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Abstract

In this paper, we begin the study of highest weight representations of the quantized enveloping
superalgebra ;p, of type P. We introduce a Drinfeld-Jimbo representation and establish a triangular-
decomposition of Usp,. We explain how to relate modules over iU p, to modules over p,, the Lie
superalgebra of type P, and we prove that the category of tensor modules over ,p, is not semisimple.
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Introduction

The classification of finite-dimensional simple Lie superalgebras and the foundations of their representation
theory was established by V. Kac in [K1] and [K2]. The representation theory of Lie superalgebras has
been known, since its inception, to be more complicated than that of Lie algebras. The Lie superalgebras
of types P and @ are especially interesting due to the algebraic, geometric, and combinatorial properties of
their representations. The study of the representations of type P Lie superalgebras, which are also called
periplectic in the literature, has attracted considerable attention in the last several years. Interesting results
on the category O, the associated periplectic Brauer algebras, and related theories have been established in
[AGG], [BDEAT1], [BDEAT2], [CP], [Co], [CE1], [CE2], [DHIN], [EAS1], [EAS2], [HIR], [IN], [IRS], [KT],
[Ser], among others.

In this paper we initiate the study of highest weight representations of the quantum superalgebra {;p,.
In [AGG] we constructed a flat deformation of the universal enveloping algebra p,, which is a quantum
enveloping superalgebra in the sense of Drinfeld ([Dr], §7). The idea was to apply a suitable modification of
the procedure used by Faddeev, Reshetikhin, and Takhtajan in [FRT] using an element S in End(C,(n|n)®?)
that satisfies the quantum Yang-Baxter equation.

In the present paper, based on the definition of i,p,, in [AGG], we give a presentation of i,p,, in terms
of Drinfeld-Jimbo generators and relations. These relations are quantum deformations of those obtained in
[DKM]. Using this new presentation, we find a natural triangular decomposition of £l4p,,, and then introduce
the notion of highest weight module. This matches the corresponding result of Moon in [M] for ip,,. We
also obtain the explicit decomposition of the second and the third tensor power of the natural representation
of Ugp,. These decompositions, in particular, imply that the category of tensor representations is not
semisimple, which is expected.

The structure of the paper is as follows. We give the notation and basic definitions related to the classical
periplectic Lie superalgebra in Section 1. In Section 2, we present a Drinfeld-Jimbo representation of ;p,
and prove its triangular decomposition. We introduce standard notation, definitions, and results related to
highest weight [,p,-modules in Section 3. In Section 4 we discuss the classical limit and how the highest
weight representations of 4lyp,, relate to those of p,, (cf. Theorem 4.12). In the last section, we discuss tensor
representations of 4,p, and use particular modules to prove that not every tensor representation of {p,, is
completely reducible (cf. Theorem 5.14).
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1 The Lie superalgebra p, and its representations

By Zy = {0,1} we denote the group Z/27Z. All Lie superalgebras and homomorphisms are over C unless
otherwise stated.

We will use the same setting as in [AGG]. We will denote by C(n|n) as the vector superspace C* @ C"
spanned by the standard basis vectors u_,,...,u_1,u1,...,U,. We say that u; is odd if i < 0 and even if i >
0. Denote the elementary matrices in M,,,,(C), the vector superspace consisting of square (2n) x (2n)-matrices
with entries in C by E;;, with 4,j € {£1,£2,...,£n}. Set the parity function p : {£1,£2,...,+n} — Zs
to be p(i) = 0 if i > 0 and p(i) = 1 if i < 0. We set E;; = E;; — (=1)PD®O+IE_; ; and observe that
Eij = —(—=1)PO@WO+VE_; . for all 4,5 € {£1,...,+n}. Therefore, E; ; = 0 when 1 <i < n.

The Lie superalgebra p,, of type P is the subsuperalgebra of gl(n|n) that consists of matrices of the form

A B
C D
where A, B,C,D € gl(n), D = —A*, B = B, and C = —C*. A basis of p,, is provided by all the matrices

E;; with indices 7 and j respecting one of the following series of inequalities:

1<]jl<li|]<norl<i=j<nor —n<i=—j<-1

The superbracket on p,, is given by
[Eji,Ein] = uEjn — (_1)(p(i)+p(j))(p(k)+p(l))§jkEli
—5¢,_k(fl)p(l)(”(k)+l)Ej,_l _ 6_j,l(—1)p(j)(”(i)+1)E_M. (1)

Throughout the paper h will be the Lie subsuperalgebra of p,, with basis {k1, ..., k,}, where k; := E;; for
1 <i < n. Note that § is purely even, and is also a self-normalizing nilpotent subsuperalgebra of p,,, hence
a Cartan subsuperalgebra of p,,. By {e1,...,€,} we denote the basis of b* dual to {ki,...,kn}.

Set I :={1,...,n —1}. The root system A of p,, relative to h consists of the roots €; —¢; (for i # j),
€ +€j (for i < j), and —e; —¢; (for i < j). Let a; = €; — €541, Bi = 2¢;, and ; = €; + €;41. Set
e =E_j_1,4, e; = Eip1,-4, Fr=E_j;.
fi = EBit1,, fi=E_ic,

for i € I and j € T U{n}. The root spaces of «;, —«;, v, —y;, and —f; are spanned, respectively, by
ei, fi, e7, f;, and F;. Note that §; ¢ A.

Using the root space decomposition p, = h & | @ (pn), | we define the triangular decomposition
HEA

pn = p, ®b®pl as follows: p, is spanned by {f;, f5, F-|ieljeIu{n}t} and p; is spanned by
{ei,e; | i € I'}. Alternatively, A = Ay UA_, where

A+ = A(p:) = {Oéi,’yi ‘ 1€ I}, A_ = A(p;) = {—Oéi,—’}/i,—ﬂj ‘ xS I,j elU {'fl}}
In this paper, all highest weight modules of p,, will be relative to the Borel subalgebra b,, = h @ p;'.

n—1 n—1 n—1
The cone of positive roots will be denoted by Q4 = Z Lo + Z Z>o7v; and Q_ == — Z Lo —
i=1 i=1 i=1
n—1 n
Z L>0%i — ZZEO@ denotes the cone of negative roots. Set Q@ = Q4+ + Q—.
i=1 i=1



n

We will also denote P = @Zei to be the weight lattice of p,, and denote PV =
i=1

Zk; to be the

n
i=1

coweight lattice.

We next give a presentation of p,, (hence of ip,,) in terms of generators and relations. This presentation
will be used to define l,p,, in terms of Drinfeld-Jimbo generators and relations.

Proposition 1.1 ([DKM]). The complex Lie superalgebra p, is generated by the elements e;, e, fi, f;
(iel), b and Fs (7 € TU{n}) subject to following defining relations (for h € §):

h,h] =0 fi fil = F;

h,ei] = ai(h)e; €i, f?] = Fi+1

h, fi] = —ai(h) fi epejl = [fr, f31=0 fori,jel
h,e5] = vi(h)e; fies]=0ifi#j+1

h, il = —vi(h) f; ere] =0ifi#j+1

h 1=0ifi#jj+1

Fy el = —Bi(k;) f;

= —(k; — k;
( +1) F, fi] = Biva(kj) f;

f1+1, eﬂ = |€i+1, 61] €is [ei7 eijﬂ” =0
f7 € } = f f] fia[fhfi:tlﬂ =0
o Gl = %+17 z] e eir1, €] = e

Remark 1.2. We note that we use a slightly different presentation of p,, in terms of generators and relations
than the one used in Definition 3.1.1 in [DKM]. To define an isomorphism between the two presentations
we proceed as follows. A homomorphism from the presentation in Proposition 1.1 to the one in Definition
3.1.1 in [DKM] can be defined by the following maps:

ki— —H;, e +— —F, fi— Ei,
1
f{"—>Bi7 e; — —CZ', FT'—> —§B1,1.
These maps indeed define a homomorphism because F; = [e;1, f;—5] = [f}, f;] and all relations listed in

Proposition 1.1 follow from the relations in Definition 3.1.1 (see for example Lemma 3.2.1 in [DKM]). The
details are left to the reader. To define a reverse homomorphism is easier. We note that neither of the sets
of generators is minimal, but the larger set of generators used in this paper will serve better our purpose.

The following are relations of p,, that can be obtained from the relations in Proposition 1.1.

Lemma 1.3. The following relations hold in p,:

2fi ifg=i
(a) [Fse] =q2e  ifj=i+1,
0 otherwise

(b) [F5, fi =0,
(C) [eiv [eiv GEH = 0;



(e) [F;, F5] =0 fori,j € IU{n}.

Proof. We will prove (a) and (c). The remaining parts can be deduced similarly.

First, we prove (a) for j = n. For every i we have
[Fr, €] = [len—1, fa=g) €3] = &5, [en—1, fa=ml] = [en—1, [fam &5l] + [famn 67 en—a]] = [en—1, [fr=p €3]]
If i = n— 2, then we have that [e,—1, [f5=1 e5=5]] = [én—1, [en—1,€n—2]] = 0. If i = n — 1, then we have that
len—1, [famm en=1l] = len—1, —kn—1 + kn] = —[en—1, kn—1] + [en—1, kn] = 2€5-1.
Otherwise, we have that [Fy,e;] = 0.

Next we prove (a) for j < n. Using the relations in Proposition 1.1, we have that:

[F5.e5] = [[f5, f3]. 5]
= lez, [f5, /i
= [f5: [f5. edll = 15, leg, f51)-

Note that [F;-, e;] = 0 from above, unless |7 — j| < 2. So, we need to check the three subcases i —j = 0,1, —1.
If j =4, then

[F5,e5] = [z [fis €3]] — (i, ez, £
= —[fi, —ki + kiy1]
= 2fi~

If i = j + 1, then

[Fj’ e]—‘,—l] [fjv [fjv em]] - [fj’ [€m7 fj]]
= =[fj, [fi+1, fill

= £, [f5; fiall + Uf5, [fi41, £5]
=0.

If j =i+ 1, then

o el = [t [firs e]] = [firns [eq fi7l]
= [far le eill — [fitr [eir1s €]
= e e, fgl) = lea, [ egg)] + [eiss [eas firall + [ea, [fiv1, €ial]
= —[ei, —kit1 + kiva] — [ei, —kiy1 + Kigo]
= 2e;.

Now, we prove (c). Note that [e;,e;—7] = 0 for all 2 < i <mn, so [e;, [e;, e;=7]] = 0. Also,

sleqs fival]

le;
= [ez, [fiv1, €il] + [fit1, [eis e5]]
0.

[61'3 [eia ei+1”



2 Quantized enveloping superalgebra i p,

Let C(q) be the field of rational functions in the variable g, and let C,(n|n) = C(q) ®c C(n|n). Definition 3.6
from [AGG] gives that ${,p,, is defined to be the associative superalgebra over C(g) generated by elements
tij,ti_il with 1 S |Z‘ S |j| S n and i,j S {:l:l, . .,:I:n}, such that tii = t—i,—ia t_iﬂ‘ =0ifq Z 0, t,‘j =0if
|i] > |j], and the following relation is satisfied:
(—1)@OFPOIEILW g ) — titi; + 03, 5, k) (8)1<)1) — Ojk|<if) etirte;
+ (=) POFPONEEAPO) (5, (g — 1) + Gj<0(g ™" = 1)) (651 + 65,1 tistr
— (0is0(g = 1) + dico(q™" = 1)) (ir + 0i,—k) trati;
+ 03,4, k)j5005,1€ti —jti 1 — (—1)PD8ic08; _get gt ;
+ (_1)?(1)(P(i)+1)€ Z ((_1)1’(1')19((1)9(1"j7 k)5j,—15|a|<\l|ti,—atka + (—1)p(_j)p(a)5i,—k5\k|<\a\talt—a,j)
—n<a<ln
=0,
(2)

where € = ¢ — ¢! and 0(i, j, k) = sgn(sgn(i) + sgn(j) + sgn(k)).

Now, let

_ -1 —1
Ri= e = ———li—i-1, = ——ti—i-1,

1 1 -2
fi= mti,iﬂv € = mt—mﬂrla F; = mti,—zﬂ

Using (3), we have the following relations between the two sets of generators of {,p,,

j—1
.
toiminy = —(q— g )~ Zhmr b H ad e;qn(es),
h=1

j—1
L
toiivg = (q—q g Er=r b T ad fign(ey),
i (1)

7j—1
1y sl g
ti—iog = —(q—q ")g~ Zh=Fien H ad e;n(f7),
h=1

j—1
j—1
tiir; = (g—q g ==k T ad fisn(fi),
h=1

J 0
where ad a;(a;) = [a;, aj], H ad a;yn(a;) = ad a;4jad a;+j—1...ad a;41(a;), and H ad a;4+p(a;) = a;,
h=1 h=1
for a; = e;, e;, fi, f;. From (4), one can obtain the following relations

Kitj—1 (

Liivi =q fivj—1tiivi-1 — tiitj—1fitj—1),

kitj—1

it =q fidj—1t—iiti—1 — tiitj—1fiti—1),

(
tiimg = q " (Cigjmtti—im i1 — ti—imj1€i4j—1);
(

Kitj—1

tei—ij =q Citj—1t—i—i—jt1 — t—i—imj+1€itj—1)-

Equivalently, the above relations can be written as follows
tiy = —q FH (fitivay — tivn i),

tig=q " (eitivry — tivr€i),



where 7 > 0.

The relations (5) (respectively, (6)) can serve as an alternative way to define the generators of ,p,,
inductively. These relations also allows us to obtain the following relations.

Lemma 2.1. The following relations hold in igp,, for all i € I.

(a) eifi — fie; = e:f; + fie;,
( ) 1 +q 2f2+1f1+1fz - fmfzfz+1
2ki _ ghisa

(c) fie; =eifi + ng 7z +(¢* — Dez fr.

-1

fz+1fzf1+1 +4q fzfz-i—lth = q2q2kl+lf1

2fz+1f1+1f27

Our first main result is the following presentation of L(,p,,.

Proposition 2.2. The quantum superalgebra U,p, is isomorphic to the unital associative superalgebra over

C(q) generated by the even elements q" for h € PV,

fori e IU{n}, that satisfy the following relations

ei, fi fori € I, and the odd elements e;, f;, fori € I, F;

¢ =1, " =q"q"™ for i hy € P,
d"ei = ¢ Weig", ¢"fi=q M fig" forhe PV,
¢"e; =" Med", o' fi=a ", fid" " Fr=q "W Fq" forhe P,
eiej —eje; =0, fifj—fifi=0, fif;+f=0 ifli—jl>1,
617674— 6;6; = 07 F;F;—f— F;F; =0 ’Lf |Z —]| > 0,
eiff—f60=0, fif;—f5/i=0, e;f5+ fre;=0 if|i—j|>1,
eie;f 6;-62' = 07 fjegf e;.fj =0 Zf] 7é 14+ 1,
Frej —ejl; =0, Fify— fiF;=0 ifi#j,j+1,
F;e;-i— eszT = 0, F;f;'f‘ ijz =0 le 75 j7] + 17
=0, f2=0, F? =0,
eir1€;i — €ieiv1 = e;fg + fger, finrfi — fifirn = fregt + e1ln
€16 — it = firie; — efiv, fgli — fifigg = e f7 — frein,
2% _ 2k 2
e R il
e fi — fiei = — | 5— f7€3,
2 ¢ 2k 2k
fes+acef; = TF-1 l(q Pt
_ 1+4?) 4 _
qgeif; —q ' frei = (T Mo P = ¢ feg fi — afi fe
qFei — eilFigg =0, qF;fi — fiF; =0,

F;e,'

—qeiFy = =2fq", ¢ Frgfi -

ki
il =207 f,



F;e;— + qe;-F; = Zfiqki, F;flf =+ qilf{F{ =0,
Fmeg + qegFm = 261'qki+1, Fi+1ff + qilfzi'FiJrl = O,

g elei — (q+q Heieirie + qeire; =0,
e} iaei — (¢ + ¢ Neieicin +q Teiet, =0,
aff firi — @+ q "V fifiafi+a  fin f7 =0,
a L = (a+ a7 Y fisi fifier +afiffa =0,
qile?eHl —(q¢+ qil)eiemei + qeme? =0,
afffar— (a+a D fifesfi +a a2 =0,

2 2 2k;
€i+1€i€37 — €i€it1€4T — ¢ €31Ci+16i T ¢ €;37€iCi+1 = ¢ g,

20¢" (firafz — fifiv) = (1= ¢ ) P (fiafi — fifinn),
—2¢q" (frgei — eifir) = (1 — %) Frpgleiiei — €ieita),
—2qq" " (fifs + fifer) = (1 — @ ) P (ftfi — fifeD):

2q¢" 1 (fisres — €ifix1) = (1 — ¢ ) Frq(emes — eiep),

Proof. Let U be the unital associative superalgebra over C(q) generated by the elements e;, f;, e;, f; for i € I,
F; for i € TU{n}, and g" for h € PV with defining relations given in the statement of the proposition above.

We first note that using (3) and particular choices for ¢,j,k,l in (2) one can establish on a case-by-
case basis all relations in the proposition. Hence, we have an associative superalgebra homomorphism
¥ : U — Uypy,. The relations in (4) immediately show that 1 is surjective.

It remains to show that ¢ is injective. For this, we prove that (2) is obtained from the relations in the
statement of the proposition by considering the following 26 cases:

L=l <k <@l 8 El=R <M<l 15 <Rl<l<l 22l ==k <
2 (K| <l =l <l o Fl<Ikl<W=1il 16 [k <lil <ls <} L
o . , | Lk <lil =1 =1

M <l <lil=lsl 10K <El<P=li 17 K <l <}l <l
A= <ll<ll Uk <@=l<li] 18k <BI<lil<lil 24l =k =1 <]
i < bl =Wl <lil 12 Bl <lil= K<l 10, [k = ] <li] = 1] L

o L N 25. il < il = Ikl = I
6. il <l <=l 13 [ <lil<W<ll 20 il =il <K=l
Tl =k <Gl <l R <R <Ul<E 2L Fl =<l =0 26l = b= k=

The verification in each case uses the relations (5) and (6) and appropriate induction. In fact, for some
cases, we apply useful identities that follow from (5) and (6), see Lemma 2.1 below. For example, in Case 21
we use Lemma 2.1(c). For reader’s convenience, we write detailed proofs for cases 2 and 25. The remaining
cases are established using analogous reasoning.

Case 2. Suppose that |k| < |i| = |j] < || in (2). We prove that

(_1)(P(i)+P(j))(10(k)+p(4))tijtkz — thetij =0



is obtained from some of the relations in the proposition applying induction on |¢| — |i| first, and then
induction on |i| — |k|. We consider only the case of when i = —j > 0 and k,¢ > 0 as the other cases follow
similarly.

We start with the base case of the first induction, i.e., £ = ¢+ 1. For the base case of the second induction,
we have i = k + 1. Then

o —1y2
tht 1, —k—1th k2 — okt 2thb1,—k—1 = 7% (qufk"“(fwlfk — frfos1) — @ (frgr fr — fkfk+1)Fm)
_ (e=a)? ka2 L
I a— l¢ " Fegg(for1fe = fefrorr) = (Forr fo — frfrrr) Frgal
_ (q - q71)2 —kry1 ) pl— N AN o ) pE— j pi—
R — (Ferrfer1fe — Foggfefrr1r — ferr S g + fefor1 Frpm

+ (a7 = D Fz(fer1fr — fefir)]
+ (a7 = V) Fr(furife = )]
_ —@q_k’““[ﬁm(q_ll’mﬁc = uFirn) = ala” Fiegefi = fiFi) fuon
+ (a7 = D Frr(frsafie = fu o))

_ (q - q71)2 —kg41 kpi1 g krt1 g -2 _ A _
=——"—-q [2frt1q7** fz — 2q¢ 7+ frfre1 + (g D) Fer(frev1 fre — fofogr)]
__(g=q g R 200 (Feia fr — Frfern) + (@72 — D Fg(frt1 fr — frfrs1)]

142
= 7%(]%“1 (1= q ) Fegg(frsr fr — fefurn) + (@2 = D Fpg(frsr fe — Frfrr)]
= 0.
The induction step for the second induction (i — k > 2) is established as follows:

—1

q—q _
ti,—itk,it1 — tkiviti—i = — B [Frq ™ (fatesrivr — thariv1fr) — this1 Fy)
“1
= 9I79 (Ren B(futertis — tersa — a1 FS
5 lq T(fetertivt — tearivnfr) — triv1 F5)
~1
B S B e S o . ot
5 lq (Fetkrtivt — tortit1 fo) Fy — thiv1 F5]
1
q—4q
l— [th,iv1F5 — th,ip1 5
=0.

For the induction step of the first induction (¢ — 4 > 2) we proceed as follows:

q—9q _ _
ti —ithe — tooti —i = — 2 [F5q "= (fooitro—1 — the1fo—1) — ¢ " (focrth o1 — tro—1fo—1)F]
B el B TR t “Reor(f, gt t F
= *T[q “(fo—1tko—1 —teo—1fi—1) — ¢ (fe—1tk,e—1 — teo—1fe—1)F3]
_ 49— qil —ko_1 1 —ke—1 l
= *T[q (fe—1tk,e—1 —teo—1fe—1)F;—¢q (fe—1tk,e—1 — teo—1fe—1)F3
=0

Case 25. Suppose that |i| < |j] = |k| = |I| in (2). We prove that

0= (—1)(p(i)+p(j))(p(j)+p(k))ngn(j)tijtkj — tritij



for j = ¢, and
0= (_1)(p(i)+p(j))(p(j)+p(k))qsgn(j)tijtkﬁj — bty + (_1)p(i)5j>0(q — g Yt _jti;

for j = —¢, using some of the relations in the proposition. We proceed by induction on |j| — |¢| and consider
only the case ¢ > 0 and j = k > 0 as the other cases follow similarly.

For the base case j = ¢ + 1, the relations
qtiiv1tiviit1r = tiv1iv1tiitt
when j = ¢, and
qtiigitivt,—i—1 — tig1,—i—1tiiv1 = —(q — q_l)ti,fifltzﬁrl,z#l

when j = —¢, follow from the relations ¢*+1 f; = qf;¢"+* and JiFqT — q_lmei = —2¢"+1 f-. For the
induction step (j — ¢ > 2) we have:

qtijti; = qq " (fitivry — tiv1,;fi)q"™
=g (fitivr; — tiv1 fi)

=tjjti;
for j = /¢, and
a—aq'
Qtijty—; = —a—— —a " fitierg — tivi fi) By
—1 —1
q—4q —k; q—dq ks
=1 4 kl+1fiti+1,ij+qTq Mt g fiFy
—1 -1
q—4q —k; . q—4q —k; .
= =y 4 il Byt + 2t 50" + g (Fpti g+ 2, 07) fi
_ qfqil *k'iJrlF,(f,t, ) — (0 — g Na R (£t ¢ £\ oK
- 2 q j\Jibit1,j i+1,5fi) —(a—a" " )a (fitiv1,—; i+1,-jfi)a
q—q' k 1y, —k k
=" T (fitivry — tiv1i fi) — (@ —a )a” T (fitie,—5 — tivn,—j fi)d"
= tj—jtij — (@ —a~ i —jtj;
for j = —4. O

We define a standard grading onto 4gp,, , namely we let dege; = o, deg f; = —a, deg q" =0, deg e; = v,
deg f; = —vi, and deg F; = —f;. With this grading, all of the defining relations of the quantum superalgebra
U,p,, are homogeneous. Hence, we say that il,p, have a @-grading

Ugpn = @(uq)m

acQ

where (Ug)a = {v € Ugpy | ¢"vg™" = My for all h e PY}. In what follows we write degu = a whenever
u € (Me)a-
The comultiplication A of 4,p,, is given in [AGG] by the formula

Atij) = Z (—1)PO+PENEE+PD) ) @ 1.

k=—n

Through direct computations, we can express the comultiplication A in terms of the new generators in
Proposition 2.2. The details are left to the reader.



Lemma 2.3. In terms of the generators e;, fi, €5, f5 for i € I, Fx fori € I U{n}, and ¢" for h € PV, the
following hold in LUgpy,:

Alg") =" @ ¢",
—1

Ale)) =q¢" " ®ei+e;®@q"+ — g _2 e @ Frp,
q—q!
A(f)=d"® fit fio g™ + ———F ey,
Ale;) = qki RXe;+6Q qkiﬂ,
e _
A =d" @ fi+ fodw - T —Foe+ I

A(F) = ¢" @ Fs+ F; @ ¢~

—1

q
fi@Fma

Let /‘Jq+ (respectively 41.") be the subsuperalgebra of {l,p,, generated by the elements e; and e; (respectively

fi, fz and Fy) for i € I (and j € I U {n}). Also, let U9 be the subsuperalgebra of {Uyp,, generated by q" for
h € PY. In order to establish the triangular decomposition of {l,p,, we need the following lemma.

Lemma 2.4. Let UZ° (respectively, $U5°) be generated by U3 and S5 (respectively, U3 and 81, ). Then the
following C(q)-linear isomorphisms hold.

>0 ~ (0 +
U420 =40 @ 41,

<0 ~ ((— 0
L[q— :ﬂq ®ﬂq.

Proof. We will prove the second isomorphism. Let {f; | ¢ € Q} be a basis of &I~ consisting of monomials in
fi’s, f7's, and F5's (1<i<n-1,1<j<n), with Q being an index set. Consider the map ¢ : £l;’ ®ﬂ2 — quo
defined by ¢(f: ® ") = fgqh. The defining relations of {,p,, imply that fcqh span 5.1(130, S0 (p is surjective.
It remains to show that the set {fcq¢" | ¢ € Q,h € PV} is linearly independent over C(q).

Suppose

Z Cenfeq" =0,

ceq
hePY

for some C¢ p, € C(g). Then

n—1

Write a = — Z(miai + N

i=1
n—1

Z Z Cc,hfcqh =0.

acQ_ |\ deg fe=a
hepPY

i=1

n
) — Znﬂi, for m;,n;,r; € Z>o, and let hy =

n—1 n
Z(ml + ni)kiJrl + Z riki and
i=1 i=1

= m; + ng)k; + k. From U p, = «, we have that, for each o € ¢)_,
hfl k k;. F ilq ilq h hat, f h Q

i=1

acqQ

Z Cg’hfcqh =0.
deg fe=a
hepPY

in is a monomial in f; = nd F3’s, w Vi
Since f; is a monomial ’s, f7’s, and F5’s, we have

10



A(fg):fg(g)qha—‘r...-f—qh;@fc.

Hence, the degree («,0) term in the decomposition of A(f¢) equals fe®q">. Applying the comultiplication
to (7) gives

Yo Cenlfed" @ "+ ¢ ® feg") =0,

deg fe=a
hePY

Collecting the terms of degree (a, 0) gives that

> Cenlfed" @q" ) =0,

deg fe=a
hepPY

Since for every a, the set {¢"*"« | h € PV} is linearly independent, we have that, for all h € PV:

Z Cc)hfcqh =0.
deg fe=a
Due to the linear independence of f¢, we conclude that C¢ j, = 0 for all ¢, h, as desired. O

Theorem 2.5. There is a C(q)-linear isomorphism

LUg(pn) = UG @ UG @ U

Proof. Let {f: | ¢ € Q}, {¢" | h € PV}, and {e, | T € '} be monomial bases of U, ng, and 113‘, respectively,
where (2 is the index set as in the proof of Lemma 2.4, and €2’ is another index set. Using the defining relations
of 4yp,, in Proposition 2.2, we can express every monomial in 4, (p,) as a linear combination of monomials
each of which has e; and e; on the right. By Lemma 2.4, the monomials fgqher span iUgp,. Hence, it remains
to show that fcg"e, are linearly independent over C(q).

Suppose

Z Cenrfeqd'er =0,
ceQ,re
hepY

where C¢ 5, ; is some nonzero constant in C(g). Due to the Q-grading of U,p,,, we have that, for all o € @:

> Cenrfed"er =0. (8)
deg f¢+deger=a
heprY

Define a partial ordering on h* by A < p if and only if A — p € Q_ for A\, u € h*. We then choose
v = deg f; and B = dege,, which are minimal and maximal, respectively, among those for which v+ 3 = «

11



n—1 n—1

and Cepr #0. If v = — Z(miai + niy) — Zrlﬂi, set hy = Z(mi + ni)kip1 + Zrik‘i, and if 8 =
i=1

i=1
n—1 n—1

Z(m;ai +nivi), set hg = Z(m;kzz + nik;), for m;, m},ni,n}, 1 € Zo.
i=1 i=1

i=1 i=1

The term of degree (0, 8) in A(e,) is ¢"# ® e, and the term of degree (v,0) in A(f¢) is fe ®¢". Applying
the comultiplication to the sum in (8), and looking at the terms of degree (v, 3), we have that

Z Cj(,i],,v'(f(qh-‘rhﬁ ® qh-‘rhW 67-) =0.

deg fe=v
dege,=p
hepPV

By Lemma 2.4, the elements f:g" are linearly independent for ¢ € Q,h € PV. Thus, for all h € PV, we
have that

h+F
> Cenrg" e, =0
deger =B

Due to the linear independence of e,, we conclude that C¢j > = 0, leading to contradiction. Therefore
all coeflicients in (8) are zero. O

3 Highest weight representation theory of i p,

A Yyp,-module V' is called a weight module if it admits a weight space decomposition

vi=ve

nepP

where VI = {v € V1| q"v = ¢"My for all h € PV} is the p-weight space. We call u € P a weight of V9 if
Vi # 0. A nonzero vector v € V|1 is called a weight vector of weight p. If v € V' is a nonzero vector such
that iljv = 0, then v is called a mazximal vector.

The dimension of each weight space dim V)1 is called the weight multiplicity of p. If dim V] < oo for all
u € P, the character of V4 is defined by

ch V=" dimg Vet
I

where F = C(q) and e* are formal basis elements of the group algebra F[P] with multiplication defined by
eef = eath,

The above definitions and notions can be introduced in the same way for 4p,-modules over F = C.

Definition 3.1. A weight 3(;p,-module V¢ is called a highest weight module with highest weight A\ € P if
the following holds for some nonzero v € V4:

(a) v is a mazimal vector of V4,

b) ve Ve and
() A

12



(c) VI =gp,v.
This vector v, which is unique up to a constant multiple, is called a highest weight vector of V4.

This definition, along with Theorem 2.5, shows that V? = v for any highest weight module with
highest weight vector v and highest weight .

Fix XA € P and define J%(\) to be the left ideal of {,p,, generated by e;, e;, and g"—¢*M1, forie I and
h € PY. Then M9(\) = t,p,,/J9(N) is the Verma module, which is a {,p,,-module by left multiplication.
Set v =14 J9(\). Then M?()) is a highest weight module with highest weight A and highest weight vector
v. The proof of the following proposition is standard. See, for example, the proof of Proposition 3.2.2 in
[HK], which uses the same arguments.

Proposition 3.2.
(a) M2(X) is a free U -module of rank 1, generated by the highest weight vector v =1+ J9(N).
(b) Every highest weight Uyp,-module with highest weight X is a homomorphic image of MI(X).

(¢) The Verma module M9(X\) has a unique mazimal submodule.

Let Ng¢(A) denote the unique maximal submodule of the Verma module M?()\) from Proposition 3.2(c).
Then the unique irreducible quotient

VA(A) = M9(X)/Nqg(X)
is the irreducible highest weight module over 4,p,, with highest weight \.

We note again that the definitions of highest weight module can be introduced in the same way for
$Up,-modules over F = C. In the latter case we will use the notation M (A) and V(A) for the Verma module
and its irreducible quotient, respectively. We denote by AT the set of p,-dominant integral weights:

AT = {)\161+...+)\n6n S [j* | /\i*)\i—i-l EZzo,ViGI}.

The following proposition and theorem will be used to prove an important result concerning highest weight
modules over g p,,.

Proposition 3.3. Let V be a highest weight p,,-module with highest weight A\ € A+ and highest weight vector
v such that f{\(ki%)‘(ki“)ﬂv =0 for alli € I. Then V is finite dimensional.

Proof. The proof is of this is similar to that of Proposition 1.9 in [GJKK]. The main idea of the proof
is that since e% = 0 and f; = 0, then, with the aid of the Poincaré-Birkhoff-Witt theorem, we show that
Ug(pn)ov, where (pn)o is generated by {e;, fi,k; | ¢ € I,j € J}, is finite generated, using the fact that

fi)‘(k'i)_’\(k”l)ﬂv = 0 and v is a highest weight vector. For details, see the proof of Proposition 1.9 in

[GJKK]. 0
Theorem 3.4 ([K2]). For any weight A € b*, V(A) is finite dimensional if and only if A € AT.

We recall some standard definitions from g-calculus. We set

n), = M
q9—q
We also define [0],! =1, and [n],! = [n]y - [n — 1]g - ... - [1]4- The divided powers of e; and f; are:
(m) _ & (m) S
e, = = , i =
[m]q! [m]q!

13



Lemma 3.5. For alli € I and m € Z>, we have

(¢)

-m+1,2k; _ ,m—1 2k}1+1
elfz(m) _ fz(m)el . f(7n—l) q q q q

7 q2_1

2m—2
+<1—q—2>(m Y fe Lt 2’) 5

(b)

m—1_2k; _ ,—m+1
fie(‘m) (m)f +q2 (m 1H4q q q

i q2_]_

2k‘i
q-rit

+ (q2 1) <q2€(m l)ezfl 265771 2)qk1+1ele+1>

(m—2)

(in the case m = 1 we assume that the terms involving fi(m—2) and e; are zero).

Proof. We prove (a) by induction on m. The base case m = 1:

q2k)i _ q2ki+1

— o _ 7
eifi = fies 21

—1
fie;

follows from Proposition 2.2. For the base case m = 2 we multiply the above relation on the right by f; and
obtain:

2k; 2k; 2
¢ —g g -1
eiff = fieifi — 2.1 It fieifi
o 2 q2ki+1 oo 4q72q2 q2q2k1+1 oo .
= fiei— fzil + (A —q ) fifre; — fi P + (1= q77) fre:fi
1 + q—2 q2ki —(1 + q2 q2k¢+1 B
P Chl - U 4 (i + ) e
14+ q )¢ — (1 + ¢?)g*rin _ 1+¢*
= freg - OO oy ()it S 0 R o

Dividing both sides by [2], leads to the desired result for m = 2.

Now, suppose that (a) is true for some m. Then we have that

eifi(m)fi = fi(m)eifi - fi(mfl) q_m-i-lq?kq;—_q:i—1qZk,Hr1 fi+(1—=q? (qm_lfi(ml)fi i qZ_qkiFifi(mZ)) et
= £ fiei = £ q%iqZ__q?lki+1 + i g 1fi(m)fze{ -5 q_mﬂqm;__q;n_lq%#l fi
+(1-q7?) < melpm=) gy 2’” ’ iFifi(m_2)fi) e
= fi(m)fiei — fi(m)qti_qZkHl f(m 1)f m1q2’z2_q:1+1q2ki+l
Him (f(m)f b g T g fz> .
= fi(m)fiez fz(m qq%m f(m 1)f m‘qu’Zz_q;zﬂqzk,-H

_ m m— + ¢ L(m-1) 1, P (e
+(1—q 2) (fz( )f{+qm+1fi( l)fif{"f‘qufi( 1)qk1'Fg+ qulF;fi( Q)fi es

1 —m—1 2k; _ 1 m—+1 2kit1
=[m+ 1] f(m-i-l) f(m) (1+¢q [m ]q)q _ (1 +4q [m}q)q
q? —
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— — m — 1 + q2 N m— q2m_2 m—1 : m—
+ (1 —q 2) ((1 +qm l[m]q)fl( )f;“F q3m QqulF{fi( 1) + %qk’ﬂfﬁ( 1) ez

Dividing both sides by [m + 1], completes the proof of (a).

The proof of (b) follows in a similar way, with the only main difference that we use the relation from
Lemma 2.1(c). O

Proposition 3.6. Let A € AT and V4(\) be generated by a highest weight vector v. Then f)‘(k DAL,

0 for alli e 1.

Proof. 1f f;‘(ki)f)‘(k”l)Jrlv # 0 and i,[;rfi)‘(k")f)‘(k”lwr1 = 0, then f)‘(k Alkira)+1, generates a nontrivial
proper submodule of VI(\), Which would be a contradiction to the fact that V4(\) is irreducible. Therefore,
it is enough to show that iﬁf Ak, g,

Note that for j £ i — 1,4, we have that

ejf;\(ki)*A(kiJrlHlv _ fz_/\(ki)*k(kiJrlHlejv —0.

We next prove that ejf’\(k Alkira) 1, — for j = 4,4 — 1. In the case j = i, we use Lemma 3.5(a) for

m = Aki) — Akiz1) + 1

qm71+2)\(ki+1) _ q7m+1+2)\(ki) f.(mfl)lu -0
¢>—1 |

K2

eifi(m)v =

For j =i — 1 we apply induction on m. The base case m = 1 follows from

-2

1—¢q .
ei—1fiv = fiei_1v — 5 q " Feezei1 — ei_1e5)v = 0.

Assume that e;,_1 f/"v = 0. Then we have

1-— q_2 s
6i71fim+11) = fiei_1fi"v — TCI ktFZ‘(ei‘ei*l —ei—1e7)fi"v

q
1—¢2 _, 1—q¢ 2 _,
:fieiqfimv— qu k‘FgegeiflfimU-f—qu k‘Fgei,lf{”egv
1—qg 2 .
= (fi_ 2;] q k‘Fi(fi) ei-1fi"v=0.

Therefore, e]f)‘(k Alkic) 1, — 0 for all j e 1.

Lastly, we prove that e= f’\(k DML, ) for all j € I. Note that for j #£i—1
jffz-/\(ki)i)\(k“l”lv _ fi)\(ki)iA(kiHHle;-U —0.
For j =i — 1, using that e;_1 f/"v = 0, we have
e = fie [ — ereia [0 + eiaer [0 = fier [T,

Alka)=A(kir 1)+, _ ) and the proof is complete.

Thus we obtain e;—7f"v = 0 by induction on m. Hence, Lﬁf
O
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4 Classical Limits

Let A; be the localization of C[g] at the ideal generated by ¢ — 1. Namely,

A, ={f(q) € C(q) | f is regular at ¢ = 1}.

For an integer n € Z, we define

-1, —n
zy" —ay
Tinly = ——F—, Tim)y = )

In particular, [¢";0],, (¢";0), € €9,

Definition 4.1. The A;-form of Uyp,, denoted by HUa,, is the Ai-subalgebra of Ugp, generated by the
elements e;, f;, ez, f; fori € I, F; for j € IU{n}, and q", (¢";0), for h € PV.

Let MXI (respectively, il;l), be the A;-subalgebra of s, generated by the elements e; and e; for 7 € I
(respectively, f;, f;, and FsforielandjelU {n}). Let iloAl be the Aj-subalgebra of {5, generated by
¢" and (¢";0), for h € PV,

We will show that the triangular decomposition of &l;p,, carries over to its A;-form. For this we first use
the following lemma, whose proof is identical to the one of Lemma 5.2 in [GJKK].

Lemma 4.2.

(a) (¢";n)q € U}, for alln € Z and h € PV.
(b) [qh§0]q € U.OAI for all h € PV.

Proposition 4.3. The triangular decomposition of Ugp, in Theorem 2.5 induces an isomorphism of A;-
modules

Ua, =, QUL D UL

Proof. Consider the isomorphism ¢ : Ugp, — U, ® 112 ® ﬂq* from Theorem 2.5. Note that the following
relations hold:

ei(qn; 0)g = (¢"; —ai(h))qge; ei(qn; 0)g = (" =i (h))qe;
(qn; 0)gfi = fi(q"; —i(R))q (qn;0)gf5 = f;(qh; —7i(h))q
(qn; 0)gF5 = Fi(q"; —B(h))q
¢ -1
eif; = fiei — g~ gh TR [gRh TR 0] 4 fre
q 2 -1

q- q !
eifi+1 = fi+1€7; F+1q_ki+1 (6i+1€i — eiem) eifj = fjei fOI’j # Z,Z + 1

q + 1 ’
eifs=q ' frei+ 50 Pt eir1f; = freim + fzfi — fifigT

q - q !
eifimr = frgei + Fyq kit1(e;116i — eieiy1) eif; = fyei for i — j[ > 1
e;fir1 = fir1e;— mei +eiegy e;fj = fijezfor j #i+1
eif; = —q 2 fse; — q gt TR [qki*k"“;()]q e;fi = — frer + eiv16i — eieiq
el = —feggg + firafi — fifin erf; = frez for i —j| > 1
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e Fr = qingei + 2q71f;-qki eibg = qFei

e;Fy = —q" ' Frep + 2 fig" eiFrpr = —q Frge; + 20" e
e F5 = Fre; for j #id,i+1 e b5 = Fyep for j #i,i+1

These relations, together with Lemma 4.2, imply that the image of the restriction i of ¢ to U, is a
subset of 4, ® U} ® ilj{q. To define an inverse of ¥ we multiply the corresponding terms in the tensor
product. This completes the proof. O

Definition 4.4. The A;-form of the highest weight module V9 with highest weight A\ € P and highest weight
vector v is the Ua, -module Va, = Ua,v.

For the rest of the section, by V¢ we denote a highest weight module over i[,p,, with highest weight
A € P and highest weight vector v. We can strengthen the above definition with the following proposition:

Proposition 4.5. With the notation as above:

Va, = il;lv.

Proof. In the light of Proposition 4.3, it suffices to show that UXIU = 0 and il&lv = Ajv. The former
identity follows from the fact that v is a highest weight vector. For the latter identity we use following:

Ah) _1q
q
¢"v=g""v,  (¢"0)v= 1

O

For each p € P, we set (Va, ), = Va, NV,1. The following shows that the weight space decomposition of
V¢ carries over to Va,.

Proposition 4.6. Va, has the weight space decomposition Va, = @ (Va,)u-
759

Proof. The idea is standard but for reader’s convenience we present the proof. Let v =v; +... + v, € Va,,
where v; € Vi and p; € P for each j € {1,2,...,p}. We can assume that j; are distinct due to the weight
decomposition of V4. Therefore, it is enough to show that v; € Va, for each j.

Fix an index j. For each i # j, choose h; € P such that p;(h;) # pi(hi). Let u € {a, be defined by

i'_,ui(hi))q
_H (@00 =),

Then for each i # j:

@mpwxm»q g rithidghi _ 1 g P (hi) grew (i)
(g7 ) — () Uk = g () — 1% T i) qra () — 108
q
where k € {1,2,...,p}. Therefore uv; = v; and uv; = 0. Hence, v; = uv € Va,. O

Proposition 4.7. For each p € P, the weight space (Va,), is a free Aj-module with ranka,(Va,), =
dlm(c(q) V .
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Proof. Since A; is a principal ideal domain, every finitely generated torsion-free module over A; is free.
Notice that, for each p € P, the weight space (Va,), is finitely generated as an Aj;-module. The weight
space is also torsion free, as otherwise it would contradict the fact that A is an integral domain. Thus, for
each p1 € P, the weight space (Va, ), is a free Aj-module.

Since C(q) is the field of quotients of Aq, a set of vectors of a C(g)-vector space is linearly independent
if and only if it is Aj-linearly independent. Thus ranka, (Va,), < dimg(g) V,J. Let f¢’s be some monomials
in fi's, f7’s, and Fy’s. Since {f¢} forms a linearly independent set over C(q), {fcv | ¢ € Z} is a C(g)-basis
of VI for an appropriate set Z. This basis is also contained in (Va,)u by definition. So we have that
ranka, (Va, ), > dimg(g) V)¢, which completes the proof. O

Combining the previous two propositions gives us the following:

Corollary 4.8. The map ¢ : C(q) ®a, Va, = V9, f @ v — fv, is an isomorphism of C(q)-vector spaces.

Let J; be the maximal ideal of A; generated by ¢ — 1. Then there is a canonical isomorphism of fields

A,/J; = C given by f(q) +J1 — f(1).

Define the C-vector spaces

Ur = (A1/J1) ®a, Ha,,
V= (A1/J1) ®@a, Va,.

Note that since Va, is a ${a,-module, V1 is naturally a U;-module. Note that

Uy 2 8Ua, /Ti8a, and V=V, /J1Va,,

which gives rise to the following natural maps

uAl —>L[A1/J1L[A1 = Us,
Va, HVA1/J1VA1 >~y

Note that ¢ is mapped to 1 under these maps, hence U; can be considered as the limit of {,p, at ¢ = 1.
The passage under these maps is referred to as taking the classical limit. We write T for the image of z
under these maps.

Let h € U; denote the classical limit of the element (¢";0), € Ua,. The following is standard (see for
example Lemma 3.4.3 in [HK]):

Lemma 4.9.

a) For allh e PV, ¢" =1
(a) q
(b) For any h,W € PV, h+h =h+ 1.

This lemma shows that the image of {3 under the classical limit is quite close to U° = 4(b).

For each p € P, define V,} = (A1 /J1) ®a, (Va,)u = (Va,)u/J1(Va,)u-

Lemma 4.10.
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(a) For each p € P, if {v;| i =1,...,m} is a basis of the free Ai-module (Va,),, then {v;|i=1,...,m} is
a basis of the C-vector space Vul

(b) For each n € P, a subset {v; | i = 1,....,m} of (Va,)u is Aq-linearly independent if the {v; | i =
1,....,m} C Vul is C-linearly independent.

Proof. We first prove that v, i = 1,...,m, span V,!. For every v in V,} = (A1/J1) ®a, (Va,), we have

v=> a;®a, vi=Y bi(1®a, v;)=> b,
i=1 i=1 i=1

where a; = b; +J1 € Ay1/J1, T; = (1 ®a, v;). So the set {1 ®a, v;} C-spans V]. The linear independence
follows from the fact that {v;}, i = 1,...,m, are Aj-linearly independent.

m

We now prove part (b). Assume that Zci(q)vi = 0 for ¢;(¢) € Ay, with some ¢;(¢q) # 0 for some j.
i=1

Then, multiplying by an appropriate power of ¢ — 1, we may assume that ¢;(1) # 0. Applying the classical

m
limit gives Z ¢;(1)v; = 0. This contradicts the linear independence of 7;, i = 1,...,m. O]
i=1
The following proposition is the analogue of Propositions 4.6 and 4.7 for V.
Proposition 4.11.
() Vi= @V,
n<A

(b) For each € P, dime V,; = ranka, (Va, ),

Proof. The first assertion follows from Proposition 4.6, while the second assertion follows from Lemma
4.10. O

The following theorem shows that the classical limit of 4,p,, is isomorphic to lp,,.
Theorem 4.12.
(a) The elements €, e, fi, f5, (i € I) I5, (i € IU{n}) and h (h € PV) satisfy the defining relations of

Up,,. Moreover, there exists a C-superalgebra isomorphism ¢ : Up, — Uy and the U;-module V' has
a Up,-module structure.

(b) For each i € P and h € PY, the element h acts on V! as scalar multiplication by p(h). So, V,! is the
p-weight space of the Up,,-module V'*.

(c) As a Up,-module, V! is a highest weight module with highest weight X € P and highest weight vector
v.

Proof. To prove (a), we recall that by Theorem 4.1 in [AGG], there is a C-superalgebra isomorphism

P Upp — uApn/(q - 1)5~1Apn7

where A is the localization of C[q,¢~!] at the ideal generated by ¢ — 1, and $4p, is the A-subalgebra
of U,p, generated by a set of elements 7;; (for the precise definition of 7;;, see §4 in [AGG]). The map
0 :8Uapn/(q — )hap, — Ua, /A18la,, defined by

9(?71"72',1) — e; 0(?7i,i+1) — e

3
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0(Fiiv1) — fi 0(Fi—i—1)— f;
9(?7;171') —> E 9(?“) — Ez

is also a C-superalgebra isomorphism. Indeed, this follows from the definition of the corresponding generators
and the fact that the classical limit of ¢;; and 7;; coincide. Also, we have already established that o :
$Ua, /A1Ua, — Uy is a C-superalgebra isomorphism by the definition of U;. Therefore, the map

b=000oy:Up, — U
is a C-superalgebra isomorphism.
To prove (b), let w € (Va,), and h € P¥. Then we have that

-1 g — 1

h
'0 = =
(q7 )qw q_lw q—l

w.

Taking the classical limit of both sides gives hw = u(h)w, as desired.

It remains to prove (c). From (b) we have that ho = A(h)v. Since v is highest vector of Va, with highest
weight A, it follows that €;v = 0 and €0 = 0 for each ¢ € I. Therefore, (a) and Proposition 4.5 imply that
V1 = U v = Up,v. Hence, by definition, V! is a highest weight {Up,-module with highest weight A and
highest weight vector v. O

Proposition 4.13. chV! =chV?

Proof. Propositions 4.7 and 4.11 imply that dim¢ Vul = dimc(q) V] for each p € P. This, along with Theorem
4.12(b), gives us the desired result. O

Corollary 4.14. V9()) is finite dimensional if and only if X € A™.

Proof. Let V4 = V4()\) with highest weight vector v, and suppose that A € AT. From Proposition 3.6, we

have that f{\(k")_’\(k”l)ﬂv = 0 for all 7 € I. Applying the classical limit leads to 7;\(&)_/\%“)“5 = 0. Since

V! is a highest weight module, Proposition 3.3 gives us that V! is finite dimensional. Thus, by Proposition
4.13, V1 is finite dimensional.

Conversely, suppose that V9()) is finite dimensional. By Proposition 4.13, we have that V! is also finite
dimensional. By Proposition 3.4, we have that A € AT. O

One peculiarity of the Lie algebra p,, is that p;” and p;; do not have the same dimension: with our choice
of roots, there are more negative ones than positive ones. This is also reflected in the asymmetry between
Ugp,r and Uyp,,. A natural question to ask is how making the reverse choice of positive and negative roots
could have affected the results in the last two sections. In particular, a maximal vector v would be defined
as a vector such that 4,p,, v = 0. The main results like Proposition 4.13 and Corollary 4.14 would still hold.
This is not surprising considering, for instance, that Theorem 3.4 remains valid after reversing the choice of
positive and negative roots. Other results like Proposition 3.3 would have to be modified accordingly, e.g.
by replacing f; by e;.

Now that Verma modules and the notion of highest weight module have been defined for {,p,,, it is natural
to introduce the category O, of representations of 4(,p,,. For quantized enveloping algebras of semisimple Lie
algebras, a definition of the category O, is provided, for instance, in [AM], and is studied in loc. cit. mostly
in the case when ¢ is a root-of-unity. The definition of category O for Lie superalgebras with triangular
decomposition is also given in loc. cit. We can combine both definitions into the following in the case of p,,.

Definition 4.15. The category O, for Lgp,, consists of (left) modules M such that

20



1. M is finitely generated;
2. M is a weight module;

3. M is a locally finite module over Ugp; .

Verma modules M?()\) belong to O, and their irreducible quotients V4(\) exhaust all the irreducible
objects in O, up to isomorphism.

For the Lie superalgebra p,,, one can consider both its category O and the category Oy of its even part
gl,,, and use restriction and induction functors to relate both. Unfortunately, l,gl, is not a subalgebra of
U,py as the defining relations of 4,p,, show. Moreover, the subalgebra of $l,p,, generated by e;, fi, ¢* and
¢"+1 is not isomorphic to Uqgly, we don’t know what is the center of U p,, and what could replace the Weyl
group that control in part the combinatorics of the category O for semisimple Lie algebras. We do not

address here how to circumvent these difficulties.

5 Category of Tensor Representations of i, p,-modules
In this final section we discuss the category of tensor representations of {,p,. It is shown in [Mo] that the
pn-module C(n|n)®* is not completely reducible for any k > 2. We will prove a similar result for $l,p,,.

Let V = C4(n|n). The action of the generators t;; of Lp,, on V is given by the following formulas
obtained in [AGG]:

tilug) = Zq5bi(1—2p(i))+6b,—z‘(2P(i)—1)Ebb(ua);
b=—n

ti—i(ua) = (@=q¢ is0E-ii(ua);

tij(ua) = (q—q (D" VEjilua), if il #j].

The action of the Drinfeld-Jimbo generators of L,p,, in (3) then follows. We can then extend this action to
V@ through comultiplication given in Lemma 2.3.

Recall also from [AGG] the 8,p,,-module homomorphisms ¢ : C,(n|n)®? —s C,(n|n)®? and t : C,(n|n)®? —

Cy4(n|n)®?, where

¢ = Z (_1)P(a)P(b)Eab @ FE_q b,

a,b=—n
t= Y (-1)VE;@E;i+(q—1)Y (B ®Ei_;)
by=—n i=1
+ (q_ 1)Z(E“ ®E” - Z i,—1 ®E—z ’L)
i=1 i=1
@ =D)Y B @B )+ (- a7 )Y (B @ B )
i=1 =1
+(g—q ") (Bj; @ Ei)+(q@—q") ) (( HPOriE; @ E_J,_z) ,
[F1<l1] [71<]4|

These maps are then extended to $f,p,-module homomorphisms ¢; : Cy(n|n)®* — C,(n|n)®* and t; :
Cq(n|n)®* —s C4(n|n)®* by applying ¢ and t, respectively, to the i*" and (i + 1) tensors. We will refer to
the map ¢ as the contraction map.
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Remark 5.1. The contraction map in [Mo] requires a sign change. As a result some of the subsequent
theorems have to be modified in [Mo]. Namely, the results in Sections 6.1 and 6.2 in [Mo] need to be
corrected and the correct version can be obtained by taking ¢ = 1 of our results in this section.

5.1 Maximal vectors in V&

In this subsection we describe the complete set of linearly independent maximal vectors in the lp,-module
V@k_ Following the ideas in Theorem 3.8 of [Mo], we will use a g-analogue of the Young symmetrizer defined
in [Gy] to define these maximal vectors.

Let Sy be the symmetric group on the set {1,...,k}, and let S := {sy,...,s5} wheres; = (i,i+1). Recall
that the periplectic g-Brauer algebra B, j is generated by t; and ¢; for 1 <7 < k — 1 and satisfies a set of
relations listed in Definition 5.1 of [AGG]. The action of B, on C,(n|n)®* is given by t; and ¢; acting by
t; and ¢;, respectively.

We consider the Hecke algebra Hy, as the subalgebra of B, i, generated by {h(s;) =t;|i=1,2,...,k—1}
subject to the following relations:

(h(si) = @)(h(si) +¢~1) =0,
h(si)h(si+1)h(si) = h(si+1)h(si)h(sit1).

If o is a permutation having a reduced decomposition o = s;, ---s;, we set h(c) = h(s;,)---h(s;,). Then
h(o)h(c") = h(od’) if L(oo’) = £(c) + £(c’), where 0,0 € S}, and ¢(o) is the length of the permutation o.

Define the following element of B :
Crs = h<0r,s)clh_1(0r,s)7

where o, 5 == (1,7)(2, 3).

k
For j € {17..., {QJ } and two disjoint ordered subsets 7 = {ry,...,7;} and § = {s1,...,s;} of {1,...,k}
such that r; <s; forallt=1,...,7, set

Cr3 = Crys; " Crjsys  Cpp = id.

We set (7,5) = {(r1,s1),...,(r;,5;)} and denote by P(j) the set of all (7,5) such that the cardinality of
15]

both 7 and § equal j. Set P = U P(j).
§=0

We follow the common definition of standard tableau as given for instance in [Gy]. If A is a partition of
N we write A = N. Let A - N have length at most 2n. Following [Gy|, we define two standard tableaux
T, =T,(\) and T_ = T_()\) depending on A, where the entries of 7'y increase by one across the rows from
left to right, and the entries of T_ increase by one down the columns. Let W, (respectively, W_) be the
group of all elements in Sy which permute the entries within each row of T (respectively, each column of
7).

Let
er=ei(N) = > ¢"Oho),
UEWJr
e-=e ()= Y (=) "“n(o).
oceW_
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Note that for each s =s; in W,

er = Y "1+ qh(s))h(o).
aegq

Thus, we have that (1 — ¢~ 'h(s))ey = 0, or in other words, h(s)e; = qe,. Hence

h(p)es =" ey
for p € W,. With the same reasoning we obtain analogous identities included in the following Lemma.
Lemma 5.2. Forpe W, and p' e W_,

h(p)et = eih(p) = qé(p)eJm
h(p')e— =e_h(p') = (—q)"e_.

Let T be a standard tableaux of shape A - k. Denote by oL the permutation that transforms T4 to 7.
Note that the set o2 W, (1)~ (respectively, ZW_(cL)~!) consists of all permutations that permute the
rows (respectively, columns) of T'.

Define zr(q) € Hy, by

-1 -1

21(q) = hlo")e_ (ho™)) " h(oT)es (h(™))
Note that there exists £ € C(¢), depending on the shape X of the tableau T, such that

wr(q)* = Exr(q)-
Then the g-analogue of the Young symmetrizer as defined in [Gy] is

yr(q) = %zT(Q)'

In what follows for a subset A of {1,2,...,k} by A° we denote its complement. Denote by ST((7 U §)¢)
k
the set of all standard tableaux of shape u F k — 25, for some j € {0, 1,..., {J }, with entries in (7 U §)€,

2
where (7, 5) € P(j).

For each 7 € ST((7 U §)°), define the associated simple tensor of 7 by w, 75 := w1 @ ... ® wy, where

Uy ifier
w; = u_q, ifies
U if j € (TUS)® and i is in jth row of 7.

We now prove a g-anologue of Theorem 3.8 in [Mo].

Theorem 5.3. Let n and k be positive integers such that n > k. Then
{y-crswr 55| (7,8) € P, 7 € ST((FU5)%),4(T) < n}

is a linearly independent set of mazximal vectors in the ,p, -module V®k,

Proof. Let w = w; 75 and § = y,c; ;w. Note that the weight of 0 is the same as the weight of w since yrcz 5
commutes with the action of 4yp,. Note that the fact that # # 0 and the linear independence property
follow by applying the classical limit and using Theorem 3.8 in [Mo].
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To show that 8 is a maximal vector, it suffices to show that 6 is annihilated by each root vector e; and
e7, 1 € I. The action of e; and e; on w can be explicitly written as follows

k
ex(wr ® ... @wy) = Y (~1PET @) ki @@ Mgy @ e @ 0O g © ... © ¢F g,

a=1

k
(w1 @ ... @wp) =Y ¢"w1 @ ... @ ¢" w1 @ eiwe @ ¢F w1 @ ... @ gF g
a=1

gl &
7% Z (71)P(w1)+~-~+P(wa—l)qkiwl R...0 qkiwa—l ® eflﬂa ® qki+1wa+1 Q...
a,b=1
a<b

® ¢" tw,_g ® Frqwy ® " wpyr ® @ ¢F g

(9)

Let x = e; or x = e;. We look at how x acts on ci sw. Note that cV®? ig the trivial Ugppn-module C(g).
Therefore the sum of the terms with z acting on a pair of contracted tensor factors is zero. Also, from (9),
we see that the action of  on non-contracted tensor factors, or in other words where w; € Vj, those specific
terms in the summation will be zero, except when x = e;_; for some j > 2. Thus z either annihilates ¢ sw
or produces a sum of tensors which are obtained by applying x = e;_1, for some j > 2, to a factor unaffected
by ¢ 5. Each of those tensors has one factor whose subscript is in (7 U §)¢ and has been lowered by one, so
u; has been changed to u;_;. Denote such a tensor by v. We want to show that y,v = 0.

Fix ¢ € W,. There are two factors of the tensor h(c7 )h(1))h(o7.)~'v that have the same u;. Then there
exists a transposition (a,b) = (¢7)p (¢7)"1 € (67 )W_(07)~! which permutes these two factors. Using that
l(a,b) = £(p), we obtain

h(oZ) h(p) M(oT) ™t Ao )h()h(0T) ™ v = h(a,b) h(o)h(¥)h(oT) "' = ¢" P h(aT)h(y)h(o]) V.

By Lemma 5.2, we have that for p € W_|
(—g) e =e_h(p)= > (=a)"“h(o)h(p)
oceW_
and hence
h(oT)e_ h(c™)™ ! = Z (—q) OO (67 ) h(o) h(a™) " (o™ ) h(p) h(aT)™*
oceW_
Thus we have

h(ol)e— h(oT) ' h(e)h(W)h(oT) v =D (=a) TP n(oT) h(o) h(oT) ™! h(aT) h(p) h(oT) " h(oT)h(¥)h(oT) v
oceW_

= Y () OHOGLORGT) (o) h(oT) " h(oT)h($)h(oT) v
oceW_

= (=)W Y (=) Dh(oT) h(o) h(oT) " Ao h(¥)h(a}) v
ceW_

= (-1 ¢* (0T )e_ h(oT) " h(oF)h($)h(0T) V.

Hence,
h(oT )e— h(o7) " h(cT)h(¥)h(c]) v =10
for each ¢ € W,. Therefore, we have that
h(o)e_ h(oT) (o] )er h(oT) 'v=> " ¢" (07 )e_ h(oT) ' h(0T)h(th)h(0]) v =0.
peWy

This concludes the proof of y,v = 0. O
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5.2 Decomposition of V/®?

By Theorem 5.3, the following vectors are linearly independent maximal vectors of the ,p,-module V&2

01 =y (w1 ® wi) = wy @ uy,

1
q _ _ -1
05 = (ul ® ug) = W(q UL @ ug — Uz ® U1),
n
0 =ci(u1 @u_q) = Z u; @ U_jg,
i=—n

where

Proposition 5.4. The vectors 01,03,0% form a complete set of linearly independent maximal vectors of the
Uypn-module V2. Moreover, 01,03 € yV®2 and 03 € ymV#2.

Proof. Applying the classical limit to 67 yields the linearly independent maximal vectors 6; in [Mo] (after
appropriate sign change for 61, see Remark 5.1). Since the complete set of linearly independent maximal
vectors of the Up,-module V®2 has exactly three vectors, the result follows from Proposition 4.13. The
second statement is subject to a direct verification. O

In what follows we will show that V®? is isomorphic to the direct sum of the two indecomposable

representations, V®2 and V®2.

Proposition 5.5. The module V®2 1s reducible and indecomposable. More precisely, there is a non-split
exact sequence of P, -modules
0 — Ver + e2) — yV=* — V(0) — 0. (10)

Proof. We have that
C1 V®2 C C1V®2 = (C(q)

However, since

1 _
C1 (u1 ® u,l) = 7_2C1[q 2U1 RU_] —UuU_1 & Ufl] = Gg 7é 0, (11)
1+g¢
it follows that c; V®2 cannot be zero. Therefore, c; V®2 >~ C(q). Consider the restriction of the
contraction map c; to V®2, and let N denote the kernel of this restriction. Then

V®2/N ~ C(g) = V(0).
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By Proposition 5.4, 63 € N and 67,61 ¢ N. Hence, by the same proposition, 84 is the only, up to a scalar
multiple, maximal vector in N, in particular, A/ is simple. Thus

Vq(61 + 62) = qupneg =N - V®2.
This implies the exact sequence (10). The sequence does not split because V®2 has a unique up to a

scalar multiple maximal vector. O

Proposition 5.6. The module V®2 18 reducible and indecomposable. More precisely, there is a non-split
short exact sequences of Ugpy,-modules

0 — V(0) — v®2 — V9(2¢;) — 0. (12)

Proof. We have that
Yipz©r = C1-
This implies that
C1 V®2 C V®2.

Note that 69 & c;V®2. However, (11) gives that 64 € c¢;(V®2). By Proposition 5.4, 62 is the only, up to a
scalar multiple, maximal vector in ¢; V®2. Thus, we have that

V4(0) 2 Ugpnt C 1V oy V™2

By Proposition 5.4, we have
YtV /apnts = VI (261),
which implies the exact sequence (12). Since 0] generates V®2, the sequence does not split. O

The following theorem is the main result of this subsection.

Theorem 5.7. As a Uyp,-module, we have the following decomposition
V®2 = V®2 D V®2,

where the submodules in the above decomposition are involved in the non-split short exact sequences (10),
(12).

Proof. Let T : V&2 — V®2 be the 4,p,-module homomorphism defined by

T(U) = ’U.

Note that

1 1
T+t q_2)(1 +qt)(1—q t1) =0.

So, we have that V®2 C ker T', which implies that V®2 = ker T since the only maximal vector of V®2

in ker T' is 0. Thus we have a short exact sequence

0 —yqV® — VE — gV — 0.

Using the embedding ¢ : V®2 — V®2 and that T o = id, we see that the sequence above splits. The
remaining part of the theorem follows from Propositions 5.5 and 5.6. O
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5.3 Decomposition of V/®3

In this subsection we prove an analogous statement to Theorem 5.7 for V3. More precisely, we show that

VoS = YiT2T3 Ve g T2 Ve o V®3 S V®3 (13)

is the decomposition of V®3 into indecomposables, where

1
YiT2[3 71+2q2+2q4+q6(

L+ gty + gtz + ¢*tits + ¢*tats + ¢*titaty),

1 —1 2
Y12 = ~ SL+ati + (¢ — ¢ )ta — tita + (¢° — D)tats — gtitaty],
g +14+gq

1
= ———(1—¢ 't — oty + qtitoty),
¢ 2+ 14 ¢?
1
= 1—¢ 't —q¢ 't 24t 2t — ¢ Bttaty).
1+2q_2+2q_4+q_6( ¢t —q ta+q “titg + ¢ Ttots — ¢ Ctitaty)

With a slight of notation, Theorem 5.3 implies that the following are linearly independent maximal
vectors of V®3;

9(11 =ci(u; @u_q ®uy),
03 = tacica(ur @ Uy @ u_1),
0% = co(ug @ ug @ u_yq),

61 = gz @ 9 w),

eg = (u1 ®U1 & UQ),
I
93 = 1(“1 ® us ® uy),

(o[ =]

9'?: 1(’LL1®U2®'LL3).

BEE

The next proposition is proven in a similar way as Proposition 5.4.

Proposition 5.8. The vectors 07, i =1,...,7, form a complete set of linearly independent mazimal vectors
of the Ugpp-module V3. Furthermore,

01, 09+ q0% + 4?03
08, —607—(q—q ")04 + 64

®3
€yaremEY
3
S V® s
05, —q03 + 03 € yaz1V e,
3
01 € V® .
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We will now look into each of the submodules in the decomposition of (13).

ing non-split short exact sequence

Proposition 5.9. The module V®3 is reducible and indecomposable. More precisely, we have the follow-

0 — Ve + €2 + €3) — yV e — VI(e1) — 0. (14)
2

Proof. Consider the contraction map c;. Let N be the kernel of the restriction of ¢; to V®3. We have

that
Cq1 V®3 - C1V®3 =V = (Cq(n\n)

and

aym(n@u1®uy) = = ! (140> —¢ 1 ®u_1®u1 —¢ ur @y Qu_1+u_1 Qui ®uy] # 0.
14+2¢g7*+2¢7*+¢q

By Proposition 5.8, 67 is the only maximal vector in N. Hence,

Vq(61 + e + 63) = ﬂqpngg =N - V®3.

Moreover,

V®3/qun9q = Vq(el) = Cq(n|n)a
which implies the exact sequence. The sequence does not split because V®3 has a unique up to a scalar
multiple maximal vector. O

Proposition 5.10. The module V®3 is reducible and indecomposable. More precisely, we have the
following non-split short exact sequence

0— Vi(e) — V®3 — V9(3¢;) — 0. (15)

Proof. Let K = cico + gqtacica + ¢%co. Note that

K=K
It follows that
KVE C ypam Ve
Note that 0] # KV®3. However, K(u; ® uy @ u_1) = 0 + 03 + ¢*03. By Proposition 5.8, 0] + q03 + ¢?03 is
the only, up to a scalar multiple, maximal vector in KV®3, Thus, we have that

Vi(er) = Ugpn (07 + g03 + ¢°03) C yapars)V e
By Proposition 5.8, we have

V®3/ﬂqpn(9’f + q03 + ¢°09) = V9(3ey).

which implies the exact sequence (15). Since 0] generates V®2, the sequence does not split. O
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Proposition 5.11. The module V®3 is completely reducible as a U pn-module into a direct sum of
3

irreducible Ugp,,-modules. More precisely, we have the following split short exact sequence

0 — V(2€; + €3) — V®3 — Vi(e;) — 0. (16)

Proof. Consider the 4Ugp,-module homomorphism 7 : V®3 — ¢ V'®3 such that T( v) = CQYITz]Y-
I

Since
—2

q
Co Cp = —5——5Co,
Z+ltq?

3 3
Co V® = C2V® .

we have that T is surjective and

Note that
C2(U1 Qup @u_1) = —07 — (q—q )69 + 62

Thus, —07 — (¢ — ¢ )03 + 61 € C2V®3. However, u1 @ u1 @ us & c3V®3, which implies that 61 €
C2V®3. So, by Proposition 5.8, we have that

V(er) = tgpn (= 0F = (¢ — q7")05 + 03) = C2V®3~

Since cV®3 22 V4(e1), we have an inclusion map i : coV'®3 — V®3 such that i o T = id. Therefore, the

following short exact sequence splits:

0 —s kerT —s V®3 L Ve 4

By Proposition 5.8, since 67 € ker T, we have that ker T = 4 p,,07 = V9(2¢; + €2). This implies the exact
sequence (16). O

Proposition 5.12. The module V®3 is 1somorphic to V®3 as Ugpn-modules. More precisely, we
I

have the following split short exact sequence

0 — V(2 +€) — V®3 — V(e;) — 0. (17)

Proof. Let v1 = 0%, w1 = 02, vy = —q03 + 01, and we = —0 — (¢ — ¢=1)03 + 61. Consider the il p,-module
homomorphism

®3 ®3
eV — Y

such that
S(wl) =1 and S(’LUQ) = V2.

By Propositions 5.8 and 5.11, S is an isomorphism. The short exact sequence (17) then follows from

Proposition 5.11. O

The following theorem is analogous to Theorem 5.7, but in the case of V3.
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Theorem 5.13. As a U,p,-module, we have the following decomposition

V®3 _ V®3 o) V®3 o V®3 ey V®3, (18)

where each submodule in the above decomposition are involved in either the non-split short exact sequences
(14) and (15), or in the split short exact sequences (16) and (17).

Proof. Let T : V® — V®3 be the U,p,-module homomorphism defined by

T(v) = yappEp:
Note that
i =0

where K = yr13), 3], y17- By Proposition 5.8, this implies that —01—(q—q~1)03+05, —q03+05,05,05,07 <
I I
ker T'. We have the short exact sequence
0 — kerT — V& — ym Ve — 0.
Using the embedding ¢ : V®3 — V®3 and that T o = id, we see that the sequence above splits.

Let T : ker T — ker T be the 4,p,-module homomorphism defined by

T(U) = 21V
yr

where K = g/r, T By Proposition 5.8, this implies that —q0% + 02,60¢ 07 € ker T”. Using the embedding

Note that

3r7qrYq

Vo V®3 — V®3 and that T" o/ = id, we see that the short exact sequence

0 — kerT' — kerT —» V®3 — 0.

splits. Using similar arguments, we have that ker 7" = V®3 &) V®37 and thus the decomposition (18)

follows.

The remaining part of the theorem follows from Propositions 5.9, 5.10, 5.11, and 5.12. ]

5.4 Reducibility of VV®*

Theorem 5.14. For every k > 2, the ,p,-module VO is not completely reducible.
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Proof. Fix k > 2, and assume for the sake of contradiction that V®* is completely reducible. For any
r,s € {1,2...,k — 1} such that r # s,
V@k? g V®}€72.

Cr,s

Consecutive applications of ¢, s to V¥ for appropriate r and s will lead to a submodule M of V®* that
is isomorphic either to V®% or to V®3. By Theorems 5.7 and 5.13, V®? and V®3 are not completely
reducible. This leads to a contradiction as submodules of completely reducible modules are also completely
reducible. O
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