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Abstract

We obtain results on algebras which have many of the properties of cellular algebras except
for the existence of a certain anti-involution. We show that they are applicable to q-walled
Brauer-Clifford superalgebras.

Introduction

Cellular algebras were introduced by J. Graham and G. Lehrer in [GrLe]. Their definition captures
some essential features of the Kazhdan-Lusztig bases of Hecke algebras and is applicable to other
families of algebras like cyclotomic q-Schur algebras [DJM], cyclotomic Temperley-Lieb algebras
[GrLe, RuXi] and cyclotomic Birman-Murakami-Wenzl algebras [En, Xi, Go]. An equivalent defi-
nition of cellularity which avoids specifying an explicit basis was given by S. König and C. C. Xi
in terms of cell ideals and a filtration by two-sided ideals [KoXi1]. One of the advantages of the
concept of cellularity is that it provides a way to parametrize irreducible modules.

The definition of cellular algebras requires the existence of an anti-involution with the property
that it fixes isomorphism classes of irreducible modules (see section 5 of [KoXi1]). The motivation
for this paper came from [BGJKW] where new algebras called q-walled Brauer-Clifford superal-
gebras were introduced. (These are q-analogues of the walled Brauer superalgebras studied in
[JuKa].) Because of their similarity with Hecke algebras, it would be natural to expect them to be
cellular. However, this cannot be the case because of the absence of a proper anti-involution: see
the paragraph after Definition 2.2. Therefore, we wanted to see what kind of theory could be devel-
oped without taking into account an anti-involution. The approach we follow is similar to the one
expounded in [KoXi1]: we consider so-called sandwich filtration algebras which are reminiscent of
the inflation algebras in [KoXi1, KoXi2]. Sandwich filtration algebras equipped with a compatible
anti-involution are cellular. The same can be said about the standardly based algebras introduced
in [DuRu], but our approach in terms of ideals does not require any explicit basis as in Definition
1.2.1 in [DuRu].

The first section starts with the definition of a sandwich filtration. Our main result is Theorem
1.3 which gives properties of such an algebra. In particular, it provides a way to obtain a classifica-
tion of all its irreducible modules and gives a necessary and sufficient condition for semisimplicity.
In the second section, we show that a q-walled Brauer-Clifford superalgebra admits a sandwich
filtration built from Hecke-Clifford superalgebras and spaces of linear endomorphisms of mixed
tensor products.
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1 Sandwich filtrations

Broadly speaking, a basis for an algebra is cellular if multiplication with respect to the basis takes a
certain form. A cellular algebra is an algebra with a cellular basis. This notion, introduced in [GrLe],
allows certain properties of the algebra to be easily obtained; for example it produces a complete
set of irreducible modules and gives a simple condition for the algebra to be semisimple. There is
a procedure [KoXi2] for constructing a cellular basis for an algebra which is “built” from smaller
cellular algebras in a certain sense. In the case that motivated this paper, the q-walled Brauer-
Clifford superalgebra BCr,s(q) is built from Hecke-Clifford algebras in this same sense. (BCr,s(q) is
defined in section 2.) Since Brauer algebras and walled Brauer algebras are known to be cellular
[KoXi3, CdVDM], one might hope to apply this procedure to exhibit a cellular algebra structure
on BCr,s(q).

The definition of a cellular basis requires a compatible anti-involution, but BCr,s(q) and HC`(q)
do not seem to admit a one. (See section 2.) Therefore, we remove the anti-involution from
the definition of cellularity to obtain a weaker notion in Definition 1.1 which produces the same
information about irreducible modules and semisimplicity. We also extend the definition to include
algebras which are not split-semisimple over their base field.

Definition 1.1. Suppose A, A1, A2, . . . ,Ak are unital associative rings. We say A has a sandwich
filtration over A1, . . .Ak if it has a filtration by two-sided ideals

0 = J0 ( J1 ( . . . ( Jk = A

such that Ji/Ji−1 ∼= Vi ⊗Ai
Wi as an (A,A)-bimodule, for some nonzero (A,Ai)-bimodule Vi and

(Ai,A)-bimodule Wi, both free of finite rank over Ai. We call Vi ⊗Ai
Wi the factors of A. If the

rings A1, . . . ,Ak all coincide, we simply say that A has a sandwich filtration over A1.

The terminology was chosen due to the following construction: For any matrix P in the space
Mnm(R) of n × m matrices over a ring R, the space Mmn(R) becomes an associative ring with
operation A ◦ B = APB. We call P the sandwich matrix. This construction is similar to that of
Rees matrix semigroups [Re] as well as the generalised matrix algebras of Brown [Br]. Lemma 1.2
below shows that the factors of A may be obtained via this construction, though we state the result
without an explicit basis.

The relationship between our terminology and cellular algebras is as follows: a cellular algebra
admits a sandwich filtration over the base field, and has a compatible anti-involution. Since we
allow the Ai to be arbitrary rings, this definition is analogous to the iterated inflations of [KoXi2].

Lemma 1.2. Suppose A and R are associative rings. Moreover suppose we have an (A,A)-bimodule
injection V⊗R W ↪→ A, where V is an (A,R)-bimodule, W is an (R,A)-bimodule, and V and W are
both free over R. Then the multiplication map

(V ⊗R W)⊗ (V ⊗R W)→ V ⊗R W

induced by this injection is given by

(v′ ⊗R w)(v ⊗R w
′) = v′ϑ(w ⊗ v)⊗R w

′

where ϑ : W⊗A V→ R is an (R,R)-bimodule homomorphism uniquely determined by this formula.
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Proof. Let {vi} and {wj} be R-bases for V and W respectively, so

V ⊗R W =
⊕
i,j

viR⊗R wj .

Consider any v ∈ V and w ∈ W, and let a, b ∈ A correspond to vi ⊗R w and v ⊗R wj respectively.
We have

(av)⊗R wj = (vi ⊗R w)(v ⊗R wj) = vi ⊗R (wb).

The left-hand side lies in V ⊗R wj and the right-hand side in vi ⊗R W, so the above must equal
vir⊗Rwj for some r ∈ R. Moreover r is independent of wj (from the left-hand side) and of vi (from
the right-hand side), so we may write r = ϑ(w, v). Note that r is uniquely determined. From this
uniqueness it is easy to see that ϑ is (R,R)-bilinear. Finally for x ∈ A we have

viϑ(wx, v)⊗R wj = (vi ⊗R wx)(v ⊗R wj) = (vi ⊗R w)(xv ⊗R wj) = viϑ(w, xv)⊗R wj .

Therefore ϑ factors through W ⊗A V, as required.

Many useful statements about cellular algebras generalise to our situation as follows. We also
have a Morita equivalence result analogous to that of [KoXi3].

Theorem 1.3. Suppose A has a sandwich filtration over the rings Ai with factors Vi ⊗Ai
Wi. For

statements 3 and 6 we additionally suppose each Ai is Artinian with unit.

1. The induced multiplication on Vi⊗Ai
Wi is determined by an (Ai,Ai)-bimodule homomorphism

ϑi : Wi ⊗A Vi → Ai. We call ϑi the sandwich bilinear form.

2. Let
ϑ̄i : Vi →W∗i = HomAi

(Wi,Ai)

be the (A,Ai)-bimodule homomorphism induced by ϑi. Suppose L is an irreducible left Ai-
module, and let rad (Vi ⊗Ai

L) be the kernel of the map

ϑ̄i ⊗Ai
idL : Vi ⊗Ai

L→W∗i ⊗Ai
L.

Then rad (Vi⊗Ai
L) either equals Vi⊗Ai

L, or is the unique maximal A-submodule of Vi⊗Ai
L.

3. Each irreducible left A-module is of the form Vi ⊗Ai
L/rad (Vi ⊗Ai

L) for some i and some
irreducible Ai-module L.

4. If L and M are irreducible Ai- and Aj-modules, respectively, such that Vi⊗Ai
L/rad (Vi⊗Ai

L)
and Vj ⊗Aj

M/rad (Vj ⊗Aj
M) are both non-zero and isomorphic, then i = j and L ∼= M.

5. If ϑ̄i is an isomorphism (in particular this requires that Vi and Wi have the same rank over
Ai) for each i, then A is Morita equivalent to

⊕k
i=1 Ai.

6. The ring A is semisimple if and only if each ϑ̄i is an isomorphism and each Ai is semisimple.

Proof. Let Ji denote the two-sided ideals of A as in Definition 1.1. Note that since Ji/Ji−1 is
annihilated by Ji−1 as a left A-module, the same is true of Vi ⊗Wi, and therefore of Vi. Similarly
WiJi−1 = 0.
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1. Identifying Ji/Ji−1 with a two-sided ideal in A/Ji−1, the statement follows directly from
Lemma 1.2.

2. Since ϑ̄i is an (A,Ai)-bimodule homomorphism, rad (Vi⊗Ai
L) is an A-submodule of Vi⊗Ai

L.
It remains to prove that any element outside of rad (Vi ⊗Ai

L) generates Vi ⊗Ai
L over A.

Suppose x ∈ Vi ⊗Ai
L does not lie in rad (Vi ⊗Ai

L). Then its image in

W∗i ⊗Ai
L ∼= HomAi

(Wi, L)

is nonzero. Therefore the image of Wi ⊗A x under the map

Wi ⊗A Vi ⊗Ai
L

ϑi⊗id // Ai ⊗Ai
L

∼ // L

is a nonzero Ai-submodule of L. Since L is irreducible, it must equal L. Thus Vi ⊗Ai
Wi ⊗A x

surjects onto Vi ⊗Ai
L under the map

Vi ⊗Ai
Wi ⊗A Vi ⊗Ai

L→ Vi ⊗Ai
L.

That is, Jix = Vi ⊗Ai
L, so x generates Vi ⊗Ai

L over A.

3. The previous statement shows that the nonzero modules of the form Vi ⊗Ai
L/rad (Vi ⊗Ai L)

are irreducible, so we need only show that each irreducible is of this form.

Let U be an irreducible left A-module, and pick i minimal such that JiU 6= 0. Choose any
u ∈ U with Jiu 6= 0. The map a 7→ au gives a surjection of left A-modules

Vi ⊗Ai
Wi
∼= Ji/Ji−1 � U.

Since Ai is Artinian, we may choose a surjection of the form

Vi ⊗Ai
L � U

such that L is a left Ai-module with minimal length. Suppose L has a proper nonzero sub-
module L′. The image of Vi ⊗Ai

L′ in U is an A-submodule, so it either equals U or 0. In the
latter case our surjection factors through a surjection

Vi ⊗Ai
(L/L′) � U.

Thus both cases contradict the minimality of L, so L must be irreducible. Also since JiU 6= 0,
we have Ji(Vi⊗Ai

L) 6= 0, so rad (Vi⊗Ai
L) does not equal Vi⊗Ai

L. Now the previous statement
implies that

Vi ⊗Ai
L/rad (Vi ⊗Ai

L)

is the unique irreducible quotient of Vi ⊗Ai
L, so it must be isomorphic to U, as required.

4. Suppose L and M are irreducible Ai- and Aj- modules respectively, such that L′ = Vi ⊗Ai

L/rad (Vi ⊗Ai
L) and M′ = Vj ⊗Aj

M/rad (Vj ⊗Aj
M) are isomorphic A-modules. We have

shown above that JiL
′ = L′ and Ji−1L

′ = 0, so i = j. We have also shown that the map

Wi ⊗A Vi ⊗Ai
L

ϑi⊗id // L

is surjective. This induces a surjection f : Wi ⊗A L′ → L. We claim that L is the unique
irreducible quotient of Wi ⊗A L′. It suffices to show that there is no proper Ai submodule
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N ⊆ Wi ⊗A L′ such that f(N) 6= 0. Suppose such N exists. Then f(N) = L, so the bottom
map in the following commutative diagram is surjective.

Wi ⊗A Vi ⊗Ai
Wi ⊗A Vi ⊗Ai

L //

����

Wi ⊗A Vi ⊗Ai
L

����
Wi ⊗A Vi ⊗Ai

Wi ⊗A L′

44 44

// //Wi ⊗A L′

Wi ⊗A Vi ⊗Ai
N

66 66OO

The topmost map in the above diagram is given by

w1 ⊗A v1 ⊗Ai
w2 ⊗A v2 ⊗Ai

l 7→ w1 ⊗A v1 ⊗Ai
ϑi(w2, v2)l

= w1 ⊗A (v1 ⊗Ai
w2)v2 ⊗Ai

l

= ϑi(w1, v1)w2 ⊗A v2 ⊗Ai
l

where we identify (v1⊗Ai
w2) ∈ Vi⊗AiWi with an element of Ji/Ji−1. Therefore the surjection

Wi⊗AVi⊗Ai
N � Wi⊗AL

′ is given by w⊗A v⊗Ai
N 7→ ϑi(w, v)n. Since N is an Ai submodule,

N = Wi⊗A L
′ as required. Therefore L and M are the unique irreducible quotients of Wi⊗A L

′

and Wi ⊗A M′ respectively, but the latter are isomorphic, so L ∼= M.

5. We recall the following simple fact: If A is a unital associative ring, and J ⊆ A is a two sided
ideal which, considered as a ring, is also unital, then we have a ring isomorphism A ∼= J⊕(A/J).
Indeed let 1 ∈ A and e ∈ J be the units of these rings. For any a ∈ A we have ae = eae = ea,
so e is a central idempotent. Thus A ∼= eA ⊕ (1 − e)A. Since eA = J and (1 − e)A ∼= (A/J),
this proves the claim.

Fix i, and suppose ϑ̄i induces an isomorphism. We may choose bases {v1, . . . vm} for Vi and
{w1, . . . , wm} for Wi such that ϑi(wa ⊗A vb) = δab. We have a ring isomorphism

Matm(Ai)
∼→ Vi ⊗Ai

Wi

given by

X 7→
∑
a,b

va ⊗Ai
Xabwb.

We also have a ring isomorphism Vi⊗Ai
Wi
∼= Ji/Ji−1, so Ji/Ji−1 is unital and Morita equivalent

to Ai. Applying the above observation repeatedly, it follows that

A ∼=
k⊕

i=1

Ji/Ji−1

is Morita equivalent to
⊕k

i=1 Ai.

6. If the conditions hold, then A is semisimple by the previous statement.

Conversely suppose A is semisimple. We must prove that Ai is semisimple and ϑ̄i is an
isomorphism, for each i. By the above observation and induction, it suffices to prove this for
i = 1.
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Let J denote the Jacobson radical of A1. Since A1 is Artinian, J is nilpotent. For each j ≥ 1,

V1 ⊗A1 J
jW1

is a sub-(A,A)-bimodule of V1 ⊗A1 W1, so it corresponds to a two sided ideal of A. Moreover

(V1 ⊗A1 JW1)(V1 ⊗A1 J
jW1) ⊆ V1 ⊗A1 Jϑ1(W1 ⊗A V1)J

jW1

⊆ V1 ⊗A1 J
j+1W1.

Thus V1 ⊗A1 JW1 corresponds to a nilpotent ideal. Since A is semisimple, V1 ⊗A1 JW1 = 0.
But V1 and W1 are nonzero and free over A1, so J = 0. That is, A1 is semisimple.

By symmetry, we may suppose the rank of V1 is at least the rank of W1. Let K ⊆ V1 be the
kernel of ϑ̄1 : V1 → W∗1. This is a sub-(A,A1)-bimodule of V1, so K⊗A1 W1 corresponds to a
two sided ideal in A. Moreover

(K⊗A1 W1)(K⊗A1 W1) ⊆ K⊗A1 ϑ1(W1 ⊗A K)W1 = 0.

Thus K ⊗A1 W1 = 0. Again since W1 is nonzero and free over A1, it follows that K = 0. On
the other hand the length of Vi is at least the length of W∗i as right Ai-modules. Therefore
ϑ̄i is an isomorphism.

It is easier to determine whether the above conditions hold using more explicit descriptions.
Suppose the assumptions of the theorem hold, and fix i. Moreover suppose Ai is an algebra over a
field K. Let {va} and {wb} be Ai-bases of Vi and Wi, and let {w∗b} denote the corresponding dual
basis of W∗i . Let xba = ϑi(va⊗wb) ∈ Ai. Let L be an irreducible Ai module with K-basis {`c}. Then
{va⊗ `c} and {w∗b ⊗ `d} are K-bases for Vi⊗Ai

L and W∗i ⊗Ai
L, and with respect to these bases the

map ϑ̄i ⊗Ai
idL corresponds to the matrix [γbdac ], where

xbavc =
∑
d

γbdac`d.

Now determining rad (Vi ⊗Ai
L) corresponds to finding the kernel of this matrix over K.

Note that with respect to the bases {va} and {w∗b}, the map ϑ̄i corresponds to the matrix
[xba] over Ai. Therefore ϑ̄i is an isomorphism if and only if this matrix is invertible. Let J be
the Jacobson radical of Ai, and let x̄ba be the image of xba in Ai/J. Since J is nilpotent, ϑ̄i is an
isomorphism if and only if the matrix [x̄ba] is invertible over Ai/J. Finally if L is a complete set of
irreducible Ai-modules, then the map

Ai/J→
⊕
L∈L

EndK(L)

is injective. Therefore ϑ̄i is an isomorphism if and only if the matrix [γbdac ] constructed above is
invertible for each irreducible Ai-module L.

In [KoXi2], a procedure is described for constructing cellular algebras from other cellular alge-
bras via “inflation”. The following theorem is the analogue of this procedure for sandwich filtration
algebras. It follows immediately from the definition.
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Theorem 1.4. Suppose a ring A has a sandwich filtration over A1, . . .Ak with factors Vi ⊗Ai
Wi.

Moreover suppose each Ai has a sandwich filtration over Ai1, Ai2, . . . ,Aiki with factors Vij⊗Aij
Wij .

Then A has a sandwich filtration over the Aij (ordered lexicographically) with factors (Vi ⊗Ai

Vij)⊗Aij
(Wij ⊗Ai

Wi). The sandwich bilinear form

ϑ′ij : (Wij ⊗Ai
Wi)⊗A (Vi ⊗Ai

Vij)→ Aij

is simply the composite
Wij ⊗Ai

Wi ⊗A Vi ⊗Ai
Vij

idWij
⊗Ai

ϑi⊗Ai
idVij

��
Wij ⊗Ai

Ai ⊗Ai
Vij

∼

��
Wij ⊗Ai

Vij

ϑij

��
Aij .

2 q-walled Brauer-Clifford superalgebras

In this second section, we show that the q-walled Brauer-Clifford superalgebras studied in [BGJKW]
are sandwich filtration algebras. They are built from two finite Hecke-Clifford algebras, whose
definition we recall below, and one additional generator.

Definition 2.1. [Ol] The finite Hecke-Clifford algebra HC`(q) is the unital associative C(q)-algebra
generated by elements t1, . . . , t`−1 and anti-commuting elements c1, . . . , c` which satisfy the rela-
tions:

(ti − q)(ti + q−1) = 0, i = 1, . . . , `− 1, titi+1ti = ti+1titi+1, i = 1, . . . , `− 2;

titj = tjti if j 6= i− 1, i+ 1, c2i = −1, cicj = −cjci if 1 ≤ i 6= j ≤ `;

tici = ci+1ti, ticj = cjti if j 6= i, i+ 1.

HC`(q) becomes a Z2-graded algebra if we declare ti to be even and cj to be odd for all 1 ≤ i ≤
`− 1, 1 ≤ j ≤ `.

The quickest way to define the q-walled Brauer-Clifford algebra is as a centralizer algebra,
but we first provide a concrete definition in terms of generators and relations and then recall the
equivalence of the two definitions proved in [BGJKW].

Definition 2.2. The q-walled Brauer-Clifford algebra BCr,s(q) is a unital associative C(q)-algebra
generated by the elements t1, t2, . . . , tr−1, c1, c2, . . . , cr, t

∗
1, t
∗
2, . . . , t

∗
s−1, c

∗
1, c
∗
2, . . . , c

∗
s, and e. The

elements t1, . . . , tr−1, c1, . . . , cr satisfy the relations of the Hecke-Clifford algebra HCr(q), while
t∗1, . . . , t

∗
s−1, c

∗
1, . . . , c

∗
s satisfy those of HCs(q) except that (c∗i )

2 = 1. Moreover, t1, . . . , tr−1, c1, . . . , cr
supercommute with t∗1, . . . , t

∗
s−1, c

∗
1, . . . , c

∗
s. The generator e commutes with

t1, . . . , tr−2, c1, . . . , cr−1, t
∗
2, . . . , t

∗
s−1, c

∗
2, . . . , c

∗
s
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and satisfies

e2 = 0, etr−1e = e = et∗1e, cre = c∗1e and ecr = ec∗1,

ecre = 0, et−1r−1t
∗
1etr−1 = et−1r−1t

∗
1et
∗
1, tr−1et

−1
r−1t

∗
1e = t∗1et

−1
r−1t

∗
1e.

BCr,s(q) becomes a Z2-graded algebra if we declare ti, t
∗
i , e to be even and cj , c

∗
j to be odd for

all 1 ≤ i ≤ `− 1, 1 ≤ j ≤ `.

Remark 2.3. The walled Brauer superalgebra BCr,s in [JuKa] is obtained from BCr,s(q) by setting
q = 1. In [JuKa, Thm. 5.1], e is denoted by er,r+1, ti by si, and the two five-term equations above
are replaced by a single six-term relation, which can be shown to be equivalent to the two relations
above.

The algebra BCr,s(q) has a natural anti-involution defined on the generators by

ti 7→ −t−1i , t∗i 7→ −(t∗i )
−1, ci 7→ ci, c∗i 7→ c∗i , e 7→ e.

This induces an anti-involution on HC`(q) which also sends ti to −t−1i and ci to ci. Unfortunately
the centre of HC`(q) (ignoring the Z2 grading) is not fixed by this anti-involution. Indeed, the
specialisation of HC`(q) at q = 1 is the Sergeev algebra. By Lemma 5 of [Se], there are odd
elements in the centre of the Sergeev algebra in the −1-eigenspace of the anti-involution. Also
Lemma 6 of [Se] and Theorem 6.7 of [JoNa] show that the dimension of the centre doesn’t change
upon specialisation, so the same is true of HC`(q). It follows that HC`(q) cannot be cellular with
respect to this anti-involution. It may be possible to find a different anti-involution on BCr,s(q),
or to extend the notion of cellularity to super algebras in a way which accounts for this behaviour,
but we have not pursued this direction.

We will need the following theorem, which is one of the main results in [BGJKW]. Set V =
C(n|n), Vr,s = (V)⊗r ⊗ (V∗)⊗s, Vq = C(q)⊗C V and Vr,s

q = (Vq)
⊗r ⊗ (V∗q)⊗s.

Theorem 2.4. There is an action of BCr,s(q) on Vr,s
q with commutes with the action of the

quantized enveloping superalgebra Uqqn of type Q [Ol]. Let ρn,q : BCr,s(q)→ EndUqqn(Vr,s
q ) denote

the homomorphism coming from this representation. Then ρn,q is surjective, and when n ≥ r + s,
it is an isomorphism.

q-walled Brauer-Clifford algebras thus fit into the old topic of centralizer algebras. Walled
Brauer algebras were studied in [BCHLLS] and their q-analogues in [KoMu]; a version of Theorem
2.4 holds for them if Uqqn is replaced by the quantized enveloping algebra of gln.

In the proof of the main theorem of this section, we will work over the local ring C[q, q−1](q−1)
and we will need the next lemma.

Lemma 2.5. Suppose R is a Noetherian local integral domain whose maximal ideal is generated
by a single element x ∈ R. Let ψ : A → B be a homomorphism of finitely generated R-modules,
and consider the corresponding induced homomorphism

ψ : A/xA→ B/xB, ψ(a+ xA) = ψ(a) + xB.

1. If ψ is surjective, then ψ is surjective.

2. If B is torsion free and ψ is injective, then ψ is injective, and its cokernel is also torsion free.
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We now show that BCr,s(q) has a sandwich filtration over the Hecke-Clifford algebras HC`(q).
To allow specialisation at q = 1, it is convenient to do this over the local ring R = C[q, q−1](q−1)
rather than C(q). Denote by BCr,s(R) the R-subalgebra of BCr,s(q) generated by the generators in
Definition 2.2. Set VR = R⊗CC(n|n) and Vr,s

R = (VR)⊗r⊗ (V∗R)⊗s. We adopt the convention that
the generator e is excluded if r = 0 or s = 0; thus C(q) ⊗R BCr,0(R) is exactly the Hecke-Clifford
algebra HCr(q).

Theorem 2.6. The algebra BCr,s(R) has a sandwich filtration over the algebras Ai(R) given by
Ai(R) = BCr−i,0(R)⊗R BC0,s−i(R) for 0 ≤ i ≤ min(r, s).

Proof. Fix n ≥ r+s. In the proof of Theorem 2.4 above provided in [BGJKW], we introduced a sub-
space EndŨ (Vr,s

R ) of EndR(Vr,s
R ) whose tensor products with R/(q− 1)R and C(q) are, respectively,

Endqn(Vr,s) and EndUqqn(Vr,s
q ). Similarly, we may construct a space

HomŨ (Va,b
R ,Vc,d

R ) ⊆ HomR(Va,b
R ,Vc,d

R )

for any nonnegative integers a, b, c and d. For convenience, we use the following notation through-
out this proof.

NR(i, j) = HomŨ (Vr−j,s−j
R ,Vr−i,s−i

R ),

NC(i, j) = Homqn(Vr−j,s−j ,Vr−i,s−i).

Thus R/(q − 1)⊗R NR(i, j) ∼= NC(i, j). We have composition maps

NC(l, j)⊗C NC(j, i)→ NC(l, i).

In particular, NC(i, i) is an algebra and NC(i, j) is an (NC(i, i),NC(j, j))-bimodule. Similar state-
ments hold for NR(i, j). By Theorem 3.5 of [JuKa], we have BCr,s

∼= NC(0, 0).

The composition map
NR(0, i)⊗R NR(i, 0)→ NR(0, 0)

factors through NR(0, i)⊗NR(i,i)NR(i, 0). It is also an (NR(0, 0),NR(0, 0))-bimodule homomorphism,
so its image Ji(R) is a two-sided ideal in NR(0, 0). Now define the (NR(0, 0),NR(i, i))-bimodule Vi(R)
and the (NR(i, i),NR(0, 0))-bimodule Wi(R) by the following right exact sequences:

NR(0, i+ 1)⊗R NR(i+ 1, i)→ NR(0, i) � Vi(R), (2.7)

NR(i, i+ 1)⊗R NR(i+ 1, 0)→ NR(i, 0) � Wi(R).

Here we adopt the convention that NR(i, j) = 0 if i or j is greater than r or s. Clearly the images
of

NR(0, i+ 1)⊗R NR(i+ 1, i)⊗R NR(i, 0) and NR(0, i)⊗R NR(i, i+ 1)⊗R NR(i+ 1, 0)

in NR(0, 0) are contained in Ji+1(R), so the surjective map

NR(0, i)⊗NR(i,i) NR(i, 0) � Ji(R)

factors to give a map

Vi(R)⊗NR(i,i) Wi(R) � Ji(R)/(Ji(R) ∩ Ji+1(R)).
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Finally let Ai(R) = BCr−i,0(R) ⊗R BC0,s−i(R). We have a natural inclusion Ai(R) ↪→ NR(i, i), so
we obtain a surjective homomorphism

πi : Vi(R)⊗Ai(R) Wi(R) � Ji(R)/(Ji(R) ∩ Ji+1(R))

of (NR(0, 0),NR(0, 0))-bimodules. We will prove that the various objects we have constructed satisfy
the following properties:

1. The Ji(R) form a filtration of NR(0, 0); that is, Ji+1(R) ⊆ Ji(R).

2. Both Vi(R) and Wi(R) are free over Ai(R) (as right and left modules respectively).

3. The map πi is an isomorphism.

All three claims will follow from the corresponding claims over R/(q − 1)R ∼= C, which we will in
turn deduce from explicit diagrammatic bases of these spaces.

Theorem 3.5 and Proposition 4.3 of [JuKa] show that NC(0, 0) has a basis indexed by (r, s)-
diagrams, and multiplication of these basis elements corresponds to concatenation of the diagrams.
By the same argument, NC(i, j) has a basis indexed by diagrams from (r − i) + (s − i) dots to
(r− j) + (s− j) dots, and the above composition maps correspond to concatenation of diagrams. If
1 ≤ i ≤ r, s then any diagram in NC(i, 0) has at least one horizontal edge. By moving part of this
edge to the bottom of the diagram, we may express the diagram as a concatenation of a diagram
in NC(i, i− 1) and one in NC(i− 1, 0). Thus,

NC(i, i− 1)⊗C NC(i− 1, 0)→ NC(i, 0)

is surjective. By Lemma 2.5,

NR(i, i− 1)⊗R NR(i− 1, 0)→ NR(i, 0)

is surjective. Now the commutative diagram

NR(0, i)⊗R NR(i, i− 1)⊗R NR(i− 1, 0) // //

��

NR(0, i)⊗R NR(i, 0)

��
NR(0, i− 1)⊗R NR(i− 1, 0) // NR(0, 0)

shows that Ji(R) ⊆ Ji−1(R).

Recall that Vi(R) and Wi(R) were defined by the right exact sequences in (2.7). Tensoring with
R/(q − 1)R, we obtain right exact sequences

NC(0, i+ 1)⊗C NC(i+ 1, i)→ NC(0, i) � Vi(C) = R/(q − 1)R⊗R Vi(R),

NC(i, i+ 1)⊗C NC(i+ 1, 0)→ NC(i, 0) � Wi(C) = R/(q − 1)R⊗R Wi(R).

A diagram in NC(0, i) has at least i horizontal edges. Moreover, it has more than i horizontal
edges if and only if it can be expressed as a concatenation of a diagram in NC(0, i+ 1) and one in
NC(i+ 1, i). Therefore the diagrams with exactly i horizontal edges map to a basis for Vi(C).

Let Ai(C) = R/(q− 1)R⊗R Ai(R) = BCr−i,0⊗C BC0,s−i. We have bases for BCr−i,0 and BC0,s−i
indexed by diagrams on (r − i) + 0 dots and 0 + (s− i) dots respectively. The map

Ai(C)→ BCr−i,s−i = NC(i, i)
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sends a pair of diagrams to the diagram obtained by putting them next to each other, up to sign.
Therefore its image is exactly the span of those diagrams with no horizontal edges.

Let Xi be the set of diagrams in NC(0, i) with exactly i horizontal edges, such that the vertical
edges don’t cross each other and are not marked. Any diagram in our basis for Vi(C) is uniquely
expressible as a concatenation of a diagram in Xi with a diagram without horizontal edges. That
is, concatenation gives an isomorphism

spanC(Xi)⊗C Ai(C)→ Vi(C).

Thus, Vi(C) is free over Ai(C). Similarly, Wi(C) is freely generated over Ai(C) by X∗i , the set of
diagrams in Xi reflected about the horizontal middle axis.

Let Ji(C) denote the image of Ji(R) in NC(0, 0). (Note that we have not shown that R/(q −
1)R⊗R Ji(R)→ Ji(C) is injective.) By definition, Ji(C) is the image of the composition map

NC(0, i)⊗C NC(i, 0)→ NC(0, 0).

Thus Ji(C) is exactly the span of those diagrams with at least i horizontal edges. The diagrams
with exactly i horizontal edges map to a basis for Ji(C)/Ji+1(C). Each such diagram is uniquely
expressible as a concatenation of a diagram in Xi, a diagram in NC(i, i) without horizontal edges,
and a diagram in X∗i . Therefore, the map

Vi(C)⊗Ai(C) Wi(C)→ Ji(C)/Ji+1(C)

is an isomorphism.

We will prove by descending induction on i that NR(0, 0)/Ji(R) is torsion free over R. Since
Ji(R) = 0 for i > r, s and NR(0, 0) is a free R-module, the base case is trivial. Suppose i ≤ r, s and
that NR(0, 0)/Ji+1(R) is torsion free. The map

η : Vi(R)⊗Ai(R) Wi(R)→ NR(0, 0)/Ji+1(R)

becomes injective when tensored with R/(q − 1)R, so Lemma 2.5 shows that η is injective and its
cokernel is torsion free. However, the map

πi : Vi(R)⊗Ai(R) Wi(R) � Ji(R)/Ji+1(R)

is surjective by its construction, so the cokernel of η is exactly NR(0, 0)/Ji(R). This completes the
induction.

Moreover, since η is injective, πi is an isomorphism. It remains to show that Vi(R) and Wi(R)
are free over Ai(R). We have an Ai(C)-basis Xi for Vi(C). Let V̄i(R) be the free right Ai(R)-module
generated by Xi. By lifting Xi arbitrarily to Vi(R), we obtain a right Ai(R)-module homomorphism
V̄i(R)→ Vi(R) whose tensor product with R/(q − 1)R is an isomorphism. We construct W̄i(R)→
Wi(R) similarly. The resulting map

V̄i(R)⊗Ai(R) W̄i(R)→ Vi(R)⊗Ai(R) Wi(R)

becomes an isomorphism when tensored with R/(q− 1)R. We have shown above that Vi(R)⊗Ai(R)

Wi(R) is torsion free, so Lemma 2.5 shows that this map is itself an isomorphism. In particular,

V̄i(R)⊗Ai(R) W̄i → Vi(R)⊗Ai(R) W̄i

is injective. Since W̄i is free over Ai(R), this implies that V̄i(R) → Vi(R) is injective. It is also
surjective by Lemma 2.5, so it is an isomorphism. Thus, Vi(R) is free over Ai(R), and the same
argument applies to Wi(R).
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