
COPRODUCT FOR YANGIANS OF AFFINE KAC-MOODY ALGEBRAS

NICOLAS GUAY, HIRAKU NAKAJIMA, CURTIS WENDLANDT

Abstract. Given an affine Kac-Moody algebra, we explain how to construct a coproduct on
its associated Yangian. In order to prove that this coproduct is an algebra homomorphism,
we obtain, in the first half of this paper, a minimalistic presentation of the Yangian when the
Kac-Moody algebra is, more generally, symmetrizable.
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1. Introduction

The quantized enveloping algebra U~(g0) of a simple Lie algebra g0 is a Hopf algebra which
provides a quantization of a certain Lie bialgebra structure on g0. Being a Hopf algebra, it
not only possesses an associative product, but is also equipped with a coproduct. This is
what distinguishes it from the enveloping algebra U(g0) of g0 because, as algebras, U~(g0) is
actually a trivial deformation of U(g0). (This is a consequence of the vanishing of the second
Hochschild cohomology group of U(g0) - see Theorem XVIII.4.1 in [Kas95].) The definition
of the Drinfeld-Jimbo quantized enveloping algebra can be extended to any symmetrizable
Kac-Moody algebra. Furthermore, using what is commonly referred to as Drinfeld’s second
realization [Dri87], it is even possible to define affinizations of quantized Kac-Moody algebras
[Nak01, Her05] (see earlier references therein). These include, in particular, quantum toroidal
algebras.

There are two families of quantized enveloping algebras of affine type: the Drinfeld-Jimbo
quantum affine algebras U~(g) and the Yangians Y~(g0). (Here, g is the affine Lie algebra
corresponding to g0.) Although a priori quite different, there exist completions of these algebras
which are in fact isomorphic [GTL13] (see also [GM12] for the proof of a weaker result).
Furthermore, tensor equivalences between categories of representations of these two quantum
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groups have been established in [GTL16, GTL17]. It is also possible to associate a Yangian
Y~(g) to any symmetrizable Kac-Moody algebra g, in particular to an affine Lie algebra: one
thus obtains an affine Yangian. Quantum toroidal algebras and affine Yangians are two of the
main examples of quantized enveloping algebras of double affine type, a third example being
provided by the deformed double current algebras [Gua07, Gua09, GY17, TY18].

For both quantum affine algebras and Yangians there is a standard coproduct: in the former
case, it is the coproduct given in terms of the Kac-Moody generators (as in [CP95, Definition-
Prop. 6.5.1]), while in the latter case it is the coproduct given in terms of the generators
{X, J(X)}X∈g0 (as in [CP95, Theorem 12.1.1]). There also exist non-standard coproducts on
these two families which are originally due to V. Drinfeld - see Definition 3.2 in [DF93] and
§6 in [DK00]. Actually, the authors of [DK00] need to consider the double of the Yangian,
but it is also possible to degenerate the non-standard coproduct on quantum affine algebras
to obtain one on the Yangian itself - see [GTL17]. These have also appeared in the recent
work [YZ18] via an isomorphism between the Yangian and a cohomological Hall algebra which
turns out to be an isomorphism of bialgebras when the Yangian is equipped with the non-
standard coproduct and the cohomological Hall algebra is equipped with the comultiplication
constructed in loc. cit. For quantum affine algebras, the non-standard and standard coproducts
are related by a meromorphic twist (see [EKP07, Proposition 3.8], [KT94, Theorem 3.1] and
[GTL17]), and a rational version of this result is expected to hold for Yangians [GTL17].
(For the Yangian double, see [EF98, Proposition 5.1] and [Enr03, Remark 5].) The non-
standard coproducts are not exactly genuine coproducts as they involve infinite sums and map
into certain completed tensor products: see [Her05] and [GTL17]. Additionally, they cannot
always be used to define a module structure on tensor products of two modules because of
convergence issues. The definitions of these non-standard coproducts extend automatically to
quantum toroidal algebras and affine Yangians. In this context, they were used in the work of
D. Hernandez [Her05, Her07] and of B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin
[FFJ+11a, FFJ+11b, FJMM13]. The papers [FFJ+11a, FFJ+11b] are about the quantum
toroidal algebra of gl1 (which was however given the name quantum continuous gl∞). There is
also an affine Yangian of type gl1 studied, for instance, in [Tsy17, BT18]. This affine Yangian
was shown in [AS13] to be isomorphic to a certain algebra SHc which is a sort of stable limit
of spherical trigonometric Cherednik algebras of type gl` and was introduced in [SV13] where
it was used to prove a version of the AGT-conjecture. The algebra SHc, and thus the affine
Yangian of gl1, admits a topological coproduct which is close to the standard coproduct: see
Theorem 7.9 in [SV13]. It is not clear that the proof in [SV13] that the coproduct is well-
defined can be modified for general Y~(g). We will not consider the affine Yangian of type gl1
in the present paper.

The goal of the present paper is to introduce a coproduct ∆ on affine Yangians which is a
natural analog of the standard coproduct on Yangians of finite-dimensional simple Lie algebras.
We first define it via the action of the affine Yangian on the tensor product of two modules in
the category O (Definition 4.6) and prove that it is an algebra homomorphism (Theorem 4.9).
(Our proof also works for Y (g0); in this case, Theorem 4.9 is, of course, already known, but
a proof has never appeared in the literature.) In the subsequent section (§5), we introduce
a completion of the tensor product of the affine Yangian with itself and explain how ∆ can
be viewed as an algebra homomorphism from the affine Yangian into that completion: see
Proposition 5.18. That completion is defined using a grading which is not compatible with the
algebra structure on Y~(g)⊗ Y~(g), so an argument is needed to prove that the multiplication
on Y~(g)⊗Y~(g) extends to it (see Proposition 5.13). Furthermore, in §6, we introduce a third
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version of our coproduct which depends on a formal parameter u and which defines an algebra
homomorphism from Y~(g) to (Y~(g) ⊗ Y~(g))((u)), from which it is possible to recover the
algebra homomorphisms of Theorem 4.9 and Proposition 5.18. It has been used in [GRW18]
to give a proof of the PBW property for affine Yangians in the simply laced case. Moreover,
in §5, we need to assume two conditions regarding the existence of a triangular decomposition
of the Yangian and those are not needed in §6. One advantage of our coproduct is that it can
be used to define a module structure on the tensor product of two modules in the category O
without any convergence issues.

It is natural to conjecture that this new coproduct ∆ is related to the coproduct alluded to
two paragraphs above via a certain twist as suggested in [GTL17], but it is not at all clear
that this is the case because such a twist is expected to coincide with the lower triangular part
of the universal R-matrix of the Yangian and no universal R-matrix is known for the affine
Yangians. At least, in the case when g is symmetric, see the last part of the third paragraph
below.

In order to prove Theorem 4.9, we need to simplify the presentation of the affine Yangians:
this is accomplished in §2 - see Theorem 2.13. The results of this section are actually valid
more generally for Yangians of symmetrizable Kac-Moody algebras which satisfy certain mild
conditions. For affine Yangians, these conditions are equivalent to the assumption that g is

not of type A
(1)
1 or A

(2)
2 . However, we expect that Theorem 4.9 holds more generally for all

affine Lie algebras and even for any symmetrizable Kac-Moody algebra.

When g is of affine type A
(1)
n−1, it is possible to introduce an extra parameter ε in the

definition of Y~(g) in order to obtain a two parameter Yangian Y~,ε(g) (see Definition 7.1). All
the main results of this paper hold in this greater generality: this is briefly explained in §7.
These two parameter Yangians have been studied by the first named author in [Gua05, Gua07].
(Quantum toroidal algebras of type A can also depend on two parameters, see [VV98].)

When g is symmetric (including the ĝl1-case), there is a geometric construction of the Yan-
gian using quiver varieties [MO12] which gives a coproduct as well as the universal R-matrix
and integrable representations. By the construction in [Var00], we have a homomorphism
from Y~(g) to the Yangian in [MO12]. Our formula (4.7) implies that it is compatible with the
coproduct on both Yangians. Since we do not know that it is an isomorphism (or whether it
is injective or surjective), [MO12] does not imply our main result, but it gives evidence that
Theorem 4.9 is true in a more general setting. In the geometric context, the non-standard co-
product corresponds to the restriction to the torus fixed point (see [VV02] for quantum affine
algebras; the same proof works for affinizations of quantized Kac-Moody algebras and also for
Yangians). Then the coproduct in [MO12] and the non-standard coproduct are related by the
stable envelope, which is a ‘half’ of the universal R-matrix, and is a key object introduced in
[MO12]. In particular, the conjecture in the third paragraph above is known for the Yangian
in [MO12].

In [FKP+18], the authors define a coproduct on shifted Yangians which is related to the
coproduct on Y~(g) via shift maps: see §4.6 in loc. cit. Their Theorem 4.8 states that this
coproduct is well-defined in the sense that it respects the defining relations of the shifted Yan-
gians. The proof of that theorem depends on the main results of our present paper regarding
the coproduct ∆ on Y~(g).

It is natural to expect that a coproduct similar to the one constructed in the present paper
exists for quantum toroidal algebras. It would also be interesting to obtain one for deformed
double current algebras as it would certainly be useful to make progress in understanding their
largely unexplored representation theory.
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2. The Yangian of a Kac-Moody algebra

Let g be a symmetrizable Kac-Moody algebra associated with the indecomposable Cartan
matrix (aij)i,j∈I , where I is the set of vertices of the Dynkin diagram corresponding to g. We
also fix an invariant inner product ( , ) on g. We normalize the Chevalley generators x±i , hi
so that (x+

i , x
−
i ) = 1 and hi = [x+

i , x
−
i ]. Let ∆ (∆re, resp. ∆im) be the set of all roots of g (of

all real roots, resp. of all imaginary roots), and let ∆± be the sets of positive and of negative
roots. ∆re

± is defined similarly. The simple roots will be denoted αi for i ∈ I. The root space
corresponding to a root β ∈ ∆ will be denoted gβ. When g is an affine Lie algebra, we let δ be
the positive imaginary root such that (Z \ {0})δ is the set of all imaginary roots of g [Kac90].
Let g′ be the derived subalgebra [g, g].

In the definition below, and consequently for the rest of this paper, we will assume that g

is not of type A
(1)
1 : see the definition in §1.2 in [BT18] and Definition 5.1 in [Kod15] for the

correct definition of the Yangian in this case. All algebras will be defined over C and will be
Lie algebras or associative, unital algebras, unless specified otherwise.

Definition 2.1. Let ~ ∈ C. The Yangian Y~(g
′) is the algebra with generators x±ir, hir (i ∈ I,

r ∈ Z≥0) subject to the following defining relations:

[hir, hjs] = 0,(2.2)

[hi0, x
±
js] = ±(αi, αj)x

±
js,(2.3)

[x+
ir, x

−
js] = δijhi,r+s,(2.4)

[hi,r+1, x
±
js]− [hir, x

±
j,s+1] = ±~(αi, αj)

2

(
hirx

±
js + x±jshir

)
,(2.5)

[x±i,r+1, x
±
js]− [x±ir, x

±
j,s+1] = ±~(αi, αj)

2

(
x±irx

±
js + x±jsx

±
ir

)
,(2.6) ∑

σ∈Sb

[x±irσ(1) , [x
±
irσ(2)

, · · · , [x±i,rσ(b) , x
±
js] · · · ]] = 0 if i 6= j,(2.7)

where b = 1− aij. The Yangian Y~(g) is the algebra generated by {x±ir, hir}i∈I,r∈Z≥0
∪ h, where

h is the Cartan subalgebra of g, subject to the relations of Y~(g
′) in addition to

(2.8)
hi0 =

(αi, αi)

2
α∨i where the simple coroot α∨i belongs to h,

[h, hir] = 0, [h, x±ir] = 〈αi, h〉x±ir for h ∈ h.

Given two elements a, b of some algebra A, we set {a, b} = ab+ ba. In particular, the right-
hand sides of (2.5) and (2.6) could be written in terms of {hir, x±js} and {x±ir, x±js}, respectively.

Observe that for any pair of non-zero complex numbers ~1, ~2 ∈ C× we have Y~1(g) ∼= Y~2(g).
With this in mind, we set ~ = 1 and denote Y~(g) simply by Y (g) hereafter (except in §7).
Similarly, we denote Y~(g

′) by Y (g′). Note that the assignment x±i , h 7→ x±i0, h gives an algebra
homomorphism

(2.9) ι : U(g)→ Y (g).
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2(i). A minimalistic presentation of Y (g). In this subsection, we state the first main result
of this paper (Theorem 2.13), which we will prove in §2(ii) below.

From the defining relations, we can see that Y (g′) is generated by x±i0, hi0 and hi1 with i ∈ I
(see, for instance, [Lev93]). In fact, we can obtain x±ir, hir inductively from the relations

x±i,r+1 = ±(αi, αi)
−1[hi1 −

1

2
h2
i0, x

±
ir],

hir = [x+
ir, x

−
i0].

(2.10)

To simplify the first of these formulas as well as future computations, we introduce the
auxiliary generators h̃i1, with i ∈ I, by setting

(2.11) h̃i1
def.
= hi1 −

1

2
h2
i0.

Then x±i,r+1 = ±(αi, αi)
−1[h̃i1, x

±
ir] and (2.5) with (r, s) = (0, 0) can be rewritten as

(2.12) [h̃i1, x
±
j0] = ±(αi, αj)x

±
j1.

We want to reduce the number of relations to make it easier to check the compatibility of
the coproduct ∆ to be introduced in §4(ii). Such work was done by S. Levendorskii for g
finite-dimensional in [Lev93]: See Theorem 1.2 therein.

Theorem 2.13. Suppose that, for any i, j ∈ I with i 6= j, the matrix

(
aii aij
aji ajj

)
is invertible

and that, in addition, there exists one pair of indices i, j ∈ I such that aij = −1. Then Y (g′)
is isomorphic to the algebra generated by {x±ir, hir}i∈I,r∈{0,1}, subject only to the relations

[hir, hjs] = 0 (0 ≤ r, s ≤ 1),(2.14)

[hi0, x
±
js] = ±(αi, αj)x

±
js (s = 0, 1),(2.15)

[x+
ir, x

−
js] = δijhi,r+s (0 ≤ r + s ≤ 1),(2.16)

[h̃i1, x
±
j0] = ±(αi, αj)x

±
j1 (h̃i1

def.
= hi1 −

1

2
h2
i0),(2.17)

[x±i1, x
±
j0]− [x±i0, x

±
j1] = ±(αi, αj)

2

(
x±i0x

±
j0 + x±j0x

±
i0

)
,(2.18)

ad(x±i0)1−aij(x±j0) = 0 if i 6= j.(2.19)

In this algebra, we also define elements x±ir and hir for r ≥ 2 using (2.10).

Remark 2.20. If g is of affine type, then g satisfies the conditions of the previous theorem

provided it is not of type A
(1)
1 or A

(2)
2 . Indeed, that (akl)k,l∈{i,j} is invertible for i 6= j is due to

[Kac90, Proposition 4.7(b)], and the existence of a pair (i, j) such that aij = −1 can be seen
by inspection of the corresponding Dynkin diagram (see §4.7 of [Kac90]).

Observe that the statement of Theorem 1.2 in [Lev93] is precisely that Y (g) (where g is
finite-dimensional and simple) is isomorphic to the algebra generated by the elements x±i0, hi0
and x±i1, hi1, with i ∈ I, subject to the defining relations (2.14)-(2.19) together with the relation

(2.21) [[h̃i1, x
+
i1], x−i1] + [x+

i1, [h̃i1, x
−
i1]] = 0.

Moreover, Levendorskii’s argument also applies in the case where g is a symmetrizable Kac-
Moody algebra satisfying the conditions of Theorem 2.13.
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Unfortunately, for our purposes, the relation (2.21) is still difficult to work with. In the case

where g is of type sln+1 or ŝln+1 with n ≥ 3, this difficulty was addressed by the first named
author in [Gua07] where it was shown that the relation (2.21) can be deduced from those given
in the statement of Theorem 2.13.

2(ii). Proof of Theorem 2.13. As consequence of the remarks made at the end of the
previous subsection, to prove Theorem 2.13 it suffices to show that the relation (2.21) can be
derived from (2.14)-(2.19). To prove this, we will proceed as follows: First, we establish that
some of the relations (2.2)-(2.7) can be derived from (2.14)-(2.19) for certain values of i, j and
r, s. Then, following Levendorskii’s argument, we use these relations to establish a sequence
of lemmas and propositions which allow us to conclude that (2.21) is indeed satisfied for all
i ∈ I.

Our first goal is the construction of an element h̃i2 such that [h̃i2, x
±
i0] = ±(αi, αi)x

±
i2 ±

(αi, αi)
3x±i0/12. This was done in [Lev93, Cor. 1.5]. We reproduce the proof in order to point

out that the argument does not use (2.21). From this point on we assume that the Cartan
matrix of g satisfies the assumptions of Theorem 2.13 and that the elements x±i0, hi0 and hi1,
for i ∈ I, satisfy only relations (2.14)-(2.19).

Lemma 2.22. The following relations are satisfied for all i, j ∈ I and r ∈ Z≥0:

[hi0, x
±
jr] = ±(αi, αj)x

±
jr, [h̃i1, x

±
jr] = ±(αi, αj)x

±
j,r+1.

Proof. One can show the second equality by induction on r. If r = 0, it is nothing but (2.17).

The general case follows by using (2.10), [h̃i1, h̃j1] = 0 (which follows immediately from (2.14))
and the inductive assumption. The first equality can be proven in the same way. �

Lemma 2.23. The relation (2.4) holds when i = j, r + s ≤ 2.

Proof. From (2.14) with r, s ≤ 1 and (2.16) with i = j, (r, s) = (1, 0), we have

0 = [hi1, h̃i1] = [[x+
i1, x

−
i0], h̃i1] = −(αi, αi)

(
[x+
i2, x

−
i0]− [x+

i1, x
−
i1]
)
,

where we have used Lemma 2.22 in the last equality. Therefore

[x+
i1, x

−
i1] = [x+

i2, x
−
i0] = hi2.

Similarly we use (2.16) with (r, s) = (0, 1) instead to get hi2 = [x+
i1, x

−
i1] = [x+

i0, x
−
i2]. �

Lemma 2.24. The relation (2.6) holds when i = j, (r, s) = (1, 0), i.e.,

(2.25) [x±i2, x
±
i0] = ±(αi, αi)

2

(
x±i1x

±
i0 + x±i0x

±
i1

)
.

Proof. This follows immediately by applying [h̃i1, ·] to (2.18) with i = j. �

Lemma 2.26. The relation (2.5) holds when i = j, (r, s) = (1, 0), i.e.,

[hi2, x
±
i0]− [hi1, x

±
i1] = ±(αi, αi)

2

(
hi1x

±
i0 + x±i0hi1

)
.

Proof. We rewrite the second equality in Lemma 2.22 with i = j, r = 1 as

(2.27) [hi1, x
±
i1]− [hi0, x

±
i2] = ±(αi, αi)

2

(
hi0x

±
i1 + x±i1hi0

)
.

We apply [·, x∓i0] to (2.25) and combine the resulting relation with (2.27) and Lemma 2.23 to
obtain the desired conclusion. �
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Lemma 2.28. Suppose that i, j ∈ I and i 6= j. The relations (2.4) and (2.6) hold for any r
and s.

Proof. We prove (2.6) by induction on r and s. The same argument applies also to (2.4). The
initial case r = s = 0 is our assumption.

Let X±(r, s) be the result of subtracting the right-hand side of (2.6) from the left-hand side.

We apply [h̃i1, ·] and [h̃j1, ·] to (2.6) to get

0 = (αi, αi)X
±(r + 1, s) + (αi, αj)X

±(r, s+ 1),

0 = (αi, αj)X
±(r + 1, s) + (αj, αj)X

±(r, s+ 1).

Since the determinant of

(
(αi, αi) (αi, αj)
(αj, αi) (αj, αj)

)
is nonzero by assumption , we haveX±(r+1, s) =

0 = X±(r, s+ 1). Therefore, the assertion is true by induction. �

Lemma 2.29. Suppose that i, j ∈ I. Then (2.5) holds for (r, s) = (1, 0).

Proof. The case i = j is provided by Lemma 2.26, so let’s assume that i 6= j. We prove
the + case, the − case can be proved in the same way using hi2 = [x+

i0, x
−
i2], which holds by

Lemma 2.23. (Recall that, by definition, hi2 = [x+
i2, x

−
i0].) We simply use Lemma 2.28:

[hi2, x
+
j0] = [[x+

i2, x
−
i0], x+

j0] = [[x+
i2, x

+
j0], x−i0]

= [[x+
i1, x

+
j1], x−i0] +

(αi, αj)

2
[x+
i1x

+
j0 + x+

j0x
+
i1, x

−
i0]

= [hi1, x
+
j1] +

(αi, αj)

2

(
hi1x

+
j0 + x+

j0hi1
)
. �

We are now prepared to introduce the element h̃i2. For each i ∈ I, we define h̃i2 by

(2.30) h̃i2 = hi2 − hi0hi1 +
1

3
h3
i0.

The next proposition is a special case of Lemma 1.4 in [Lev93].

Proposition 2.31. For any i, j ∈ I, the following identity holds:

(2.32) [h̃i2, x
±
j0] = ±(αi, αj)x

±
j2 ±

1

12
(αi, αj)

3x±j0.

Proof. This follows from Lemma 2.26 and Lemma 2.29. Here are the details for the sake of
the reader.

[h̃i2, x
±
j0] = [hi2, x

±
j0]− [hi0hi1, x

±
j0] +

1

3
[h3
i0, x

±
j0]

= [hi1, x
±
j1]± (αi, αj)

[
1

2

(
hi1x

±
j0 + x±j0hi1

)
−
(
x±j0hi1 + hi0x

±
j1

)
− 1

2

(
h2
i0x
±
j0 + hi0x

±
j0hi0

)
+

1

3

(
x±j0h

2
i0 + hi0x

±
j0hi0 + h2

i0x
±
j0

)]
by Lemma 2.29, (2.15) and (2.17);

= [hi0, x
±
j2]± (αi, αj)

[
1

2

(
hi0x

±
j1 + x±j1hi0

)
+

1

2
[hi1, x

±
j0]− hi0x±j1

+
1

6

(
2x±j0h

2
i0 − hi0x±j0hi0 − h2

i0x
±
j0

)]
by Lemma 2.22;
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= ± (αi, αj)

[
x±j2 +

1

2

(
[hi1, x

±
j0]− [hi0, x

±
j1]
)

+
1

6

(
[x±j0, hi0]hi0 + [x±j0, h

2
i0]
)]

= ± (αi, αj)

[
x±j2 ±

(αi, αj)

4

(
hi0x

±
j0 + x±j0hi0

)
∓ (αi, αj)

6

(
2x±j0hi0 + hi0x

±
j0

)]
by (2.17)

= ± (αi, αj)

[
x±j2 ±

(αi, αj)

12
[hi0, x

±
j0]

]
= ±(αi, αj)x

±
j2 ±

(αi, αj)
3

12
x±j0. �

Now we are ready to check several cases of (2.7).

Lemma 2.33. The relation (2.7) holds for the following cases:

(1) r1 = · · · = rb = 0, s ∈ Z≥0,
(2) r1 = 1, r2 = · · · = rb = 0, s ∈ Z≥0,
(3) r1 = 2, r2 = · · · = rb = 0, s = 0,
(4) (b ≥ 2 and) r1 = r2 = 1, r3 = · · · = rb = 0, s = 0.

Proof. Let ~r = (r1, . . . , rb) and denote the left hand side of (2.7) by X±(~r, s). We first show

X±(~0, s) = 0 by induction on s ≥ 0. If s = 0, this is just (2.19). Suppose that X±(~0, s) = 0

for some s ≥ 0. We apply [h̃i1, ·] and [h̃j1, ·] to X±(~0, s) to get

(αi, αi)

(b− 1)!
X±((1, 0, . . . , 0), s) +

(αi, αj)

b!
X±(~0, s+ 1) = 0,

(αi, αj)

(b− 1)!
X±((1, 0, . . . , 0), s) +

(αj, αj)

b!
X±(~0, s+ 1) = 0.

Since the determinant of

(
(αi, αi) (αi, αj)
(αj, αi) (αj, αj)

)
is nonzero by hypothesis, we obtain that

X±((1, 0, . . . , 0), s) = 0 = X±(~0, s+ 1).

Therefore, by induction we have X±(~0, s) = 0 for all s ≥ 0. We simultaneously have proven
that X±((1, 0, . . . , 0), s) = 0 for all s ≥ 0.

Next, we apply [h̃i2, ·] to X±(~0, 0) = 0. By (2.32) we have

0 = b(αi, αi)X
±((2, 0, . . . , 0), 0) +

b(αi, αi)
3

12
X±(~0, 0)

+ (αi, αj)X
±(~0, 2) +

(αi, αj)
3

12
X±(~0, 0).

Since the last three terms vanish, we have X±((2, 0, . . . , 0), 0) = 0.

In order to prove (4), we apply [h̃i1, ·] to X±((1, 0, . . . , 0), 0) = 0. We have

0 =
(αi, αi)

(b− 1)!
X±((2, 0, . . . , 0), 0)

+
(αi, αi)

(b− 2)!
X±((1, 1, 0, . . . , 0), 0) +

(αi, αj)

(b− 1)!
X±((1, 0, . . . , 0), 1).

Since the first and third terms vanish, we have X±((1, 1, 0, . . . , 0), 0) = 0. �
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We move on to proving the relation (2.2) with i = j, (r, s) = (1, 2) from Lemma 2.33(4):
see Proposition 2.36 and Proposition 2.39. A few intermediary lemmas will be necessary. The
argument was originally noticed in [Gua07, one paragraph after the proof of Prop. 2.1] for type

ŝln+1. Since the proof was omitted there, we reproduce it here.

Lemma 2.34. We have

[hj1, x
±
i1] =

(αi, αj)

(αi, αi)
[hi1, x

±
i1]± (αi, αj)

2

(
{hj0, x±i1} − {hi0, x±i1}

)
for all i, j ∈ I.

Proof. The left-hand side is equal to

± 1

(αi, αi)
[hj1, [hi1,x

±
i0]]− 1

2
[hj1, {hi0, x±i0}]

= ± 1

(αi, αi)
[hi1, [hj1, x

±
i0]]− (αi, αj)

2

(
±{hi0, x±i1} ±

1

2
{hi0, {x±i0, hj0}}

)
=

(αi, αj)

(αi, αi)
[hi1, x

±
i1 +

1

2
{hj0, x±i0}]∓

(αi, αj)

2

(
{hi0, x±i1}+

1

2
{hi0, {x±i0, hj0}}

)
.

Using

[hi1, {hj0, x±i0}] = ±(αi, αi)

{
hj0, x

±
i1 +

1

2
{hi0, x±i0}

}
and {hj0, {hi0, x±i0}} = {hi0, {x±i0, hj0}},

we find that this is equal to the right-hand side. �

Lemma 2.35. For all i, j ∈ I, we have

[hi2, hj0] = 0.

Proof. We have

[hi2, hj0] = [[x+
i2, x

−
i0], hj0] = [[x+

i2, hj0], x−i0] + [x+
i2, [x

−
i0, hj0]].

Employing the first relation in Lemma 2.22, we see that this expression is equal to zero. �

Proposition 2.36. Let i, j ∈ I be such that aij = −1. Then

[hi1, hi2] = [hi1, [x
+
i1, x

−
i1]] = 0.

Proof. For brevity, we suppose (αi, αi) = 2 and (αi, αj) = −1.
The first equality follows from Lemma 2.23, so we prove the second equality.
We start with

0 = [x+
i1, [x

+
i1, x

+
j0]],

which holds by Lemma 2.33(4). We apply [·, x−j1] and use Lemmas 2.28 and 2.23 to get 0 =

[x+
i1, [x

+
i1, hj1]]. We then apply [·, x−i0]:

0 = [hi1, [x
+
i1, hj1]] + [x+

i1, [hi1, hj1]] + [x+
i1, [x

+
i1, x

−
i1]] +

1

2
[x+
i1, [x

+
i1, {hj0, x−i0}]]

= [hi1, [x
+
i1, hj1]] + [x+

i1, [x
+
i1, x

−
i1]] +

1

2
[x+
i1, {x+

i1, x
−
i0}+ {hj0, hi1}].
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Here we have used that [hi1, hj1] = 0. We apply [·, x−i0] again to obtain

0 = − 2[x−i1, [x
+
i1, hj1]]− [{hi0, x−i0}, [x+

i1, hj1]] + [hi1, [x
+
i1, x

−
i1]]

+
1

2
[hi1, [x

+
i1, {x−i0, hj0}]] + [hi1, [x

+
i1, x

−
i1]] + [x+

i1, [hi1, x
−
i1]]

− [x+
i1, [x

+
i1, (x

−
i0)2] +

1

2
[[x+

i1, {x+
i1, x

−
i0}+ {hj0, hi1}], x−i0]

= − 2[x−i1, [x
+
i1, hj1]] + 2[hi1, [x

+
i1, x

−
i1]] + [x+

i1, [hi1, x
−
i1]]

− [{hi0, x−i0}, [x+
i1, hj1]] + [hi1, {x+

i1, x
−
i0}] +

1

2
[x+
i1, {hj0, [hi1, x−i0]}].

(2.37)

From Lemma 2.34 we have

−2[x−i1, [x
+
i1, hj1]] = [x−i1, [x

+
i1, hi1]]− [x−i1, {hj0, x+

i1} − {hi0, x+
i1}]

= [x−i1, [x
+
i1, hi1]] + 3{x−i1, x+

i1} − {hj0, [x−i1, x+
i1]}+ {hi0, [x−i1, x+

i1]},

and also

−[{hi0, x−i0}, [x+
i1, hj1]] = − 1

2

[
{hi0, x−i0}, [hi1, x+

i1] + {hj0, x+
i1} − {hi0, x+

i1}
]

= − {[hi1, x+
i1], x−i0} −

1

2
{hi0, [x−i0, [hi1, x+

i1]]} − {{hj0, x+
i1}, x−i0}

+
1

2
{hi0, {hj0, hi1}+ {x−i0, x+

i1}}+ {{hi0, x+
i1}, x−i0}

− 2hi1h
2
i0 + {hi0, {x−i0, x+

i1}}.

We substitute these into (2.37) to get

−3[hi1, [x
+
i1, x

−
i1]] = 3{x−i1, x+

i1} − {hj0, [x−i1, x+
i1]}+ {hi0, [x−i1, x+

i1]}

− {[hi1, x+
i1], x−i0} −

1

2
{hi0, [x−i0, [hi1, x+

i1]]} − {{hj0, x+
i1}, x−i0}

+
1

2
{hi0, {hj0, hi1}+ {x−i0, x+

i1}}+ {{hi0, x+
i1}, x−i0}(2.38)

− 2hi1h
2
i0 + {hi0, {x−i0, x+

i1}}+ {[hi1, x+
i1], x−i0}

+ {x+
i1, [hi1, x

−
i0]}+

1

2
{hj0, [x+

i1, [hi1, x
−
i0]]}+

1

2
{x+

i1, [hi1, x
−
i0]}.

We then substitute

−1

2
{hi0, [x−i0, [hi1, x+

i1]]} = − {hi0, [x−i1, x+
i1]} − 1

2
{hi0, [{x−i0, hi0}, x+

i1]}

= − {hi0, [x−i1, x+
i1]}+ 2hi1h

2
i0 − {hi0, {x−i0, x+

i1}},
3

2
{x+

i1, [hi1, x
−
i0]} = − 3{x+

i1, x
−
i1} −

3

2
{x+

i1, {hi0, x−i0}},
1

2
{hj0, [x+

i1, [hi1, x
−
i0]]} = − {hj0, [x+

i1, x
−
i1]} − 1

2
{hj0, [x+

i1, {hi0, x−i0}]}

= − {hj0, [x+
i1, x

−
i1]}+ {hj0, {x+

i1, x
−
i,0}} −

1

2
{hj0, {hi0, hi1}}
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into (2.38) to get

−3[hi1, [x
+
i1, x

−
i1]] = − {{hj0, x+

i1}, x−i0}+
1

2
{hi0, {x−i0, x+

i1}}+ {{hi0, x+
i1}, x−i0}

− 3

2
{x+

i1, {hi0, x−i0}}+ {hj0, {x+
i1, x

−
i0}}

= [x+
i1, [x

−
i0, hj0]] +

3

2
[hi0, [x

+
i1, x

−
i0]] +

1

2
[x+
i1, [x

−
i0, hi0]] = 0.

This is nothing but the assertion. �

Proposition 2.39. Assume that [hi1, hi2] = 0 and (αi, αj) 6= 0. Then we have

[hj1, hj2] = 0.

Together with Proposition 2.36 this gives (2.21) for any i, j because the Dynkin diagram
of g is connected, this being a consequence of the assumption that the Cartan matrix of g is
indecomposable. We are thus able to conclude the proof of Theorem 2.13.

Proof. By the assumption and Lemma 2.35, we have [h̃i1, hi2] = 0. Therefore

0 = [h̃i1, hi2] = [h̃i1, [x
+
i1, x

−
i1]] by Lemma 2.23

= [[h̃i1, x
+
i1], x−i1] + [x+

i1, [h̃i1, x
−
i1]]

=
(αi, αi)

(αi, αj)

(
[[h̃j1, x

+
i1], x−i1] + [x+

i1, [h̃j1, x
−
i1]]
)

by Lemma 2.34

=
(αi, αi)

(αi, αj)
[h̃j1, hi2]. by Lemma 2.23

We take h̃i2 as in (2.30). Then we have [h̃j1, h̃i2] = 0 and we apply [·, x+
j0] to this to get:

0 = (αj, αj)[x
+
j1, h̃i2] + (αi, αj)[h̃j1, x

+
j2] +

(αi, αj)
3

12
[h̃j1, x

+
j0],

where we have used (2.32).
We next apply [·, x−j0] to this and, using again (2.32), we obtain:

0 = (αj, αj)[hj1, h̃i2]− (αj, αj)(αi, αj)[x
+
j1, x

−
j2]− (αj, αj)(αi, αj)

3

12
[x+
j1, x

−
j0]

− (αi, αj)(αj, αj)[x
−
j1, x

+
j2] + (αi, αj)[h̃j1, [x

+
j2, x

−
j0]]

− (αj, αj)(αi, αj)
3

12
[x−j1, x

+
j0]

= − (αi, αj)(αj, αj)
(
[x+
j1, x

−
j2] + [x−j1, x

+
j2]
)

+ (αi, αj)[h̃j1, hj2].(2.40)

We simplify the last expression as follows. Start with [x+
j1, x

−
j1] = hj2 from Lemma 2.23 and

apply [h̃j1, ·] to it to obtain

(αj, αj)
(
[x+
j2, x

−
j1]− [x+

j1, x
−
j2]
)

= [h̃j1, hj2].

Therefore the right-hand side of (2.40) is 2(αi, αj)[h̃j1, hj2], so [h̃j1, hj2] = 0. �
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3. Operators on modules in the category O

3(i). Category O. The category O of modules over a finite-dimensional simple Lie algebra
has been studied extensively over the past forty years [Hum08]. The definition of this category
generalizes naturally for all Kac-Moody algebras (see for instance [Kac90, §9.1]). It is also
possible to extend the notion of category O to quantum toroidal algebras and affine Yangians:
see [Her05, GTL16].

Definition 3.1. The category O of modules over the Yangian Y (g) consists of all the modules
V such that:

(1) V is diagonalizable with respect to h.
(2) Each h-weight space Vµ is finite-dimensional (µ ∈ h∗).
(3) There exist λ1, . . . , λk ∈ h∗ such that if Vµ 6= 0, then λi − µ ∈

∑
j∈I Z≥0αj for some

1 ≤ i ≤ k.

One consequence of this definition which we will use implicitly is that if V is a module in O,
α ∈ ∆+ and µ ∈ h∗, then there exists N ∈ Z≥0 such that Vµ+rα = 0 for all r ≥ N . Moreover,
V is said to be integrable and in the category O if, in addition, such an N can be chosen so
that Vµ±rα = 0 for all r ≥ N .

3(ii). Another presentation of the Yangian and operators on category O. When g is
finite-dimensional, Drinfeld [Dri85] gave another presentation of Y (g) as an algebra generated
by elements x and J(x) for x ∈ g with the defining relations:

xy − yx = [x, y] for all x, y ∈ g, J is linear in x ∈ g, J([x, y]) = [x, J(y)],

[J(x), J([y, z])] + [J(z), J([x, y])] + [J(y), J([z, x])] =
∑
a,b,c∈A

([x, ξa], [[y, ξb], [z, ξc]]){ξa, ξb, ξc},

[[J(x), J(y)], [z, J(w)]] + [[J(z), J(w)], [x, J(y)]] =
∑
a,b,c∈A

(
([x, ξa], [[y, ξb], [[z, w], ξc]])

+ ([z, ξa], [[w, ξb], [[x, y], ξc]])
)
{ξa, ξb, J(ξc)}

(3.2)

where {ξa}a∈A is an orthonormal basis of g, A being a fixed indexing set of size dim g, and
{ξa, ξb, ξc} = 1

24

∑
π∈S3

ξπ(a)ξπ(b)ξπ(c), S3 being the group of permutations of {a, b, c}.
The isomorphism between this presentation and the one provided in Definition 2.1 is given

by

x±i 7→ x±i0, hi 7→ hi0

J(hi) 7→ hi1 + vi, vi
def.
=

1

4

∑
α∈∆+

(α, αi){x+
α , x

−
α} −

1

2
h2
i ,

J(x±i ) 7→ x±i1 + w±i , w±i
def.
= ±1

4

∑
α∈∆+

{
[x±i , x

±
α ], x∓α

}
− 1

4
{x±i , hi},

(3.3)

where, for each α ∈ ∆+, x±α ∈ g±α are nonzero root vectors normalized so that (x+
α , x

−
α ) = 1

and x±αi = x±i .
The right-hand sides of (3.2) and (3.3) do not make sense unless g is finite-dimensional.

However, we can change the definition of vi (and thus of w±i ) so that it gives a well-defined
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operator on representations in the category O as follows. First observe that∑
α∈∆+

(α, αi)[x
+
α , x

−
α ] =

1

2
ω(hi) =

1

2
cghi,

where cg is the eigenvalue of the Casimir element ω ∈ U(g) in the adjoint representation.
Therefore, we have

vi =
1

8
cghi +

1

2

∑
α∈∆+

(α, αi)x
−
αx

+
α −

1

2
h2
i .

Since, for each ζ ∈ C, the assignment

τζ : J(x) 7→ J(x) + ζx, x 7→ x ∀ x ∈ g

determines an automorphism of the Yangian in the presentation (3.2) [Dri85], replacing vi
by vi + ζhi and w±i by w±i + ζx±i in (3.3) produces another isomorphism between the two
presentations. Indeed, this amounts to composing (3.3) with τζ . In particular, taking ζ = −1

8
cg,

we can annihilate the term 1
8
cghi appearing in the above expression for vi, which is essential

since cg does not admit an interpretation when g is not finite-dimensional. Now assume that g

is an arbitrary symmetrizable Kac-Moody algebra and, for each α ∈ ∆+, choose a basis {x(k)
α }

of gα and a dual basis {x(k)
−α} of g−α so that (x

(k)
α , x

(l)
−α) = δkl and x±αi = x±i for all i ∈ I. Then

the formula

(3.4) vi =
1

2

∑
α∈∆+

(α, αi)

dim gα∑
k=1

x
(k)
−αx

(k)
α −

1

2
h2
i ,

gives a well-defined operator on representations in the category O as x
(k)
α kills a given vector

if ht(α) is sufficiently large. Here, ht(
∑

i∈I niαi) =
∑

i∈I ni for all (ni)i∈I ∈ Z|I|.
The definition of the operators w±i can then be determined from (2.3) and (2.5) together

with the requirement that J([hi, x
±
i ]) = [J(hi), x

±
i ]. We obtain

(3.5) w±i = ± 1

(αi, αi)
[vi, x

±
i ] +

1

2
{hi, x±i }

which, using [Kac90, Corollary 2.4], can be rewritten as

w+
i =

1

2

∑
α∈∆+

dim gα∑
k=1

x
(k)
−α[x+

i , x
(k)
α ]− 1

2
hix

+
i ,

w−i = −1

2

∑
α∈∆+

dim gα∑
k=1

[x−i , x
(k)
−α]x(k)

α −
1

2
x−i hi.

These can also be viewed as well-defined operators on modules in the category O. Let’s see
briefly how to obtain w+

i . We have

[vi, x
+
i ] = − 1

2
(αi, αi)({hi, x+

i }+ hix
+
i )

+
1

2

∑
α∈∆+\{αi}

(α, αi)

dim gα∑
k=1

(x
(k)
−α[x(k)

α , x+
i ] + [x

(k)
−α, x

+
i ]x(k)

α )(3.6)
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and∑
α∈∆+\{αi}

(α, αi)

dim gα∑
k=1

(x
(k)
−α[x(k)

α , x+
i ] + [x

(k)
−α, x

+
i ]x(k)

α )

=
∑

β∈∆+\{αi}

(αi − β, αi)
dim gβ−αi∑

k=1

x
(k)
αi−β[x+

i , x
(k)
β−αi ] +

∑
α∈∆+\{αi}

(α, αi)

dim gα∑
k=1

[x
(k)
−α, x

+
i ]x(k)

α

after setting β = α + αi and using Lemma 1.3 in [Kac90];

=
∑

α∈∆+\{αi}

dim gα−αi∑
k=1

(
(αi − α, αi)x(k)

αi−α[x+
i , x

(k)
α−αi ] + (α, αi)x

(k)
αi−α[x+

i , x
(k)
α−αi ]

)
by Corollary 2.4 in [Kac90];

= (αi, αi)
∑
β∈∆+

dim gβ∑
k=1

x
(k)
−β[x+

i , x
(k)
β ].

Combining this with (3.6), we obtain the desired expression for w+
i .

We set

(3.7) J(hi) = hi1 + vi and J(x±i ) = x±i1 + w±i ,

viewed as operators on modules in O. Later, we will see how to view these also as elements in
a completion of the Yangian (§5).

Remark 3.8. In the special case where g is of affine type, the summation which appears in
the definition of the operator vi (see (3.4)) needs only to be taken over the set of real positive
roots ∆re

+ because (δ, αi) = 0 ∀ i ∈ I ([Kac90, (6.2.4)]). Since the multiplicity of a real root is

1, we can change the notation x
(k)
±α to x±α for each α ∈ ∆re

+. The same applies (trivially) to g
of finite type.

3(iii). Commutation relations and reflection operators. The goal of this subsection is
to obtain relations (see Proposition 3.21) which will be useful in the next section to verify that
the coproduct on Y (g) respects the defining relations of the Yangian.

In this subsection, we fix a module V in the category O and view the generators x±ir, hir
along with vi, w

±
i as operators on V . Let ρ : Y (g) → EndC(V ) be the corresponding algebra

homomorphism.
With the relation (2.11) in mind, we set ṽi = vi + h2

i /2. We will also write x±i for x±i0 and hi
for hi0.

Lemma 3.9. The following relations hold.

[hi, vj] = 0, [hi, w
±
j ] = ±(αi, αj)w

±
j ,(3.10)

[ṽi, x
±
j ] = ±(αi, αj)w

±
j ,(3.11)

[w+
i , x

−
j ] = δijvi = [x+

i , w
−
j ],(3.12)

[w±i , x
±
j ]− [x±i , w

±
j ] = ∓(αi, αj)

2
(x±i x

±
j + x±j x

±
i ).(3.13)

Proof. (3.10) is straightforward to check, (3.11) was shown above in the + case when i = j
(see (3.6)) and the argument when i 6= j is the same.
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Let’s consider now (3.12). By (3.11) and the first relation in (3.10), we have

[w+
i , x

−
j ] =

(αi, αj)

(αi, αi)
[x+
i , w

−
j ] ∀ i, j ∈ I.

Therefore, it suffices to prove the second equality in (3.12), namely [x+
i , w

−
j ] = δijvi. Using the

definition of w−j , it is easily verified that

[x+
i , w

−
j ] = δijvi −

1

2

∑
α∈∆+\{αi}

dim gα∑
k=1

([
x−j , [x

+
i , x

(k)
−α]
]
x(k)
α + [x−j , x

(k)
−α][x+

i , x
(k)
α ]
)
.

Hence, it suffices to show that the summation on the right-hand side vanishes. This fact follows
from Lemma 1.3 and Corollary 2.4 of [Kac90]. In detail, using [Kac90, Lemma 1.3] we can
write ∑

α∈∆+\{αi}

dim gα∑
k=1

[x−j , x
(k)
−α][x+

i , x
(k)
α ] =

∑
β∈∆+\{αi}

dim gβ−αi∑
k=1

[x−j , x
(k)
αi−β][x+

i , x
(k)
β−αi ].

By [Kac90, Corollary 2.4],

∑
β∈∆+\{αi}

dim gβ−αi∑
k=1

[x−j , x
(k)
αi−β][x+

i , x
(k)
β−αi ] = −

∑
β∈∆+\{αi}

dim gβ∑
k=1

[
x−j , [x

+
i , x

(k)
−β]
]
x

(k)
β ,

which proves the assertion.
Finally, let’s establish (3.13). Again appealing to the definition of w+

k , a straightforward
computation shows that (3.13) will hold provided∑

α∈∆+\{αj}

dim gα∑
k=1

(
[x

(k)
−α, x

+
j ][x+

i , x
(k)
α ]− x(k)

−α
[
x+
i , [x

+
j , x

(k)
α ]
])

=
∑

α∈∆+\{αi}

dim gα∑
k=1

(
[x+
i , x

(k)
−α][x+

j , x
(k)
α ]− x(k)

−α
[
[x+
i , x

(k)
α ], x+

j

])
.

By Lemma 1.3 and Corollary 2.4 of [Kac90], both sides of the above vanish; this is proven in
the same way as in the proof of (3.12). �

The previous lemma implies the following equivalences:

(3.14)

[hi, J(hj)] = 0 ⇐⇒ [hi0, hj1] = 0,

[hi, J(x±j )] = J([hi, x
±
j ]) ⇐⇒ [hi0, x

±
j1] = ±(αi, αj)x

±
j1,

[J(hi), x
±
j ] = J([hi, x

±
j ]) ⇐⇒ [h̃i1, x

±
j0] = ±(αi, αj)x

±
j1,

[J(x+
i ), x−j ] = J([x+

i , x
−
j ]) = [x+

i , J(x−j )] ⇐⇒ [x+
i1, x

−
j0] = δijhi1 = [x+

i0, x
−
j1],

[J(x±i ), x±j ] = [x±i , J(x±j )] ⇐⇒ [x±i1, x
±
j0]− [x±i0, x

±
j1] = ±(αi, αj)

2

(
x±i0x

±
j0 + x±j0x

±
i0

)
.

If α is a simple root αi, then J(x±α ) has already been defined, and now we want to obtain such
operators for any positive real root α. By restricting the adjoint action of ρ(Y (g)) ⊂ EndC(V )
(viewed as a Lie algebra) to the image of g under ρ ◦ ι (see (2.9)), we may equip ρ(Y (g)) with
the structure of a g-module. As x±i operate as the derivations ad(x±i0) on ρ(Y (g)), which are
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locally nilpotent because of the Serre relations (2.7), Lemma 1.3.5 (b) of [Kum02] implies that
the operators

(3.15) τi
def.
= exp(ad(ei)) exp(−ad(fi)) exp(ad(ei)),

where ei =
√

2/(αi, αi)x
+
i0, fi =

√
2/(αi, αi)x

−
i0, define algebra automorphisms of ρ(Y (g)). Set

(3.16) vβ =
∑
α∈∆+

dim gα∑
k=1

(α, β)x
(k)
−αx

(k)
α ∈ EndC(V ) ∀ β ∈ ∆,

and let Ỹ (g, V ) denote the subalgebra of EndC(V ) generated by ρ(Y (g)) and {vi}i∈I where
vi = vαi .

Lemma 3.17. For each i ∈ I, τi extends to an automorphism of Ỹ (g, V ) with

(3.18) τi(vj) = vsi(αj) + (αi, αj){x−i0, x+
i0}.

Proof. The lemma will follow from the proof of the formula (3.18), which reduces to a com-
putation in U(g). Let τ ad

i be the automorphism of U(g) defined exactly as τi but with ei and
fi viewed as elements of g rather than operators on V (as in [Kac90, Lemma 3.8 (b)]). For

α ∈ ∆+ \ {αi}, {τ ad
i (x

(k)
α )}dim gα

k=1 is a basis of gsi(α) dual to {τ ad
i (x

(k)
−α)}dim gα

k=1 (a basis of g−si(α))
with respect to (·, ·). Thus,

τ ad
i

(
dim gα∑
k=1

x
(k)
−αx

(k)
α

)
=

dim gsi(α)∑
k=1

x
(k)
−si(α)x

(k)
si(α) ∀ α ∈ ∆+ \ {αi}.

The formula (3.18) follows from this observation together with the following facts: τ ad
i (x−i x

+
i ) =

x+
i x
−
i , (α, αj) = (si(α), si(αj)), si(∆+ \ {αi}) = ∆+ \ {αi}, and ρ ◦ ι ◦ τ ad

i = τi ◦ ι. �

As a consequence of the lemma, τi can be applied to J(hj), and thus to J(x±j ) since J(x±j ) =

±(αj, αj)
−1[J(hj), x

±
j ] for all j ∈ I. This assertion automatically holds when g is finite-

dimensional, but it heavily relies on Lemma 3.17 when this is not the case.

Lemma 3.19. We have

τi(J(hj)) = J(hj)−
2(αi, αj)

(αi, αi)
J(hi).

Proof. We consider the subalgebra sl
(i)
2 of Y (g) spanned by ei, fi, hi. The space EndC(V ) is a

representation of sl
(i)
2 via the adjoint action. Let us prove the lemma first when j = i.

Consider the subspace CJ(x+
i ) + CJ(hi) + CJ(x−i ) of EndC(V ), which is stable under the

adjoint action of sl
(i)
2 on EndC(V ) by Lemma 3.9 and (3.14). There are two cases: either

J(x+
i ) = 0 = J(hi) = J(x−i ), in which case the lemma is trivial, or that subspace is a three-

dimensional irreducible representation of sl
(i)
2 . In the latter case, one can check directly that

τi(J(hi)) = −J(hi).
Now assume that j 6= i. The operator

J(hj)−
(αi, αj)

(αi, αi)
J(hi)

is killed by ad(ei) and ad(fi) by (3.14). Therefore this vector is fixed by τi, hence the lemma
holds also when j 6= i. �
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Let α be a positive real root. By definition, there is an element w of the Weyl group of g
and a simple root αj such that α = w(αj). Then we define a corresponding (real) root vector
by

x±α = τi1τi2 · · · τip−1(x
±
ip

),

where w = si1 · · · sip is a reduced expression of w and ip = j. (Here, si denotes the simple
reflection associated to αi.) This is independent of the choice of sequence i1, i2, . . . , ip up to
a constant multiple. This ambiguity will not be important in the following discussion.

We define

(3.20) J(x±α )
def.
= τi1τi2 · · · τip−1(J(x±ip)).

It follows from the proposition below that this is also independent of the choice of sequence
i1, i2, . . . , ip up to a constant multiple.

Proposition 3.21. Suppose α is a positive real root. Then

[J(hi), x
±
α ] = [hi, J(x±α )] = ±(αi, α)J(x±α ) for all i ∈ I.

Proof. We prove the proposition by induction on p. If p = 1, then x±α = x±j , and the assertion
is a direct consequence of Lemma 3.9 and (3.14). Suppose the statement of the proposition
holds for x±β with β = si2 · · · sip−1(αip). Then

[J(hi), x
±
α ] = τi1

(
[τ−1
i1
J(hi), x

±
β ]
)

= τi1

(
[J(hi)−

2(αi, αi1)

(αi1 , αi1)
J(hi1), x

±
β ]

)
= ±

(
(αi, β)− 2(αi, αi1)

(αi1 , αi1)
(αi1 , β)

)
τi1J(x±β ) = ±(si1αi, β)J(x±α ) = ±(αi, α)J(x±α ),

where we have used Lemma 3.19 in the second equality, and the induction assumption in the
third. Similarly, the second equality and the relation [J(hj), x

±
β ] = [hj, J(x±β )], for all j ∈ I,

imply that

[J(hi), x
±
α ] = τi1

(
[hi −

2(αi, αi1)

(αi1 , αi1)
hi1 , J(x±β )]

)
= τi1

(
[τ−1
i1
hi, J(x±β )]

)
= [hi, J(x±α )].

Therefore, by induction, the assertion is true for all α ∈ ∆re
+. �

4. Coproduct and modules in the category O

4(i). Casimir operators. Fix a basis {h(k)} of h, and let {h(k)} denote its dual basis with

respect to the invariant inner product ( , ). Given a positive root α we choose a base {x(k)
α }

of gα and the dual base {x(k)
−α} of g−α so that (x

(k)
α , x

(l)
−α) = δkl as before (3.4).

Let us fix modules V1 and V2 in O. We define an operator Ω+ on V1 ⊗ V2 by:

(4.1) Ω+
def.
=

dim h∑
k=1

h(k) ⊗ h(k) +
∑
α∈∆+

dim gα∑
k=1

x
(k)
−α ⊗ x(k)

α .

The definition of Ω+ is independent of the choice of bases.
Note that Ω+ does not coincide with the usual Casimir operator when g is finite-dimensional

as it does not contain the term
∑

α∈∆+

∑dim gα
k=1 x

(k)
α ⊗x(k)

−α. We call it the half Casimir operator.
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In the general case, the Casimir operator Ω is replaced with the generalized Casimir operator
(denoted Ωgen) which is given by

Ωgen = 2ν−1(ρ) +

dim h∑
k=1

h(k) ⊗ h(k) + 2
∑
α∈∆+

dim gα∑
k=1

x
(k)
−α ⊗ x(k)

α .

(See §2.5 of [Kac90]. Here, ν : h→ h∗ is the linear isomorphism given by ν(h1)(h2) = (h1, h2)
for all h1, h2 ∈ h and ρ ∈ h∗ is any linear functional such that ρ(α∨i ) = 1

2
aii for all i ∈ I.) Ωgen

coincides with the usual Casimir element when g is finite-dimensional.
The half Casimir operator Ω+ does not commute with coproducts of the generators x±i or

hi. It does however satisfy the following simple commutation relations:

Lemma 4.2. We have

[�(h),Ω+] = 0 for h ∈ h,(4.3)

[�(x+
i ),Ω+] = −x+

i ⊗ hi,(4.4)

[�(x−i ),Ω+] = hi ⊗ x−i ,(4.5)

for all i ∈ I, where �(X) = X ⊗ 1 + 1⊗X.

Proof. These relations can be proven using the same techniques as used to prove Lemma 3.9.
The first formula is a simple consequence of the definition. The second and third formulas
follow from [Kac90, Lemmas 1.3, 2.4]. For example,

[1⊗ x−i ,Ω+] =

dim h∑
k=1

h(k) ⊗ [x−i , h(k)] +
∑
α∈∆+

dim gα∑
k=1

x
(k)
−α ⊗ [x−i , x

(k)
α ]

=

dim h∑
k=1

h(k) ⊗ (hi, h(k))x
−
i − x−i ⊗ hi +

∑
α∈∆+\{αi}

dim gα∑
k=1

x
(k)
−α ⊗ [x−i , x

(k)
α ]

= hi ⊗ x−i − x−i ⊗ hi −
∑

α∈∆+\{αi}

dim gα−αi∑
k=1

[x−i , x
(k)
−(α−αi)]⊗ x

(k)
α−αi

= hi ⊗ x−i − [x−i ⊗ 1,Ω+]. �

4(ii). The coproduct and statement of the main theorem. Let � be the operator defined
by �(X) = X⊗ 1 + 1⊗X, as in Lemma 4.2. It is not an algebra homomorphism, but satisfies
�([X, Y ]) = [�(X),�(Y )] for all X, Y ∈ Y (g).

We want to define an algebra homomorphism ∆V1,V2 : Y (g) → EndC(V1 ⊗ V2), so we first
specify it on the generators of Y (g) and then prove afterwards that this assignment does indeed
extend to an algebra homomorphism (see Theorem 4.9).

Definition 4.6. ∆V1,V2 assigns to the generators of Y (g) the following operators in EndC(V1⊗
V2): by

(4.7)

∆V1,V2(h) = �(h) (for h ∈ h), ∆V1,V2(x
±
i0) = �(x±i0),

∆V1,V2(hi1) = �(hi1) + hi0 ⊗ hi0 + [hi0 ⊗ 1,Ω+]

= hi1 ⊗ 1 + 1⊗ hi1 + hi0 ⊗ hi0 −
∑
α∈∆+

(αi, α)

dim gα∑
k=1

x
(k)
−α ⊗ x(k)

α .
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It follows that

(4.8) ∆V1,V2(h̃i1) = �(h̃i1) + [hi0 ⊗ 1,Ω+].

When V1 and V2 are fixed, we simply write ∆.

Theorem 4.9. Assume g is either finite-dimensional (but not sl2) or of affine type (but not

of type A
(1)
1 or A

(2)
2 ). Then the assignment ∆ defines an algebra homomorphism ∆: Y (g) →

EndC(V1 ⊗ V2).

Remark 4.10. When g is finite-dimensional (including when g ∼= sl2), this theorem is already
known (see [Dri85]) but a proof has never appeared in the literature. In this case,

∆(J(hi)) = ∆(h̃i1) + ∆(ṽi)

= �(J(hi)) +
1

2

∑
α∈∆+

(α, αi)

dim gα∑
k=1

(
x(k)
α ⊗ x

(k)
−α − x

(k)
−α ⊗ x(k)

α

)
= �(J(hi)) +

1

2
[hi0 ⊗ 1,Ω],

(4.11)

where Ω is the Casimir element in g ⊗ g. We have excluded Y (sl2) simply because the proof

below would have to be modified in this case. As for the case when g is of type A
(1)
1 , a formula

for a coproduct identical to ours is given in [BL94], but it is not clear if their definition of the

Yangian of the affine Lie algebra ŝl2 is equivalent to the one which can be found in [BT18] and
in [Kod15] (to this effect, see also Remark 5.2 in [Kod15]).

Remark 4.12. In §5, we will explain how to replace EndC(V1 ⊗ V2) with a completion of the
tensor product Y (g)⊗ Y (g).

The rest of this section is devoted to the proof of this theorem. We will be able to use
Theorem 2.13 because we will be working under the same assumptions in the finite or affine
setting - see Remark 2.20. Note also that if we check that the restriction of ∆ to Y (g′) is an
algebra homomorphism, the compatibility for the extra relations (2.8) is straightforward.

Therefore, it is enough to check the compatibility of the relations listed in Theorem 2.13.
In what follows, it will be useful to have formulas for ∆(x±i1) for all i ∈ I. From (2.10) with

r = 0, we obtain:

∆(x±i1) = ±(αi, αi)
−1∆([h̃i1, x

±
i0])

= ±(αi, αi)
−1[�(h̃i1) + [hi0 ⊗ 1,Ω+],�(x±i0)]

= �(x±i1)± (αi, αi)
−1[[hi0 ⊗ 1,Ω+],�(x±i0)].

We consider the + case first. Note that

[[hi0 ⊗ 1,Ω+],�(x+
i0)] = − [[1⊗ hi0,Ω+],�(x+

i0)]

= − [[1⊗ hi0,�(x+
i0)],Ω+]− [1⊗ hi0, [Ω+,�(x+

i0)]]

= − (αi, αi)[1⊗ x+
i0,Ω+]− [1⊗ hi0, x+

i0 ⊗ hi0] = −(αi, αi)[1⊗ x+
i0,Ω+],

where we have used (4.3) in the first equality and (4.4) in the third. Therefore we have

(4.13) ∆(x+
i1) = �(x+

i1)− [1⊗ x+
i0,Ω+].
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More explicitly

∆(x+
i1) = x+

i1 ⊗ 1 + 1⊗ x+
i1 + hi0 ⊗ x+

i0 −
∑
α∈∆+

dim gα∑
k=1

x
(k)
−α ⊗ [x+

i0, x
(k)
α ].

Similarly we have

∆(x−i1) = �(x−i1) + [x−i0 ⊗ 1,Ω+]

= x−i1 ⊗ 1 + 1⊗ x−i1 + x−i0 ⊗ hi0 +
∑
α∈∆+

dim gα∑
k=1

[x−i0, x
(k)
−α]⊗ x(k)

α .

4(iii). Proof of Theorem 4.9, Part I. We begin by checking that all the defining relations
(2.14)-(2.19) except (2.14) when r = 1 = s are compatible with ∆. Computations for these
relations work for any Kac-Moody algebra g satisfying the assumptions of Theorem 2.13. We
do not need to check the relations involving only hi0 or x±i0.

We first check (2.14) with (r, s) = (0, 1):

[∆(hi0),∆(h̃j1)] = [�(hi0),�(h̃j1)+[hj0⊗1,Ω+]] = [[�(hi0), hj0⊗1],Ω+]+[hj0⊗1, [�(hi0),Ω+]].

This vanishes thanks to (4.3).
As for (2.15), we must verify that it is preserved when i 6= j and s = 1. We have

[∆(hi0),∆(x+
j1)] = [�(hi0),�(x+

j1)− [1⊗ x+
j0,Ω+]] by (4.13)

= (αi, αj)�(x+
j1)− (αi, αj)[1⊗ x+

j0,Ω+]− [1⊗ x+
j0, [�(hi0),Ω+]] by (2.15)

= (αi, αj)∆(x+
j1) by (4.3) and (4.13).

The ± = − case is verified in the same way.
Next let us check (2.16) with (r, s) = (1, 0):

[∆(x+
i1),∆(x−j0)] = [�(x+

i1)− [1⊗ x+
i0,Ω+],�(x−j0)] by (4.13)

= �([x+
i1, x

−
j0])− [[1⊗ x+

i0,�(x−j0)],Ω+]− [1⊗ x+
i0, [Ω+,�(x−j0)]]

= δij�(hi1)− δij[1⊗ hi0,Ω+] + [1⊗ x+
i0, hj0 ⊗ x−j0]

= δij (�(hi1) + [hi0 ⊗ 1,Ω+] + hi0 ⊗ hi0) = δij∆(hi1),

where we have used (4.5) in the third equality and (4.3) in the fourth.
The relation (2.16) with (r, s) = (0, 1) can be checked in a similar way.
Next we check (2.17):

[∆(h̃i1),∆(x±j0)] = [�(h̃i1) + [hi0 ⊗ 1,Ω+],�(x±j0)] by (4.8)

= �([h̃i1, x
±
j0]) + [[hi0 ⊗ 1,�(x±j0)],Ω+] + [hi0 ⊗ 1, [Ω+,�(x±j0)]]

= ± (αi, αj)
(
�(x±j1) + [x±j0 ⊗ 1,Ω+]

)
+ [hi0 ⊗ 1, [Ω+,�(x±j0)]].

In the + case, the above is equal to

(αi, αj)
(
�(x+

j1) + [x+
j0 ⊗ 1,Ω+]

)
+ [hi0 ⊗ 1, x+

j0 ⊗ hj0]

= (αi, αj)
(
�(x+

j1) + [x+
j0 ⊗ 1,Ω+] + x+

j0 ⊗ hj0
)

= (αi, αj)(�(x+
j1)− [1⊗ x+

j0,Ω+]),

thanks to (4.4). By (4.13), this is precisely (αi, αj)∆(x+
j1). The − case can be proved in a

similar way. Thus, ∆ preserves the relation (2.17).
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Let us check that (2.18) is compatible with ∆. We have

[∆(x+
i1),∆(x+

j0)] = [�(x+
i1)− [1⊗ x+

i0,Ω+],�(x+
j0)] by (4.13)

= �([x+
i1, x

+
j0])− [[1⊗ x+

i0,�(x+
j0)],Ω+]− [1⊗ x+

i0, [Ω+,�(x+
j0)]]

= �([x+
i1, x

+
j0])− [1⊗ [x+

i0, x
+
j0],Ω+]− [1⊗ x+

i0, x
+
j0 ⊗ hj0] by (4.4)

= �([x+
i1, x

+
j0])− [1⊗ [x+

i0, x
+
j0],Ω+] + (αi, αj)x

+
j0 ⊗ x+

i0.

Exchanging i and j, we also obtain an expression for [∆(x+
j1),∆(x+

i0)]. Adding this to the above

expression for [∆(x+
i1),∆(x+

j0)] yields
(4.14)
[∆(x+

i1),∆(x+
j0)] + [∆(x+

j1),∆(x+
i0)] = �

(
[x+
i1, x

+
j0]− [x+

i0, x
+
j1]
)

+ (αi, αj)
(
x+
j0 ⊗ x+

i0 + x+
i0 ⊗ x+

j0

)
.

On the other hand, applying ∆ to the right-hand side of (2.18), we have

(αi, αj)

2
(�(x+

i0)�(x+
j0) + �(x+

j0)�(x+
i0)) =

(αi, αj)

2

(
�{x+

i0, x
+
j0}+ 2

(
x+
j0 ⊗ x+

i0 + x+
i0 ⊗ x+

j0

))
.

This is equal to (4.14) thanks to (2.18). This proves the compatibility of ∆ with (2.18) when
± = +. The same proof works for the − case.

4(iv). Proof of Theorem 4.9, Part II. It remains to verify that ∆ preserves the relation

[h̃i1, h̃j1] = 0 for all i, j ∈ I. To accomplish this, we will need to make use of the assumption

that g is of finite or affine type. Since ∆(h̃k1) = �(h̃k1) + [hk0 ⊗ 1,Ω+] and �([h̃i1, h̃j1]) = 0,
it suffices to show that

(4.15) [[hi0 ⊗ 1,Ω+], [hj0 ⊗ 1,Ω+]] = [�(h̃j1), [hi0 ⊗ 1,Ω+]]− [�(h̃i1), [hj0 ⊗ 1,Ω+]].

The left-hand side is the sum over k ∈ Z>0 of∑
ht(α+β)=k

(αi, α)(αj, β)[x−α ⊗ x+
α , x

−
β ⊗ x

+
β ]

=
1

2

∑
ht(α+β)=k

(αi, α)(αj, β)
(
{x−α , x−β } ⊗ [x+

α , x
+
β ] + [x−α , x

−
β ]⊗ {x+

α , x
+
β }
)
,

(4.16)

where the sum
∑

ht(α+β)=k is taken over all α, β ∈ ∆re
+ such that ht(α+β) = k. The right-hand

side of (4.15) is the sum over k ∈ Z>0 of

(4.17)
∑

α∈∆re
+ (k)

(α, αj)[�(h̃i1), x−α ⊗ x+
α ]−

∑
α∈∆re

+ (k)

(α, αi)[�(h̃j1), x−α ⊗ x+
α ],

where ∆re
+(k) = {α ∈ ∆re

+ : ht(α) = k}. Therefore, (4.15) will hold if the following equality is
established for all k ∈ Z>0:

(4.18)
∑

ht(α+β)=k

(αi, α)(αj, β){x∓α , x∓β } ⊗ [x±α , x
±
β ] = 2

∑
α∈∆re

+ (k)

[hij(α), x∓α ]⊗ x±α ,

where hij(α) = (α, αj)h̃i1 − (α, αi)h̃j1 for all i, j ∈ I and α ∈ ∆re
+.

Since J(hk) = h̃k1 + ṽk, Proposition 3.21 implies that

(4.19) [hij(α), x∓α ] = [(α, αj)J(hi)− (α, αi)J(hj), x
∓
α ]− [vij(α), x∓α ] = [x∓α , vij(α)],
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where vij(α) = (α, αj)ṽi − (α, αi)ṽj. We claim that

(4.20) [vij(α), x∓α ] = −1

2

∑
β,γ∈∆re

+
β+γ=α

Aij,β,γ(x
∓
α , [x

±
β , x

±
γ ])x∓β x

∓
γ ,

where Aij,β,γ = (αi, β)(αj, γ) − (αj, β)(αi, γ) for each β, γ ∈ ∆re
+. We will prove (4.20) in

the case where the symbols ± and ∓ take their upper values + and −, respectively. The
(±,∓) = (−,+) case follows from an essentially identical argument.

By definition of ṽi, we have

[ṽi, x
−
α ] = −1

4
h∨(αi, α)x−α +

1

2

∑
β∈∆re

+

(β, αi)([x
−
β , x

−
α ]x+

β + x−β [x+
β , x

−
α ]),

which implies the equality

(4.21) [vij(α), x−α ] =
1

2

∑
β∈∆re

+

Aij,β,α([x−β , x
−
α ]x+

β + x−β [x+
β , x

−
α ]).

Consider x−β [x+
β , x

−
α ]. Assume first that γ = β − α is positive. If γ is an imaginary root, the

coefficient Aij,β,α vanishes. Therefore, we may assume γ ∈ ∆re
+. Then

x−β [x+
β , x

−
α ] = (x−γ , [x

+
β , x

−
α ])x−β x

+
γ .

If β − α is negative, we set instead γ = α− β (which we may again assume to be a real root)
and deduce that

x−β [x+
β , x

−
α ] = (x+

γ , [x
+
β , x

−
α ])x−β x

−
γ = −(x−α , [x

+
β , x

+
γ ])x−β x

−
γ .

We thus have
(4.22)∑
β∈∆re

+

Aij,β,αx
−
β [x+

β , x
−
α ] =

∑
β,γ∈∆re

+
γ+α=β

Aij,γ,β(x−γ , [x
+
β , x

−
α ])x−β x

+
γ −

∑
β,γ∈∆re

+
β+γ=α

Aij,β,γ(x
−
α , [x

+
β , x

+
γ ])x−β x

−
γ ,

where we have used that Aij,β,β−γ = Aij,γ,β and Aij,β,β+γ = Aij,β,γ. By similar reasoning,∑
β∈∆re

+

Aij,β,α[x−β , x
−
α ]x+

β =
∑

β,γ∈∆re
+

β+α=γ

Aij,β,γ(x
+
γ , [x

−
β , x

−
α ])x−γ x

+
β = −

∑
β,γ∈∆re

+
β+α=γ

Aij,γ,β(x−γ , [x
+
β , x

−
α ])x−β x

+
γ ,

which cancels with the first term on the right-hand side of (4.22). This proves that the formula
(4.20) holds when (±,∓) = (+,−).

Combining (4.19) with (4.20), we obtain

2[hij(α), x∓α ]⊗ x±α =
∑

β,γ∈∆re
+

β+γ=α

Aij,β,γ(x
∓
α , [x

±
β , x

±
γ ])x∓β x

∓
γ ⊗ x±α =

∑
β,γ∈∆re

+
β+γ=α

Aij,β,γx
∓
β x
∓
γ ⊗ [x±β , x

±
γ ].

After adding the last expression to itself with β and γ exchanged, dividing by two, and then
summing over α ∈ ∆re

+(k), we find the following expression for the right-hand side of (4.18):

(4.23) 2
∑

α∈∆re
+ (k)

[hij(α), x∓α ]⊗ x±α =
1

2

∑
α∈∆re

+ (k)

∑
β,γ∈∆re

+
β+γ=α

Aij,β,γ{x∓β , x
∓
γ } ⊗ [x±β , x

±
γ ].
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Conversely, adding the left-hand side of (4.18) to itself with α and β exchanged and dividing
by two, we deduce that it is equal to

1

2

∑
ht(α+β)=k

Aij,α,β{x∓α , x∓β } ⊗ [x±α , x
±
β ].

Since Aij,α,β = 0 for α + β ∈ ∆im
+ , this coincides with the right-hand side of (4.23). This

completes the proof of the identity (4.18), and hence the proof of Theorem 4.9.

4(v). Coassociativity. It follows from Theorem 4.9 that we can turn the tensor product
V1⊗ V2 of two representations in the category O into a representation of Y (g) which is also in
the category O. Indeed, a Y (g)-module V is in O if ι∗(V ) is in the category O for g; moreover,
ι∗(V1 ⊗ V2) = ι∗(V1)⊗ ι∗(V2). It is very desirable for this coproduct to be compatible with the
associativity of the tensor product.

Proposition 4.24. Let V1, V2 and V3 be Y (g)-modules in the category O. Then the natural
isomorphism of vector spaces

aV1,V2,V3 : (V1 ⊗ V2)⊗ V3 → V1 ⊗ (V2 ⊗ V3)

is an isomorphism of Y (g)-modules.

Proof. We need to show that, after identifying the spaces EndC((V1⊗V2)⊗V3) and EndC(V1⊗
(V2 ⊗ V3)) (via aV1,V2,V3), we have ∆V1⊗V2,V3 = ∆V1,V2⊗V3 . Since Y (g) is generated by g and h̃i1
(for all i ∈ I), we need only to establish this equality when both sides are applied to h̃i1. By
(4.8), we have

∆V1⊗V2,V3(h̃i1) =(h̃i1 ⊗ 1)⊗ 1 + (1⊗ 1)⊗ h̃i1 + (1⊗ h̃i1)⊗ 1

−
∑
α∈∆re

+

(αi, α)
(
(x−α ⊗ x+

α )⊗ 1 + (x−α ⊗ 1 + 1⊗ x−α )⊗ x+
α

)
,

∆V1,V2⊗V3(h̃i1) =h̃i1 ⊗ (1⊗ 1) + 1⊗ (h̃i1 ⊗ 1) + 1⊗ (1⊗ h̃i1)

−
∑
α∈∆re

+

(αi, α)
(
1⊗ (x−α ⊗ x+

α ) + x−α ⊗ (x+
α ⊗ 1 + 1⊗ x+

α )
)
.

Hence, ∆V1⊗V2,V3(h̃i1) = ∆V1,V2⊗V3(h̃i1) and consequently aV1,V2,V3 is an isomorphism of Y (g)-
modules. �

5. Coproduct and completions of Yangians

The collection of algebra homomorphisms ∆V1,V2 , which are defined on generators by (4.7),
can be viewed together as a sort of comultiplication on Y (g) which is coassociative in the sense
of Proposition 4.24. Our present goal is to improve on this by showing that each homomorphism
∆V1,V2 : Y (g) → EndC(V1 ⊗ V2) can be recovered from a single homomorphism ∆: Y (g) →
Y (g)⊗̂Y (g), where Y (g)⊗̂Y (g) is a suitable completion of Y (g)⊗ Y (g).

Our first step is to define a completion Ŷ (g) of Y (g) which behaves nicely with respect to
modules in the category O, and from which the definition of Y (g)⊗̂Y (g) can be obtained as a
special case.
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5(i). The completion Ŷ (g). Let g be a symmetrizable Kac-Moody algebra as in §2, except
that we no longer require the Cartan matrix (aij)i,j∈I to be indecomposable (because we want
to consider the Yangian of g⊕ g). Note that in this case we can still define the Yangian Y~(g),

and thus Y (g), using Definition 2.1. For the purpose of introducing the completion Ŷ (g) we
need to impose two mild conditions on Y (g):

(A) We suppose that Y (g) admits the multiplicative triangular decomposition

Y (g) ∼= Y − ⊗ Y 0 ⊗ Y +,

where Y ± (resp. Y 0) denotes the subalgebra of Y (g) generated x±ir (resp. hir and h ∈ h)
with i ∈ I and r ≥ 0.

(B) We also assume that Y ± is isomorphic to the quotient of the free algebra on the generators
x±i,r for all i ∈ I, r ≥ 0 by the ideal corresponding to the relations (2.6) and (2.7).

It is very plausible that these assumptions on Y (g) are always satisfied (even when g is not
affine). Indeed, for affinizations of quantum Kac-Moody algebras such a result was obtained
by D. Hernandez in [Her05, Theorem 3.2], and the corresponding result for Yangians could
most likely be proven using exactly the same technique.

Set deg x+
ir = 1 for all i ∈ I and r ≥ 0. The assumption (B) implies that we have Y + =⊕∞

k=0 Y
+[k], where Y +[k] is the span of all monomials of degree k in Y +, and this grading is

compatible with the algebra structure on Y +. This together with the assumption (A) imply
that we have the vector space grading

Y (g) =
∞⊕
k=0

Y (g)[k], where Y (g)[k] = Y ≤0 ⊗ Y +[k]

and Y ≤0 is the subalgebra of Y (g) generated by x−ir and hir for all i ∈ I, r ≥ 0 along with all
h ∈ h. Note that Y (g) =

⊕∞
k=0 Y (g)[k] is not a grading of algebras.

For each n ∈ Z≥0, let Y≥n denote the subspace ⊕∞k=nY
+[k] of Y +, and let (An, qn) consist of

the (left) Y (g)-module An and natural quotient map qn which are given by

An = Y (g)/Y (g)Y≥n+1, qn : Y (g)→ An.

For each n ≥ 0, qn−1 factors through An to yield a Y (g)-module homomorphism pn : An →
An−1 such that pn◦qn = qn−1. Therefore, (An, pn)n≥0 forms an inverse system of Y (g)-modules.

Following [CP95, 10.1.D], we introduce Ŷ (g) as the inverse limit of this system:

Definition 5.1. We define Ŷ (g) to be the Y (g)-module obtained by taking the inverse limit
of the system (An, pn)n≥0:

(5.2) Ŷ (g) = lim←−
n

An = lim←−
n

(Y (g)/Y (g)Y≥(n+1)).

Let i : Y (g)→ Ŷ (g) be the homomorphism (of Y (g)-modules) given by X 7→ (qn(X))n≥0 for
all X ∈ Y (g). Note that i is injective: if X ∈ Ker(i) then X ∈ ∩n≥0Y (g)Y +

n+1 = {0}.
The next lemma gives a more familiar presentation of Ŷ (g).

Lemma 5.3. The embedding i extends to a linear isomorphism

(5.4) Φ:
∞∏
k=0

Y (g)[k]→ Ŷ (g),
∞∑
k=0

Xk 7→

(
n∑
k=0

qn(Xk)

)
n≥0

.
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Henceforth, we will always identify Ŷ (g) and
∏∞

k=0 Y (g)[k], and we shall especially view the

elements of Ŷ (g) as infinite series
∑∞

k=0Xk with Xk ∈ Y (g)[k] for all k ≥ 0.

The main goal for the rest of this section is to prove that Ŷ (g) can be naturally made into
a C-algebra with structure compatible with that of Y (g). We begin by naively defining what
the multiplication should be.

Given X◦ =
∑∞

k=0 X
◦
k and X• =

∑∞
`=0 X

•
` in Ŷ (g), define

(5.5) X◦ ·X• =
∞∑
m=0

(X◦X•)m,

where (X◦X•)m =
∑∞

k,`=0(X◦kX
•
` )m and (X◦kX

•
` )m is the component of the product X◦kX

•
`

which belongs to Y (g)[m] (note that the product X◦kX
•
` is inside Y (g)). To see that the right-

hand side of (5.5) is a well-defined element of Ŷ (g), we have to show that
∑∞

k,`=0(X◦kX
•
` )m

reduces to a finite sum. This will be established in the proof of Proposition 5.13, however first
we will need Proposition 5.9 below whose proof depends on the next lemma.

Lemma 5.6. For each k ≥ 0, i ∈ I and r ≥ 0 we have the inclusions

Y +[k]hir ⊂ Y (g)[k],(5.7)

Y +[k]x−ir ⊂ Y (g)[k]⊕ Y (g)[k − 1].(5.8)

Proof. Let’s prove that the first inclusion holds for all r ≥ 0 by induction on k. When k = 0,
(5.7) is true since Y +[0] = C. Assume now that, for a fixed ` > 0, (5.7) holds when k < `.
Let X = x+

i1,r1
· · · x+

i`,r`
be a monomial in Y +[`] and write X = X1x

+
i`,r`

. We prove that
Xhir ⊂ Y (g)[`] by induction on r. The case r = 0 follows from (2.3). When r > 0, we have

Xhir = X1hirx
+
i`,r`

+X1[x+
i`,r`

, hir]

= X1hirx
+
i`,r`
−X1

(
(αi, αi`)

2
(hi,r−1x

+
i`,r`

+ x+
i`,r`

hi,r−1) + (hi,r−1x
+
i`,r`+1 − x+

i`,r`+1hi,r−1)

)
.

Since X1 has length `− 1, X1hirx
+
i`,r`

, X1hi,r−1x
+
i`,r`

and X1hi,r−1x
+
i`,r`+1 all belong to Y (g)[`],

and, by induction on r, the rest of the terms on the right-hand side of the above expression
also belong to Y (g)[`]. Hence, (5.7) holds for all k, r ≥ 0.

The inclusion (5.8) can be proved similarly using induction on k and (5.7). �

Note that, since Y +[k]h ⊂ Y (g)[k] for all h ∈ h and k ≥ 0, the relation (5.7) of Lemma 5.6
implies that Y +[k] · Y 0 ⊂ Y (g)[k] for all k ≥ 0. We shall use this fact in the next Proposition.

Proposition 5.9. Let Z ∈ Y ≤0. Then, for every non-negative integer m ≥ 0 there exists
NZ
m ≥ 0 such that

(5.10) [Y +[k], Z] ∈
k⊕

a=m+1

Y (g)[a] for all k ≥ NZ
m.

Proof. Without loss of generality, we may assume that Z is a monomial in the generators of
Y ≤0, say

(5.11) Z = x−j1,s1 · · ·x
−
j`,s`

H,
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where H is a monomial in the generators of Y 0. Since Y +[k] is spanned by homogeneous
monomials of degree k, it suffices to prove the existence of NZ

m ≥ 0 such that

[Xk, Z] ∈
k⊕

a=m+1

Y (g)[a] for all k ≥ NZ
m

for every monomial Xk of degree k. We will prove the stronger result that, for Z as in (5.11),
NZ
m can be taken to be precisely m+`+1. Set Zb = x−j1,s1 · · ·x

−
jb,sb

for each 0 ≤ b ≤ `, where Z0

is understood to equal 1. By relation (5.7) of Lemma 5.6 we have Y (g)[k] ·H ⊂ Y (g)[k] for all

k ≥ 0, and in particular [Xk, H] ∈
⊕k

a=m+1 Y (g)[a] whenever k ≥ m + 1. These observations
together with the fact that

[Xk, Z] = [Xk, Z`]H + Z`[Xk, H]

imply that it suffices to show that [Xk, Z`] ∈
⊕k

a=m+1 Y (g)[a] for all k ≥ m + ` + 1. We will
prove this statement by induction on ` ≥ 0. The base of the induction is immediate since
Z0 = 1. Next, fix d > 0 and assume inductively that the statement holds when ` is replaced
by d− 1. If now ` is replaced instead by d, then we may rewrite [Xk, Zd] as

(5.12) [Xk, Zd] = Zd−1[Xk, x
−
jd,sd

] + [Xk, Zd−1]x−jd,sd .

If d = 1, the second term on the right-hand side of the above equation vanishes and (5.8) of

Lemma 5.6 yields that Zd−1[Xk, x
−
jd,sd

] belongs to
⊕k

a=m+1 Y (g)[a] for all k ≥ m+2, as desired.
If instead d > 1, then the latter statement of the previous sentence still holds. Moreover, the
inductive hypothesis implies that [Xk, Zd−1] ∈

⊕k
a=m+2 Y (g)[a] for k ≥ m + d + 1, and thus

[Xk, Zd−1]x−jd,sd ∈
⊕k

a=m+1 Y (g)[a] for all such values of k as a consequence of (5.8). Since

m + d + 1 ≥ m + 2, we may conclude from (5.12) that [Xk, Zd] ∈
⊕k

a=m+1 Y (g)[a] whenever
k ≥ m+ d+ 1. �

Proposition 5.13. The operation given in (5.5) is a well-defined product which equips Ŷ (g)
with the structure of an associative algebra.

Proof. We have to see that
∑∞

k,`=0(X◦kX
•
` )m reduces to a finite sum for every fixed m. The

product X◦kX
•
` is in

⊕∞
r=` Y (g)[r], so if (X◦kX

•
` )m 6= 0, then ` ≤ m.

For each pair k, ` ∈ Z≥0 write X◦k =
∑

i∈Ik yk,ix
◦
k,i and X•` =

∑
j∈J` z`,jx

•
`,j, where yk,i, z`,j ∈

Y ≤0, x◦k,i ∈ Y +[k] and x•`,j ∈ Y +[`] for all i ∈ Ik, j ∈ J`; Ik and J` being finite sets. We then
have

∞∑
k,`=0

(X◦kX
•
` )m =

∞∑
k,`=0

∑
i∈Ik,j∈J`

(yk,iz`,jx
◦
k,ix

•
`,j)m +

∞∑
k,`=0

∑
i∈Ik,j∈J`

(yk,i[x
◦
k,i, z`,j]x

•
`,j)m

=
∑

k+`=m

∑
i∈Ik,j∈J`

yk,iz`,jx
◦
k,ix

•
`,j +

∞∑
k,`=0

∑
i∈Ik,j∈J`

(yk,i[x
◦
k,i, z`,j]x

•
`,j)m.

The first sum is finite, so we need only to show that the second summation is also finite. Set

N = max
0≤`≤m

max
j∈J`

N
z`,j
m−`.
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If k ≥ N , then Proposition 5.9 implies that [x◦k,i, z`,j] is a sum of homogeneous elements of
degree ≥ m− `+ 1 for all 0 ≤ ` ≤ m. Therefore,∑

k,`≥0

∑
i∈Ik,j∈J`

(yk,i[x
◦
k,i, z`,j]x

•
`,j)m =

N∑
k=0

m∑
`=0

∑
i∈Ik,j∈J`

(yk,i[x
◦
k,i, z`,j]x

•
`,j)m

and the sum on the right-hand side is a finite sum. Associativity of the product on Ŷ (g) is
immediate. �

The last result of this subsection illustrates that Ŷ (g) is particularly well-behaved with
respect to the category O of Y (g).

Proposition 5.14. The completion Ŷ (g) has the following properties:

(1) For each i ∈ I, J(x±i ) and J(hi) (see (3.7)) can be viewed as elements of Ŷ (g);

(2) Every module V of Y (g) in the category O extends to a module over Ŷ (g).

Proof. As J(x±i ) = ±(αi, αi)
−1[J(hi), x

±
i ], it suffices to prove (1) for J(hi), which amounts to

proving that the infinite sum vi =
∑

α∈∆+
(α, αi)

∑dim gα
k=1 x

(k)
−αx

(k)
α is contained in Ŷ (g). This

is a consequence of the observation that x
(k)
−αx

(k)
α ∈ Y (g)[ht(α)] and {α ∈ ∆+ : ht(α) = `}

is finite for each ` ≥ 1. As for (2), given X =
∑∞

k=0Xk ∈ Ŷ (g), the operator XV given by
XV (v) =

∑∞
k=0Xkv for all v ∈ V is a well-defined element of EndC V because Y +[k]v = 0 for

all k � 0. �

Remark 5.15. The definition of Ŷ (g) as the inverse limit (5.2) has been motivated by §10.1.D

of [CP95] and Definition 1.5.8 in [Kum02]. In [CP95], the analogous completion Ûq(g) of
the quantum enveloping algebra Uq(g) (where g is finite-dimensional) was introduced in order
to study the universal R-matrix of Uq(g). A similar completion for more general quantized
Kac-Moody algebras was constructed in [Jos99, §4.1].

Remark 5.16. In [CI84, §2], the authors defined an algebra U(R,C ) which can be associated
to any ring R and a full subcategory C of the category of R-modules. Of specific interest in
[CI84] was the case where R = U(g) and C is taken to be the category O for the Kac-Moody
algebra g (to this effect, see also [Kum86]). However, when one takes instead R = Y (g) and

C to be the category O for Y (g), one arrives at an algebra which is closely related to Ŷ (g) as
a left Y (g)-module, but has a different multiplication. This construction has also served as a

source of motivation for our definition of Ŷ (g).

5(ii). The coproduct ∆: Y (g) → Y (g)⊗̂Y (g). Let g be as in the previous subsection with
Y (g) satisfying the assumptions (A) and (B). Consider the Yangian Y (g⊕g). As algebras, we
have the isomorphism Y (g⊕ g) ∼= Y (g)⊗Y (g) (see for instance Proposition II.4.2 of [Kas95]).
In particular, Y (g⊕ g) also satisfies the assumptions (A) and (B), and therefore we can define
Y (g)⊗̂Y (g) using Definition 5.1:

(5.17) Y (g)⊗̂Y (g) = Ŷ (g⊕ g).

More generally, we define the completed n-th tensor power Y (g)⊗̂n = Y (g)⊗̂ · · · ⊗̂Y (g) (where

Y (g) appears n-times) as Ŷ (g⊕n). Using Lemma 5.3, we can identify Y (g)⊗̂Y (g) with the
direct product

∞∏
k=0

(Y (g)⊗ Y (g))[k] =
∞∏
k=0

(⊕
r+s=k

Y (g)[r]⊗ Y (g)[s]

)
.
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We now return to the setting where g is an affine Lie algebra with an indecomposable Cartan

matrix (aij)i,j∈I , which is not of type A
(1)
1 or A

(2)
2 .

Note that the half Casimir Ω+ from (4.1) can be viewed as an element of Y (g)⊗̂Y (g), and
therefore we may define the assignment

∆: {x±i0, hi1, h : i ∈ I, h ∈ h} → Y (g)⊗̂Y (g)

exactly as ∆V1,V2 has been defined in (4.7), except that EndC(V1 ⊗ V2) should be replaced by
Y (g)⊗̂Y (g).

Proposition 5.18. Assume that g is of affine type, but not A
(1)
1 or A

(2)
2 . The assignment ∆

extends to an algebra homomorphism ∆: Y (g) → Y (g)⊗̂Y (g). Additionally, if V1, V2 belong
to the category O and ρ1, ρ2 are the corresponding homomorphisms Y (g) → EndC(V1) and
Y (g)→ EndC(V2), respectively, then ρ1 ⊗ ρ2 extends to ρ1⊗̂ρ2 : Y (g)⊗̂Y (g)→ EndC(V1 ⊗ V2),
and we have

∆V1,V2 = (ρ1⊗̂ρ2) ◦∆.

Proof. Part I of the proof of Theorem 4.9 can be carried out without modification when
EndC(V1 ⊗ V2) is replaced by Y (g)⊗̂Y (g).

For Part II of the proof of Theorem 4.9 we just need to explain why Proposition 3.21
holds. Since the adjoint action of g on Y (g) is integrable (by (2.7)), the formula (3.15) now
defines an algebra automorphism of Y (g) (by [Kum02, Lemma 1.3.5 (b)], for instance). By

the proof of Lemma 3.17, it extends to an automorphism of the subalgebra of Ŷ (g) generated

by Y (g) and {vi}i∈I , which is sufficient for our purposes. (That vi ∈ Ŷ (g) is a consequence

of Proposition 5.14.) Since Lemma 3.9 holds in Ŷ (g), both Lemma 3.19 and Proposition 3.21
can be proven as before using the automorphism τi described in the previous sentence.

If (ρ1, V1) and (ρ2, V2) are two representations in the category O, then (ρ1 ⊗ ρ2, V1 ⊗ V2)
belongs to the category of O for the Yangian Y (g⊕g). Therefore, by Proposition 5.14, ρ1⊗ρ2

extends to a homomorphism

ρ1⊗̂ρ2 : Ŷ (g⊕ g) = Y (g)⊗̂Y (g)→ EndC(V1 ⊗ V2).

The equality ∆V1,V2 = (ρ1⊗̂ρ2) ◦ ∆ is now immediate since both sides agree on generators of
Y (g). �

5(iii). The modified Yangian. An alternative to working with the completed tensor product
Y (g)⊗̂Y (g) is to replace ∆ by a family of linear maps ∆λ1,µ1,λ2,µ2 as suggested, for instance,
in Chapter 23 of [Lus10]. This alternative also fits with the geometric construction in [MO12],

once it is formulated as in [Nak13]. We assume again that g is affine and not of type A
(1)
1 or

A
(2)
2 . In particular, h = spanB where B = {hi0, d | i ∈ I} and d is the derivation. Given two

elements λ, µ of the weight lattice of g, set

λY (g)µ = Y (g)/

(∑
h∈B

(h− λ(h))Y (g) +
∑
h∈B

Y (g)(h− µ(h))

)
and let πλ,µ : Y (g) � λY (g)µ be the projection map. Following [Lus10], the non-unital algebra⊕

λ,µ λY (g)µ could be called the modified Yangian. We will denote it Ẏ (g). Its algebra

structure is defined as in [Lus10, §23.1.1]: for any λ1, µ1, λ2, µ2 in the weight lattice of g and
any x1 ∈ Y (g){λ1 − µ1}, x2 ∈ Y (g){λ2 − µ2}, we set πλ1,µ1(x1)πλ2,µ2(x2) = δµ1,λ2πλ1,µ2(x1x2).
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We have a root grading on Y (g) given by deg(x±ir) = ±αi, deg(hir) = 0 for all i ∈ I, r ≥ 0
and deg(d) = 0, which leads to direct sum decompositions into graded pieces

Y (g) =
⊕
ν∈Z∆

Y (g){ν} and Ẏ (g) =
⊕
ν∈Z∆

⊕
λ,µ

πλ,µ(Y (g){ν}).

Moreover, πλ,µ(Y (g){ν}) 6= 0 only if λ− µ = ν.
Now let λ1, µ1, λ2, µ2 be elements of the weight lattice of g. The map πλ1,µ1 ⊗πλ2,µ2 : Y (g)⊗

Y (g) → λ1Y (g)µ1 ⊗ λ2Y (g)µ2 can be restricted to (Y (g) ⊗ Y (g))[k] for any k and we denote
its restriction by (πλ1,µ1 ⊗ πλ2,µ2)|k. Set (λ1Y (g)µ1 ⊗ λ2Y (g)µ2)[k] = (πλ1,µ1 ⊗ πλ2,µ2)|k((Y (g)⊗
Y (g))[k]). It can also be extended to a map

πλ1,µ1⊗̂πλ2,µ2 : Y (g)⊗̂Y (g)→
∞∏
k=0

(λ1Y (g)µ1 ⊗ λ2Y (g)µ2)[k]

by setting

πλ1,µ1⊗̂πλ2,µ2 =
∞∏
k=0

(πλ1,µ1 ⊗ πλ2,µ2)|k.

Following [Lus10], we define the linear map

∆λ1,µ1,λ2,µ2 : λ1+λ2Y (g)µ1+µ2 →
∞∏
k=0

(λ1Y (g)µ1 ⊗ λ2Y (g)µ2)[k]

by
∆λ1,µ1,λ2,µ2(πλ1+λ2,µ1+µ2(x)) = (πλ1,µ1⊗̂πλ2,µ2)(∆(x)).

It turns out that the image of ∆λ1,µ1,λ2,µ2 is actually contained in⊕∞k=0(λ1Y (g)µ1⊗λ2Y (g)µ2)[k] ∼=
λ1Y (g)µ1⊗λ2Y (g)µ2 : to see this, observe that, for any fixed λ1, µ1, λ2, µ2, there are only finitely
many terms of ∆(hi1) which are contained in Y (g){λ1 − µ1} ⊗ Y (g){λ2 − µ2} and the same is
true consequently for ∆(x) for any x ∈ Y (g).

6. The parameter dependent coproduct ∆u

In this section, we construct a parameter dependent coproduct ∆u : Y (g)→ (Y (g)⊗Y (g)((u))
from which the homomorphisms ∆V1,V2 and ∆ of Theorem 4.9 and Proposition 5.18 (assuming
(A) and (B)), respectively, can be recovered. In addition to unifying the constructions of the
present paper, ∆u has been applied in [GRW18] to prove the Poincaré-Birkhoff-Witt Theorem
for simply laced affine Yangians.

6(i). Definition of ∆u. The construction of ∆u is based on the existence of a gradation
homomorphism su : Y (g)→ Y (g)[u±1], which is defined by

su : x±ir 7→ u±1x±ir, hir 7→ hir, h 7→ h ∀ i ∈ I, r ≥ 0 and h ∈ h.

If g is of finite type, then Y (g) is a Hopf algebra with a genuine coproduct ∆ : Y (g) →
Y (g)⊗ Y (g), and we may set

∆u = (1⊗ su) ◦∆ : Y (g)→ (Y (g)⊗ Y (g))[u±1].

Now suppose that g is an affine Kac-Moody algebra which is not of type A
(1)
1 or A

(2)
2 . Then

we may still formally apply 1⊗ su to the right-hand side of the assignment ∆ of Definition 4.6
to produce an assignment ∆u. That is, we let

∆u : {x±i0, h̃i1, h : i ∈ I, h ∈ h} → (Y (g)⊗ Y (g))((u)),
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be the assignment given by

∆u(x
±
i0) = x±i0 ⊗ 1 + 1⊗ x±i0u±1, ∆(h) = �(h),

∆u(h̃i1) = �(h̃i1)−
∞∑
k=1

 ∑
α∈∆re

+ (k)

(α, αi)x
−
α ⊗ x+

α

uk,
(6.1)

for all i ∈ I and h ∈ h, where ∆re
+(k) = {α ∈ ∆re

+ : ht(α) = k} as in §4(iv).

Theorem 6.2. Assume g is either finite-dimensional (but not sl2) or of affine type (but not

of type A
(1)
1 or A

(2)
2 ). Then the assignment ∆u defines an algebra homomorphism ∆u : Y (g)→

(Y (g)⊗ Y (g))((u)).

The proof of Theorem 6.2, to be given in §6(iii), is based on the arguments employed to
prove Theorem 4.9. The added difficulty lies in making sense of the operators of §3(ii), which
play an essential argument in the Part II of the proof of Theorem 4.9. Given the assumptions

(A) and (B), this can be addressed using the completion Ŷ (g) as in the previous subsection. To

avoid these assumptions, we will construct a g-module Ỹ (g) containing Y (g) as a submodule.

6(ii). The g-module Ỹ (g). Let n± be the Lie subalgebras of g generated by {x±i }i∈I and set
b− = n− ⊕ h. Since U(g) admits a multiplicative triangular decomposition

U(g) ∼= U(n−)⊗ U(h)⊗ U(n+) ∼= U(b−)⊗ U(n+)

and the algebra U(n+) has a Z≥0-grading U(n+) =
⊕

k≥0 U(n+)[k] given by deg x+
i = 1 for

all i ∈ I, we have the vector space decomposition U(g) =
⊕

k≥0 U(g)[k] with U(g)[k] =
U(b−)⊗ U(n+)[k]. Set

Û(g) =
∏
k≥0

U(g)[k].

By [Kum02, §1.5] (or the arguments of §5(i)), Û(g) inherits from U(g) the structure of an
associative algebra. In addition, the formulas (3.4), (3.5) and (3.16) give rise to well-defined

families of elements {vi, w±i }i∈I , {vβ}β∈∆ ⊂ Û(g). Note that, under our current assumptions,

vβ coincides with
∑

α∈∆re
+

(α, β)x−αx
+
α ∈ Û(g). As before, we denote vαi simply by vi.

We may view both Y (g) and Û(g) as g-modules equipped with the adjoint action. Their

direct sum Y (g)⊕ Û(g) then contains the submodule U = {ι(x)− x : x ∈ U(g)} (see (2.9)).

Definition 6.3. The g-module Ỹ (g) is defined as the g-submodule of (Y (g) ⊕ Û(g))/U gen-
erated by the images of Y (g) and {vi}i∈I .

Remark 6.4. It is worth explaining the motivation behind the above definition. As will be-
come evident in §6(iii), the main obstacle to adapting Part II of the proof of Theorem 4.9 is
establishing the identity (6.7) below, which concerns the adjoint action of g on Y (g). In the
proof of Theorem 4.9, Proposition 3.21 was employed to reduce this relation to (4.20), which

is perfectly valid in Û(g), but does not have a meaning in Y (g). A solution to overcoming this
obstacle without the assumptions (A) and (B) is thus to construct a g-module which

(a) contains Y (g) (viewed as a g-module with the adjoint action) as a submodule,

(b) contains an image of the algebra Û(g) where (4.20) is valid,
(c) and where Proposition 3.21 (a g-module statement) is still valid.

As Lemma 6.5 below proves, Ỹ (g) has all of these properties.
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We let ad : g → EndC(Ỹ (g)) denote the homomorphism of Lie algebras responsible for the

g-module structure on Ỹ (g).

For each i ∈ I, define J(hi) ∈ Ỹ (g) to be the image of hi1 + vi in Ỹ (g) and set

J(x±i ) = ±(αi, αi)
−1[x±i , J(hi)] ∈ Ỹ (g).

Slightly abusing notation, we will denote the images of vi, w
±
i and vβ in Ỹ (g) again by vi, w

±
i

and vβ, respectively. Similarly, for each X ∈ Y (g), the image of X under the natural map

Y (g)→ Ỹ (g) (which by the next lemma is injective) will be again denoted by X.

Lemma 6.5.

(1) The natural homomorphism of g-modules Y (g)→ Ỹ (g) is an embedding,

(2) For each i ∈ I, τi = exp(ad(ei)) exp(−ad(fi)) exp(ad(ei)) ∈ EndC(Ỹ (g)),

(3) The statements of Lemma 3.9, Lemma 3.19, and Proposition 3.21 hold in Ỹ (g).

Proof. Part (1) is straightforward. Consider Part (2). By the same reasoning as given in §3(iii)

(see (3.15)), τi defines a linear automorphism of the image of Y (g) in Ỹ (g) which extends to all

of Ỹ (g) since it sends vj to vsi(αj) + (αi, αj){x−i0, x+
i0} (see Lemma 3.17) and Ỹ (g) is generated

by Y (g) ∪ {vi}i∈I .
Additionally, we observe that, by Lemma 1.3.5 (b) of [Kum02],

(6.6) τi([x, y]) = [τi(x), τi(y)] ∀ x ∈ g, y ∈ Ỹ (g).

Now let us turn to Part (3) of the lemma. The relations of Lemma 3.9 hold in the algebra

Û(g), and hence also in the g-module Ỹ (g). Consequently, the proof of Lemma 3.19 remains

valid after replacing EndC(V ) with Ỹ (g) (and with τi as in Part (2)). Moreover, although τi is

not an algebra homomorphism (as Ỹ (g) is not an algebra), the property (6.6) guarantees that
the proof of Proposition 3.21 is still valid in our current setting. �

6(iii). Proof of Theorem 6.2. Consider the formal series

Ω+(u)
def.
=

dim h∑
m=1

h(m) ⊗ h(m) +
∞∑
k=1

 ∑
α∈∆re

+ (k)

x−α ⊗ x+
α

uk ∈ (Y (g)⊗ Y (g))[[u]].

One proves exactly as in the proof of Lemma 4.2 that Ω+(u) satisfies

[�(h),Ω+(u)] = 0 for h ∈ h,

[�u(x
+
i ),Ω+(u)] = −x+

i ⊗ hi,
[�u(x

−
i ),Ω+(u)] = hi ⊗ x−i u−1,

where �u(x
±
i ) = x±i ⊗ 1 + 1⊗ x±i u±1 for each i ∈ I.

The proof that the assignment ∆u preserves the relations of Theorem 2.13, excluding (2.14)
with r = s = 1, is now achieved as in Part I of the proof of Theorem 4.9 after inserting powers
of u in appropriate places and replacing the role of Lemma 4.2 by the above commutation
relations for Ω+(u).

To complete the proof, we must see why [∆u(h̃i1),∆u(h̃j1)] = 0 for all i, j ∈ I. As ∆u(h̃k1) =

�(h̃k1) + [hk0 ⊗ 1,Ω+(u)] and [h̃i1, h̃j1] = 0, it suffices to prove that

[[hi0 ⊗ 1,Ω+(u)], [hj0 ⊗ 1,Ω+(u)]] = [�(h̃j1), [hi0 ⊗ 1,Ω+(u)]]− [�(h̃i1), [hj0 ⊗ 1,Ω+(u)]].
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However, the uk coefficient of the left-hand side of this expression is precisely (4.16), and the
uk coefficient of the right-hand side is (4.17) (now both viewed inside Y (g)⊗Y (g)). As before,
proving the equality of (4.16) and (4.17) reduces to proving the identity

(6.7) [hij(α), x∓α ] =
1

2

∑
β,γ∈∆re

+
β+γ=α

Aij,β,γ(x
∓
α , [x

±
β , x

±
γ ])x∓β x

∓
γ ∀ α ∈ ∆re

+,

where hij(α) = (α, αj)h̃i1 − (α, αi)h̃j1: see (4.19) and (4.20). By Part (1) of Lemma 6.5, it

suffices to prove (6.7) in the g-module Ỹ (g). Since, by Part (3) of Lemma 6.5, Proposition 3.21

holds in Ỹ (g), the equality (4.19) is satisfied in Ỹ (g):

[hij(α), x∓α ] = [x±α , vij(α)],

where vij(α) = (α, αj)ṽi − (α, αi)ṽj. It is thus enough to prove that (4.20), i.e. (6.7) with

the left-hand side replaced by [x±α , vij(α)], holds in Ỹ (g). The argument which was used to

establish (4.20) in Part II of the proof of Theorem 4.9 also proves that (4.20) holds in Û(g),

and it therefore also holds in Ỹ (g).

6(iv). Recovering ∆V1,V2 and ∆. Let V1 and V2 be two arbitrary Y (g)-modules with associ-
ated algebra homomorphisms ρa : Y (g)→ EndC(Va) for a ∈ {1, 2}. The tensor product ρ1⊗ρ2

extends to a homomorphism

ρ1 ⊗u ρ2 : (Y (g)⊗ Y (g))((u))→ (EndC(V1 ⊗ V2))((u)) ⊂ EndC((u)) ((V1 ⊗ V2)((u))) ,∑
k∈Z

Yku
k 7→

∑
k∈Z

(ρ1 ⊗ ρ2)(Yk)u
k,

and hence, by Theorem 6.2, the composition (ρ1 ⊗u ρ2) ◦ ∆u equips (V1 ⊗ V2)((u)) with the
structure of a Y (g)-module.

If (V1 ⊗ V2)[u±1] is a submodule of (V1 ⊗ V2)((u)), then the image of (ρ1 ⊗u ρ2) ◦ ∆u in
EndC((u)) ((V1 ⊗ V2)((u))) may be viewed as a subalgebra of EndC[u±1] ((V1 ⊗ V2)[u±1]). The
C[u±1]-module evaluation map V [u±1]→ V , u 7→ 1, then induces an algebra homomorphism

(6.8) ev : EndC[u±1]

(
(V1 ⊗ V2)[u±1]

)
→ EndC(V1 ⊗ V2),

and the composition ev ◦ (ρ1 ⊗u ρ2) ◦ ∆u : Y (g) → EndC(V1 ⊗ V2) makes V1 ⊗ V2 a genuine
Y (g)-module.

The next corollary illustrates that the category O provides a source of modules which fit
into this framework. In addition, it demonstrates that ∆u induces the algebra homomorphisms
∆V1,V2 and ∆ of Theorem 4.9 and Proposition 5.18, respectively.

Corollary 6.9. Let V1 be an arbitrary Y (g)-module, fix V2 ∈ O, and recall that ∆ : Y (g) →
Y (g)⊗̂Y (g) is the algebra homomorphism of Proposition 5.18. Then

(1) (V1 ⊗ V2)[u±1] is a submodule of (V1 ⊗ V2)((u)) and hence ev ◦ (ρ1 ⊗u ρ2) ◦ ∆u makes
V1 ⊗ V2 into a Y (g)-module.

(2) If in addition V1 ∈ O, then the homomorphism ∆V1,V2 of Theorem 4.9 is recovered by

∆V1,V2 = ev ◦ (ρ1 ⊗u ρ2) ◦∆u.

(3) Assume that (A) and (B) are satisfied and let ιu denote the natural inclusion (Y (g)⊗
Y (g))((u)) → (Y (g)⊗̂Y (g))((u)). Then, evaluation at u = 1 produces an algebra homo-
morphism

êv : Image(ιu ◦∆u)→ Y (g)⊗̂Y (g),
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and we have ∆ = êv ◦ ιu ◦∆u.

Proof. If V2 ∈ O, then for any fixed v ∈ V2 there is m ≥ 0 such that x+
α (v) = 0 for all

α ∈ ∆re
+(k) with k > m. Therefore, for any fixed Y (g)-module V1 and element w ∈ V1 ⊗ V2,

∆u(h̃i1)(w) ∈ (V1⊗V2)[u] for each i ∈ I (see (6.1)). This implies that (V1⊗V2)[u±1] is indeed a
submodule of (V1⊗V2)((u)). Part (1) thus follows from the discussion preceding the statement
of the corollary and Part (2) is deduced by comparing the definitions of ∆u and ∆V1,V2 (see
(4.7) and (6.1)).

Part (3) of the corollary is a consequence of the fact that the application of êv to the

generators ιu(∆u(h̃i1)), ιu(∆u(x
±
i0)) and ιu(∆u(h)) (for i ∈ I and h ∈ h) of Image(ιu ◦ ∆u)

produces the well-defined elements ∆(h̃i1),∆(x±i0) and ∆(h), respectively, of Y (g)⊗̂Y (g). �

Remark 6.10. By Proposition 4.24, ∆V1,V2 is coassociative. On the other hand, ∆u satisfies
the same “twisted” coassociativity property as the deformed Drinfeld (or “non-standard”)
coproduct for quantum affinizations [Her07, Lemma 3.4]:

(∆u ⊗ id) ◦∆uv = (id⊗∆v) ◦∆u.

The use of the gradation homomorphism su to “discover” ∆u has been inspired by similar ideas
employed by Hernandez to develop the deformed Drinfeld coproduct in [Her05]: see Remark
2 therein. Note, however, that the Yangian analogue of the gradation morphism T in [Her05,
Remark 2] specializes (for u ∈ C) to a shift automorphism of the Yangian [GTL17, §4.5], which
differs significantly from su.

7. Two parameter Yangian in type A
(1)
n−1

In this section, we assume that g is of type A
(1)
n−1 and n ≥ 3. (Definition 7.1 below is not the

correct one when n = 2: in this case, see the definition in §1.2 in [BT18] and Definition 5.1 in
[Kod15].) We identify the index set I with Z/nZ and normalize ( , ) so that (αi, αi) = 2 for
all i ∈ I. In this case, the definition of the Yangian Y~(g) can be generalized by introducing a
second parameter ε (see [Gua07]; for quantum toroidal algebras, see [VV98]).

Definition 7.1. Let ~, ε ∈ C. The Yangian Y~,ε(g
′) is the algebra over C with generators

x±ir, hir (i ∈ I, r ∈ Z≥0) subject to the defining relations of Y~(g
′) given in Definition 2.1 with

the modification that, when j = i + 1 or j = i − 1, (2.5) and (2.6) are replaced with the
relations:

[hi,r+1, x
±
i+1,s]− [hi,r, x

±
i+1,s+1] = ∓~

2

(
x±i+1,shir + hirx

±
i+1,s

)
+
ε

2
[hir, x

±
i+1,s],(7.2)

[hi,r+1, x
±
i−1,s]− [hi,r, x

±
i−1,s+1] = ∓~

2

(
x±i−1,shir + hirx

±
i−1,s

)
− ε

2
[hir, x

±
i−1,s],(7.3)

[x±i,r+1, x
±
i+1,s]− [x±ir, x

±
i+1,s+1] = ∓~

2

(
x±i+1,sx

±
ir + x±irx

±
i+1,s

)
+
ε

2
[x±ir, x

±
i+1,s].(7.4)

The Yangian Y~,ε(g) is then defined in the same manner as Y~(g): it is the quotient of
Y~,ε(g

′)⊗C U(h) by the ideal generated by the relations (2.8).

The defining relations for Y~,ε(g
′) given above are slightly different from those which appear

in [Gua07, Def. 2.3] (where Y~,ε(g
′) is denoted by Ŷβ,λ). One advantage of the relations in

Definition 7.1 is that they are invariant under the rotational symmetry 0 → 1 → 2 → · · · →
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n− 1→ 0. Both definitions are equivalent as follows. We set

h′ir
def.
=

r∑
s=0

(
r

s

)
εr−s

(
i

2
− n

4

)r−s
his,

x′±ir
def.
=

r∑
s=0

(
r

s

)
εr−s

(
i

2
− n

4

)r−s
x±is

for i = 1, 2, . . . , n − 1 and x′±0r = x±0r, h
′
0r = h0r. Then x′±ir and h′ir satisfy the relations in

[Gua07, Def. 2.3] with λ = ~, β = − εn
4

+ ~
2
.

When ε 6= 0, Y~=0,ε(g
′) is isomorphic to the enveloping algebra of the universal central

extension of the Lie algebra of n× n matrices with entries in the ring of differential operators
on C×: see §5 in [Gua07]. Otherwise, if ~1 6= 0 and ~2 6= 0, then Y~1,ε(g) ∼= Y~=1,ε/~1(g) ∼=
Y~2,ε~2/~1(g), so it is enough to focus on Y~=1,ε(g) for any ε ∈ C.

Our goal for the rest of this paper is to explain how the main results established in the
previous sections also hold for Y~=1,ε(g) after making only a few minor adjustments.

We begin by noting that it has already been proven in [Gua07] that Theorem 2.13 holds
for Y~=1,ε(g) with (2.17) and (2.18) replaced by (7.2), (7.3) and (7.4) with r = s = 0 when
j = i+ 1 or j = i− 1: see Proposition 2.1 in loc. cit.

It is also the case that Theorem 4.9 holds for Y~=1,ε(g) with ∆ given by the same formula
(4.7). The proof of Theorem 4.9 in this case follows the same steps as before, except that
some new terms appear due to the presence of the second parameter ε. The remainder of this
section will be devoted to explaining the key differences and necessary modifications. We start
by introducing operators J(hi) and J(x±i ) on modules in the category O exactly as in (3.7).
As a consequence of Lemma 3.9, these operators still satisfy the equivalences (3.14), however,
the second and fourth equivalences should be altered when j = i + 1 or j = i − 1 to account
for the modified relations of Definition 7.1. It is straightforward to verify that (7.2), (7.3) and
(7.4) with (r, s) = (0, 0) are equivalent to the relations

[J(hi), x
±
i+1] = ±(αi, αi+1)(J(x±i+1) +

ε

2
x±i+1),(7.5)

[J(hi), x
±
i−1] = ±(αi, αi−1)(J(x±i−1)− ε

2
x±i−1),(7.6)

[J(x±i ), x±i+1] = [x±i , J(x±i+1) +
ε

2
x±i+1],(7.7)

respectively. To account for these changes, Lemma 3.19 has to be slightly modified as follows.

Lemma 7.8. We have

τi(J(hj)) = J(si(hj))−
ε

2
(δi+1,j − δi−1,j)hi = J(hj)− (αi, αj)J(hi) +

ε

2
(δi,j+1 − δi,j−1)hi

for all i, j ∈ I.

The proof of this lemma is the same as for Lemma 3.19. The operators J(x±α ) are also
defined as before (see (3.20)), but Proposition 3.21 has to be modified to account for the
second parameter ε.

Proposition 7.9. For every positive real root α and every i ∈ I, there exists an integer cα,i
such that

(7.10) [J(hi), x
±
α ] = ±(αi, α)J(x±α )± ε

2
cα,ix

±
α = [hi, J(x±α )]± ε

2
cα,ix

±
α .
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Proof. We employ the same strategy as was used in the proof of Proposition 3.21: we argue
by induction on p, where x±α = τi1τi2 · · · τip−1(x

±
ip

) with x±ip = x±j for some j ∈ I. If p = 1, then

x±α = x±j and the equivalences (7.5), (7.6) and (3.14) imply that we have

(7.11) [J(hi), x
±
j ] = ±(αi, αj)J(x±j )± (δi,j+1 − δi,j−1)

ε

2
x±j = [hi, J(x±j )]± (δi,j+1 − δi,j−1)

ε

2
x±j ,

and hence we may take cαj ,i = δi,j+1 − δi,j−1. Suppose that the proposition holds for x±β with
β = si2 · · · sip−1(αip). Lemma 7.8, with i1, i instead of i, j, gives

J(hi) = τ−1
i1

(J(hi))− (αi1 , αi)τ
−1
i1

(J(hi1)) +
ε

2
cαi,i1τ

−1
i1

(hi1)

= τ−1
i1

(J(hi)) + (αi1 , αi)J(hi1)−
ε

2
cαi,i1hi1 .

Therefore,

[J(hi), x
±
α ] = τi1([τ

−1
i1
J(hi), x

±
β ])

= τi1

(
[J(si1(hi)) +

ε

2
cαi,i1hi1 , x

±
β ]
)

= τi1
(
[J(hi)− (αi1 , αi)J(hi1), x

±
β ]
)
± (αi1 , β)cαi,i1

ε

2
τi1(x

±
β )

= ±(si1(αi), β)τi1(J(x±β ))± ε

2
(cβ,i − (αi1 , αi)cβ,i1 + (αi1 , β)cαi,i1τi1(x

±
β )

= ±(αi, α)J(x±α )± ε

2
(cβ,i − (αi1 , αi)cβ,i1 + (αi1 , β)cαi,i1)x

±
α ,

where the third equality uses the induction assumption and the fourth equality uses that
(si1(αi), β) = (αi, si1(β)) = (αi, α). Setting cα,i = cβ,i − (αi1 , αi)cβ,i1 + (αi1 , β)cαi,i1 we obtain
that [J(hi), x

±
α ] = ±(αi, α)J(x±α )± ε

2
cα,ix

±
α . Moreover, by the induction assumption we have the

equalities [J(hi), x
±
β ] = [hi, J(x±β )] ± ε

2
cβ,ix

±
β and [J(hi1), x

±
β ] = [hi1 , J(x±β )] ± ε

2
cβ,i1x

±
β . These

together with the second equality in the expansion of [J(hi), x
±
α ] above also imply that

[J(hi), x
±
α ] = τi1

(
[τ−1
i1

(hi), J(x±β )]
)
± ε

2
(cβ,i − (αi1 , αi)cβ,i1 + (αi1 , β)cαi,i1)x

±
α

= [hi, J(x±α )]± ε

2
cα,ix

±
α . �

Part I of the proof of Theorem 4.9 is the same as before except for new terms involving ε
which appear when computing [∆(h̃i1),∆(x±j )] and [∆(x±i1),∆(x±j )] when j = i± 1.

Only the following two modifications must be made in Part II of the proof of Theorem 4.9.
First, the relation (4.18) should be replaced with

(7.12)
∑

ht(α+β)=k

(αi, α)(αj, β){x∓α , x∓β } ⊗ [x±α , x
±
β ] = 2

∑
α∈∆re

+ (k)

(
[hij(α), x∓α ]± dα,i,j

ε

2
x∓α

)
⊗ x±α ,

where dα,i,j = (α, αj)cα,i − (α, αi)cα,j. Note that, by (4.16) and (4.17), this still implies the
relation (4.15). The above adjustment is made in anticipation of the second modification,
which is that, due to Proposition 7.9, the relation (4.19) is to be replaced with

[hij(α), x∓α ] = [(α, αj)J(hi)− (α, αi)J(hj), x
∓
α ]− [vij(α), x∓α ] = [x∓α , vij(α)]∓ dα,i,j

ε

2
x∓α .

In particular, the right-hand side of (7.12) is still equal to 2
∑

α∈∆re
+ (k)[x

∓
α , vij(α)]⊗x±α , and the

remainder of the proof thus proceeds without modification. Therefore, we may conclude that
Theorem 4.9 holds for Y~=1,ε(g).
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Finally, the results on completions in §5 also hold for Y~=1,ε(g), so in particular we may view
∆ as an algebra homomorphism Y~=1,ε(g)→ Y~=1,ε(g)⊗̂Y~=1,ε(g). Moreover, we can recover ∆
and ∆V1,V2 from a parameter dependent coproduct ∆u as in §6.
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New York, 2010, Reprint of the 1994 edition.

[MO12] D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology, ArXiv e-prints (2012),
1211.1287, To appear in Asterisque.

[Nak01] Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine alge-
bras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238.

[Nak13] H. Nakajima, Quiver varieties and tensor products, II, Springer Proc. Math. Stat., vol. 40, Springer,
Heidelberg, 2013.

[SV13] O. Schiffmann and E. Vasserot, Cherednik algebras, W-algebras and the equivariant cohomology of

the moduli space of instantons on A2, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 213–342.
[Tsy17] A. Tsymbaliuk, The affine Yangian of gl1 revisited, Adv. Math. 304 (2017), 583–645.
[TY18] V. Toledano-Laredo and Y. Yang, The elliptic Casimir connection of a simple Lie algebra, ArXiv

e-prints (2018), 1805.12261.
[Var00] M. Varagnolo, Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), no. 4, 273–283.
[VV98] M. Varagnolo and E. Vasserot, Double-loop algebras and the Fock space, Invent. Math. 133 (1998),

no. 1, 133–159.
[VV02] , Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), no. 3, 509–533.
[YZ18] Yaping Yang and Gufang Zhao, Cohomological Hall algebras and affine quantum groups, Selecta

Math. (N.S.) 24 (2018), no. 2, 1093–1119.

N.G.: Department of Mathematical and Statistical Sciences, University of Alberta, CAB
632, Edmonton, AB T6G 2G1, Canada

E-mail address: nguay@ualberta.ca

H.N.: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502,
Japan

E-mail address: nakajima@kurims.kyoto-u.ac.jp

C.W.: Department of Mathematical and Statistical Sciences, University of Alberta, CAB
632, Edmonton, AB T6G 2G1, Canada

E-mail address: cwendlan@ualberta.ca


