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Abstract

In this paper, we begin the study of highest weight representations of the quantized enveloping
superalgebra Uqpn of type P . We introduce a Drinfeld-Jimbo representation and establish a triangular-
decomposition of Uqpn. We explain how to relate modules over Uqpn to modules over pn, the Lie
superalgebra of type P , and we prove that the category of tensor modules over Uqpn is not semisimple.
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Introduction

The classification of finite-dimensional simple Lie superalgebras and the foundations of their representation
theory was established by V. Kac in [K1] and [K2]. The representation theory of Lie superalgebras has
been known, since its inception, to be more complicated than that of Lie algebras. The Lie superalgebras
of types P and Q are especially interesting due to the algebraic, geometric, and combinatorial properties of
their representations. The study of the representations of type P Lie superalgebras, which are also called
periplectic in the literature, has attracted considerable attention in the last several years. Interesting results
on the category O, the associated periplectic Brauer algebras, and related theories have been established in
[AGG], [BDEA+1], [BDEA+2], [CP], [Co], [CE1], [CE2], [DHIN], [EAS1], [EAS2], [HIR], [IN], [IRS], [KT],
[Ser], among others.

In this paper we initiate the study of highest weight representations of the quantum superalgebra Uqpn.
In [AGG] we constructed a flat deformation of the universal enveloping algebra Upn which is a quantum
enveloping superalgebra in the sense of Drinfeld ([Dr], §7). The idea was to apply a suitable modification of
the procedure used by Faddeev, Reshetikhin, and Takhtajan in [FRT] using an element S in End(Cq(n|n)⊗2)
that satisfies the quantum Yang-Baxter equation.

In the present paper, based on the definition of Uqpn in [AGG], we give a presentation of Uqpn in terms
of Drinfeld-Jimbo generators and relations. These relations are quantum deformations of those obtained in
[DKM]. Using this new presentation, we find a natural triangular decomposition of Uqpn, and then introduce
the notion of highest weight module. This matches the corresponding result of Moon in [M] for Upn. We
also obtain the explicit decomposition of the second and the third tensor power of the natural representation
of Uqpn. These decompositions, in particular, imply that the category of tensor representations is not
semisimple, which is expected.

The structure of the paper is as follows. We give the notation and basic definitions related to the classical
periplectic Lie superalgebra in Section 1. In Section 2, we present a Drinfeld-Jimbo representation of Uqpn
and prove its triangular decomposition. We introduce standard notation, definitions, and results related to
highest weight Uqpn-modules in Section 3. In Section 4 we discuss the classical limit and how the highest
weight representations of Uqpn relate to those of pn (cf. Theorem 4.12). In the last section, we discuss tensor
representations of Uqpn and use particular modules to prove that not every tensor representation of Uqpn is
completely reducible (cf. Theorem 5.14).
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855678. The third named author gratefully acknowledges the financial support of the Natural Sciences and
Engineering Research Council of Canada provided via the Discovery Grant Program.
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1 The Lie superalgebra pn and its representations

By Z2 = {0, 1} we denote the group Z/2Z. All Lie superalgebras and homomorphisms are over C unless
otherwise stated.

We will use the same setting as in [AGG]. We will denote by C(n|n) as the vector superspace Cn ⊕ Cn
spanned by the standard basis vectors u−n, . . . , u−1, u1, . . . , un. We say that ui is odd if i < 0 and even if i >
0. Denote the elementary matrices inMn|n(C), the vector superspace consisting of square (2n)×(2n)-matrices
with entries in C by Eij , with i, j ∈ {±1,±2, . . . ,±n}. Set the parity function p : {±1,±2, . . . ,±n} −→ Z2

to be p(i) = 0 if i > 0 and p(i) = 1 if i < 0. We set Eij = Eij − (−1)p(i)(p(j)+1)E−j,−i and observe that
Eij = −(−1)p(i)(p(j)+1)E−j,−i for all i, j ∈ {±1, . . . ,±n}. Therefore, Ei,−i = 0 when 1 ≤ i ≤ n.

The Lie superalgebra pn of type P is the subsuperalgebra of gl(n|n) that consists of matrices of the form(
A B
C D

)
where A,B,C,D ∈ gl(n), D = −At, B = Bt, and C = −Ct. A basis of pn is provided by all the matrices
Eij with indices i and j respecting one of the following series of inequalities:

1 ≤ |j| < |i| ≤ n or 1 ≤ i = j ≤ n or − n ≤ i = −j ≤ −1.

The superbracket on pn is given by

[Eji,Elk] = δilEjk − (−1)(p(i)+p(j))(p(k)+p(l))δjkEli

−δi,−k(−1)p(l)(p(k)+1)Ej,−l − δ−j,l(−1)p(j)(p(i)+1)E−i,k. (1)

Throughout the paper h will be the Lie subsuperalgebra of pn with basis {k1, . . . , kn}, where ki := Eii for
1 ≤ i ≤ n. Note that h is purely even, and is also a self-normalizing nilpotent subsuperalgebra of pn, hence
a Cartan subsuperalgebra of pn. By {ϵ1, . . . , ϵn} we denote the basis of h∗ dual to {k1, . . . , kn}.

Set I := {1, . . . , n − 1}. The root system ∆ of pn relative to h consists of the roots ϵi − ϵj (for i ̸= j),
ϵi + ϵj (for i < j), and −ϵi − ϵj (for i ≤ j). Let αi = ϵi − ϵi+1, βi = 2ϵi, and γi = ϵi + ϵi+1. Set

ei := E−i−1,−i,

fi := Ei+1,i,

ei := Ei+1,−i,

fi := E−i−1,i,

Fj := E−j,j .

for i ∈ I and j ∈ I ∪ {n}. The root spaces of αi, −αi, γ, −γi, and −βi are spanned, respectively, by
ei, fi, ei, fi, and Fi. Note that βi /∈ ∆.

Using the root space decomposition pn = h ⊕

( ⊕
µ∈∆

(pn)µ

)
we define the triangular decomposition

pn = p−n ⊕ h ⊕ p+n as follows: p−n is spanned by {fi, fi, Fj | i ∈ I, j ∈ I ∪ {n}} and p+n is spanned by
{ei, ei | i ∈ I}. Alternatively, ∆ = ∆+ ⊔∆−, where

∆+ = ∆(p+n ) = {αi, γi | i ∈ I}, ∆− = ∆(p−n ) = {−αi,−γi,−βj | i ∈ I, j ∈ I ∪ {n}}.

In this paper, all highest weight modules of pn will be relative to the Borel subalgebra bn = h⊕ p+n .

The cone of positive roots will be denoted by Q+ :=

n−1∑
i=1

Z≥0αi +

n−1∑
i=1

Z≥0γi and Q− := −
n−1∑
i=1

Z≥0αi −

n−1∑
i=1

Z≥0γi −
n∑
i=1

Z≥0βi denotes the cone of negative roots. Set Q = Q+ +Q−.
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We will also denote P :=

n⊕
i=1

Zϵi to be the weight lattice of pn, and denote P∨ :=
n⊕
i=1

Zki to be the

coweight lattice.

We next give a presentation of pn (hence of Upn) in terms of generators and relations. This presentation
will be used to define Uqpn in terms of Drinfeld-Jimbo generators and relations.

Proposition 1.1 ([DKM]). The complex Lie superalgebra pn is generated by the elements ei, ei, fi, fi
(i ∈ I), h and Fj (j ∈ I ∪ {n}) subject to following defining relations (for h ∈ h):

[h, h] = 0

[h, ei] = αi(h)ei

[h, fi] = −αi(h)fi
[h, ei] = γi(h)ei
[h, fi] = −γi(h)fi
[h, Fi] = −βi(h)Fi
[ei, ej ] = [fi, fj ] = 0 for |i− j| ≠ 1

[ei, fj ] = −δij(ki − ki+1)

[ei, fi] = −(ki − ki+1)

[fi, ej ] = 0 if |i− j| > 1

[fi+1, ei] = [ei+1, ei]

[fi, ei+1] = [fi+1, fi]

[ei+1, ei] = [fi+1, ei]

[fi+1, fi] = [ei+1, fi]

[fi, fi] = Fi
[ei, fi] = Fi+1

[ei, ej ] = [fi, fj ] = 0 for i, j ∈ I

[fi, ej ] = 0 if i ̸= j + 1

[ei, ej ] = 0 if i ̸= j + 1

[ei, fj ] = 0 if i ̸= j, j + 1

[fi, fj ] = 0 if i ̸= j, j + 1

[Fj , ei] = −βi(kj)fi
[Fj , fi] = βi+1(kj)fi

[ei, [ei, ei±1]] = 0

[fi, [fi, fi±1]] = 0

[ei+1, [ei+1, ei]] = ei

Remark 1.2. We note that we use a slightly different presentation of pn in terms of generators and relations
than the one used in Definition 3.1.1 in [DKM]. To define an isomorphism between the two presentations
we proceed as follows. A homomorphism from the presentation in Proposition 1.1 to the one in Definition
3.1.1 in [DKM] can be defined by the following maps:

ki 7−→ −Hi, ei 7−→ −Fi, fi 7−→ Ei,

fi 7−→ Bi, ei 7−→ −Ci, F1 7−→ −1

2
B1,1.

These maps indeed define a homomorphism because Fj = [ej−1, fj−1] = [fj , fj ] and all relations listed in
Proposition 1.1 follow from the relations in Definition 3.1.1 (see for example Lemma 3.2.1 in [DKM]). The
details are left to the reader. To define a reverse homomorphism is easier. We note that neither of the sets
of generators is minimal, but the larger set of generators used in this paper will serve better our purpose.

The following are relations of pn that can be obtained from the relations in Proposition 1.1.

Lemma 1.3. The following relations hold in pn:

(a) [Fj , ei] =


2fi if j = i

2ei if j = i+ 1

0 otherwise

,

(b) [Fj , fi] = 0,

(c) [ei, [ei, ei±1]] = 0,

(d) [fi, [fi, fi±1]] = 0,
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(e) [Fi, Fj ] = 0 for i, j ∈ I ∪ {n}.

Proof. We will prove (a) and (c). The remaining parts can be deduced similarly.

First, we prove (a) for j = n. For every i we have

[Fn, ei] = [[en−1, fn−1], ei] = [ei, [en−1, fn−1]] = [en−1, [fn−1, ei]] + [fn−1, [ei, en−1]] = [en−1, [fn−1, ei]].

If i = n− 2, then we have that [en−1, [fn−1, en−2]] = [en−1, [en−1, en−2]] = 0. If i = n− 1, then we have that

[en−1, [fn−1, en−1]] = [en−1,−kn−1 + kn] = −[en−1, kn−1] + [en−1, kn] = 2en−1.

Otherwise, we have that [Fn, ei] = 0.

Next we prove (a) for j < n. Using the relations in Proposition 1.1, we have that:

[Fj , ei] = [[fj , fj ], ei]

= [ei, [fj , fj ]]

= [fj , [fj , ei]]− [fj , [ei, fj ]].

Note that [Fj , ei] = 0 from above, unless |i− j| ≤ 2. So, we need to check the three subcases i− j = 0, 1,−1.

If j = i, then

[Fi, ei] = [fi, [fi, ei]]− [fi, [ei, fi]]

= −[fi,−ki + ki+1]

= 2fi.

If i = j + 1, then

[Fj , ej+1] = [fj , [fj , ej+1]]− [fj , [ej+1, fj ]]

= −[fj , [fj+1, fj ]]

= [fj , [fj , fj+1]] + [fj , [fj+1, fj ]]

= 0.

If j = i+ 1, then

[Fi+1, ei] = [fi+1, [fi+1, ei]]− [fi+1, [ei, fi+1]]

= [fi+1, [ei+1, ei]]− [fi+1, [ei+1, ei]]

= [ei+1, [ei, fi+1]]− [ei, [fi+1, ei+1]] + [ei+1, [ei, fi+1]] + [ei, [fi+1, ei+1]]

= −[ei,−ki+1 + ki+2]− [ei,−ki+1 + ki+2]

= 2ei.

Now, we prove (c). Note that [ei, ei−1] = 0 for all 2 ≤ i ≤ n, so [ei, [ei, ei−1]] = 0. Also,

[ei, [ei, ei+1]] = [ei, [ei, fi+1]]

= [ei, [fi+1, ei]] + [fi+1, [ei, ei]]

= 0.
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2 Quantized enveloping superalgebra Uqpn

Let C(q) be the field of rational functions in the variable q, and let Cq(n|n) = C(q)⊗CC(n|n). Definition 3.6
from [AGG] gives that Uqpn is defined to be the associative superalgebra over C(q) generated by elements
tij , t

−1
ii with 1 ≤ |i| ≤ |j| ≤ n and i, j ∈ {±1, . . . ,±n}, such that tii = t−i,−i, t−i,i = 0 if i ≥ 0, tij = 0 if

|i| > |j|, and the following relation is satisfied:

(−1)(p(i)+p(j))(p(k)+p(l))tijtkl − tkltij + θ(i, j, k)
(
δ|j|<|l| − δ|k|<|i|

)
ϵtiltkj

+ (−1)(p(i)+p(j))(p(k)+p(l))
(
δj>0(q − 1) + δj<0(q

−1 − 1)
)(
δjl + δj,−l

)
tijtkl

−
(
δi>0(q − 1) + δi<0(q

−1 − 1)
)(
δik + δi,−k

)
tkltij

+ θ(i, j, k)δj>0δj,−lϵti,−jtk,−l − (−1)p(j)δi<0δi,−kϵt−k,lt−i,j

+ (−1)p(j)(p(i)+1)ϵ
∑

−n≤a≤n

(
(−1)p(i)p(a)θ(i, j, k)δj,−lδ|a|<|l|ti,−atka + (−1)p(−j)p(a)δi,−kδ|k|<|a|talt−a,j

)
= 0,

(2)

where ϵ = q − q−1 and θ(i, j, k) = sgn(sgn(i) + sgn(j) + sgn(k)).

Now, let

qki := tii, ei :=
−1

q − q−1
t−i,−i−1, fi :=

−1

q − q−1
ti,−i−1,

fi :=
1

q − q−1
ti,i+1, ei :=

1

q − q−1
t−i,i+1, Fi :=

−2

q − q−1
ti,−i.

(3)

Using (3), we have the following relations between the two sets of generators of Uqpn

t−i,−i−j = −(q − q−1)q−
∑j−1

h=1 ki+h

j−1∏
h=1

ad ei+h(ei),

t−i,i+j = (q − q−1)q−
∑j−1

h=1 ki+h

j−1∏
h=1

ad fi+h(ei),

ti,−i−j = −(q − q−1)q−
∑j−1

h=1 ki+h

j−1∏
h=1

ad ei+h(fi),

ti,i+j = (q − q−1)q−
∑j−1

h=1 ki+h

j−1∏
h=1

ad fi+h(fi),

(4)

where ad ai(aj) := [ai, aj ],

j∏
h=1

ad ai+h(ai) := ad ai+jad ai+j−1 . . . ad ai+1(ai), and

0∏
h=1

ad ai+h(ai) := ai,

for ai = ei, ei, fi, fi. From (4), one can obtain the following relations

ti,i+j = q−ki+j−1(fi+j−1ti,i+j−1 − ti,i+j−1fi+j−1),

t−i,i+j = q−ki+j−1(fi+j−1t−i,i+j−1 − t−i,i+j−1fi+j−1),

ti,−i−j = q−ki+j−1(ei+j−1ti,−i−j+1 − ti,−i−j+1ei+j−1),

t−i,−i−j = q−ki+j−1(ei+j−1t−i,−i−j+1 − t−i,−i−j+1ei+j−1).

(5)

Equivalently, the above relations can be written as follows

tij = −q−ki+1(fiti+1,j − ti+1,jfi),

t−i,j = q−ki+1(eiti+1,j − ti+1,jei),
(6)
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where i > 0.

The relations (5) (respectively, (6)) can serve as an alternative way to define the generators of Uqpn
inductively. These relations also allows us to obtain the following relations.

Lemma 2.1. The following relations hold in Uqpn for all i ∈ I.

(a) eifi − fiei = eifi + fiei,

(b)
2

1 + q2
fi+1fi+1fi − fi+1fifi+1 − fi+1fifi+1 + q2fifi+1fi+1 = q2q2ki+1fi −

1− q2

1 + q2
fi+1fi+1fi,

(c) fiei = eifi + q2
q2ki − qki+1

q2 − 1
+ (q2 − 1)eifi.

Our first main result is the following presentation of Uqpn.

Proposition 2.2. The quantum superalgebra Uqpn is isomorphic to the unital associative superalgebra over
C(q) generated by the even elements qh for h ∈ P∨, ei, fi for i ∈ I, and the odd elements ei, fi, for i ∈ I, Fi
for i ∈ I ∪ {n}, that satisfy the following relations

q0 = 1, qh1+h2 = qh1qh2 for h1, h2 ∈ P∨,

qhei = qαi(h)eiq
h, qhfi = q−αi(h)fiq

h for h ∈ P∨,

qhei = qγi(h)eiq
h, qhfi = q−γi(h), fiq

h, qhFi = q−βi(h)Fiq
h for h ∈ P∨,

eiej − ejei = 0, fifj − fjfi = 0, fifj + fjfi = 0 if |i− j| > 1,

eiej + ejei = 0, FiFj + FjFi = 0 if |i− j| > 0,

eifj − fjei = 0 if j ̸= i, i+ 1,

eifj − fjei = 0, fifj − fjfi = 0, eifj + fjei = 0 if |i− j| > 1,

eiej − ejei = 0, fjei − eifj = 0 if j ̸= i+ 1,

Fiej − ejFi = 0, Fifj − fjFi = 0 if i ̸= j, j + 1,

Fiej + ejFi = 0, Fifj + fjFi = 0 if i ̸= j, j + 1,

e2
i
= 0, f2

i
= 0, F 2

i
= 0,

ei+1ei − eiei+1 = eifi+1 + fi+1ei, fi+1fi − fifi+1 = fiei+1 + ei+1fi,

ei+1ei − eiei+1 = fi+1ei − eifi+1, fi+1fi − fifi+1 = ei+1fi − fiei+1,

eifi − fiei = −q
2ki − q2ki+1

q2 − 1
+
q2 − 1

q2
fiei,

fiei + q2eifi = − q2

q2 − 1
(q2ki − q2ki+1),

qeifi − q−1fiei =
(1 + q2)

2
qki+1Fi+1 = q−1fi+1fi+1 − qfi+1fi+1,

qFi+1ei − eiFi+1 = 0, qFifi − fiFi = 0,

Fiei − qeiFi = −2fiq
ki , q−1Fi+1fi − fiFi+1 = 2qki+1fi,
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Fiei + qeiFi = 2fiq
ki , Fifi + q−1fiFi = 0,

Fi+1ei + qeiFi+1 = 2eiq
ki+1 , Fi+1fi + q−1fiFi+1 = 0,

q−1e2i ei+1 − (q + q−1)eiei+1ei + qei+1e
2
i = 0,

qe2i+2ei − (q + q−1)ei+1eiei+1 + q−1eie
2
i+1 = 0,

qf2i fi+1 − (q + q−1)fifi+1fi + q−1fi+1f
2
i = 0,

q−1f2i+1fi − (q + q−1)fi+1fifi+1 + qfif
2
i+1 = 0,

q−1e2i ei+1 − (q + q−1)eiei+1ei + qei+1e
2
i = 0,

qf2i fi+1 − (q + q−1)fifi+1fi + q−1fi+1f
2
i = 0,

ei+1eiei+1 − eiei+1ei+1 − q2ei+1ei+1ei + q2ei+1eiei+1 = q2ki+1ei,

2qqki+1(fi+1fi − fifi+1) = (1− q−2)Fi+1(fi+1fi − fifi+1),

−2qqki+1(fi+1ei − eifi+1) = (1− q−2)Fi+1(ei+1ei − eiei+1),

−2qqki+1(fi+1fi + fifi+1) = (1− q−2)Fi+1(fi+1fi − fifi+1),

2qqki+1(fi+1ei − eifi+1) = (1− q−2)Fi+1(ei+1ei − eiei+1),

Proof. Let U be the unital associative superalgebra over C(q) generated by the elements ei, fi, ei, fi for i ∈ I,
Fi for i ∈ I ∪{n}, and qh for h ∈ P∨ with defining relations given in the statement of the proposition above.

We first note that using (3) and particular choices for i, j, k, l in (2) one can establish on a case-by-
case basis all relations in the proposition. Hence, we have an associative superalgebra homomorphism
ψ : U → Uqpn. The relations in (4) immediately show that ψ is surjective.

It remains to show that ψ is injective. For this, we prove that (2) is obtained from the relations in the
statement of the proposition by considering the following 26 cases:

1. |i| = |j| < |k| < |l|

2. |k| < |i| = |j| < |l|

3. |k| < |l| < |i| = |j|

4. |k| = |l| < |i| < |j|

5. |i| < |k| = |l| < |j|

6. |i| < |j| < |k| = |l|

7. |i| = |k| < |j| < |l|

8. |i| = |k| < |l| < |j|

9. |i| < |k| < |l| = |j|

10. |k| < |i| < |l| = |j|

11. |k| < |l| = |i| < |j|

12. |i| < |j| = |k| < |l|

13. |i| < |j| < |k| < |l|

14. |i| < |k| < |j| < |l|

15. |i| < |k| < |l| < |j|

16. |k| < |i| < |j| < |l|

17. |k| < |i| < |l| < |j|

18. |k| < |l| < |i| < |j|

19. |k| = |l| < |i| = |j|

20. |i| = |j| < |k| = |l|

21. |i| = |k| < |j| = |l|

22. |i| = |j| = |k| < |l|

23. |k| < |i| = |j| = |l|

24. |i| = |k| = |l| < |j|

25. |i| < |j| = |k| = |l|

26. |i| = |j| = |k| = |l|

The verification in each case uses the relations (5) and (6) and appropriate induction. In fact, for some
cases, we apply useful identities that follow from (5) and (6), see Lemma 2.1 below. For example, in Case 21
we use Lemma 2.1(c). For reader’s convenience, we write detailed proofs for cases 2 and 25. The remaining
cases are established using analogous reasoning.

Case 2. Suppose that |k| < |i| = |j| < |l| in (2). We prove that

(−1)(p(i)+p(j))(p(k)+p(ℓ))tijtkℓ − tkℓtij = 0
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is obtained from some of the relations in the proposition applying induction on |ℓ| − |i| first, and then
induction on |i| − |k|. We consider only the case of when i = −j > 0 and k, ℓ > 0 as the other cases follow
similarly.

We start with the base case of the first induction, i.e., ℓ = i+1. For the base case of the second induction,
we have i = k + 1. Then

tk+1,−k−1tk,k+2 − tk,k+2tk+1,−k−1 = − (q − q−1)2

2

(
Fk+1q

−kk+1(fk+1fk − fkfk+1)− q−kk+1(fk+1fk − fkfk+1)Fk+1

)
= − (q − q−1)2

2
q−kk+1 [q−2Fk+1(fk+1fk − fkfk+1)− (fk+1fk − fkfk+1)Fk+1]

= − (q − q−1)2

2
q−kk+1 [Fk+1fk+1fk − Fk+1fkfk+1 − fk+1fkFk+1 + fkfk+1Fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= − (q − q−1)2

2
q−kk+1 [q−1fk+1Fk+1fk − Fk+1fkfk+1 − fk+1fkFk+1 + qfkFk+1fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= − (q − q−1)2

2
q−kk+1 [fk+1(q

−1Fk+1fk − fkFk+1)− q(q−1Fk+1fk − fkFk+1)fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= − (q − q−1)2

2
q−kk+1 [2fk+1q

kk+1fk − 2qqkk+1fkfk+1 + (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= − (q − q−1)2

2
q−kk+1 [2qqkk+1(fk+1fk − fkfk+1) + (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= − (q − q−1)2

2
q−kk+1 [(1− q−2)Fk+1(fk+1fk − fkfk+1) + (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= 0.

The induction step for the second induction (i− k ≥ 2) is established as follows:

ti,−itk,i+1 − tk,i+1ti,−i = −q − q−1

2
[Fiq

−kk+1(fktk+1,i+1 − tk+1,i+1fk)− tk,i+1Fi]

= −q − q−1

2
[q−kk+1Fi(fktk+1,i+1 − tk+1,i+1fk)− tk,i+1Fi]

= −q − q−1

2
[q−kk+1(fktk+1,i+1 − tk+1,i+1fk)Fi − tk,i+1Fi]

= −q − q−1

2
[tk,i+1Fi − tk,i+1Fi]

= 0.

For the induction step of the first induction (ℓ− i ≥ 2) we proceed as follows:

ti,−itkℓ − tkℓti,−i = −q − q−1

2
[Fiq

−kℓ−1(fℓ−1tk,ℓ−1 − tk,ℓ−1fℓ−1)− q−kℓ−1(fℓ−1tk,ℓ−1 − tk,ℓ−1fℓ−1)Fi]

= −q − q−1

2
[q−kℓ−1Fi(fℓ−1tk,ℓ−1 − tk,ℓ−1fℓ−1)− q−kℓ−1(fℓ−1tk,ℓ−1 − tk,ℓ−1fℓ−1)Fi]

= −q − q−1

2
[q−kℓ−1(fℓ−1tk,ℓ−1 − tk,ℓ−1fℓ−1)Fi − q−kℓ−1(fℓ−1tk,ℓ−1 − tk,ℓ−1fℓ−1)Fi]

= 0

Case 25. Suppose that |i| < |j| = |k| = |l| in (2). We prove that

0 = (−1)(p(i)+p(j))(p(j)+p(k))qsgn(j)tijtkj − tkjtij
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for j = ℓ, and

0 = (−1)(p(i)+p(j))(p(j)+p(k))qsgn(j)tijtk,−j − tk,−jtij + (−1)p(i)δj>0(q − q−1)ti,−jtkj

for j = −ℓ, using some of the relations in the proposition. We proceed by induction on |j| − |i| and consider
only the case i > 0 and j = k > 0 as the other cases follow similarly.

For the base case j = i+ 1, the relations

qti,i+1ti+1,i+1 = ti+1,i+1ti,i+1

when j = ℓ, and

qti,i+1ti+1,−i−1 − ti+1,−i−1ti,i+1 = −(q − q−1)ti,−i−1ti+1,i+1

when j = −ℓ, follow from the relations qki+1fi = qfiq
ki+1 and fiFi+1 − q−1Fi+1fi = −2qki+1fi. For the

induction step (j − i ≥ 2) we have:

qtijtjj = qq−ki+1(fiti+1,j − ti+1,jfi)q
kj

= qkjq−ki+1(fiti+1,j − ti+1,jfi)

= tjjtij

for j = ℓ, and

qtijtj,−j = −q q − q−1

2
q−ki+1(fiti+1,j − ti+1,jfi)Fj

= −q q − q−1

2
q−ki+1fiti+1,jFj + q

q − q−1

2
q−ki+1ti+1,jfiFj

= −q − q−1

2
q−ki+1fi(Fjti+1,j + 2ti+1,−jq

kj ) +
q − q−1

2
q−ki+1(Fjti+1,j + 2ti+1,−jq

kj )fi

=
q − q−1

2
q−ki+1Fj(fiti+1,j − ti+1,jfi)− (q − q−1)q−ki+1(fiti+1,−j − ti+1,−jfi)q

kj

=
q − q−1

2
Fjq

−ki+1(fiti+1,j − ti+1,jfi)− (q − q−1)q−ki+1(fiti+1,−j − ti+1,−jfi)q
kj

= tj,−jtij − (q − q−1)ti,−jtjj

for j = −ℓ.

We define a standard grading onto Uqpn , namely we let deg ei = αi, deg fi = −αi, deg qh = 0, deg ei = γi,
deg fi = −γi, and degFi = −βi. With this grading, all of the defining relations of the quantum superalgebra
Uqpn are homogeneous. Hence, we say that Uqpn have a Q-grading

Uqpn =
⊕
α∈Q

(Uq)α,

where (Uq)α =
{
v ∈ Uqpn | qhvq−h = qα(h)v for all h ∈ P∨}. In what follows we write deg u = α whenever

u ∈ (Uq)α.

The comultiplication ∆ of Uqpn is given in [AGG] by the formula

∆(tij) =

n∑
k=−n

(−1)(p(i)+p(k))(p(k)+p(j))tik ⊗ tkj .

Through direct computations, we can express the comultiplication ∆ in terms of the new generators in
Proposition 2.2. The details are left to the reader.
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Lemma 2.3. In terms of the generators ei, fi, ei, fi for i ∈ I, Fi for i ∈ I ∪ {n}, and qh for h ∈ P∨, the
following hold in Uqpn:

∆(qh) = qh ⊗ qh,

∆(ei) = qki ⊗ ei + ei ⊗ qki+1 − q − q−1

2
ei ⊗ Fi+1,

∆(fi) = qki ⊗ fi + fi ⊗ qki+1 +
q − q−1

2
Fi ⊗ ei+1,

∆(ei) = qki ⊗ ei + ei ⊗ qki+1 ,

∆(fi) = qki ⊗ fi + fi ⊗ qki+1 − q − q−1

2
Fi ⊗ ei +

q − q−1

2
fi ⊗ Fi+1,

∆(Fi) = qki ⊗ Fi + Fi ⊗ qki .

Let U+
q (respectively U−

q ) be the subsuperalgebra of Uqpn generated by the elements ei and ei (respectively

fi, fi, and Fj) for i ∈ I (and j ∈ I ∪ {n}). Also, let U0
q be the subsuperalgebra of Uqpn generated by qh for

h ∈ P∨. In order to establish the triangular decomposition of Uqpn we need the following lemma.

Lemma 2.4. Let U≥0
q (respectively, U≤0

q ) be generated by U0
q and U+

q (respectively, U0
q and U−

q ). Then the
following C(q)-linear isomorphisms hold.

U≥0
q

∼= U0
q ⊗ U+

q , U≤0
q

∼= U−
q ⊗ U0

q.

Proof. We will prove the second isomorphism. Let {fζ | ζ ∈ Ω} be a basis of U−
q consisting of monomials in

fi’s, fi’s, and Fj ’s (1 ≤ i ≤ n−1, 1 ≤ j ≤ n), with Ω being an index set. Consider the map φ : U−
q ⊗U0

q → U≤0
q

defined by φ(fζ ⊗ qh) = fζq
h. The defining relations of Uqpn imply that fζq

h span U≤0
q , so φ is surjective.

It remains to show that the set {fζqh | ζ ∈ Ω, h ∈ P∨} is linearly independent over C(q).

Suppose ∑
ζ∈Ω
h∈P∨

Cζ,hfζq
h = 0,

for some Cζ,h ∈ C(q). Then

∑
α∈Q−

 ∑
deg fζ=α

h∈P∨

Cζ,hfζq
h

 = 0.

Write α = −
n−1∑
i=1

(miαi + niγi)−
n∑
i=1

riβi, for mi, ni, ri ∈ Z≥0, and let hα =

n−1∑
i=1

(mi + ni)ki+1 +

n∑
i=1

riki and

h′α =

n−1∑
i=1

(mi + ni)ki + riki. From Uqpn =
⊕
α∈Q

(Uq)α, we have that, for each α ∈ Q−,

∑
deg fζ=α

h∈P∨

Cζ,hfζq
h = 0. (7)

Since fζ is a monomial in fi’s, fi’s, and Fi’s, we have
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∆(fζ) = fζ ⊗ qhα + . . .+ qh
′
α ⊗ fζ .

Hence, the degree (α, 0) term in the decomposition of ∆(fζ) equals fζ⊗qhα . Applying the comultiplication
to (7) gives

∑
deg fζ=α

h∈P∨

Cζ,h(fζq
h ⊗ qh+hα + . . .+ qh+h

′
α ⊗ fζq

h) = 0.

Collecting the terms of degree (α, 0) gives that

∑
deg fζ=α

h∈P∨

Cζ,h(fζq
h ⊗ qh+hα) = 0.

Since for every α, the set {qh+hα | h ∈ P∨} is linearly independent, we have that, for all h ∈ P∨:

∑
deg fζ=α

Cζ,hfζq
h = 0.

Due to the linear independence of fζ , we conclude that Cζ,h = 0 for all ζ, h, as desired.

Theorem 2.5. There is a C(q)-linear isomorphism

Uq(pn) ∼= U−
q ⊗ U0

q ⊗ U+
q .

Proof. Let {fζ | ζ ∈ Ω}, {qh | h ∈ P∨}, and {eτ | τ ∈ Ω′} be monomial bases of U−
q , U

0
q, and U+

q , respectively,
where Ω is the index set as in the proof of Lemma 2.4, and Ω′ is another index set. Using the defining relations
of Uqpn in Proposition 2.2, we can express every monomial in Uq(pn) as a linear combination of monomials
each of which has ei and ei on the right. By Lemma 2.4, the monomials fζq

heτ span Uqpn. Hence, it remains
to show that fζq

heτ are linearly independent over C(q).

Suppose ∑
ζ∈Ω,τ∈Ω′

h∈P∨

Cζ,h,τfζq
heτ = 0,

where Cζ,h,τ is some nonzero constant in C(q). Due to the Q-grading of Uqpn, we have that, for all α ∈ Q:∑
deg fζ+deg eτ=α

h∈P∨

Cζ,h,τfζq
heτ = 0. (8)

Define a partial ordering on h∗ by λ ≤ µ if and only if λ − µ ∈ Q− for λ, µ ∈ h∗. We then choose
γ = deg fζ and β = deg eτ , which are minimal and maximal, respectively, among those for which γ + β = α
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and Cζ,h,τ ̸= 0. If γ = −
n−1∑
i=1

(miαi + niγi) −
n∑
i=1

riβi, set hγ =

n−1∑
i=1

(mi + ni)ki+1 +

n∑
i=1

riki, and if β =

n−1∑
i=1

(m′
iαi + n′iγi), set hβ =

n−1∑
i=1

(m′
iki + n′iki), for mi,m

′
i, ni, n

′
i, ri ∈ Z≥0.

The term of degree (0, β) in ∆(eτ ) is q
hβ ⊗eτ and the term of degree (γ, 0) in ∆(fζ) is fζ⊗qhγ . Applying

the comultiplication to the sum in (8), and looking at the terms of degree (γ, β), we have that∑
deg fζ=γ
deg eτ=β
h∈P∨

Cζ,h,τ (fζq
h+hβ ⊗ qh+hγeτ ) = 0.

By Lemma 2.4, the elements fζq
h are linearly independent for ζ ∈ Ω, h ∈ P∨. Thus, for all h ∈ P∨, we

have that

∑
deg eτ=β

Cζ,h,τq
h+hγeτ = 0.

Due to the linear independence of eτ , we conclude that Cζ,h,τ = 0, leading to contradiction. Therefore
all coefficients in (8) are zero.

3 Highest weight representation theory of Uqpn

A Uqpn-module V q is called a weight module if it admits a weight space decomposition

V q =
⊕
µ∈P

V qµ

where V qµ = {v ∈ V q | qhv = qµ(h)v for all h ∈ P∨} is the µ-weight space. We call µ ∈ P a weight of V q if
V qµ ̸= 0. A nonzero vector v ∈ V qµ is called a weight vector of weight µ. If v ∈ V q is a nonzero vector such
that U+

q v = 0, then v is called a maximal vector.

The dimension of each weight space dimV qµ is called the weight multiplicity of µ. If dimV qµ < ∞ for all
µ ∈ P , the character of V q is defined by

chV q =
∑
µ

dimF V
q
µ e

µ

where F = C(q) and eµ are formal basis elements of the group algebra F[P ] with multiplication defined by
eαeβ = eα+β .

The above definitions and notions can be introduced in the same way for Upn-modules over F = C.

Definition 3.1. A weight Uqpn-module V q is called a highest weight module with highest weight λ ∈ P if
the following holds for some nonzero v ∈ V q:

(a) v is a maximal vector of V q,

(b) v ∈ V qλ , and
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(c) V q = Uqpnv.

This vector v, which is unique up to a constant multiple, is called a highest weight vector of V q.

This definition, along with Theorem 2.5, shows that V q = U−
q v for any highest weight module with

highest weight vector v and highest weight λ.

Fix λ ∈ P and define Jq(λ) to be the left ideal of Uqpn generated by ei, ei, and q
h− qλ(h)1, for i ∈ I and

h ∈ P∨. Then Mq(λ) = Uqpn/J
q(λ) is the Verma module, which is a Uqpn-module by left multiplication.

Set v = 1+ Jq(λ). Then Mq(λ) is a highest weight module with highest weight λ and highest weight vector
v. The proof of the following proposition is standard. See, for example, the proof of Proposition 3.2.2 in
[HK], which uses the same arguments.

Proposition 3.2.

(a) Mq(λ) is a free U−
q -module of rank 1, generated by the highest weight vector v = 1 + Jq(λ).

(b) Every highest weight Uqpn-module with highest weight λ is a homomorphic image of Mq(λ).

(c) The Verma module Mq(λ) has a unique maximal submodule.

Let Nq(λ) denote the unique maximal submodule of the Verma module Mq(λ) from Proposition 3.2(c).
Then the unique irreducible quotient

V q(λ) =Mq(λ)/Nq(λ)

is the irreducible highest weight module over Uqpn with highest weight λ.

We note again that the definitions of highest weight module can be introduced in the same way for
Upn-modules over F = C. In the latter case we will use the notation M(λ) and V (λ) for the Verma module
and its irreducible quotient, respectively. We denote by Λ+ the set of pn-dominant integral weights:

Λ+ := {λ1ϵ1 + . . .+ λnϵn ∈ h∗ | λi − λi+1 ∈ Z≥0, ∀i ∈ I}.

The following proposition and theorem will be used to prove an important result concerning highest weight
modules over Uqpn.

Proposition 3.3. Let V be a highest weight pn-module with highest weight λ ∈ Λ+ and highest weight vector

v such that f
λ(ki)−λ(ki+1)+1
i v = 0 for all i ∈ I. Then V is finite dimensional.

Proof. The proof is of this is similar to that of Proposition 1.9 in [GJKK]. The main idea of the proof
is that since e2

i
= 0 and f2

i
= 0, then, with the aid of the Poincaré-Birkhoff-Witt theorem, we show that

Uq(pn)0v, where (pn)0 is generated by {ei, fi, kj | i ∈ I, j ∈ J}, is finite generated, using the fact that

f
λ(ki)−λ(ki+1)+1
i v = 0 and v is a highest weight vector. For details, see the proof of Proposition 1.9 in
[GJKK].

Theorem 3.4 ([K2]). For any weight λ ∈ h∗, V (λ) is finite dimensional if and only if λ ∈ Λ+.

We recall some standard definitions from q-calculus. We set

[n]q :=
qn − q−n

q − q−1
.

We also define [0]q! := 1, and [n]q! = [n]q · [n− 1]q · . . . · [1]q. The divided powers of ei and fi are:

e
(m)
i :=

emi
[m]q!

, f
(m)
i :=

fmi
[m]q!
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Lemma 3.5. For all i ∈ I and m ∈ Z≥0, we have

(a)

eif
(m)
i = f

(m)
i ei − f

(m−1)
i

q−m+1q2ki − qm−1q2ki+1

q2 − 1
+ (1− q−2)

(
qm−1f

(m−1)
i fi +

q2m−2

2
qkiFif

(m−2)
i

)
ei,

(b)

fie
(m)
i = e

(m)
i fi + q2e

(m−1)
i

qm−1q2ki − q−m+1q2ki+1

q2 − 1
+ (q2 − 1)

(
q2e

(m−1)
i eifi −

1

2
e
(m−2)
i qki+1eiFi+1

)
(in the case m = 1 we assume that the terms involving f

(m−2)
i and e

(m−2)
i are zero).

Proof. We prove (a) by induction on m. The base case m = 1:

eifi = fiei −
q2ki − q2ki+1

q2 − 1
+
q2 − 1

q2
fiei

follows from Proposition 2.2. For the base case m = 2 we multiply the above relation on the right by fi and
obtain:

eif
2
i = fieifi −

q2ki − q2ki+1

q2 − 1
fi +

q2 − 1

q2
fieifi

= f2i ei − fi
q2ki − q2ki+1

q2 − 1
+ (1− q−2)fifiei − fi

q−2q2ki − q2q2ki+1

q2 − 1
+ (1− q−2)fieifi

= f2i ei − fi
(1 + q−2)q2ki − (1 + q2)q2ki+1

q2 − 1
+ (1− q−2) (fifi + fifi) ei

= f2i ei − fi
(1 + q−2)q2ki − (1 + q2)q2ki+1

q2 − 1
+ (1− q−2)

(
(1 + q2)fifi +

1 + q2

2
qqkiFi

)
ei.

Dividing both sides by [2]q leads to the desired result for m = 2.

Now, suppose that (a) is true for some m. Then we have that

eif
(m)
i fi = f

(m)
i eifi − f

(m−1)
i

q−m+1q2ki − qm−1q2ki+1

q2 − 1
fi + (1− q−2)

(
qm−1f

(m−1)
i fi +

q2m−2

2
qkiFif

(m−2)
i

)
eifi

= f
(m)
i fiei − f

(m)
i

q2ki − q2ki+1

q2 − 1
+
q2 − 1

q2
f
(m)
i fiei − f

(m−1)
i

q−m+1q2ki − qm−1q2ki+1

q2 − 1
fi

+ (1− q−2)

(
qm−1f

(m−1)
i fifi +

q2m−2

2
qkiFif

(m−2)
i fi

)
ei

= f
(m)
i fiei − f

(m)
i

q2ki − q2ki+1

q2 − 1
− f

(m−1)
i fi

q−m−1q2ki − qm+1q2ki+1

q2 − 1

+ (1− q−2)

(
f
(m)
i fi + qm−1f

(m−1)
i fifi +

q2m−2

2
qkiFif

(m−2)
i fi

)
ei

= f
(m)
i fiei − f

(m)
i

q2ki − q2ki+1

q2 − 1
− f

(m−1)
i fi

q−m−1q2ki − qm+1q2ki+1

q2 − 1

+ (1− q−2)

(
f
(m)
i fi + qm+1f

(m−1)
i fifi + qm

1 + q2

2
f
(m−1)
i qkiFi +

q2m−2

2
qkiFif

(m−2)
i fi

)
ei

= [m+ 1]qf
(m+1)
i ei − f

(m)
i

(1 + q−m−1[m]q)q
2ki − (1 + qm+1[m]q)q

2ki+1

q2 − 1
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+ (1− q−2)

(
(1 + qm−1[m]q)f

(m)
i fi + q3m−2 1 + q2

2
qkiFif

(m−1)
i +

q2m−2[m− 1]q
2

qkiFif
(m−1)
i

)
ei.

Dividing both sides by [m+ 1]q completes the proof of (a).

The proof of (b) follows in a similar way, with the only main difference that we use the relation from
Lemma 2.1(c).

Proposition 3.6. Let λ ∈ Λ+ and V q(λ) be generated by a highest weight vector v. Then f
λ(ki)−λ(ki+1)+1
i v =

0 for all i ∈ I.

Proof. If f
λ(ki)−λ(ki+1)+1
i v ̸= 0 and U+

q f
λ(ki)−λ(ki+1)+1
i v = 0, then f

λ(ki)−λ(ki+1)+1
i v generates a nontrivial

proper submodule of V q(λ), which would be a contradiction to the fact that V q(λ) is irreducible. Therefore,

it is enough to show that U+
q f

λ(ki)−λ(ki+1)+1
i v = 0.

Note that for j ̸= i− 1, i, we have that

ejf
λ(ki)−λ(ki+1)+1
i v = f

λ(ki)−λ(ki+1)+1
i ejv = 0.

We next prove that ejf
λ(ki)−λ(ki+1)+1
i v = 0 for j = i, i − 1. In the case j = i, we use Lemma 3.5(a) for

m = λ(ki)− λ(ki+1) + 1:

eif
(m)
i v =

qm−1+2λ(ki+1) − q−m+1+2λ(ki)

q2 − 1
f
(m−1)
i v = 0.

For j = i− 1 we apply induction on m. The base case m = 1 follows from

ei−1fiv = fiei−1v −
1− q−2

2q
q−kiFi(eiei−1 − ei−1ei)v = 0.

Assume that ei−1f
m
i v = 0. Then we have

ei−1f
m+1
i v = fiei−1f

m
i v −

1− q−2

2q
q−kiFi(eiei−1 − ei−1ei)f

m
i v

= fiei−1f
m
i v −

1− q−2

2q
q−kiFieiei−1f

m
i v +

1− q−2

2q
q−kiFiei−1f

m
i eiv

=

(
fi −

1− q−2

2q
q−kiFiei

)
ei−1f

m
i v = 0.

Therefore, ejf
λ(ki)−λ(ki+1)+1
i v = 0 for all j ∈ I.

Lastly, we prove that ejf
λ(ki)−λ(ki+1)+1
i v = 0 for all j ∈ I. Note that for j ̸= i− 1,

ejf
λ(ki)−λ(ki+1)+1
i v = f

λ(ki)−λ(ki+1)+1
i ejv = 0.

For j = i− 1, using that ei−1f
m
i v = 0, we have

ei−1f
m+1
i v = fiei−1f

m
i v − eiei−1f

m
i v + ei−1eif

m
i v = fiei−1f

m
i v.

Thus we obtain ei−1f
m
i v = 0 by induction on m. Hence, U+

q f
λ(ki)−λ(ki+1)+1
i v = 0 and the proof is complete.
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4 Classical Limits

Let A1 be the localization of C[q] at the ideal generated by q − 1. Namely,

A1 = {f(q) ∈ C(q) | f is regular at q = 1}.

For an integer n ∈ Z, we define

[x;n]y :=
xyn − x−1y−n

y − y−1
, (x;n)y :=

xyn − 1

y − 1
.

In particular, [qh; 0]q, (q
h; 0)q ∈ U0

q.

Definition 4.1. The A1-form of Uqpn, denoted by UA1
, is the A1-subalgebra of Uqpn generated by the

elements ei, fi, ei, fi for i ∈ I, Fj for j ∈ I ∪ {n}, and qh, (qh; 0)q for h ∈ P∨.

Let U+
A1

(respectively, U−
A1

), be the A1-subalgebra of UA1
generated by the elements ei and ei for i ∈ I

(respectively, fi, fi, and Fj for i ∈ I and j ∈ I ∪ {n}). Let U0
A1

be the A1-subalgebra of UA1 generated by

qh and (qh; 0)q for h ∈ P∨.

We will show that the triangular decomposition of Uqpn carries over to its A1-form. For this we first use
the following lemma, whose proof is identical to the one of Lemma 5.2 in [GJKK].

Lemma 4.2.

(a) (qh;n)q ∈ U0
A1

for all n ∈ Z and h ∈ P∨.

(b) [qh; 0]q ∈ U0
A1

for all h ∈ P∨.

Proposition 4.3. The triangular decomposition of Uqpn in Theorem 2.5 induces an isomorphism of A1-
modules

UA1
∼= U−

A1
⊗ U0

A1
⊗ U+

A1
.

Proof. Consider the isomorphism φ : Uqpn −→ U−
q ⊗ U0

q ⊗ U+
q from Theorem 2.5. Note that the following

relations hold:

ei(qh; 0)q = (qh;−αi(h))qei ei(qh; 0)q = (qh;−γi(h))qei
(qh; 0)qfi = fi(q

h;−αi(h))q (qh; 0)qfi = fi(q
h;−γi(h))q

(qh; 0)qFi = Fi(q
h;−β(h))q

eifi = fiei − q−1qki+ki+1
[
qki−ki+1 ; 0

]
q
+
q2 − 1

q2
fiei

eifi+1 = fi+1ei −
q − q−1

2
Fi+1q

−ki+1(ei+1ei − eiei+1) eifj = fjei for j ̸= i, i+ 1

eifi = q−1fiei +
q2 + 1

2q3
Fi+1q

ki+1 ei+1fi = fiei+1 + fi+1fi − fifi+1

eifi+1 = fi+1ei +
q − q−1

2
Fi+1q

−ki+1(ei+1ei − eiei+1) eifj = fjei for |i− j| > 1

eifi+1 = fi+1ei − ei+1ei + eiei+1 eifj = fjei for j ̸= i+ 1

eifi = −q−2fiei − q−1qki+ki+1
[
qki−ki+1 ; 0

]
q

eifi+1 = −fi+1ei + ei+1ei − eiei+1

ei+1fi = −fiei+1 + fi+1fi − fifi+1 eifj = fjei for |i− j| > 1
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eiFi = q−1Fiei + 2q−1fiq
ki eiFi+1 = qFi+1ei

eiFi = −q−1Fiei + 2q−1fiq
ki eiFi+1 = −q−1Fi+1ei + 2qki+1ei

eiFj = Fjei for j ̸= i, i+ 1 eiFj = Fjei for j ̸= i, i+ 1

These relations, together with Lemma 4.2, imply that the image of the restriction φ of φ to UA1 is a
subset of U−

A1
⊗ U0

A1
⊗ U+

A1
. To define an inverse of φ we multiply the corresponding terms in the tensor

product. This completes the proof.

Definition 4.4. The A1-form of the highest weight module V q with highest weight λ ∈ P and highest weight
vector v is the UA1

-module VA1
= UA1

v.

For the rest of the section, by V q we denote a highest weight module over Uqpn with highest weight
λ ∈ P and highest weight vector v. We can strengthen the above definition with the following proposition:

Proposition 4.5. With the notation as above:

VA1 = U−
A1
v.

Proof. In the light of Proposition 4.3, it suffices to show that U+
A1
v = 0 and U0

A1
v = A1v. The former

identity follows from the fact that v is a highest weight vector. For the latter identity we use following:

qhv = qλ(h)v, (qh; 0)qv =
qλ(h) − 1

q − 1
v.

For each µ ∈ P , we set (VA1)µ = VA1 ∩ V qµ . The following shows that the weight space decomposition of
V q carries over to VA1 .

Proposition 4.6. VA1
has the weight space decomposition VA1

=
⊕
µ≤λ

(VA1
)µ.

Proof. The idea is standard but for reader’s convenience we present the proof. Let v = v1 + . . .+ vp ∈ VA1
,

where vj ∈ V qµj
and µj ∈ P for each j ∈ {1, 2, . . . , p}. We can assume that µj are distinct due to the weight

decomposition of V q. Therefore, it is enough to show that vj ∈ VA1
for each j.

Fix an index j. For each i ̸= j, choose hi ∈ P∨ such that µj(hi) ̸= µi(hi). Let u ∈ UA1
be defined by

u :=
∏
i ̸=j

(
qhi ;−µi(hi)

)
q(

qµj(hi);−µi(hi)
)
q

.

Then for each i ̸= j: (
qhi ;−µi(hi)

)
q(

qµj(hi);−µi(hi)
)
q

vk =
q−µi(hi)qhi − 1

q−µi(hi)qµj(hi) − 1
vk =

q−µi(hi)qµk(hi) − 1

q−µi(hi)qµj(hi) − 1
vk,

where k ∈ {1, 2, . . . , p}. Therefore uvj = vj and uvi = 0. Hence, vj = uv ∈ VA1
.

Proposition 4.7. For each µ ∈ P , the weight space (VA1
)µ is a free A1-module with rankA1

(VA1
)µ =

dimC(q) V
q
µ .
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Proof. Since A1 is a principal ideal domain, every finitely generated torsion-free module over A1 is free.
Notice that, for each µ ∈ P , the weight space (VA1)µ is finitely generated as an A1-module. The weight
space is also torsion free, as otherwise it would contradict the fact that A1 is an integral domain. Thus, for
each µ ∈ P , the weight space (VA1

)µ is a free A1-module.

Since C(q) is the field of quotients of A1, a set of vectors of a C(q)-vector space is linearly independent
if and only if it is A1-linearly independent. Thus rankA1

(VA1
)µ ≤ dimC(q) V

q
µ . Let fζ ’s be some monomials

in fi’s, fj ’s, and Fℓ’s. Since {fζ} forms a linearly independent set over C(q), {fζv | ζ ∈ Z} is a C(q)-basis
of V qµ for an appropriate set Z. This basis is also contained in (VA1

)µ by definition. So we have that
rankA1

(VA1
)µ ≥ dimC(q) V

q
µ , which completes the proof.

Combining the previous two propositions gives us the following:

Corollary 4.8. The map ϕ : C(q)⊗A1 VA1 → V q, f ⊗ v 7→ fv, is an isomorphism of C(q)-vector spaces.

Let J1 be the maximal ideal of A1 generated by q − 1. Then there is a canonical isomorphism of fields

A1/J1
∼−−→ C given by f(q) + J1 7−→ f(1).

Define the C-vector spaces

U1 = (A1/J1)⊗A1 UA1 ,

V 1 = (A1/J1)⊗A1
VA1

.

Note that since VA1 is a UA1-module, V 1 is naturally a U1-module. Note that

U1
∼= UA1

/J1UA1
and V 1 ∼= VA1

/J1VA1
,

which gives rise to the following natural maps

UA1 −→ UA1/J1UA1
∼= U1,

VA1
−→ VA1

/J1VA1
∼= V 1.

Note that q is mapped to 1 under these maps, hence U1 can be considered as the limit of Uqpn at q = 1.
The passage under these maps is referred to as taking the classical limit. We write x for the image of x
under these maps.

Let h ∈ U1 denote the classical limit of the element (qh; 0)q ∈ UA1 . The following is standard (see for
example Lemma 3.4.3 in [HK]):

Lemma 4.9.

(a) For all h ∈ P∨, qh = 1

(b) For any h, h′ ∈ P∨, h+ h′ = h+ h′.

This lemma shows that the image of U0
A1

under the classical limit is quite close to U0 = U(h).

For each µ ∈ P , define V 1
µ = (A1/J1)⊗A1

(VA1
)µ ∼= (VA1

)µ/J1(VA1
)µ.

Lemma 4.10.
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(a) For each µ ∈ P , if {vi | i = 1, ...,m} is a basis of the free A1-module (VA1
)µ, then {vi | i = 1, ...,m} is

a basis of the C-vector space V 1
µ .

(b) For each µ ∈ P , a subset {vi | i = 1, ...,m} of (VA1)µ is A1-linearly independent if the {vi | i =
1, ...,m} ⊂ V 1

µ is C-linearly independent.

Proof. We first prove that vi, i = 1, ...,m, span V 1
µ . For every v in V 1

µ = (A1/J1)⊗A1
(VA1

)µ we have

v =

m∑
i=1

ai ⊗A1 vi =

m∑
i=1

bi(1⊗A1 vi) =

m∑
i=1

bivi,

where ai = bi + J1 ∈ A1/J1, vi = (1 ⊗A1
vi). So the set {1 ⊗A1

vi} C-spans V 1
µ . The linear independence

follows from the fact that {vi}, i = 1, ...,m, are A1-linearly independent.

We now prove part (b). Assume that

m∑
i=1

ci(q)vi = 0 for ci(q) ∈ A1, with some cj(q) ̸= 0 for some j.

Then, multiplying by an appropriate power of q − 1, we may assume that cj(1) ̸= 0. Applying the classical

limit gives

m∑
i=1

ci(1)vi = 0. This contradicts the linear independence of vi, i = 1, ...,m.

The following proposition is the analogue of Propositions 4.6 and 4.7 for V 1.

Proposition 4.11.

(a) V 1 =
⊕
µ≤λ

V 1
µ

(b) For each µ ∈ P , dimC V
1
µ = rankA1(VA1)µ

Proof. The first assertion follows from Proposition 4.6, while the second assertion follows from Lemma
4.10.

The following theorem shows that the classical limit of Uqpn is isomorphic to Upn.

Theorem 4.12.

(a) The elements ei, ei, fi, fi, (i ∈ I) Fi, (i ∈ I ∪ {n}) and h (h ∈ P∨) satisfy the defining relations of
Upn. Moreover, there exists a C-superalgebra isomorphism φ : Upn −→ U1 and the U1-module V 1 has
a Upn-module structure.

(b) For each µ ∈ P and h ∈ P∨, the element h acts on V 1
µ as scalar multiplication by µ(h). So, V 1

µ is the
µ-weight space of the Upn-module V 1.

(c) As a Upn-module, V 1 is a highest weight module with highest weight λ ∈ P and highest weight vector
v.

Proof. To prove (a), we recall that by Theorem 4.1 in [AGG], there is a C-superalgebra isomorphism

ψ : Upn → UApn/(q − 1)UApn,

where A is the localization of C[q, q−1] at the ideal generated by q − 1, and UApn is the A-subalgebra
of Uqpn generated by a set of elements τij (for the precise definition of τij , see §4 in [AGG]). The map
θ : UApn/(q − 1)UApn → UA1/A1UA1 , defined by

θ(τ−i,−i−1) 7→ ei θ(τ−i,i+1) 7→ ei
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θ(τ i,i+1) 7→ fi θ(τ i,−i−1) 7→ fi

θ(τ i,−i) 7→ Fi θ(τ ii) 7→ ki

is also a C-superalgebra isomorphism. Indeed, this follows from the definition of the corresponding generators
and the fact that the classical limit of tij and τij coincide. Also, we have already established that σ :
UA1

/A1UA1
→ U1 is a C-superalgebra isomorphism by the definition of U1. Therefore, the map

ϕ = σ ◦ θ ◦ ψ : Upn −→ U1

is a C-superalgebra isomorphism.

To prove (b), let w ∈ (VA1)µ and h ∈ P∨. Then we have that

(qh; 0)qw =
qh − 1

q − 1
w =

qµ(h) − 1

q − 1
w.

Taking the classical limit of both sides gives hw = µ(h)w, as desired.

It remains to prove (c). From (b) we have that hv = λ(h)v. Since v is highest vector of VA1
with highest

weight λ, it follows that eiv = 0 and eiv = 0 for each i ∈ I. Therefore, (a) and Proposition 4.5 imply that
V 1 = U−

1 v = Up−n v. Hence, by definition, V 1 is a highest weight Upn-module with highest weight λ and
highest weight vector v.

Proposition 4.13. chV 1 = chV q

Proof. Propositions 4.7 and 4.11 imply that dimC V
1
µ = dimC(q) V

q
µ for each µ ∈ P . This, along with Theorem

4.12(b), gives us the desired result.

Corollary 4.14. V q(λ) is finite dimensional if and only if λ ∈ Λ+.

Proof. Let V q = V q(λ) with highest weight vector v, and suppose that λ ∈ Λ+. From Proposition 3.6, we

have that f
λ(ki)−λ(ki+1)+1
i v = 0 for all i ∈ I. Applying the classical limit leads to f

λ(ki)−λ(ki+1)+1

i v = 0. Since
V 1 is a highest weight module, Proposition 3.3 gives us that V 1 is finite dimensional. Thus, by Proposition
4.13, V q is finite dimensional.

Conversely, suppose that V q(λ) is finite dimensional. By Proposition 4.13, we have that V 1 is also finite
dimensional. By Proposition 3.4, we have that λ ∈ Λ+.

One peculiarity of the Lie algebra pn is that p+n and p−n do not have the same dimension: with our choice
of roots, there are more negative ones than positive ones. This is also reflected in the asymmetry between
Uqp

+
n and Uqp

−
n . A natural question to ask is how making the reverse choice of positive and negative roots

could have affected the results in the last two sections. In particular, a maximal vector v would be defined
as a vector such that Uqp

−
n v = 0. The main results like Proposition 4.13 and Corollary 4.14 would still hold.

This is not surprising considering, for instance, that Theorem 3.4 remains valid after reversing the choice of
positive and negative roots. Other results like Proposition 3.3 would have to be modified accordingly, e.g.
by replacing fi by ei.

Now that Verma modules and the notion of highest weight module have been defined for Uqpn, it is natural
to introduce the category Oq of representations of Uqpn. For quantized enveloping algebras of semisimple Lie
algebras, a definition of the category Oq is provided, for instance, in [AM], and is studied in loc. cit. mostly
in the case when q is a root-of-unity. The definition of category O for Lie superalgebras with triangular
decomposition is also given in loc. cit. We can combine both definitions into the following in the case of pn.

Definition 4.15. The category Oq for Uqpn consists of (left) modules M such that
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1. M is finitely generated;

2. M is a weight module;

3. M is a locally finite module over Uqp
+
n .

Verma modules Mq(λ) belong to Oq and their irreducible quotients V q(λ) exhaust all the irreducible
objects in Oq up to isomorphism.

For the Lie superalgebra pn, one can consider both its category O and the category O0 of its even part
gln, and use restriction and induction functors to relate both. Unfortunately, Uqgln is not a subalgebra of
Uqpn as the defining relations of Uqpn show. Moreover, the subalgebra of Uqpn generated by ei, fi, q

ki and
qki+1 is not isomorphic to Uqgl2, we don’t know what is the center of Uqpn and what could replace the Weyl
group that control in part the combinatorics of the category O for semisimple Lie algebras. We do not
address here how to circumvent these difficulties.

5 Category of Tensor Representations of Uqpn-modules

In this final section we discuss the category of tensor representations of Uqpn. It is shown in [Mo] that the
pn-module C(n|n)⊗k is not completely reducible for any k ≥ 2. We will prove a similar result for Uqpn.

Let V = Cq(n|n). The action of the generators tij of Uqpn on V is given by the following formulas
obtained in [AGG]:

tii(ua) =

n∑
b=−n

qδbi(1−2p(i))+δb,−i(2p(i)−1)Ebb(ua);

ti,−i(ua) = (q − q−1)δi>0E−i,i(ua);

tij(ua) = (q − q−1)(−1)p(i)Eji(ua), if |i| ≠ |j|.

The action of the Drinfeld-Jimbo generators of Uqpn in (3) then follows. We can then extend this action to
V ⊗k through comultiplication given in Lemma 2.3.

Recall also from [AGG] the Uqpn-module homomorphisms c : Cq(n|n)⊗2 −→ Cq(n|n)⊗2 and t : Cq(n|n)⊗2 −→
Cq(n|n)⊗2, where

c =

n∑
a,b=−n

(−1)p(a)p(b)Eab ⊗ E−a,−b,

t =

n∑
i,j=−n

(−1)p(j)Eij ⊗ Eji + (q − 1)

n∑
i=1

(E−i,i ⊗ Ei,−i)

+ (q − 1)

n∑
i=1

(Eii ⊗ Eii)− (q−1 − 1)

n∑
i=1

(Ei,−i ⊗ E−i,i)

− (q−1 − 1)

n∑
i=1

(E−i,−i ⊗ E−i,−i) + (q − q−1)

n∑
i=1

(Eii ⊗ E−i,−i)

+ (q − q−1)
∑

|j|<|i|

(Ejj ⊗ Eii) + (q − q−1)
∑

|j|<|i|

(
(−1)p(i)p(j)Eji ⊗ E−j,−i

)
.

These maps are then extended to Uqpn-module homomorphisms ci : Cq(n|n)⊗k −→ Cq(n|n)⊗k and ti :
Cq(n|n)⊗k −→ Cq(n|n)⊗k by applying c and t, respectively, to the ith and (i+1)th tensors. We will refer to
the map c as the contraction map.
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Remark 5.1. The contraction map in [Mo] requires a sign change. As a result some of the subsequent
theorems have to be modified in [Mo]. Namely, the results in Sections 6.1 and 6.2 in [Mo] need to be
corrected and the correct version can be obtained by taking q = 1 of our results in this section.

5.1 Maximal vectors in V ⊗k

In this subsection we describe the complete set of linearly independent maximal vectors in the Uqpn-module
V ⊗k. Following the ideas in Theorem 3.8 of [Mo], we will use a q-analogue of the Young symmetrizer defined
in [Gy] to define these maximal vectors.

Let Sk be the symmetric group on the set {1, . . . , k}, and let S := {s1, . . . , sk} where si = (i, i+1). Recall
that the periplectic q-Brauer algebra Bq,k is generated by ti and ci for 1 ≤ i ≤ k − 1 and satisfies a set of
relations listed in Definition 5.1 of [AGG]. The action of Bq,k on Cq(n|n)⊗k is given by ti and ci acting by
ti and ci, respectively.

We consider the Hecke algebra Hk as the subalgebra of Bq,k generated by {h(si) = ti | i = 1, 2, . . . , k−1}
subject to the following relations:

(h(si)− q)(h(si) + q−1) = 0,

h(si)h(si+1)h(si) = h(si+1)h(si)h(si+1).

If σ is a permutation having a reduced decomposition σ = si1 · · · siℓ we set h(σ) = h(si1) · · ·h(siℓ). Then
h(σ)h(σ′) = h(σσ′) if ℓ(σσ′) = ℓ(σ) + ℓ(σ′), where σ, σ′ ∈ Sk and ℓ(σ) is the length of the permutation σ.

Define the following element of Bq,k:

cr,s := h(σr,s)c1h
−1(σr,s),

where σr,s := (1, r)(2, s).

For j ∈
{
1, . . . ,

⌊
k

2

⌋}
and two disjoint ordered subsets r̃ = {r1, . . . , rj} and s̃ = {s1, . . . , sj} of {1, . . . , k}

such that ri < si for all i = 1, . . . , j, set

cr̃,s̃ := cr1,s1 · · · crj ,sj , c∅,∅ := id.

We set (r̃, s̃) = {(r1, s1), . . . , (rj , sj)} and denote by P(j) the set of all (r̃, s̃) such that the cardinality of

both r̃ and s̃ equal j. Set P =

⌊ k
2 ⌋⋃
j=0

P(j).

We follow the common definition of standard tableau as given for instance in [Gy]. If λ is a partition of
N we write λ ⊢ N . Let λ ⊢ N have length at most 2n. Following [Gy], we define two standard tableaux
T+ = T+(λ) and T− = T−(λ) depending on λ, where the entries of T+ increase by one across the rows from
left to right, and the entries of T− increase by one down the columns. Let W+ (respectively, W−) be the
group of all elements in SN which permute the entries within each row of T+ (respectively, each column of
T−).

Let

e+ = e+(λ) :=
∑
σ∈W+

qℓ(σ)h(σ),

e− = e−(λ) :=
∑
σ∈W−

(−q)−ℓ(σ)h(σ).
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Note that for each s = si in W+,

e+ =
∑
σ∈W+
sσ>σ

qℓ(σ)(1 + qh(s))h(σ).

Thus, we have that (1− q−1h(s))e+ = 0, or in other words, h(s)e+ = qe+. Hence

h(ρ)e+ = qℓ(ρ) e+

for ρ ∈W+. With the same reasoning we obtain analogous identities included in the following Lemma.

Lemma 5.2. For ρ ∈W+ and ρ′ ∈W−,

h(ρ)e+ = e+h(ρ) = qℓ(ρ)e+,

h(ρ′)e− = e−h(ρ
′) = (−q)−ℓ(ρ

′)e−.

Let T be a standard tableaux of shape λ ⊢ k. Denote by σT± the permutation that transforms T± to T .
Note that the set σT+W+(σ

T
+)

−1 (respectively, σT−W−(σ
T
−)

−1) consists of all permutations that permute the
rows (respectively, columns) of T .

Define xT (q) ∈ Hk by

xT (q) := h(σT−) e−
(
h(σT−)

)−1
h(σT+) e+

(
h(σT+)

)−1
.

Note that there exists ξ ∈ C(q), depending on the shape λ of the tableau T , such that

xT (q)
2 = ξxT (q).

Then the q-analogue of the Young symmetrizer as defined in [Gy] is

yT (q) =
1

ξ
xT (q).

In what follows for a subset A of {1, 2, ..., k} by Ac we denote its complement. Denote by ST((r̃ ∪ s̃)c)

the set of all standard tableaux of shape µ ⊢ k − 2j, for some j ∈
{
0, 1, . . . ,

⌊
k

2

⌋}
, with entries in (r̃ ∪ s̃)c,

where (r̃, s̃) ∈ P(j).

For each τ ∈ ST((r̃ ∪ s̃)c), define the associated simple tensor of τ by wτ,r̃,s̃ := w1 ⊗ . . .⊗ wk, where

wi :=


u1 if i ∈ r̃

u−1 if i ∈ s̃

uj if j ∈ (r̃ ∪ s̃)c and i is in jth row of τ.

We now prove a q-anologue of Theorem 3.8 in [Mo].

Theorem 5.3. Let n and k be positive integers such that n ≥ k. Then

{yτcr̃,s̃wτ,r̃,s̃ | (r̃, s̃) ∈ P, τ ∈ ST((r̃ ∪ s̃)c), ℓ(τ) ≤ n}

is a linearly independent set of maximal vectors in the Uqpn-module V ⊗k.

Proof. Let w = wτ,r̃,s̃ and θ = yτcr̃,s̃w. Note that the weight of θ is the same as the weight of w since yτ cr̃,s̃
commutes with the action of Uqpn. Note that the fact that θ ̸= 0 and the linear independence property
follow by applying the classical limit and using Theorem 3.8 in [Mo].
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To show that θ is a maximal vector, it suffices to show that θ is annihilated by each root vector ei and
ei, i ∈ I. The action of ei and ei on w can be explicitly written as follows

ei(w1 ⊗ . . .⊗ wk) =

k∑
a=1

(−1)p(w1)+...+p(wa−1)qkiw1 ⊗ . . .⊗ qkiwa−1 ⊗ eiwa ⊗ qki+1wa+1 ⊗ . . .⊗ qki+1wk,

ei(w1 ⊗ . . .⊗ wk) =

k∑
a=1

qkiw1 ⊗ . . .⊗ qkiwa−1 ⊗ eiwa ⊗ qki+1wa+1 ⊗ . . .⊗ qki+1wk

−q − q−1

2

k∑
a,b=1
a<b

(−1)p(w1)+...+p(wa−1)qkiw1 ⊗ . . .⊗ qkiwa−1 ⊗ eiwa ⊗ qki+1wa+1 ⊗ . . .

⊗ qki+1wb−1 ⊗ Fi+1wb ⊗ qki+1wb+1 ⊗ ...⊗ qki+1wk.

(9)

Let x = ei or x = ei. We look at how x acts on cr̃,s̃w. Note that cV ⊗2 is the trivial Uqpn-module C(q).
Therefore the sum of the terms with x acting on a pair of contracted tensor factors is zero. Also, from (9),
we see that the action of x on non-contracted tensor factors, or in other words where wi ∈ V0, those specific
terms in the summation will be zero, except when x = ej−1 for some j ≥ 2. Thus x either annihilates cr̃,s̃w
or produces a sum of tensors which are obtained by applying x = ej−1, for some j ≥ 2, to a factor unaffected
by cr̃,s̃. Each of those tensors has one factor whose subscript is in (r̃ ∪ s̃)c and has been lowered by one, so
uj has been changed to uj−1. Denote such a tensor by v. We want to show that yτv = 0.

Fix ψ ∈W+. There are two factors of the tensor h(στ+)h(ψ)h(σ
τ
+)

−1v that have the same uj . Then there
exists a transposition (a, b) = (στ−)ρ (σ

τ
−)

−1 ∈ (στ−)W−(σ
τ
−)

−1 which permutes these two factors. Using that
ℓ(a, b) = ℓ(ρ), we obtain

h(στ−)h(ρ)h(σ
τ
−)

−1 h(στ+)h(ψ)h(σ
τ
+)

−1v = h(a, b)h(στ+)h(ψ)h(σ
τ
+)

−1v = qℓ(ρ)h(στ+)h(ψ)h(σ
τ
+)

−1v.

By Lemma 5.2, we have that for ρ ∈W−,

(−q)−ℓ(ρ)e− = e− h(ρ) =
∑
σ∈W−

(−q)−ℓ(σ)h(σ)h(ρ)

and hence

h(στ−)e− h(σ
τ
−)

−1 =
∑
σ∈W−

(−q)−ℓ(σ)+ℓ(ρ)h(στ−)h(σ)h(στ−)−1 h(στ−)h(ρ)h(σ
τ
−)

−1

Thus we have

h(στ−)e− h(σ
τ
−)

−1h(στ+)h(ψ)h(σ
τ
+)

−1v =
∑
σ∈W−

(−q)−ℓ(σ)+ℓ(ρ)h(στ−)h(σ)h(στ−)−1 h(στ−)h(ρ)h(σ
τ
−)

−1h(στ+)h(ψ)h(σ
τ
+)

−1v

=
∑
σ∈W−

(−q)−ℓ(σ)+ℓ(ρ)qℓ(ρ)h(στ−)h(σ)h(στ−)−1 h(στ+)h(ψ)h(σ
τ
+)

−1v

= (−1)ℓ(ρ)q2ℓ(ρ)
∑
σ∈W−

(−q)−ℓ(σ)h(στ−)h(σ)h(στ−)−1 h(στ+)h(ψ)h(σ
τ
+)

−1v

= (−1)ℓ(ρ)q2ℓ(ρ)h(στ−)e− h(σ
τ
−)

−1h(στ+)h(ψ)h(σ
τ
+)

−1v.

Hence,
h(στ−)e− h(σ

τ
−)

−1h(στ+)h(ψ)h(σ
τ
+)

−1v = 0

for each ψ ∈W+. Therefore, we have that

h(στ−)e− h(σ
τ
−)

−1h(στ+)e+ h(σ
τ
+)

−1v =
∑
ψ∈W+

qℓ(ψ)h(στ−)e− h(σ
τ
−)

−1h(στ+)h(ψ)h(σ
τ
+)

−1v = 0.

This concludes the proof of yτv = 0.
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5.2 Decomposition of V ⊗2

By Theorem 5.3, the following vectors are linearly independent maximal vectors of the Uqpn-module V ⊗2:

θq1 = y 1 2 (u1 ⊗ u1) = u1 ⊗ u1,

θq2 = y 1
2

(u1 ⊗ u2) =
1

1 + q−2
(q−1u1 ⊗ u2 − u2 ⊗ u1),

θq3 = c1(u1 ⊗ u−1) =

n∑
i=−n

ui ⊗ u−i,

where

y 1 2 =
1

1 + q2
(1 + qt1),

y 1
2

=
1

1 + q−2
(1− q−1t1).

Proposition 5.4. The vectors θq1, θ
q
2, θ

q
3 form a complete set of linearly independent maximal vectors of the

Uqpn-module V ⊗2. Moreover, θq1, θ
q
3 ∈ y 1 2 V

⊗2 and θq2 ∈ y 1
2

V ⊗2.

Proof. Applying the classical limit to θqi yields the linearly independent maximal vectors θi in [Mo] (after
appropriate sign change for θq3, see Remark 5.1). Since the complete set of linearly independent maximal
vectors of the Upn-module V ⊗2 has exactly three vectors, the result follows from Proposition 4.13. The
second statement is subject to a direct verification.

In what follows we will show that V ⊗2 is isomorphic to the direct sum of the two indecomposable
representations, y 1 2 V

⊗2 and y 1
2

V ⊗2.

Proposition 5.5. The module y 1
2

V ⊗2 is reducible and indecomposable. More precisely, there is a non-split

exact sequence of Uqpn-modules

0 −→ V q(ϵ1 + ϵ2) −→ y 1
2

V ⊗2 −→ V q(0) −→ 0. (10)

Proof. We have that
c1y 1

2

V ⊗2 ⊂ c1V
⊗2 ∼= C(q).

However, since

c1y 1
2

(u1 ⊗ u−1) =
1

1 + q−2
c1[q

−2u1 ⊗ u−1 − u−1 ⊗ u−1] = θq3 ̸= 0, (11)

it follows that c1y 1
2

V ⊗2 cannot be zero. Therefore, c1y 1
2

V ⊗2 ∼= C(q). Consider the restriction of the

contraction map c1 to y 1
2

V ⊗2, and let N denote the kernel of this restriction. Then

y 1
2

V ⊗2/N ∼= C(q) ∼= V q(0).
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By Proposition 5.4, θq2 ∈ N and θq1, θ
q
3 /∈ N . Hence, by the same proposition, θq2 is the only, up to a scalar

multiple, maximal vector in N , in particular, N is simple. Thus

V q(ϵ1 + ϵ2) ∼= Uqpnθ
q
2 = N ⊊ y 1

2

V ⊗2.

This implies the exact sequence (10). The sequence does not split because y 1
2

V ⊗2 has a unique up to a

scalar multiple maximal vector.

Proposition 5.6. The module y 1 2 V
⊗2 is reducible and indecomposable. More precisely, there is a non-split

short exact sequences of Uqpn-modules

0 −→ V q(0) −→ y 1 2 V
⊗2 −→ V q(2ϵ1) −→ 0. (12)

Proof. We have that
y 1 2 c1 = c1.

This implies that
c1V

⊗2 ⊂ y 1 2 V
⊗2.

Note that θq1 ̸∈ c1V
⊗2. However, (11) gives that θq3 ∈ c1(V

⊗2). By Proposition 5.4, θq3 is the only, up to a
scalar multiple, maximal vector in c1V

⊗2. Thus, we have that

V q(0) ∼= Uqpnθ
q
3 ⊂ c1V

⊗2 ⊊ y 1 2 V
⊗2.

By Proposition 5.4, we have
y 1 2 V

⊗2/Uqpnθ
q
3
∼= V q(2ϵ1),

which implies the exact sequence (12). Since θq1 generates y 1 2 V
⊗2, the sequence does not split.

The following theorem is the main result of this subsection.

Theorem 5.7. As a Uqpn-module, we have the following decomposition

V ⊗2 = y 1 2 V
⊗2 ⊕ y 1

2

V ⊗2,

where the submodules in the above decomposition are involved in the non-split short exact sequences (10),
(12).

Proof. Let T : V ⊗2 −→ V ⊗2 be the Uqpn-module homomorphism defined by

T (v) = y 1 2 v.

Note that

y 1 2 y 1
2

=
1

(1 + q2)(1 + q−2)
(1 + qt1)(1− q−1t1) = 0.

So, we have that y 1
2

V ⊗2 ⊂ kerT , which implies that y 1
2

V ⊗2 = kerT since the only maximal vector of V ⊗2

in kerT is θq2. Thus we have a short exact sequence

0 −→ y 1
2

V ⊗2 −→ V ⊗2 −→ y 1 2 V
⊗2 −→ 0.

Using the embedding ι : y 1 2 V
⊗2 −→ V ⊗2 and that T ◦ ι = id, we see that the sequence above splits. The

remaining part of the theorem follows from Propositions 5.5 and 5.6.

26



5.3 Decomposition of V ⊗3

In this subsection we prove an analogous statement to Theorem 5.7 for V ⊗3. More precisely, we show that

V ⊗3 = y 1 2 3 V
⊗3 ⊕ y 1 2

3

V ⊗3 ⊕ y 1 3
2

V ⊗3 ⊕ y 1
2
3

V ⊗3 (13)

is the decomposition of V ⊗3 into indecomposables, where

y 1 2 3 =
1

1 + 2q2 + 2q4 + q6
(1 + qt1 + qt2 + q2t1t2 + q2t2t1 + q3t1t2t1),

y 1 2
3

=
1

q−2 + 1 + q2
[1 + qt1 + (q − q−1)t2 − t1t2 + (q2 − 1)t2t1 − qt1t2t1],

y 1 3
2

=
1

q−2 + 1 + q2
(1− q−1t1 − q2t2t1 + qt1t2t1),

y 1
2
3

=
1

1 + 2q−2 + 2q−4 + q−6
(1− q−1t1 − q−1t2 + q−2t1t2 + q−2t2t1 − q−3t1t2t1).

With a slight of notation, Theorem 5.3 implies that the following are linearly independent maximal
vectors of V ⊗3:

θq1 = c1(u1 ⊗ u−1 ⊗ u1),

θq2 = t2c1c2(u1 ⊗ u1 ⊗ u−1),

θq3 = c2(u1 ⊗ u1 ⊗ u−1),

θq4 = y 1 2 3 (u1 ⊗ u1 ⊗ u1),

θq5 = y 1 2
3

(u1 ⊗ u1 ⊗ u2),

θq6 = y 1 3
2

(u1 ⊗ u2 ⊗ u1),

θq7 = y 1
2
3

(u1 ⊗ u2 ⊗ u3).

The next proposition is proven in a similar way as Proposition 5.4.

Proposition 5.8. The vectors θqi , i = 1, ..., 7, form a complete set of linearly independent maximal vectors
of the Uqpn-module V ⊗3. Furthermore,

θq4, θq1 + qθq2 + q2θq3 ∈ y 1 2 3 V
⊗3,

θq5, −θq1 − (q − q−1)θq2 + θq3 ∈ y 1 2
3

V ⊗3,

θq6, −qθq2 + θq3 ∈ y 1 3
2

V ⊗3,

θq7 ∈ y 1
2
3

V ⊗3.
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We will now look into each of the submodules in the decomposition of (13).

Proposition 5.9. The module y 1
2
3

V ⊗3 is reducible and indecomposable. More precisely, we have the follow-

ing non-split short exact sequence

0 −→ V q(ϵ1 + ϵ2 + ϵ3) −→ y 1
2
3

V ⊗3 −→ V q(ϵ1) −→ 0. (14)

Proof. Consider the contraction map c1. Let N be the kernel of the restriction of c1 to y 1
2
3

V ⊗3. We have

that
c1y 1

2
3

V ⊗3 ⊂ c1V
⊗3 ∼= V = Cq(n|n)

and

c1y 1
2
3

(u1⊗u−1⊗u1) =
1

1 + 2q−2 + 2q−4 + q−6
c1[(1+q

2−q−4)u1⊗u−1⊗u1−q−2u1⊗u1⊗u−1+u−1⊗u1⊗u1] ̸= 0.

By Proposition 5.8, θq7 is the only maximal vector in N . Hence,

V q(ϵ1 + ϵ2 + ϵ3) ∼= Uqpnθ
q
7 = N ⊊ y 1

2
3

V ⊗3.

Moreover,
y 1

2
3

V ⊗3/Uqpnθ
q
7
∼= V q(ϵ1) ∼= Cq(n|n),

which implies the exact sequence. The sequence does not split because y 1
2
3

V ⊗3 has a unique up to a scalar

multiple maximal vector.

Proposition 5.10. The module y 1 2 3 V
⊗3 is reducible and indecomposable. More precisely, we have the

following non-split short exact sequence

0 −→ V q(ϵ1) −→ y 1 2 3 V
⊗3 −→ V q(3ϵ1) −→ 0. (15)

Proof. Let K = c1c2 + qt2c1c2 + q2c2. Note that

y 1 2 3 K = K.

It follows that
KV ⊗3 ⊂ y 1 2 3 V

⊗3.

Note that θq4 ̸= KV ⊗3. However, K(u1 ⊗ u1 ⊗ u−1) = θq1 + qθq2 + q2θq3. By Proposition 5.8, θq1 + qθq2 + q2θq3 is
the only, up to a scalar multiple, maximal vector in KV ⊗3. Thus, we have that

V q(ϵ1) ∼= Uqpn(θ
q
1 + qθq2 + q2θq3) ⊊ y 1 2 3 V

⊗3.

By Proposition 5.8, we have
y 1

2
3

V ⊗3/Uqpn(θ
q
1 + qθq2 + q2θq3)

∼= V q(3ϵ1).

which implies the exact sequence (15). Since θq4 generates y 1 2 V
⊗2, the sequence does not split.

28



Proposition 5.11. The module y 1 2
3

V ⊗3 is completely reducible as a Uqpn-module into a direct sum of

irreducible Uqpn-modules. More precisely, we have the following split short exact sequence

0 −→ V q(2ϵ1 + ϵ2) −→ y 1 2
3

V ⊗3 −→ V q(ϵ1) −→ 0. (16)

Proof. Consider the Uqpn-module homomorphism T : y 1 2
3

V ⊗3 → c2V
⊗3 such that T (y 1 2

3

v) = c2y 1 2
3

v.

Since

c2y 1 2
3

c2 =
q−2

q2 + 1 + q−2
c2,

we have that T is surjective and
c2y 1 2

3

V ⊗3 = c2V
⊗3.

Note that
y 1 2

3

c2(u1 ⊗ u1 ⊗ u−1) = −θq1 − (q − q−1)θq2 + θq3.

Thus, −θq1 − (q − q−1)θq2 + θq3 ∈ y 1 2
3

c2V
⊗3. However, u1 ⊗ u1 ⊗ u2 ̸∈ c2V

⊗3, which implies that θq5 ∈

y 1 2
3

c2V
⊗3. So, by Proposition 5.8, we have that

V q(ϵ1) ∼= Uqpn
(
− θq1 − (q − q−1)θq2 + θq3

)
= y 1 2

3

c2V
⊗3.

Since c2V
⊗3 ∼= V q(ϵ1), we have an inclusion map i : c2V

⊗3 → y 1 2
3

V ⊗3 such that i ◦ T = id. Therefore, the

following short exact sequence splits:

0 −→ kerT −→ y 1 2
3

V ⊗3 T−−→ c2V
⊗3 −→ 0

By Proposition 5.8, since θq5 ∈ kerT , we have that kerT = Uqpnθ
q
5
∼= V q(2ϵ1 + ϵ2). This implies the exact

sequence (16).

Proposition 5.12. The module y 1 3
2

V ⊗3 is isomorphic to y 1 2
3

V ⊗3 as Uqpn-modules. More precisely, we

have the following split short exact sequence

0 −→ V q(2ϵ1 + ϵ2) −→ y 1 3
2

V ⊗3 −→ V q(ϵ1) −→ 0. (17)

Proof. Let v1 = θq6, w1 = θq5, v2 = −qθq2 + θq3, and w2 = −θq1 − (q − q−1)θq2 + θq3. Consider the Uqpn-module
homomorphism

S : y 1 2
3

V ⊗3 −→ y 1 3
2

V ⊗3

such that
S(w1) = v1 and S(w2) = v2.

By Propositions 5.8 and 5.11, S is an isomorphism. The short exact sequence (17) then follows from
Proposition 5.11.

The following theorem is analogous to Theorem 5.7, but in the case of V ⊗3.

29



Theorem 5.13. As a Uqpn-module, we have the following decomposition

V ⊗3 = y 1 2 3 V
⊗3 ⊕ y 1 2

3

V ⊗3 ⊕ y 1 3
2

V ⊗3 ⊕ y 1
2
3

V ⊗3, (18)

where each submodule in the above decomposition are involved in either the non-split short exact sequences
(14) and (15), or in the split short exact sequences (16) and (17).

Proof. Let T : V ⊗3 −→ V ⊗3 be the Uqpn-module homomorphism defined by

T (v) = y 1 2 3 v.

Note that
y 1 2 3 K = 0,

where K = y 1 2
3

, y 1 3
2

, y 1
2
3

. By Proposition 5.8, this implies that −θq1−(q−q−1)θq2+θ
q
3,−qθ

q
2+θ

q
3, θ

5
q , θ

6
q , θ

7
q ∈

kerT . We have the short exact sequence

0 −→ kerT −→ V ⊗3 −→ y 1 2 3 V
⊗3 −→ 0.

Using the embedding ι : y 1 2 3 V
⊗3 −→ V ⊗3 and that T ◦ ι = id, we see that the sequence above splits.

Let T ′ : kerT −→ kerT be the Uqpn-module homomorphism defined by

T (v) = y 1 2
3

v.

Note that
y 1 2

3

K = 0,

where K = y 1 3
2

, y 1
2
3

. By Proposition 5.8, this implies that −qθq2 + θq3, θ
6
q , θ

7
q ∈ kerT ′. Using the embedding

ι′ : y 1 2
3

V ⊗3 −→ V ⊗3 and that T ′ ◦ ι′ = id, we see that the short exact sequence

0 −→ kerT ′ −→ kerT −→ y 1 2
3

V ⊗3 −→ 0.

splits. Using similar arguments, we have that kerT ′ = y 1 3
2

V ⊗3⊕y 1
2
3

V ⊗3, and thus the decomposition (18)

follows.

The remaining part of the theorem follows from Propositions 5.9, 5.10, 5.11, and 5.12.

5.4 Reducibility of V ⊗k

Theorem 5.14. For every k ≥ 2, the Uqpn-module V ⊗k is not completely reducible.
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Proof. Fix k ≥ 2, and assume for the sake of contradiction that V ⊗k is completely reducible. For any
r, s ∈ {1, 2 . . . , k − 1} such that r ̸= s,

cr,sV
⊗k ∼= V ⊗k−2.

Consecutive applications of cr,s to V ⊗k for appropriate r and s will lead to a submodule M of V ⊗k that
is isomorphic either to V ⊗2 or to V ⊗3. By Theorems 5.7 and 5.13, V ⊗2 and V ⊗3 are not completely
reducible. This leads to a contradiction as submodules of completely reducible modules are also completely
reducible.
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