl

q − q−1


+ (q − q−1)

∑
1≤k<i

1≤l≤N

bkl

(
T

(0)
ik

q − q−1

) T
(r)

jl

q − q−1

+ (q − 1)

N∑
l=1

bil

(
T

(0)
ii − 1

q − 1

) T
(r)

jl

q − q−1

+

N∑
l=1

bil
T

(r)

jl

q − q−1

+ (q − q−1)
∑

1≤k≤N

j<l≤N

bkl

(
T

(r)
ik

q − q−1

) T
(0)

jl

q − q−1

+ (q − 1)

N∑
k=1

bkj

(
T

(r)
ik

q − q−1

)T (0)

jj − 1

q − 1

+

N∑
k=1

bkj
T

(r)
ik

q − q−1

=

N∑
k=1

(
bkjT

(r,0)
ik + bikT

(r,0)

jk

)
+ (q − q−1)

N∑
k,l=1

r−1∑
p=1

bklT
(p,0)
ik T

(r−p,0)

jl

+ (q − q−1)

 ∑
1≤k≤i

1≤l≤N

(
q

q + 1

)δik
bklT

(0,0)
ik T

(r,0)

jl +
∑

1≤i≤N

j≤l≤N

(
q

q + 1

)δjl
bklT

(r,0)
ik T

(0,0)

jl

 .

This proves the case m = 0. The case m = 1 is similar, except for the presence of an extra sum. The general
case follows immediately by induction on m.

The previous lemma along with (8) yields the next corollary.

Corollary 3.1. Under the same assumption as in the previous lemma, we have S
(r,m)
ij ∈ Km, and

S
(r,m)
ij ≡

N∑
k=1

(
bkjT

(0,m)
ik + (−1)m+1bikT

(0,m)
jk

)
+ (q − q−1)

N∑
k,l=1

m∑
p=1

(−1)m+1−pbklT
(0,p−1)
ik T

(0,m−p)
jl

modulo Km+1.

Again let’s view S
(r)
ij as an element of Uq(L(glN )). Let ζ

(r,m)
ij be the image of S

(r,m)
ij in Km/Km+1. Note

that, by Corollary 3.1, ζ
(r,m)
ij is independent of r > 0.

Theorem 3.1. Identify s
(m+1)
ij with its image under the embedding of Proposition 3.1. For each m ≥ 0, we

have
ϕ(s

(m+1)
ij ) = ζ

(1,m)
ij .

where ϕ is the isomorphism of Theorem 2.2.
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Remark 3.1. It would also be possible to prove a similar theorem with ζ
(0,m)
ij instead of ζ

(1,m)
ij , but the proof

would be longer because we would have to consider different cases in order to take into account that about

half of the generators S
(0)
ij are 0.

Proof. By Proposition 3.1, Corollary 3.1 and the definition of ϕ, we have

ϕ(s
(m+1)
ij ) =

N∑
k=1

(
gkjξ

(0,m)
ik + (−1)m+1gikξ

(0,m)
jk

)
+ ~

N∑
k,l=1

m∑
p=1

(−1)m+1−pgklξ
(0,p−1)
ik ξ

(0,m−p)
jl

= ζ
(1,m)
ij

where we have used the fact that bkl − gkl is divisible by q − 1.

We can obtain an analogue of Theorem 2.2. From Theorem 2.1 and Proposition 3.2, we can deduce that
the enveloping algebra of gtwN [s] is the limit when q → 1 of Uq(Ltw(gN )) in the following sense: if we let

UA(Ltw(gN )) be the A-subalgebra of Uq(Ltw(gN )) generated by the S
(r,0)
ij for all i, j and all r ≥ 0, then

UA(Ltw(gN ))/(q − 1)UA(Ltw(gN )) is isomorphic to U(gtwN [s, s−1]) (see the proof of Corollaries 3.5 and 3.12
in [MRS]).

We can define an algebra Ỹ tw(gN ) similarly to how we defined Ỹ (glN ). For m ≥ 0, in the orthogonal
case, denote by Ktwm the Lie ideal of otwN [s, s−1] spanned by

Eijs
r(s− 1)m − Ejis−r(s−1 − 1)m

for all r ∈ Z. In the symplectic case, let Ktwm be the Lie ideal of sptwN [s, s−1] spanned by

Eij′s
r(s− 1)m − (−1)i+j+1Eji′s

−r(s−1 − 1)m

for all r ∈ Z. Let U tw be the subspace of UA(Ltw(gN )) spanned over C by all the generators S
(r,0)
ij , and

observe that U tw ∩ (q− 1)UA(Ltw(gN )) = {0}. Let Ktwm be the two-sided ideal of UA(Ltw(gN )) generated by
ψ−1(Ktwm ) ∩ U tw where ψ this time denotes the composite

UA(Ltw(gN )) � UA(Ltw(gN ))/(q − 1)UA(Ltw(gN ))
∼−→ U(gtwN [s, s−1]).

Set Ktw
m equal to the sum of the ideals (q − q−1)m0Ktwm1

· · ·Ktwmk
with m0 +m1 + · · ·+mk ≥ m.

Let Ỹ tw(gN ) be the C-algebra
∞⊕
m=0

Ktw
m /Ktw

m+1

where Ktw
0 = UA(Ltw(gN )). We also view Ỹ tw(gN ) as an algebra over C[~] by setting ~ = q − q−1 ∈

Ktw
1 /Ktw

2 .

Theorem 3.2. Y tw(gN ) is isomorphic to Ỹ tw(gN ) via the function ϕtw that sends s
(m+1)
ij to S

(1,m)
ij ∈

Ktw
m /Ktw

m+1 for m ≥ 0.

Proof. Theorem 3.1 implies that the following diagram is commutative:

Y tw(gN ) //

ϕtw

��

Y (glN )

ϕ

��
Ỹ tw(gN ) // Ỹ (glN ).
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In this diagram, the top horizontal arrow is the embedding of Proposition 3.1 and the bottom horizontal
arrow is the one induced from the embedding of Proposition 3.2. The injectivity of ϕtw now follows from
the fact that ϕ provides an isomorphism between Y (glN ) and Ỹ (glN ): see Theorem 2.2.

We need to see that ϕtw is surjective. Define elements S̃
(r,m)
ij with 0 ≤ r ≤ m as follows: for each m ≥ 0,

let S̃
(0,m)
ij = S

(0,m)
ji and S̃

(m,m)
ij = (−1)m+1S

(0,m)
ij , and for 1 ≤ r ≤ m let

S̃
(r,m+1)
ij = S̃

(r−1,m)
ij − S̃(r,m)

ij .

Then induction on m shows that

ψ(S
(r,m)
ij ) = Eijs

r(s− 1)m − Ejis−r(s−1 − 1)m,

ψ(S
(r,m)
ji ) = (−1)m+1(Eijs

−(m+r)(s− 1)m − Ejism+r(s−1 − 1)m),

ψ(S̃
(r,m)
ij ) = (−1)m+1(Eijs

−(m−r)(s− 1)m − Ejism−r(s−1 − 1)m).

in the orthogonal case, and similarly in the symplectic case. It follows that for any fixed m, the images of
these elements under ψ span Ktwm , and they are all in U tw by definition. Now note that for any element
X ∈ ψ−1(Ktwm ) ∩ U tw, there is some element Y in

spanC{S
(r,m)
ij , S̃

(r,m)
ij | i, j = 1, . . . , N, r ∈ Z≥0}

for which X − Y ∈ (q − 1)UA(Ltw(gN )). This follows from the fact that

UA(Ltw(gN ))/(q − 1)UA(Ltw(gN ))
∼−→ U(gtwN [s, s−1])

is an isomorphism. Since X − Y is also in U tw and since U tw ∩ (q − 1)UA(Ltw(gN )) = {0}, we see that
X = Y . Therefore, any element of Ktw

m is a sum of monomials f(q)(q − q−1)m0M where f(q) ∈ A is not

divisible by q − 1 and M = σ
(r1,m1)
i1j1

. . . σ
(rk,mk)
ikjk

with

σ
(rd,md)
idjd

∈ {S(rd,md)
idjd

, S̃
(rd,md)
idjd

}

and m0 + · · · + mk ≥ m. Following the same argument as in the glN case, such a monomial is congruent
modulo Ktw

m+1 to

f(1)(q − q−1)m0S
(1,m1)
i1j1

· · ·S(1,mk)
ikjk

up to a sign. The image modulo Ktw
m+1 of this element is

f(1)~m0S
(1,m1)
i1j1

· · ·S(1,mk)
ikjk

and this is in the image of ϕtw, which proves that ϕtw is surjective.
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