# Almost cellular algebras 

Nicolas Guay, Stewart Wilcox


#### Abstract

We obtain results on algebras which have many of the properties of cellular algebras except for the existence of a certain anti-involution. We show that they are applicable to $q$-walled Brauer-Clifford superalgebras.


## Introduction

Cellular algebras were introduced by J. Graham and G. Lehrer in [GrLe]. Their definition captures some essential features of the Kazhdan-Lusztig bases of Hecke algebras and is applicable to other families of algebras like cyclotomic $q$-Schur algebras [DJM], cyclotomic Temperley-Lieb algebras [GrLe, RuXi] and cyclotomic Birman-Murakami-Wenzl algebras [En, Xi, Go]. An equivalent definition of cellularity which avoids specifying an explicit basis was given by S. König and C. C. Xi in terms of cell ideals and a filtration by two-sided ideals [KoXi1]. One of the advantages of the concept of cellularity is that it provides a way to parametrize irreducible modules.

The definition of cellular algebras requires the existence of an anti-involution with the property that it fixes isomorphism classes of irreducible modules (see section 5 of [KoXi1]). The motivation for this paper came from [BGJKW] where new algebras called $q$-walled Brauer-Clifford superalgebras were introduced. (These are $q$-analogues of the walled Brauer superalgebras studied in [JuKa].) Because of their similarity with Hecke algebras, it would be natural to expect them to be cellular. However, this cannot be the case because of the absence of a proper anti-involution: see the paragraph after Definition 2.2. Therefore, we wanted to see what kind of theory could be developed without taking into account an anti-involution. The approach we follow is similar to the one expounded in [KoXi1]: we consider so-called sandwich filtration algebras which are reminiscent of the inflation algebras in [KoXi1, KoXi2]. Sandwich filtration algebras equipped with a compatible anti-involution are cellular. The same can be said about the standardly based algebras introduced in [DuRu], but our approach in terms of ideals does not require any explicit basis as in Definition 1.2.1 in [DuRu].

The first section starts with the definition of a sandwich filtration. Our main result is Theorem 1.3 which gives properties of such an algebra. In particular, it provides a way to obtain a classification of all its irreducible modules and gives a necessary and sufficient condition for semisimplicity. In the second section, we show that a $q$-walled Brauer-Clifford superalgebra admits a sandwich filtration built from Hecke-Clifford superalgebras and spaces of linear endomorphisms of mixed tensor products.

## Acknowledgments

The first author gratefully acknowledges the financial support received through the Discovery Grant program of the Natural Sciences and Engineering Research Council of Canada. The second author held a Postdoctoral Fellowship of the Pacific Institute for the Mathematical Sciences.

## 1 Sandwich filtrations

Broadly speaking, a basis for an algebra is cellular if multiplication with respect to the basis takes a certain form. A cellular algebra is an algebra with a cellular basis. This notion, introduced in [GrLe], allows certain properties of the algebra to be easily obtained; for example it produces a complete set of irreducible modules and gives a simple condition for the algebra to be semisimple. There is a procedure [KoXi2] for constructing a cellular basis for an algebra which is "built" from smaller cellular algebras in a certain sense. In the case that motivated this paper, the $q$-walled BrauerClifford superalgebra $\mathrm{BC}_{r, s}(q)$ is built from Hecke-Clifford algebras in this same sense. $\left(\mathrm{BC}_{r, s}(q)\right.$ is defined in section 2.) Since Brauer algebras and walled Brauer algebras are known to be cellular [KoXi3, CdVDM], one might hope to apply this procedure to exhibit a cellular algebra structure on $\mathrm{BC}_{r, s}(q)$.

The definition of a cellular basis requires a compatible anti-involution, but $\mathrm{BC}_{r, s}(q)$ and $\mathrm{HC}_{\ell}(q)$ do not seem to admit a one. (See section 2.) Therefore, we remove the anti-involution from the definition of cellularity to obtain a weaker notion in Definition 1.1 which produces the same information about irreducible modules and semisimplicity. We also extend the definition to include algebras which are not split-semisimple over their base field.

Definition 1.1. Suppose $A, A_{1}, A_{2}, \ldots, A_{k}$ are unital associative rings. We say A has a sandwich filtration over $\mathrm{A}_{1}, \ldots \mathrm{~A}_{k}$ if it has a filtration by two-sided ideals

$$
0=\mathrm{J}_{0} \subsetneq \mathrm{~J}_{1} \subsetneq \ldots \subsetneq \mathrm{~J}_{k}=\mathrm{A}
$$

such that $J_{i} / J_{i-1} \cong V_{i} \otimes_{A_{i}} W_{i}$ as an (A, A)-bimodule, for some nonzero ( $\mathrm{A}, \mathrm{A}_{i}$ )-bimodule $\mathrm{V}_{i}$ and ( $\mathrm{A}_{i}, \mathrm{~A}$ )-bimodule $\mathrm{W}_{i}$, both free of finite rank over $\mathrm{A}_{i}$. We call $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i}$ the factors of A . If the rings $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{k}$ all coincide, we simply say that A has a sandwich filtration over $\mathrm{A}_{1}$.

The terminology was chosen due to the following construction: For any matrix $P$ in the space $M_{n m}(R)$ of $n \times m$ matrices over a ring $R$, the space $M_{m n}(R)$ becomes an associative ring with operation $A \circ B=A P B$. We call $P$ the sandwich matrix. This construction is similar to that of Rees matrix semigroups [Re] as well as the generalised matrix algebras of Brown [Br]. Lemma 1.2 below shows that the factors of $A$ may be obtained via this construction, though we state the result without an explicit basis.

The relationship between our terminology and cellular algebras is as follows: a cellular algebra admits a sandwich filtration over the base field, and has a compatible anti-involution. Since we allow the $\mathrm{A}_{i}$ to be arbitrary rings, this definition is analogous to the iterated inflations of [KoXi2].

Lemma 1.2. Suppose $A$ and $R$ are associative rings. Moreover suppose we have an (A, A)-bimodule injection $V \otimes_{R} W \hookrightarrow A$, where $V$ is an $(A, R)$-bimodule, $W$ is an ( $R, A$ )-bimodule, and $V$ and $W$ are both free over R. Then the multiplication map

$$
\left(\mathrm{V} \otimes_{\mathrm{R}} \mathrm{~W}\right) \otimes\left(\mathrm{V} \otimes_{\mathrm{R}} \mathrm{~W}\right) \rightarrow \mathrm{V} \otimes_{\mathrm{R}} \mathrm{~W}
$$

induced by this injection is given by

$$
\left(v^{\prime} \otimes_{\mathrm{R}} w\right)\left(v \otimes_{\mathrm{R}} w^{\prime}\right)=v^{\prime} \vartheta(w \otimes v) \otimes_{\mathrm{R}} w^{\prime}
$$

where $\vartheta: \mathrm{W} \otimes_{\mathrm{A}} \mathrm{V} \rightarrow \mathrm{R}$ is an $(\mathrm{R}, \mathrm{R})$-bimodule homomorphism uniquely determined by this formula.

Proof. Let $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ be R -bases for V and W respectively, so

$$
\mathrm{V} \otimes_{\mathrm{R}} \mathrm{~W}=\bigoplus_{i, j} v_{i} \mathrm{R} \otimes_{\mathrm{R}} w_{j}
$$

Consider any $v \in \mathrm{~V}$ and $w \in \mathrm{~W}$, and let $a, b \in \mathrm{~A}$ correspond to $v_{i} \otimes_{\mathrm{R}} w$ and $v \otimes_{\mathrm{R}} w_{j}$ respectively. We have

$$
(a v) \otimes_{\mathrm{R}} w_{j}=\left(v_{i} \otimes_{\mathrm{R}} w\right)\left(v \otimes_{\mathrm{R}} w_{j}\right)=v_{i} \otimes_{\mathrm{R}}(w b)
$$

The left-hand side lies in $\mathrm{V} \otimes_{\mathrm{R}} w_{j}$ and the right-hand side in $v_{i} \otimes_{\mathrm{R}} \mathrm{W}$, so the above must equal $v_{i} r \otimes_{\mathrm{R}} w_{j}$ for some $r \in \mathrm{R}$. Moreover $r$ is independent of $w_{j}$ (from the left-hand side) and of $v_{i}$ (from the right-hand side), so we may write $r=\vartheta(w, v)$. Note that $r$ is uniquely determined. From this uniqueness it is easy to see that $\vartheta$ is $(\mathrm{R}, \mathrm{R})$-bilinear. Finally for $x \in \mathrm{~A}$ we have

$$
v_{i} \vartheta(w x, v) \otimes_{\mathbf{R}} w_{j}=\left(v_{i} \otimes_{\mathbf{R}} w x\right)\left(v \otimes_{\mathbf{R}} w_{j}\right)=\left(v_{i} \otimes_{\mathrm{R}} w\right)\left(x v \otimes_{\mathrm{R}} w_{j}\right)=v_{i} \vartheta(w, x v) \otimes_{\mathrm{R}} w_{j} .
$$

Therefore $\vartheta$ factors through $\mathrm{W} \otimes_{\mathrm{A}} \mathrm{V}$, as required.
Many useful statements about cellular algebras generalise to our situation as follows. We also have a Morita equivalence result analogous to that of [KoXi3].

Theorem 1.3. Suppose $A$ has a sandwich filtration over the rings $A_{i}$ with factors $V_{i} \otimes_{A_{i}} W_{i}$. For statements 3 and 6 we additionally suppose each $A_{i}$ is Artinian with unit.

1. The induced multiplication on $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i}$ is determined by an $\left(\mathrm{A}_{i}, \mathrm{~A}_{i}\right)$-bimodule homomorphism $\vartheta_{i}: \mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{V}_{i} \rightarrow \mathrm{~A}_{i}$. We call $\vartheta_{i}$ the sandwich bilinear form.
2. Let

$$
\bar{\vartheta}_{i}: \mathrm{V}_{i} \rightarrow \mathrm{~W}_{i}^{*}=\operatorname{Hom}_{\mathrm{A}_{i}}\left(\mathrm{~W}_{i}, \mathrm{~A}_{i}\right)
$$

be the ( $\mathrm{A}, \mathrm{A}_{i}$ )-bimodule homomorphism induced by $\vartheta_{i}$. Suppose L is an irreducible left $\mathrm{A}_{i^{-}}$ module, and let $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ be the kernel of the map

$$
\bar{\vartheta}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{id}_{\mathrm{L}}: \mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \rightarrow \mathrm{~W}_{i}^{*} \otimes_{\mathrm{A}_{i}} \mathrm{~L}
$$

Then $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ either equals $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$, or is the unique maximal A -submodule of $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$.
3. Each irreducible left A-module is of the form $\mathrm{V}_{i} \otimes_{\mathbf{A}_{i}} \mathrm{~L} / \mathrm{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ for some $i$ and some irreducible $\mathrm{A}_{i}$-module L .
4. If L and M are irreducible $\mathrm{A}_{i^{-}}$and $\mathrm{A}_{j}$-modules, respectively, such that $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} / \mathrm{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ and $\mathrm{V}_{j} \otimes_{\mathrm{A}_{j}} \mathrm{M} / \mathrm{rad}\left(\mathrm{V}_{j} \otimes_{\mathrm{A}_{j}} \mathrm{M}\right)$ are both non-zero and isomorphic, then $i=j$ and $\mathrm{L} \cong \mathrm{M}$.
5. If $\bar{\vartheta}_{i}$ is an isomorphism (in particular this requires that $\mathrm{V}_{i}$ and $\mathrm{W}_{i}$ have the same rank over $\mathrm{A}_{i}$ ) for each $i$, then A is Morita equivalent to $\bigoplus_{i=1}^{k} \mathrm{~A}_{i}$.
6. The ring A is semisimple if and only if each $\bar{\vartheta}_{i}$ is an isomorphism and each $\mathrm{A}_{i}$ is semisimple.

Proof. Let $J_{i}$ denote the two-sided ideals of A as in Definition 1.1. Note that since $\mathrm{J}_{i} / \mathrm{J}_{i-1}$ is annihilated by $J_{i-1}$ as a left A-module, the same is true of $\mathrm{V}_{i} \otimes \mathrm{~W}_{i}$, and therefore of $\mathrm{V}_{i}$. Similarly $\mathrm{W}_{i} \mathrm{~J}_{i-1}=0$.

1. Identifying $J_{i} / J_{i-1}$ with a two-sided ideal in $A / J_{i-1}$, the statement follows directly from Lemma 1.2.
2. Since $\bar{\vartheta}_{i}$ is an $\left(\mathrm{A}, \mathrm{A}_{i}\right)$-bimodule homomorphism, $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ is an A -submodule of $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$. It remains to prove that any element outside of $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ generates $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$ over A . Suppose $x \in \mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$ does not lie in $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$. Then its image in

$$
\mathrm{W}_{i}^{*} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \cong \operatorname{Hom}_{\mathrm{A}_{i}}\left(\mathrm{~W}_{i}, \mathrm{~L}\right)
$$

is nonzero. Therefore the image of $\mathrm{W}_{i} \otimes_{\mathrm{A}} x$ under the map

$$
\mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \xrightarrow{\vartheta_{i} \otimes \mathrm{id}} \mathrm{~A}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \xrightarrow{\sim} \mathrm{~L}
$$

is a nonzero $\mathrm{A}_{i}$-submodule of L . Since L is irreducible, it must equal L . Thus $\mathrm{V}_{i} \otimes_{\mathbf{A}_{i}} \mathrm{~W}_{i} \otimes_{\mathrm{A}} x$ surjects onto $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$ under the map

$$
\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i} \otimes_{\mathrm{A}} \mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \rightarrow \mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}
$$

That is, $\mathrm{J}_{i} x=\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$, so $x$ generates $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$ over A .
3. The previous statement shows that the nonzero modules of the form $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} / \operatorname{rad}\left(\mathrm{V}_{i} \otimes_{A_{i}} \mathrm{~L}\right)$ are irreducible, so we need only show that each irreducible is of this form.
Let U be an irreducible left A-module, and pick $i$ minimal such that $\mathrm{J}_{i} \mathrm{U} \neq 0$. Choose any $u \in U$ with $\mathrm{J}_{i} u \neq 0$. The map $a \mapsto a u$ gives a surjection of left A-modules

$$
\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i} \cong \mathrm{~J}_{i} / \mathrm{J}_{i-1} \rightarrow \mathrm{U}
$$

Since $A_{i}$ is Artinian, we may choose a surjection of the form

$$
\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \rightarrow \mathrm{U}
$$

such that L is a left $\mathrm{A}_{i}$-module with minimal length. Suppose L has a proper nonzero submodule $\mathrm{L}^{\prime}$. The image of $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}^{\prime}$ in U is an A -submodule, so it either equals U or 0 . In the latter case our surjection factors through a surjection

$$
\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}}\left(\mathrm{~L} / \mathrm{L}^{\prime}\right) \rightarrow \mathrm{U} .
$$

Thus both cases contradict the minimality of L , so L must be irreducible. Also since $J_{i} \mathrm{U} \neq 0$, we have $J_{i}\left(\mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right) \neq 0$, so $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ does not equal $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$. Now the previous statement implies that

$$
\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} / \operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)
$$

is the unique irreducible quotient of $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$, so it must be isomorphic to U , as required.
4. Suppose $L$ and $M$ are irreducible $A_{i^{-}}$and $A_{j^{-}}$modules respectively, such that $L^{\prime}=V_{i} \otimes_{A_{i}}$ $\mathrm{L} / \operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}\right)$ and $\mathrm{M}^{\prime}=\mathrm{V}_{j} \otimes_{\mathrm{A}_{j}} \mathrm{M} / \operatorname{rad}\left(\mathrm{V}_{j} \otimes_{\mathrm{A}_{j}} \mathrm{M}\right)$ are isomorphic A-modules. We have shown above that $\mathrm{J}_{i} \mathrm{~L}^{\prime}=\mathrm{L}^{\prime}$ and $\mathrm{J}_{i-1} \mathrm{~L}^{\prime}=0$, so $i=j$. We have also shown that the map

$$
\mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L} \xrightarrow{\vartheta_{i} \otimes \text { id }} \mathrm{L}
$$

is surjective. This induces a surjection $f: \mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{L}^{\prime} \rightarrow \mathrm{L}$. We claim that L is the unique irreducible quotient of $\mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{L}^{\prime}$. It suffices to show that there is no proper $\mathrm{A}_{i}$ submodule
$\mathrm{N} \subseteq \mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{L}^{\prime}$ such that $f(\mathrm{~N}) \neq 0$. Suppose such N exists. Then $f(\mathrm{~N})=\mathrm{L}$, so the bottom map in the following commutative diagram is surjective.


The topmost map in the above diagram is given by

$$
\begin{aligned}
w_{1} \otimes_{\mathbf{A}} v_{1} \otimes_{\mathbf{A}_{i}} w_{2} \otimes_{\mathrm{A}} v_{2} \otimes_{\mathbf{A}_{i}} l & \mapsto w_{1} \otimes_{\mathrm{A}} v_{1} \otimes_{\mathbf{A}_{i}} \vartheta_{i}\left(w_{2}, v_{2}\right) l \\
& =w_{1} \otimes_{\mathbf{A}}\left(v_{1} \otimes_{\mathbf{A}_{i}} w_{2}\right) v_{2} \otimes_{\mathbf{A}_{i}} l \\
& =\vartheta_{i}\left(w_{1}, v_{1}\right) w_{2} \otimes_{\mathrm{A}} v_{2} \otimes_{\mathbf{A}_{i}} l
\end{aligned}
$$

where we identify $\left(v_{1} \otimes_{\mathrm{A}_{i}} w_{2}\right) \in \mathrm{V}_{i} \otimes_{A_{i}} \mathrm{~W}_{i}$ with an element of $\mathrm{J}_{i} / \mathrm{J}_{i-1}$. Therefore the surjection $\mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~N} \rightarrow \mathrm{~W}_{i} \otimes_{\mathrm{A}} \mathrm{L}^{\prime}$ is given by $w \otimes_{\mathrm{A}} v \otimes_{\mathrm{A}_{i}} \mathrm{~N} \mapsto \vartheta_{i}(w, v) n$. Since N is an $\mathrm{A}_{i}$ submodule, $N=W_{i} \otimes_{A} L^{\prime}$ as required. Therefore $L$ and $M$ are the unique irreducible quotients of $W_{i} \otimes_{A} L^{\prime}$ and $\mathrm{W}_{i} \otimes_{\mathrm{A}} \mathrm{M}^{\prime}$ respectively, but the latter are isomorphic, so $\mathrm{L} \cong \mathrm{M}$.
5. We recall the following simple fact: If $A$ is a unital associative ring, and $J \subseteq A$ is a two sided ideal which, considered as a ring, is also unital, then we have a ring isomorphism $A \cong J \oplus(A / J)$. Indeed let $1 \in \mathrm{~A}$ and $e \in \mathrm{~J}$ be the units of these rings. For any $a \in \mathrm{~A}$ we have $a e=e a e=e a$, so $e$ is a central idempotent. Thus $\mathbf{A} \cong e \mathbf{A} \oplus(1-e) A$. Since $e \mathbf{A}=\mathrm{J}$ and $(1-e) \mathbf{A} \cong(\mathrm{A} / \mathrm{J})$, this proves the claim.

Fix $i$, and suppose $\bar{\vartheta}_{i}$ induces an isomorphism. We may choose bases $\left\{v_{1}, \ldots v_{m}\right\}$ for $\mathrm{V}_{i}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ for $\mathrm{W}_{i}$ such that $\vartheta_{i}\left(w_{a} \otimes_{\mathrm{A}} v_{b}\right)=\delta_{a b}$. We have a ring isomorphism

$$
\operatorname{Mat}_{m}\left(\mathrm{~A}_{i}\right) \xrightarrow{\widetilde{\rightarrow}} \mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i}
$$

given by

$$
X \mapsto \sum_{a, b} v_{a} \otimes_{\mathrm{A}_{i}} X_{a b} w_{b} .
$$

We also have a ring isomorphism $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i} \cong \mathrm{~J}_{i} / \mathrm{J}_{i-1}$, so $\mathrm{J}_{i} / \mathrm{J}_{i-1}$ is unital and Morita equivalent to $\mathrm{A}_{i}$. Applying the above observation repeatedly, it follows that

$$
\mathrm{A} \cong \bigoplus_{i=1}^{k} \mathrm{~J}_{i} / \mathrm{J}_{i-1}
$$

is Morita equivalent to $\bigoplus_{i=1}^{k} \mathrm{~A}_{i}$.
6. If the conditions hold, then A is semisimple by the previous statement.

Conversely suppose A is semisimple. We must prove that $\mathrm{A}_{i}$ is semisimple and $\bar{\vartheta}_{i}$ is an isomorphism, for each $i$. By the above observation and induction, it suffices to prove this for $i=1$.

Let $J$ denote the Jacobson radical of $\mathrm{A}_{1}$. Since $\mathrm{A}_{1}$ is Artinian, J is nilpotent. For each $j \geq 1$,

$$
\mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} J^{j} \mathrm{~W}_{1}
$$

is a sub- $(\mathrm{A}, \mathrm{A})$-bimodule of $\mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} \mathrm{~W}_{1}$, so it corresponds to a two sided ideal of A . Moreover

$$
\begin{aligned}
\left(\mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} J \mathrm{~W}_{1}\right)\left(\mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} J^{j} \mathrm{~W}_{1}\right) & \subseteq \mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} J \vartheta_{1}\left(\mathrm{~W}_{1} \otimes_{\mathrm{A}} \mathrm{~V}_{1}\right) J^{j} \mathrm{~W}_{1} \\
& \subseteq \mathrm{~V}_{1} \otimes_{\mathrm{A}_{1}}{ }^{j+1} \mathrm{~W}_{1} .
\end{aligned}
$$

Thus $\mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} J \mathrm{~W}_{1}$ corresponds to a nilpotent ideal. Since A is semisimple, $\mathrm{V}_{1} \otimes_{\mathrm{A}_{1}} J \mathrm{~W}_{1}=0$. But $V_{1}$ and $W_{1}$ are nonzero and free over $A_{1}$, so $J=0$. That is, $A_{1}$ is semisimple.
By symmetry, we may suppose the rank of $\mathrm{V}_{1}$ is at least the rank of $\mathrm{W}_{1}$. Let $\mathrm{K} \subseteq \mathrm{V}_{1}$ be the kernel of $\bar{\vartheta}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}^{*}$. This is a sub- $\left(\mathrm{A}, \mathrm{A}_{1}\right)$-bimodule of $\mathrm{V}_{1}$, so $\mathrm{K} \otimes_{\mathrm{A}_{1}} \mathrm{~W}_{1}$ corresponds to a two sided ideal in $A$. Moreover

$$
\left(\mathrm{K} \otimes_{\mathrm{A}_{1}} \mathrm{~W}_{1}\right)\left(\mathrm{K} \otimes_{\mathrm{A}_{1}} \mathrm{~W}_{1}\right) \subseteq \mathrm{K} \otimes_{\mathrm{A}_{1}} \vartheta_{1}\left(\mathrm{~W}_{1} \otimes_{\mathrm{A}} \mathrm{~K}\right) \mathrm{W}_{1}=0
$$

Thus $K \otimes_{A_{1}} W_{1}=0$. Again since $W_{1}$ is nonzero and free over $A_{1}$, it follows that $K=0$. On the other hand the length of $\mathrm{V}_{i}$ is at least the length of $\mathrm{W}_{i}^{*}$ as right $\mathrm{A}_{i}$-modules. Therefore $\vartheta_{i}$ is an isomorphism.

It is easier to determine whether the above conditions hold using more explicit descriptions. Suppose the assumptions of the theorem hold, and fix $i$. Moreover suppose $\mathrm{A}_{i}$ is an algebra over a field K. Let $\left\{v_{a}\right\}$ and $\left\{w_{b}\right\}$ be $\mathrm{A}_{i}$-bases of $\mathrm{V}_{i}$ and $\mathrm{W}_{i}$, and let $\left\{w_{b}^{*}\right\}$ denote the corresponding dual basis of $\mathrm{W}_{i}^{*}$. Let $x_{a}^{b}=\vartheta_{i}\left(v_{a} \otimes w_{b}\right) \in \mathrm{A}_{i}$. Let L be an irreducible $\mathrm{A}_{i}$ module with K -basis $\left\{\ell_{c}\right\}$. Then $\left\{v_{a} \otimes \ell_{c}\right\}$ and $\left\{w_{b}^{*} \otimes \ell_{d}\right\}$ are K -bases for $\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$ and $\mathrm{W}_{i}^{*} \otimes_{\mathrm{A}_{i}} \mathrm{~L}$, and with respect to these bases the map $\bar{\vartheta}_{i} \otimes_{\mathrm{A}_{i}}$ id $\mathrm{L}_{\mathrm{L}}$ corresponds to the matrix $\left[\gamma_{a c}^{b d}\right]$, where

$$
x_{a}^{b} v_{c}=\sum_{d} \gamma_{a c}^{b d} \ell_{d} .
$$

Now determining $\operatorname{rad}\left(\mathrm{V}_{i} \otimes_{\mathbf{A}_{i}} L\right)$ corresponds to finding the kernel of this matrix over K .
Note that with respect to the bases $\left\{v_{a}\right\}$ and $\left\{w_{b}^{*}\right\}$, the map $\bar{\vartheta}_{i}$ corresponds to the matrix $\left[x_{a}^{b}\right]$ over $\mathrm{A}_{i}$. Therefore $\bar{\vartheta}_{i}$ is an isomorphism if and only if this matrix is invertible. Let J be the Jacobson radical of $\mathrm{A}_{i}$, and let $\bar{x}_{a}^{b}$ be the image of $x_{a}^{b}$ in $\mathrm{A}_{i} / \mathrm{J}$. Since J is nilpotent, $\bar{\vartheta}_{i}$ is an isomorphism if and only if the matrix $\left[\bar{x}_{a}^{b}\right]$ is invertible over $\mathrm{A}_{i} / \mathrm{J}$. Finally if $\mathcal{L}$ is a complete set of irreducible $\mathrm{A}_{i}$-modules, then the map

$$
\mathrm{A}_{i} / \mathrm{J} \rightarrow \bigoplus_{\mathrm{L} \in \mathcal{L}} \operatorname{End}_{\mathrm{K}}(\mathrm{~L})
$$

is injective. Therefore $\bar{\vartheta}_{i}$ is an isomorphism if and only if the matrix $\left[\gamma_{a c}^{b d}\right]$ constructed above is invertible for each irreducible $\mathrm{A}_{i}$-module L .

In [KoXi2], a procedure is described for constructing cellular algebras from other cellular algebras via "inflation". The following theorem is the analogue of this procedure for sandwich filtration algebras. It follows immediately from the definition.

Theorem 1.4. Suppose a ring $A$ has a sandwich filtration over $A_{1}, \ldots A_{k}$ with factors $V_{i} \otimes_{A_{i}} W_{i}$. Moreover suppose each $\mathrm{A}_{i}$ has a sandwich filtration over $\mathrm{A}_{i 1}, \mathrm{~A}_{i 2}, \ldots, \mathrm{~A}_{i k_{i}}$ with factors $\mathrm{V}_{i j} \otimes_{\mathrm{A}_{i j}} \mathrm{~W}_{i j}$. Then A has a sandwich filtration over the $\mathrm{A}_{i j}$ (ordered lexicographically) with factors $\left(\mathrm{V}_{i} \otimes_{\mathrm{A}_{i}}\right.$ $\left.\mathrm{V}_{i j}\right) \otimes_{\mathrm{A}_{i j}}\left(\mathrm{~W}_{i j} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i}\right)$. The sandwich bilinear form

$$
\vartheta_{i j}^{\prime}:\left(\mathrm{W}_{i j} \otimes_{\mathrm{A}_{i}} \mathrm{~W}_{i}\right) \otimes_{A}\left(\mathrm{~V}_{i} \otimes_{\mathrm{A}_{i}} \mathrm{~V}_{i j}\right) \rightarrow \mathrm{A}_{i j}
$$

is simply the composite


## $2 q$-walled Brauer-Clifford superalgebras

In this second section, we show that the $q$-walled Brauer-Clifford superalgebras studied in [BGJKW] are sandwich filtration algebras. They are built from two finite Hecke-Clifford algebras, whose definition we recall below, and one additional generator.

Definition 2.1. [Ol] The finite Hecke-Clifford algebra $\mathrm{HC}_{\ell}(q)$ is the unital associative $\mathbb{C}(q)$-algebra generated by elements $t_{1}, \ldots, t_{\ell-1}$ and anti-commuting elements $c_{1}, \ldots, c_{\ell}$ which satisfy the relations:

$$
\begin{gathered}
\left(\mathrm{t}_{i}-q\right)\left(\mathrm{t}_{i}+q^{-1}\right)=0, i=1, \ldots, \ell-1, \quad \mathrm{t}_{i} \mathrm{t}_{i+1} \mathrm{t}_{i}=\mathrm{t}_{i+1} \mathrm{t}_{i} \mathrm{t}_{i+1}, i=1, \ldots, \ell-2 ; \\
\mathrm{t}_{i} \mathrm{t}_{j}=\mathrm{t}_{j} \mathrm{t}_{i} \text { if } j \neq i-1, i+1, \quad \mathrm{c}_{i}^{2}=-1, \quad \mathrm{c}_{i} \mathrm{c}_{j}=-\mathrm{c}_{j} \mathrm{c}_{i} \text { if } 1 \leq i \neq j \leq \ell ; \\
\mathrm{t}_{i} \mathrm{c}_{i}=\mathrm{c}_{i+1} \mathrm{t}_{i}, \quad \mathrm{t}_{i} \mathrm{c}_{j}=\mathrm{c}_{j} \mathrm{t}_{i} \quad \text { if } j \neq i, i+1 .
\end{gathered}
$$

$\mathrm{HC}_{\ell}(q)$ becomes a $\mathbb{Z}_{2}$-graded algebra if we declare $\mathrm{t}_{i}$ to be even and $\mathrm{c}_{j}$ to be odd for all $1 \leq i \leq$ $\ell-1,1 \leq j \leq \ell$.

The quickest way to define the $q$-walled Brauer-Clifford algebra is as a centralizer algebra, but we first provide a concrete definition in terms of generators and relations and then recall the equivalence of the two definitions proved in [BGJKW].

Definition 2.2. The $q$-walled Brauer-Clifford algebra $\mathrm{BC}_{r, s}(q)$ is a unital associative $\mathbb{C}(q)$-algebra generated by the elements $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{r-1}, \mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{r}, \mathrm{t}_{1}^{*}, \mathrm{t}_{2}^{*}, \ldots, \mathrm{t}_{s-1}^{*}, \mathrm{c}_{1}^{*}, \mathrm{c}_{2}^{*}, \ldots, \mathrm{c}_{s}^{*}$, and e. The elements $\mathrm{t}_{1}, \ldots, \mathrm{t}_{r-1}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{r}$ satisfy the relations of the Hecke-Clifford algebra $\mathrm{HC}_{r}(q)$, while $\mathrm{t}_{1}^{*}, \ldots, \mathrm{t}_{s-1}^{*}, \mathrm{c}_{1}^{*}, \ldots, \mathrm{c}_{s}^{*}$ satisfy those of $\mathrm{HC}_{s}(q)$ except that $\left(\mathrm{c}_{i}^{*}\right)^{2}=1$. Moreover, $\mathrm{t}_{1}, \ldots, \mathrm{t}_{r-1}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{r}$ supercommute with $\mathrm{t}_{1}^{*}, \ldots, \mathrm{t}_{s-1}^{*}, \mathrm{c}_{1}^{*}, \ldots, \mathrm{c}_{s}^{*}$. The generator e commutes with

$$
\mathrm{t}_{1}, \ldots, \mathrm{t}_{r-2}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{r-1}, \mathrm{t}_{2}^{*}, \ldots, \mathrm{t}_{s-1}^{*}, \mathrm{c}_{2}^{*}, \ldots, \mathrm{c}_{s}^{*}
$$

and satisfies

$$
\begin{gathered}
\mathrm{e}^{2}=0, \mathrm{et}_{r-1} \mathrm{e}=\mathrm{e}=\mathrm{et}_{1}^{*} \mathrm{e}, \mathrm{c}_{r} \mathrm{e}=\mathrm{c}_{1}^{*} \mathrm{e} \text { and } \mathrm{ec}_{r}=\mathrm{ec}_{1}^{*}, \\
\mathrm{ec}_{r} \mathrm{e}=0, \mathrm{et}_{r-1}^{-1} \mathrm{t}_{1}^{*} \mathrm{et}_{r-1}=\mathrm{et}_{r-1}^{-1} \mathrm{t}_{1}^{*} \mathrm{et}_{1}^{*}, \mathrm{t}_{r-1} \mathrm{et}_{r-1}^{-1} \mathrm{t}_{1}^{*} \mathrm{e}=\mathrm{t}_{1}^{*} \mathrm{et}_{r-1}^{-1} \mathrm{t}_{1}^{*} \mathrm{e} .
\end{gathered}
$$

$\mathrm{BC}_{r, s}(q)$ becomes a $\mathbb{Z}_{2}$-graded algebra if we declare $\mathrm{t}_{i}, \mathrm{t}_{i}^{*}$, e to be even and $\mathrm{c}_{j}, \mathrm{c}_{j}^{*}$ to be odd for all $1 \leq i \leq \ell-1,1 \leq j \leq \ell$.

Remark 2.3. The walled Brauer superalgebra $\mathrm{BC}_{r, s}$ in [JuKa] is obtained from $\mathrm{BC}_{r, s}(q)$ by setting $q=1$. In [JuKa, Thm. 5.1], e is denoted by $e_{r, r+1}, \mathrm{t}_{i}$ by $s_{i}$, and the two five-term equations above are replaced by a single six-term relation, which can be shown to be equivalent to the two relations above.

The algebra $\mathrm{BC}_{r, s}(q)$ has a natural anti-involution defined on the generators by

$$
\mathrm{t}_{i} \mapsto-\mathrm{t}_{i}^{-1}, \quad \mathrm{t}_{i}^{*} \mapsto-\left(\mathrm{t}_{i}^{*}\right)^{-1}, \quad \mathrm{c}_{i} \mapsto \mathrm{c}_{i}, \quad \mathrm{c}_{i}^{*} \mapsto \mathrm{c}_{i}^{*}, \quad \mathrm{e} \mapsto \mathrm{e} .
$$

This induces an anti-involution on $\mathrm{HC}_{\ell}(q)$ which also sends $\mathrm{t}_{i}$ to $-\mathrm{t}_{i}^{-1}$ and $\mathrm{c}_{i}$ to $\mathrm{c}_{i}$. Unfortunately the centre of $\mathrm{HC}_{\ell}(q)$ (ignoring the $\mathbb{Z}_{2}$ grading) is not fixed by this anti-involution. Indeed, the specialisation of $\mathrm{HC}_{\ell}(q)$ at $q=1$ is the Sergeev algebra. By Lemma 5 of [Se], there are odd elements in the centre of the Sergeev algebra in the -1 -eigenspace of the anti-involution. Also Lemma 6 of [Se] and Theorem 6.7 of [JoNa] show that the dimension of the centre doesn't change upon specialisation, so the same is true of $\mathrm{HC}_{\ell}(q)$. It follows that $\mathrm{HC}_{\ell}(q)$ cannot be cellular with respect to this anti-involution. It may be possible to find a different anti-involution on $\mathrm{BC}_{r, s}(q)$, or to extend the notion of cellularity to super algebras in a way which accounts for this behaviour, but we have not pursued this direction.

We will need the following theorem, which is one of the main results in [BGJKW]. Set $\mathbf{V}=$ $\mathbb{C}(n \mid n), \mathbf{V}^{r, s}=(\mathbf{V})^{\otimes r} \otimes\left(\mathbf{V}^{*}\right)^{\otimes s}, \mathbf{V}_{q}=\mathbb{C}(q) \otimes_{\mathbb{C}} \mathbf{V}$ and $\mathbf{V}_{q}^{r, s}=\left(\mathbf{V}_{q}\right)^{\otimes r} \otimes\left(\mathbf{V}_{q}^{*}\right)^{\otimes s}$.

Theorem 2.4. There is an action of $\mathrm{BC}_{r, s}(q)$ on $\mathbf{V}_{q}^{r, s}$ with commutes with the action of the quantized enveloping superalgebra $\mathfrak{U}_{q} \mathfrak{q}_{n}$ of type $Q[\mathrm{Ol}]$. Let $\rho_{n, q}: \mathrm{BC}_{r, s}(q) \rightarrow \operatorname{End}_{\mathfrak{I}_{q} \mathfrak{q}_{n}}\left(\mathbf{V}_{q}^{r, s}\right)$ denote the homomorphism coming from this representation. Then $\rho_{n, q}$ is surjective, and when $n \geq r+s$, it is an isomorphism.
$q$-walled Brauer-Clifford algebras thus fit into the old topic of centralizer algebras. Walled Brauer algebras were studied in [BCHLLS] and their $q$-analogues in [KoMu]; a version of Theorem 2.4 holds for them if $\mathfrak{U}_{q} \mathfrak{q}_{n}$ is replaced by the quantized enveloping algebra of $\mathfrak{g l}_{n}$.

In the proof of the main theorem of this section, we will work over the local ring $\mathbb{C}\left[q, q^{-1}\right]_{(q-1)}$ and we will need the next lemma.

Lemma 2.5. Suppose $R$ is a Noetherian local integral domain whose maximal ideal is generated by a single element $x \in \mathrm{R}$. Let $\psi: \mathrm{A} \rightarrow \mathrm{B}$ be a homomorphism of finitely generated R -modules, and consider the corresponding induced homomorphism

$$
\bar{\psi}: \mathrm{A} / x \mathrm{~A} \rightarrow \mathrm{~B} / x \mathrm{~B}, \quad \bar{\psi}(a+x \mathrm{~A})=\psi(a)+x \mathrm{~B} .
$$

1. If $\bar{\psi}$ is surjective, then $\psi$ is surjective.
2. If B is torsion free and $\bar{\psi}$ is injective, then $\psi$ is injective, and its cokernel is also torsion free.

We now show that $\mathrm{BC}_{r, s}(q)$ has a sandwich filtration over the Hecke-Clifford algebras $\mathrm{HC}_{\ell}(q)$. To allow specialisation at $q=1$, it is convenient to do this over the local ring $\mathcal{R}=\mathbb{C}\left[q, q^{-1}\right]_{(q-1)}$ rather than $\mathbb{C}(q)$. Denote by $\mathrm{BC}_{r, s}(\mathcal{R})$ the $\mathcal{R}$-subalgebra of $\mathrm{BC}_{r, s}(q)$ generated by the generators in Definition 2.2. Set $\mathbf{V}_{\mathcal{R}}=\mathcal{R} \otimes_{\mathbb{C}} \mathbb{C}(n \mid n)$ and $\mathbf{V}_{\mathfrak{R}}^{r, s}=\left(\mathbf{V}_{\mathcal{R}}\right)^{\otimes r} \otimes\left(\mathbf{V}_{\mathcal{R}}^{*}\right)^{\otimes s}$. We adopt the convention that the generator e is excluded if $r=0$ or $s=0$; thus $\mathbb{C}(q) \otimes_{\mathcal{R}} \mathrm{BC}_{r, 0}(\mathcal{R})$ is exactly the Hecke-Clifford algebra $\mathrm{HC}_{r}(q)$.

Theorem 2.6. The algebra $\mathrm{BC}_{r, s}(\mathcal{R})$ has a sandwich filtration over the algebras $\mathrm{A}_{i}(\mathcal{R})$ given by $\mathrm{A}_{i}(\mathcal{R})=\mathrm{BC}_{r-i, 0}(\mathcal{R}) \otimes_{\mathcal{R}} \mathrm{BC}_{0, s-i}(\mathcal{R})$ for $0 \leq i \leq \min (r, s)$.

Proof. Fix $n \geq r+s$. In the proof of Theorem 2.4 above provided in [BGJKW], we introduced a subspace $\operatorname{End}_{\tilde{U}}\left(\mathbf{V}_{\mathcal{R}}^{r, s}\right)$ of $\operatorname{End}_{\mathcal{R}}\left(\mathbf{V}_{\mathcal{R}}^{r, s}\right)$ whose tensor products with $\mathcal{R} /(q-1) \mathcal{R}$ and $\mathbb{C}(q)$ are, respectively, $\operatorname{End}_{\mathfrak{q}_{n}}\left(\mathbf{V}^{r, s}\right)$ and $\operatorname{End}_{\mathscr{U}_{q} \mathfrak{q}_{n}}\left(\mathbf{V}_{q}^{r, s}\right)$. Similarly, we may construct a space

$$
\operatorname{Hom}_{\tilde{U}}\left(\mathbf{V}_{\mathcal{R}}^{a, b}, \mathbf{V}_{\mathcal{R}}^{c, d}\right) \subseteq \operatorname{Hom}_{\mathcal{R}}\left(\mathbf{V}_{\mathcal{R}}^{a, b}, \mathbf{V}_{\mathcal{R}}^{c, d}\right)
$$

for any nonnegative integers $a, b, c$ and $d$. For convenience, we use the following notation throughout this proof.

$$
\begin{aligned}
& \mathbf{N}_{\mathcal{R}}(i, j)=\operatorname{Hom}_{\tilde{U}}\left(\mathbf{V}_{\mathcal{R}}^{r-j, s-j}, \mathbf{V}_{\mathcal{R}}^{r-i, s-i}\right), \\
& \mathbf{N}_{\mathbb{C}}(i, j)=\operatorname{Hom}_{\mathfrak{q}_{n}}\left(\mathbf{V}^{r-j, s-j}, \mathbf{V}^{r-i, s-i}\right)
\end{aligned}
$$

Thus $\mathcal{R} /(q-1) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i, j) \cong \mathrm{N}_{\mathbb{C}}(i, j)$. We have composition maps

$$
\mathrm{N}_{\mathbb{C}}(l, j) \otimes_{\mathbb{C}} \mathrm{N}_{\mathbb{C}}(j, i) \rightarrow \mathrm{N}_{\mathbb{C}}(l, i)
$$

In particular, $\mathrm{N}_{\mathbb{C}}(i, i)$ is an algebra and $\mathrm{N}_{\mathbb{C}}(i, j)$ is an $\left(\mathrm{N}_{\mathbb{C}}(i, i), \mathrm{N}_{\mathbb{C}}(j, j)\right)$-bimodule. Similar statements hold for $\mathrm{N}_{\mathcal{R}}(i, j)$. By Theorem 3.5 of [JuKa], we have $\mathrm{BC}_{r, s} \cong \mathrm{~N}_{\mathbb{C}}(0,0)$.

The composition map

$$
\mathrm{N}_{\mathcal{R}}(0, i) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i, 0) \rightarrow \mathrm{N}_{\mathcal{R}}(0,0)
$$

factors through $\mathrm{N}_{\mathcal{R}}(0, i) \otimes_{\mathrm{N}_{\mathcal{R}}(i, i)} \mathrm{N}_{\mathcal{R}}(i, 0)$. It is also an $\left(\mathrm{N}_{\mathcal{R}}(0,0), \mathrm{N}_{\mathcal{R}}(0,0)\right.$ )-bimodule homomorphism, so its image $\mathrm{J}_{i}(\mathcal{R})$ is a two-sided ideal in $\mathrm{N}_{\mathcal{R}}(0,0)$. Now define the $\left(\mathrm{N}_{\mathcal{R}}(0,0), \mathrm{N}_{\mathcal{R}}(i, i)\right.$ )-bimodule $\mathrm{V}_{i}(\mathcal{R})$ and the $\left(\mathrm{N}_{\mathcal{R}}(i, i), \mathrm{N}_{\mathcal{R}}(0,0)\right)$-bimodule $\mathrm{W}_{i}(\mathcal{R})$ by the following right exact sequences:

$$
\begin{align*}
& \mathrm{N}_{\mathcal{R}}(0, i+1) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i+1, i) \rightarrow \mathrm{N}_{\mathcal{R}}(0, i) \rightarrow \mathrm{V}_{i}(\mathcal{R}),  \tag{2.7}\\
& \mathrm{N}_{\mathcal{R}}(i, i+1) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i+1,0) \rightarrow \mathrm{N}_{\mathcal{R}}(i, 0) \rightarrow \mathrm{W}_{i}(\mathcal{R}) .
\end{align*}
$$

Here we adopt the convention that $\mathbf{N}_{\mathcal{R}}(i, j)=0$ if $i$ or $j$ is greater than $r$ or $s$. Clearly the images of

$$
\mathrm{N}_{\mathcal{R}}(0, i+1) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i+1, i) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i, 0) \text { and } \mathrm{N}_{\mathcal{R}}(0, i) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i, i+1) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i+1,0)
$$

in $N_{\mathcal{R}}(0,0)$ are contained in $J_{i+1}(\mathcal{R})$, so the surjective map

$$
\mathrm{N}_{\mathcal{R}}(0, i) \otimes_{\mathbf{N}_{\mathcal{R}}(i, i)} \mathrm{N}_{\mathcal{R}}(i, 0) \rightarrow \mathrm{J}_{i}(\mathcal{R})
$$

factors to give a map

$$
\mathrm{V}_{i}(\mathcal{R}) \otimes_{\mathrm{N}_{\mathcal{R}}(i, i)} \mathrm{W}_{i}(\mathcal{R}) \rightarrow \mathrm{J}_{i}(\mathcal{R}) /\left(\mathrm{J}_{i}(\mathcal{R}) \cap \mathrm{J}_{i+1}(\mathcal{R})\right) .
$$

Finally let $\mathrm{A}_{i}(\mathcal{R})=\mathrm{BC}_{r-i, 0}(\mathcal{R}) \otimes_{\mathcal{R}} \mathrm{BC}_{0, s-i}(\mathcal{R})$. We have a natural inclusion $\mathrm{A}_{i}(\mathcal{R}) \hookrightarrow \mathrm{N}_{\mathcal{R}}(i, i)$, so we obtain a surjective homomorphism

$$
\pi_{i}: \mathrm{V}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})} \mathrm{W}_{i}(\mathcal{R}) \rightarrow \mathrm{J}_{i}(\mathcal{R}) /\left(\mathrm{J}_{i}(\mathcal{R}) \cap \mathrm{J}_{i+1}(\mathcal{R})\right)
$$

of $\left(\mathrm{N}_{\mathcal{R}}(0,0), \mathrm{N}_{\mathcal{R}}(0,0)\right)$-bimodules. We will prove that the various objects we have constructed satisfy the following properties:

1. The $J_{i}(\mathcal{R})$ form a filtration of $\mathrm{N}_{\mathcal{R}}(0,0)$; that is, $\mathrm{J}_{i+1}(\mathcal{R}) \subseteq \mathrm{J}_{i}(\mathcal{R})$.
2. Both $\bigvee_{i}(\mathcal{R})$ and $W_{i}(\mathcal{R})$ are free over $\mathrm{A}_{i}(\mathcal{R})$ (as right and left modules respectively).
3. The map $\pi_{i}$ is an isomorphism.

All three claims will follow from the corresponding claims over $\mathcal{R} /(q-1) \mathcal{R} \cong \mathbb{C}$, which we will in turn deduce from explicit diagrammatic bases of these spaces.

Theorem 3.5 and Proposition 4.3 of [JuKa] show that $\mathrm{N}_{\mathbb{C}}(0,0)$ has a basis indexed by $(r, s)$ diagrams, and multiplication of these basis elements corresponds to concatenation of the diagrams. By the same argument, $\mathrm{N}_{\mathbb{C}}(i, j)$ has a basis indexed by diagrams from $(r-i)+(s-i)$ dots to $(r-j)+(s-j)$ dots, and the above composition maps correspond to concatenation of diagrams. If $1 \leq i \leq r, s$ then any diagram in $\mathrm{N}_{\mathbb{C}}(i, 0)$ has at least one horizontal edge. By moving part of this edge to the bottom of the diagram, we may express the diagram as a concatenation of a diagram in $\mathrm{N}_{\mathbb{C}}(i, i-1)$ and one in $\mathrm{N}_{\mathbb{C}}(i-1,0)$. Thus,

$$
\mathrm{N}_{\mathbb{C}}(i, i-1) \otimes_{\mathbb{C}} \mathrm{N}_{\mathbb{C}}(i-1,0) \rightarrow \mathrm{N}_{\mathbb{C}}(i, 0)
$$

is surjective. By Lemma 2.5,

$$
\mathrm{N}_{\mathcal{R}}(i, i-1) \otimes_{\mathcal{R}} \mathrm{N}_{\mathcal{R}}(i-1,0) \rightarrow \mathrm{N}_{\mathcal{R}}(i, 0)
$$

is surjective. Now the commutative diagram

shows that $J_{i}(\mathcal{R}) \subseteq J_{i-1}(\mathcal{R})$.
Recall that $\mathrm{V}_{i}(\mathcal{R})$ and $\mathrm{W}_{i}(\mathcal{R})$ were defined by the right exact sequences in (2.7). Tensoring with $\mathcal{R} /(q-1) \mathcal{R}$, we obtain right exact sequences

$$
\begin{aligned}
\mathrm{N}_{\mathbb{C}}(0, i+1) \otimes_{\mathbb{C}} \mathrm{N}_{\mathbb{C}}(i+1, i) \rightarrow \mathrm{N}_{\mathbb{C}}(0, i) \rightarrow \mathrm{V}_{i}(\mathbb{C}) & =\mathcal{R} /(q-1) \mathcal{R} \otimes_{\mathcal{R}} \mathrm{V}_{i}(\mathcal{R}), \\
\mathrm{N}_{\mathbb{C}}(i, i+1) \otimes_{\mathbb{C}} \mathrm{N}_{\mathbb{C}}(i+1,0) \rightarrow \mathrm{N}_{\mathbb{C}}(i, 0) \rightarrow \mathrm{W}_{i}(\mathbb{C}) & =\mathcal{R} /(q-1) \mathcal{R} \otimes_{\mathcal{R}} \mathrm{W}_{i}(\mathcal{R}) .
\end{aligned}
$$

A diagram in $\mathrm{N}_{\mathbb{C}}(0, i)$ has at least $i$ horizontal edges. Moreover, it has more than $i$ horizontal edges if and only if it can be expressed as a concatenation of a diagram in $\mathbb{N}_{\mathbb{C}}(0, i+1)$ and one in $\mathrm{N}_{\mathbb{C}}(i+1, i)$. Therefore the diagrams with exactly $i$ horizontal edges map to a basis for $\mathrm{V}_{i}(\mathbb{C})$.

Let $\mathrm{A}_{i}(\mathbb{C})=\mathcal{R} /(q-1) \mathcal{R} \otimes_{\mathcal{R}} \mathrm{A}_{i}(\mathcal{R})=\mathrm{BC}_{r-i, 0} \otimes_{\mathbb{C}} \mathrm{BC}_{0, s-i}$. We have bases for $\mathrm{BC}_{r-i, 0}$ and $\mathrm{BC}_{0, s-i}$ indexed by diagrams on $(r-i)+0$ dots and $0+(s-i)$ dots respectively. The map

$$
\mathrm{A}_{i}(\mathbb{C}) \rightarrow \mathrm{BC}_{r-i, s-i}=\mathrm{N}_{\mathbb{C}}(i, i)
$$

sends a pair of diagrams to the diagram obtained by putting them next to each other, up to sign. Therefore its image is exactly the span of those diagrams with no horizontal edges.

Let $X_{i}$ be the set of diagrams in $N_{\mathbb{C}}(0, i)$ with exactly $i$ horizontal edges, such that the vertical edges don't cross each other and are not marked. Any diagram in our basis for $\bigvee_{i}(\mathbb{C})$ is uniquely expressible as a concatenation of a diagram in $X_{i}$ with a diagram without horizontal edges. That is, concatenation gives an isomorphism

$$
\operatorname{span}_{\mathbb{C}}\left(\mathrm{X}_{i}\right) \otimes_{\mathbb{C}} \mathrm{A}_{i}(\mathbb{C}) \rightarrow \mathrm{V}_{i}(\mathbb{C})
$$

Thus, $\mathrm{V}_{i}(\mathbb{C})$ is free over $\mathrm{A}_{i}(\mathbb{C})$. Similarly, $\mathrm{W}_{i}(\mathbb{C})$ is freely generated over $\mathrm{A}_{i}(\mathbb{C})$ by $\mathrm{X}_{i}^{*}$, the set of diagrams in $\mathrm{X}_{i}$ reflected about the horizontal middle axis.

Let $J_{i}(\mathbb{C})$ denote the image of $J_{i}(\mathcal{R})$ in $\mathrm{N}_{\mathbb{C}}(0,0)$. (Note that we have not shown that $\mathcal{R} /(q-$ 1) $\mathcal{R} \otimes_{\mathcal{R}} J_{i}(\mathcal{R}) \rightarrow J_{i}(\mathbb{C})$ is injective.) By definition, $J_{i}(\mathbb{C})$ is the image of the composition map

$$
\mathrm{N}_{\mathbb{C}}(0, i) \otimes_{\mathbb{C}} \mathrm{N}_{\mathbb{C}}(i, 0) \rightarrow \mathrm{N}_{\mathbb{C}}(0,0)
$$

Thus $J_{i}(\mathbb{C})$ is exactly the span of those diagrams with at least $i$ horizontal edges. The diagrams with exactly $i$ horizontal edges map to a basis for $J_{i}(\mathbb{C}) / J_{i+1}(\mathbb{C})$. Each such diagram is uniquely expressible as a concatenation of a diagram in $X_{i}$, a diagram in $\mathbf{N}_{\mathbb{C}}(i, i)$ without horizontal edges, and a diagram in $\mathrm{X}_{i}^{*}$. Therefore, the map

$$
\mathrm{V}_{i}(\mathbb{C}) \otimes_{\mathrm{A}_{i}(\mathbb{C})} \mathrm{W}_{i}(\mathbb{C}) \rightarrow J_{i}(\mathbb{C}) / J_{i+1}(\mathbb{C})
$$

is an isomorphism.
We will prove by descending induction on $i$ that $\mathrm{N}_{\mathcal{R}}(0,0) / J_{i}(\mathcal{R})$ is torsion free over $\mathcal{R}$. Since $J_{i}(\mathcal{R})=0$ for $i>r, s$ and $\mathcal{N}_{\mathcal{R}}(0,0)$ is a free $\mathcal{R}$-module, the base case is trivial. Suppose $i \leq r, s$ and that $\mathrm{N}_{\mathcal{R}}(0,0) / J_{i+1}(\mathcal{R})$ is torsion free. The map

$$
\eta: \mathrm{V}_{i}(\mathcal{R}) \otimes_{\mathbf{A}_{i}(\mathcal{R})} \mathrm{W}_{i}(\mathcal{R}) \rightarrow \mathrm{N}_{\mathcal{R}}(0,0) / \mathrm{J}_{i+1}(\mathcal{R})
$$

becomes injective when tensored with $\mathcal{R} /(q-1) \mathcal{R}$, so Lemma 2.5 shows that $\eta$ is injective and its cokernel is torsion free. However, the map

$$
\pi_{i}: \mathrm{V}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})} \mathrm{W}_{i}(\mathcal{R}) \rightarrow \mathrm{J}_{i}(\mathcal{R}) / \mathrm{J}_{i+1}(\mathcal{R})
$$

is surjective by its construction, so the cokernel of $\eta$ is exactly $\mathrm{N}_{\mathcal{R}}(0,0) / \mathrm{J}_{i}(\mathcal{R})$. This completes the induction.

Moreover, since $\eta$ is injective, $\pi_{i}$ is an isomorphism. It remains to show that $\mathrm{V}_{i}(\mathcal{R})$ and $\mathrm{W}_{i}(\mathcal{R})$ are free over $\mathrm{A}_{i}(\mathcal{R})$. We have an $\mathrm{A}_{i}(\mathbb{C})$-basis $\mathrm{X}_{i}$ for $\mathrm{V}_{i}(\mathbb{C})$. Let $\overline{\mathrm{V}}_{i}(\mathcal{R})$ be the free right $\mathrm{A}_{i}(\mathcal{R})$-module generated by $X_{i}$. By lifting $X_{i}$ arbitrarily to $\mathrm{V}_{i}(\mathcal{R})$, we obtain a right $\mathrm{A}_{i}(\mathcal{R})$-module homomorphism $\overline{\mathrm{V}}_{i}(\mathcal{R}) \rightarrow \mathrm{V}_{i}(\mathcal{R})$ whose tensor product with $\mathcal{R} /(q-1) \mathcal{R}$ is an isomorphism. We construct $\overline{\mathrm{W}}_{i}(\mathcal{R}) \rightarrow$ $\mathrm{W}_{i}(\mathcal{R})$ similarly. The resulting map

$$
\overline{\mathrm{V}}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})} \overline{\mathrm{W}}_{i}(\mathcal{R}) \rightarrow \mathrm{V}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})} \mathrm{W}_{i}(\mathcal{R})
$$

becomes an isomorphism when tensored with $\mathcal{R} /(q-1) \mathcal{R}$. We have shown above that $\mathrm{V}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})}$ $\mathrm{W}_{i}(\mathcal{R})$ is torsion free, so Lemma 2.5 shows that this map is itself an isomorphism. In particular,

$$
\overline{\mathrm{V}}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})} \overline{\mathrm{W}}_{i} \rightarrow \mathrm{~V}_{i}(\mathcal{R}) \otimes_{\mathrm{A}_{i}(\mathcal{R})} \overline{\mathrm{W}}_{i}
$$

is injective. Since $\bar{W}_{i}$ is free over $A_{i}(\mathcal{R})$, this implies that $\bar{V}_{i}(\mathcal{R}) \rightarrow \mathrm{V}_{i}(\mathcal{R})$ is injective. It is also surjective by Lemma 2.5, so it is an isomorphism. Thus, $\mathrm{V}_{i}(\mathcal{R})$ is free over $\mathrm{A}_{i}(\mathcal{R})$, and the same argument applies to $\mathrm{W}_{i}(\mathcal{R})$.

## References

[BCHLLS] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), no. 3, 529-567.
[BGJKW] G. Benkart, N. Guay, J.-H. Jung, S.-J. Kang, S. Wilcox, q-walled Brauer-Clifford superalgebras, in preparation.
[Br] W. P. Brown, Generalized matrix algebras, Canad. J. Math 7 (1955), 188-190.
[CdVDM] A. Cox, M. De Visscher, S. Doty, P, Martin, On the blocks of the walled Brauer algebra, J. Algebra 320 (2008), no. 1, 169-212.
[DJM] R. Dipper, G. James, A. Mathas, Cyclotomic q-Schur algebras, Math. Z. 229 (1998), no. 3, 385-416.
[DuRu] J. Du, H. Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3207-3235.
[En] J. Enyang, Cellular bases for the Brauer and Birman-Murakami-Wenzl algebras, J. Algebra 281 (2004), no. 2, 413-449.
[Go] F. Goodman, Cellularity of Cyclotomic Birman-Wenzl-Murakami algebras, Journal of Algebra 321 (2009), 3299-3320.
[GrLe] J. Graham, G. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1-34
[JoNa] A.R. Jones, M.L. Nazarov, Affine Sergeev Algebra and q-analogues of the Young symmetrizers for projective representations of the symmetric group, Proc. London Math. Soc. (3) 78 (1999), no. 3, 481-512.
[JuKa] J. H. Jung, S.-J. Kang, Mixed Schur-Weyl-Sergeev duality for queer Lie superalgebras, arXiv:1208.5139 [math.RT], to appear in J. Algebra.
[KoMu] M. Kosuda, J. Murakami, Centralizer algebras of the mixed tensor representations of quantum group $\mathfrak{U}_{q}(\mathfrak{g l}(n, \mathbb{C}))$, Osaka J. Math. 30 (1993), no. 3, 475-507.
[KoXi1] S. König, C. Xi, On the structure of cellular algebras, Algebras and modules, II (Geiranger, 1996), 365-386, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998.
[KoXi2] S. König, C. Xi, Cellular algebras: inflations and Morita equivalences, J. London Math. Soc. (2) 60 (1999), no. 3, 700-722.
[KoXi3] S. König, C. Xi, A characteristic free approach to Brauer algebras, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1489-1505.
[Ol] G. Olshanski, Quantized universal enveloping superalgebra of type $Q$ and a super-extension of the Hecke algebra, Lett. Math. Phys. 24 (1992), no. 2, 93-102.
[Re] D. Rees, On semi-groups, Math. Proc. Cambridge Philos. Soc. 36 (1940), no. 4, 387-400.
[RuXi] H. B. Rui, C. C. Xi, The representation theory of Cyclotomic Temperley-Lieb algebras, Comment. Math. Helv. 79 (2004), no.2, 427-450.
[Se] A.N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $\mathrm{Gl}(n, m)$ and $Q(n)$, (Russian) Mat. Sb. (N.S.) 123(165) (1984), no. 3, 422-430.
[Xi] C. C. Xi, On the quasi-heredity of Birman-Wenzl algebras, Adv. Math. 154 (2000), no. 2, 280-298.
N.G.: Department of Mathematical and Statistical Sciences

University of Alberta
CAB 632
Edmonton, AB T6G 2G1
Canada
nguay@ualberta.ca
S.W.: Department of Mathematical and Statistical Sciences

University of Alberta
CAB 632
Edmonton, AB T6G 2G1
Canada
stewbasic@gmail.com

