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Abstract

We study central extensions of the Lie superalgebra sln(A) when A is a Z/2Z-graded superalgebra
over a commutative ring K. Steinberg Lie superalgebras and their central extensions play an essential
role. We use a Z/2Z-graded version of cyclic homology to study the center of the extensions in question.

1 Introduction

The article [KaLo] is one of the main references on the subject of central extensions of the Lie algebra sln(A)
when A is an associative ring. Its results have been extended to many other related algebras: for instance,
when A is commutative, sln can be replaced by a simple Lie algebra [Ka1] or by a Lie superalgebra [IoKo1].
[Ne] is a good reference for the general theory of central extensions. To the authors’ best knowledge, it seems
however that the central extensions of the Lie superalgebra sln(A) when A is a Z/2Z-graded associative
superalgebra over a unital commutative ring K have never been studied, so the aim of our paper is to
provide general results about these extensions in the spirit of [KaLo]. The paper [IoKo1] provides general
results about central extensions of Lie superalgebras of the form g ⊗k A where A is a commutative k-
algebra, k a commutative ring and g is a basic classical Lie superalgebra. The article [IoKo2] of the same
authors computes the second homology groups of Lie superalgebras of the form g⊗K A where K is a field of
characteristic zero, A is a supercommutative superalgebra and g is a Lie superalgebra.

This work is an outgrowth of a section of [ChGu] where the following two cases are considered: if
K = C and A is the Clifford algebra C〈c〉/(c2 + 1) with c an odd element of degree 1, then gln(A) is the
Lie superalgebra qn and sln(A) is its derived Lie subsuperalgebra sqn. (The quotient psqn of sqn by the
subspace spanned by the identity matrix is isomorphic to the “strange” simple Lie superalgebra of type Qn
in Kac’s classification [K]). If K = C and A is the affine Clifford algebra C〈c, x, x−1〉/(c2−1, cx−x−1c) with
deg(x) = 0 = deg(x−1),deg(c) = 1, then gln(A) is a twisted loop superalgebra of type Q and it admits a
non-trivial central extension. Quantized enveloping superalgebras attached to these Lie superalgebras have
received some attention lately [GJKK, GJKKK, ChGu] since they have an interesting representation theory.
(See also [Na] for Yangians of type Q.) It is thus natural to try to develop a more general theory for extensions
of Lie superalgebras of the form sln(A) when A is Z/2Z-graded. We should mention that [IoKo2] provides
results about central extensions of Lie superalgebras of the form psqn ⊗K A with A a supercommutative
superalgebra over the field K. In particular, proposition 5.9 in [IoKo2] states that sqn is the universal central
extension of psqn. This is in agreement with the following corollary of the results of our paper: when A is
C〈c〉/(c2 + 1) as above, then sln(A) is centrally closed since HC1(A) = 0 - see [ChGu]. Another paper on
this subject is [MiPi2].

A central role is played by Steinberg Lie superalgebras, whose definition is a natural super version of
the Steinberg Lie algebras denoted stn in [KaLo]. When n ≥ 5 and for arbitrary base ring K, they are the
universal central extensions of sln(A); moreover, the kernel of this extension is isomorphic to HC1(A) where
HC1 is the first Z/2Z-graded cyclic homology group of A. (The Z/2Z-graded version of cyclic homology
that we use was introduced in [Ka2].) When n = 3 or n = 4, stn(A) is not the universal central extension of
sln(A): to obtain the latter, we need to construct the universal central extension of stn(A). The Steinberg
Lie superalgebras that we consider are different from those studied in [CGS, MiPi1]: in those two articles,
they provide central extensions of the Lie superalgebras slm|n(A) (with A viewed as an ungraded algebra).
Many of the arguments in our paper are similar to those used in [CGS] and in [GaSh].
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3 Extensions of Lie superalgebras

Let K be a unital commutative ring. We will use the definition of Lie superalgebra over K given in section
1.2 of [Ne].

Let L = L0⊕L1 be a Lie superalgebra over K. The pair (L̃, ϕ), where L̃ = L̃0⊕ L̃1 is a Lie superalgebra
and ϕ : L̃ → L an epimorphism, is called a central extension of L if [Ker(ϕ), L̃] = 0. A central extension
(L̃, ϕ) of L is called universal if for any central extension (L′, ψ) of L there exists a unique homomorphism
h : L̃→ L′ such that ψ ◦ h = ϕ.

Let A = A0 ⊕ A1 be a unital, Z/2Z-graded, associative K-superalgebra. Elements of K have degree
0 and we always assume that A has a homogeneous K-basis {aβ}β∈B (B is an index set), which contains
the identity element 1 of A. Let Mn(A) be the n × n matrix superalgebra with coefficients in A and
deg(Eij(a)) = deg(a) = |a|, for any homogeneous element a ∈ A. Under the Lie superbracket [A⊗a,B⊗b] =
AB ⊗ ab − (−1)|a||b|BA ⊗ ba, where A,B ∈ Mn(K) and a, b ∈ A, Mn(A) becomes a Lie superalgebra
denoted gln(A). (A more general construction in the context of Leibniz superalgebras and super dialgebras
is considered in [HuLi].) For n ≥ 3, the Lie superalgebra sln(A) is the subsuperalgebra of gln(A) generated
by the elements Eij(a), 1 ≤ i 6= j ≤ n, a ∈ A. One can show that sln(A) can be equivalently defined as
sln(A) = [gln(A), gln(A)], the derived subsuperalgebra of gln(A), or as the set of matrices X ∈ gln(A) such
that Tr(X) ∈ [A,A].

Definition 3.1. For n ≥ 3, the Steinberg Lie superalgebra stn(A) is defined to be the Lie superalgebra over
K generated by the homogeneous elements Fij(a), a ∈ A homogeneous, 1 ≤ i 6= j ≤ n and degFij(a) = |a|,
subject to the following relations for a, b ∈ A:

a 7→ Fij(a) is a K-linear map, (1)
[Fij(a), Fjk(b)] = Fik(ab), for distinct i, j, k, (2)
[Fij(a), Fkl(b)] = 0, for i 6= j 6= k 6= l 6= i. (3)

stn(A) is a central extension of sln(A) which is centrally closed most of the time: this is explained below.

4 Central extensions of stn(A) constructed from super 2-cocycles

Definition 4.1. Let L = L0 ⊕ L1 be a Lie superalgebra and C = C0 ⊕ C1 be a Z/2Z-graded free module over
K. A K-bilinear map ψ : L× L→ C is called a super 2-cocycle if it is super skew-symmetric and

(−1)deg(x)deg(z)ψ([x, y], z) + (−1)deg(x)deg(y)ψ([y, z], x) + (−1)deg(y)deg(z)ψ([z, x], y) = 0

for homogenous elements x, y, z ∈ L and ψ(w,w) = 0 for w ∈ L0.

A central extension of the Lie superalgebra L can be constructed from a super 2-cocycle in the standard
way. (See [Ne] for instance.) The following definition provides a priori a slightly different construction.

Definition 4.2. Let ξ be a super 2-cocycle on stn(A) with value in C as above. Let stn(A)] be the Lie
superalgebra generated by elements F ]ij(a), a ∈ A, 1 ≤ i 6= j ≤ n, and by elements of C with deg(F ]ij(a)) = |a|
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and satisfying the relations:

[C, C] = [F ]ij(a), C] = 0, for distinct i, j, a 7→ Fij
](a) is a K-linear map, (4)

[F ]ij(a), F ]jk(b)] = F ]ik(ab) + ξ(Fij(a), Fjk(b)), for distinct i, j, k, (5)

[F ]ij(a), F ]kl(b)] = ξ(Fij(a), Fkl(b)), for distinct i 6= j 6= k 6= l 6= i (6)

where a, b ∈ A, 1 ≤ i, j, k, l ≤ n.

The following lemma shows that this construction of a central extension of stn(A) is actually the same
as the classical construction if ξ is surjective.

Lemma 4.1. If 0 −→ C −→ st′n(A) π−→ stn(A) −→ 0 is a central extension of stn(A) constructed from
a surjective super 2-cocycle ξ (so that st′n(A) ∼= stn(A) ⊕ C as K-modules), then there is an isomorphism
ρ : stn(A)] → st′n(A) with ρ(F ]ij(a)) = Fij(a) and ρ(c) = c for a ∈ A, c ∈ C.

Proof. Since C and Fij(a) in st′n(A) satisfy (4)-(6), there is a Lie superalgebra epimomorphism ρ : stn(A)] →
st′n(A) with ρ(F ]ij(a)) = Fij(a) and ρ(c) = c, for a ∈ A, c ∈ C. Also, since C is an ideal of stn(A)] and since
(4)-(6) for stn(A)] reduce mod C to (1)-(3) for stn(A), there exists a homomorphism θ : stn(A)→ stn(A)]/C
with θ(Fij(a)) = F ]ij(a). Moreover, C ⊂ ker(π◦ρ), so there is an induced homomorphism π ◦ ρ : stn(A)]/C →
stn(A) with (π ◦ ρ)(F ]ij(a)) = Fij(a). Since {F ]ij(a)|1 ≤ i 6= j ≤ n, a ∈ A} is a set of generators of stn(A)]/C,
we see that π ◦ ρ is an isomorphism and π ◦ ρ = θ−1. Thus, C = ker(π ◦ ρ), ker(ρ) ⊂ C. But ρ|C = id yields
ker(ρ) = 0. Therefore ρ is injective and it is thus an isomorphism.

5 Universal Central Extension of stn(A)

For n ≥ 3, both Lie superalgebras sln(A) and stn(A) are perfect. Let ϕ be the epimorphism of Lie superal-
gebras ϕ : stn(A) −→ sln(A) given by ϕ(Fij(a)) = Eij(a) for 1 ≤ i 6= j ≤ n. Let Hij(a, b) = [Fij(a), Fji(b)].
Let N+ and N− be the K-submodules of stn(A) generated by Fij(a) for 1 ≤ i < j ≤ n and Fij(a) for
1 ≤ j < i ≤ n, respectively. Let H be the K-submodule of stn(A) generated by Hij(a, b) for 1 ≤ i 6= j ≤ n.

Before stating and proving the main theorem of this section (theorem 5.1), we need a few lemmas.

Lemma 5.1. For n ≥ 3, we have a triangular decomposition stn(A) = N+ ⊕H ⊕N−. Moreover, we have

stn(A) = H
⊕( ∑

1≤i 6=j≤n
Fij(A)

)
.

Proof. The proof is the same as for lemma 1.11 in [KaLo].

Lemma 5.2. For n ≥ 3, we have Kerϕ ⊆ H and (stn(A), ϕ) is a central extension of sln(A), i.e.,
[Kerϕ, stn(A)] = 0.

Proof. The proof is the same as for proposition 1.12 in [KaLo].

Cyclic homology of Z/2Z-graded algebras was studied in [Ka2] - see also [IoKo2]. We define the chain
complex of K-modules C∗(A) where C0(A) = A and for n ≥ 1 the module Cn(A) is the quotient of the
K-module A⊗(n+1) by the K-submodule In generated by the elements

a0 ⊗ a1 ⊗ · · · ⊗ an − (−1)
n+|an|

n−1∑
i=0
|ai|
an ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an−1,
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with homogeneous elements ai ∈ A, for 0 ≤ i ≤ n. The homomorphism d̃n : A⊗(n+1) → A⊗n is given by

d̃n(a0⊗ a1⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)ia0⊗ · · · ⊗ aiai+1⊗ · · · ⊗ an + (−1)
n+|an|

n−1∑
i=0
|ai|
ana0⊗ a1⊗ · · · ⊗ an−1. (7)

One can check d̃n(In) ⊆ In−1, hence it induces a homomorphism dn : Cn(A) → Cn−1(A) and we have
dn−1dn = 0. This is a Z/2Z-graded version of the Connes complex. The nth Z/2Z-graded cyclic homology
group HCn(A) of the superalgebra A is defined by HCn(A) = Ker(dn)/Image(dn+1).

The following is the Z/2Z-graded analog of one of the main results in [KaLo].

Theorem 5.1. If n ≥ 3, the kernel of the central extension (stn(A), ϕ) of the Lie superalgebra sln(A) is
isomorphic to HC1(A).

To prove this theorem below, we will need a few more lemmas.

Lemma 5.3. For Hij(a, b) = [Fij(a), Fji(b)], 1 ≤ i 6= j ≤ n and homogeneous elements a, b, c ∈ A we have

1. (−1)|a||c|Hij(ab, c) = (−1)|a||c|Hik(a, bc) + (−1)|a||b|Hkj(b, ca) for pairwise distinct i, j, k.

2. H1j(a, b)− (−1)|a||b|H1j(1, ba) = H1k(a, b)− (−1)|a||b|H1k(1, ba) for any j, k 6= 1.

From 2 in the previous lemma, we see that it is possible to define, for a, b ∈ A homogeneous, the elements
h(a, b) = H1j(a, b)− (−1)|a||b|H1j(1, ba) and this definition does not depend on j, j 6= 1.

Lemma 5.4. The elements h(a, b) satisfy the relation

(−1)|a||c|h(ab, c) = (−1)|a||c|h(a, bc) + (−1)|a||b|h(b, ca).

Proof. (−1)|a||c|h(ab, c) equals

(−1)|a||c|H1j(ab, c)− (−1)|a||c|(−1)|c|(|a|+|b|)H1j(1, cab)

= (−1)|a||c|H1k(a, bc) + (−1)|a||b|Hkj(b, ca))− (−1)|c||b|
(
H1k(1, cab) +Hkj(1, cab)

)
= (−1)|a||c|h(a, bc) + (−1)|a||b|Hkj(b, ca)− (−1)|c||b|Hkj(1, cab)

+ (−1)|a||b|H1k(1, bca)− (−1)|c||b|H1k(1, cab)

= (−1)|a||c|h(a, bc) + (−1)|a||b|
(
Hk1(1, bca) +H1j(b, ca)

)
− (−1)|c||b|

(
Hk1(1, cab) +H1j(1, cab)

)
+ (−1)|a||b|H1k(1, bca)− (−1)|c||b|H1k(1, cab)

= (−1)|a||c|h(a, bc) + (−1)|b||a|h(b, ca)

Lemma 5.5. Every element x ∈ H can be written as x =
∑
i∈Ix

h(ai, bi)+
∑n
j=2H1j(1, cj) where ai, bi, cj ∈

A and Ix is a finite indexing set.

We now collect some formulas which may be useful to prove some of the results below. For i, j, k all
distinct,

[Hij(a, b), Fik(c)] = Fik(abc), [Hij(a, b), Fki(c)] = −(−1)|c|(|a|+|b|)Fki(cab) (8)

[Hij(a, b), Fij(c)] = Fij
(
abc+ (−1)|a||b|+|b||c|+|a||c|cba

)
, [h(a, b), Fjk(c)] = 0 for j, k ≥ 2 (9)

[h(a, b), F1i(c)] = F1i

(
(ab− (−1)|a||b|ba)c

)
, [h(a, b), Fi1(c)] = −(−1)|c|(|a|+|b|)Fi1

(
c(ab− (−1)|a||b|ba)

)
(10)

[H1k(a, 1), H1m(b, 1)] = h(a, b), [H1k(a, 1), H1k(b, 1)] = 2h(a, b)−H1k(1, [a, b]), 2 ≤ k 6= m ≤ n (11)
[h(a, b), H1k(c, 1)] = h([a, b], c), 2 ≤ k ≤ n, [h(a, b), h(c, d)] = h([a, b], [c, d]) (12)
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Note that, as a consequence of these formulas, if a and b supercommute, then h(a, b) is in the center of
stn(A).

Proof of theorem 5.1. Let 〈A,A〉 be the quotient of A⊗A by the two-sided K-submodule I (= I1+Image(d̃2))
generated by a1⊗a2+(−1)|a1||a2|a2⊗a1 and (−1)|a2||a1|a2a3⊗a1+(−1)|a3||a2|a3a1⊗a2+(−1)|a3||a1|a1a2⊗a3.
Hence 〈A,A〉 ∼= C1(A)/Image(d2). The first cyclic homology group HC1(A) is, by definition, the kernel of
the map d : 〈A,A〉� [A,A], a1 ⊗ a2 7→ [a1, a2] = a1a2 − (−1)|a1||a2|a2a1 (d is induced by d1).

The proof follows the same ideas as the proof of theorem 1.7 in [KaLo]. The main steps of the proof in
loc. cit. are to show that the kernel of the map stn(A) � sln(A) is contained in the submodule H, that this
kernel is central in stn(A) and, finally, isomorphic to HC1(A). The first two steps are lemma 5.2, and the
last one reduces to showing that the map η : 〈A,A〉 −→ stn(A) given by η(a⊗ b) = h(a, b) identifies HC1(A)
with the kernel of the projection stn(A) � sln(A). (Note that lemma 5.4 implies that η is well-defined.)

Corollary 5.1. Suppose Q ⊆ K. For n ≥ 3, stn(A) ∼= sln(A)⊕HC1(A) as super vector spaces and we have
a Lie superalgebra isomorphism stn(A) ∼= (sln(K)⊗K A)⊕ 〈A,A〉 where the Lie superbracket with respect to
this second decomposition is given as follows:

[x⊗ a, y ⊗ b] =
1
n

(x, y)〈a, b〉+
1
2

[x, y]⊗ [a, b]+ +
1
2

[x, y]+ ⊗ [a, b], (13)

[〈a1, a2〉, 〈b1, b2〉] = 〈[a1, a2], [b1, b2]〉, [〈a1, a2〉, y ⊗ b] = y ⊗
[
[a1, a2], b

]
. (14)

where
[x, y]+ = xy + yx− 2

n
(x, y)I, [a, b]+ = ab+ (−1)|a||b|ba

and ( ·, ·) is the Killing form on sln(K).

Proof. We have a Lie superalgebra homomorphism stn(A) −→ (sln(K) ⊗K A) ⊕ 〈A,A〉 given by Fij(a) 7→
Eij ⊗ a for 1 ≤ i 6= j ≤ n and one can check, using relations (8)-(12), that its inverse is given by Eij ⊗ a 7→
Fij(a) for 1 ≤ i 6= j ≤ n, (Eii − Ejj) ⊗ a 7→ Hij(a, 1) and 〈A,A〉 3 〈a, b〉 7→ nh(a, b) −

∑n
k=2H1k([a, b], 1).

Detailed computations are available in the appendix.

Since sln(A) and stn(A) are perfect Lie superalgebras and (stn(A), ϕ) is a central extension of sln(A)
for n ≥ 3, the universal central extension ŝln(A) of the Lie superalgebra sln(A) is also the universal central
extension of stn(A), which is denoted ŝtn(A). Indeed, by the universal property of ŝln(A), we have a
homomorphism f1 : ŝln(A) −→ stn(A) with Ker(f1) central in ŝln(A). Moreover, f1 is surjective since
stn(A) is generated by any choice of preimages of Eij ⊗ a ∈ sln(A). Therefore, ŝln(A) is a central extension
of stn(A), so we have a homomorphism f2 : ŝtn(A) −→ ŝln(A) whose kernel is central in ŝtn(A). Moreover,
f2 is onto because ŝln(A) is perfect and thus generated by a set of preimages of the elements in a K-spanning
set of sln(A). (Note that the composite ŝtn(A) � stn(A) � sln(A) is onto, hence Image(f2) contains a set
of generators of ŝln(A).) Since f2 is an epimorphism and ŝln(A) is its own universal central extension, f2
must admit a splitting f3 : ŝln(A) −→ ŝtn(A): this can happen only if f2 is an isomorphism, in which case
f3 = f−1

2 . In conclusion, ŝln(A) is isomorphic to ŝtn(A).

Our purpose now is to calculate ŝtn(A) for any ring K and n ≥ 3.

6 Universal central extension of stn(A), n ≥ 5.

When n ≥ 5, we have the following super analog of one of the main results in [KaLo].
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Theorem 6.1. Let n ≥ 5 and let (e, ψ) be a central extension of the Lie superalgebra sln(A). Then there
exists a unique homomorphism η : stn(A)→ e such that ϕ = ψ ◦ η. Therefore stn(A) is centrally closed and
is the universal central extension of sln(A).

Since ψ is surjective, for any Eij ⊗ a ∈ sln(A) we can choose some F̃ij(a) ∈ ψ−1(Eij ⊗ a). We need the
following lemmas.

Lemma 6.1. The commutator [F̃ij(a), F̃kl(b)] doesn’t depend on the choice of representatives in ψ−1(Eij⊗a)
and ψ−1(Ekl ⊗ b).

Proof. This follows from the fact that, if F̌ij(a) ∈ ψ−1(Eij ⊗ a), then F̌ij(a)− F̃ij(a) ∈ Ker(ψ) and Ker(ψ)
is central in e.

Lemma 6.2. Let 1 ≤ i 6= j ≤ n, and suppose that 1 ≤ k, l ≤ n, and k, l are different from i and j. Then we
have [F̃ik(a), F̃kj(b)] = [F̃il(a), F̃lj(b)].

Proof. If k 6= l, then

[F̃ik(a), F̃kj(b)] =
[
F̃ik(a), [F̃kl(1), F̃lj(b)] + c1

]
=
[
[F̃ik(a), F̃kl(1)], F̃lj(b)

]
+
[
F̃kl(1), [F̃ik(a), F̃lj(b)]

]
= [F̃il(a) + c2, F̃lj(b)] + [F̃kl(1), c3] = [F̃il(a), F̃lj(b)]

where c1, c2, c3 are central elements in e.

Proof of Theorem 6.1. For 1 ≤ i 6= j ≤ n, set wij(a) = [F̃il(a), F̃lj(1)] for some l 6= i, j; by lemma 6.2,
this does not depend on the choice of l.

We would like to define a homomorphism η : stn(A)→ e is by η(Fij(a)) = wij(a). To see that this makes
sense, we have to prove the following relations in e.

wij(xa+ yb) = xwij(a) + ywij(b), for all a, b ∈ A, x, y ∈ K. (15)
[wij(a), wjk(b)] = wik(ab), for distinct i, j, k, (16)
[wij(a), wkl(b)] = 0, for j 6= k, i 6= l. (17)

Equality (15) follows from the fact that F̃il(xa+yb) = xF̃il(a) +yF̃il(b) + c with c ∈ Ker(ψ). As for (16),
choose l 6= i, j, k; then

[wij(a), wjk(b)] =
[
wij(a), [F̃jl(b), F̃lk(1)]

]
=

[
[wij(a), F̃jl(b)], F̃lk(1)

]
+ (−1)|a||b|

[
F̃jl(b), [wij(a), F̃lk(1)]

]
= [F̃il(ab) + c1, F̃lk(1)] + [F̃jl(b), c2] = wik(ab)

where c1, c2 ∈ Ker(ψ).

We need our assumption that n ≥ 5 to prove that equality (17) holds. Choose m 6= i, j, k, l. Then

[wij(a), wkl(b)] =
[
wij(a), [F̃km(b), F̃ml(1)]

]
=

[
[wij(a), F̃km(b)], F̃ml(1)

]
+ (−1)|a||b|

[
F̃km(b), [wij(a), F̃ml(1)]

]
= [c1, F̃ml(1)] + [F̃km(b), c2] = 0

where again c1, c2 ∈ Ker(ψ).

We have thus established relations (15)-(17), which proves that η is a well-defined homomorphism. The
uniqueness of η follows from the fact that, since Fij(a) = [Fik(a), Fkj(1)] for any distinct i, j, k, we must
have η(Fij(a)) = [η(Fik(a)), η(Fkj(1))] and η(Fik(a))− F̃ik(a), η(Fkj(1))− F̃kj(1) ∈ Ker(ψ).
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7 Central Extension of st4(A)

In this section, we define a super 2-cocycle on st4(A) and construct the Lie superalgebra ŝt4(A) as a covering
(eventually a universal covering) of st4(A).

For any positive integer m, let Im be the 2-sided Z/2Z-graded ideal of A generated by the elements: ma
and ab− (−1)|a||b|ba, for homogeneous elements a, b ∈ A.

Lemma 7.1. Im = mA+A[A,A] and [A,A]A = A[A,A].

Proof. Since ma and ab − (−1)|a||b|ba generate Im, Im = mA + A[A,A]A. Moreover, [A,A]A ⊆ A[A,A] +
[[A,A], A] ⊆ A[A,A] + [A,A] ⊆ A[A,A], and similarly we have A[A,A] ⊆ [A,A]A, so [A,A]A = A[A,A] and
the lemma is proved.

Let Am := A/Im be the quotient superalgebra over K; it is super commutative. Write ā = a + Im for
a ∈ A. If m = 2 and 2 is invertible in A, then A2 = 0.

For {i, j, k, l} = {1, 2, 3, 4}, let εijkl(A2) denote a copy of A2 and identify εijkl(r̄), εilkj(r̄), εkjil(r̄)
and εklij(r̄) for r̄ ∈ A2. Thus, we have six distinct copies of A2 whose direct sum is denoted by W.
Using the decomposition in lemma 5.1 of st4(A), we define a K-bilinear map ψ : st4(A) × st4(A) → W by
ψ(Fij(a), Fkl(b)) = εijkl(ab) for {i, j, k, l} = {1, 2, 3, 4} and a, b ∈ A, and by ψ(x, y) = 0 for all other pairs of
elements from the summands of lemma 5.1. Note that, if m = 2, then a = −a in A2.

The following lemma is central to the construction of ŝt4(A).

Lemma 7.2. The bilinear map ψ is a super 2-cocycle.

Proof. Since there is a Lie superalgebra homomorphism α : st4(A) → st4(A2) with α(Fij(a)) = Fij(ā)
and ψ(α(x), α(y)) = ψ(x, y) is well-defined for x, y ∈ st4(A), it suffices to verify the lemma for A2, i.e.,
we can assume that A = A2 and the proof is similar to the corresponding one in [GaSh]. In this case,
it is clear that ψ is super skew-symmetric and ψ(x, x) = 0 for all x in st4(A)0. Now let J(x, y, z) =
(−1)|x||z|ψ([x, y], z) + (−1)|x||y|ψ([y, z], x) + (−1)|y||z|ψ([z, x], y). for homogeneous elements x, y, z ∈ st4(A2).

We will show J(x, y, z) = 0 by taking homogenous elements x, y, z in summands of lemma 5.1. If
a term of J(x, y, z) is not 0, we can reorder to assume that z = Fkl(d) and 0 6= [x, y] ∈ Fij(A) with
{i, j, k, l} = {1, 2, 3, 4}.

Case 1: If x or y is in H, we can assume without loss of generality x = Hpq(a, b) and y = Fij(c). Since
A(= A2) is (super) commutative with 2A = 0, [x, y] 6= 0 forces precisely one of p or q to be in {i, j} (so the
other to be in {k, l} by (8),(9)). Moreover, in this case, [x, y] = Fij(abc), [y, z] = 0 and [z, x] = Fkl(abd), so

J(x, y, z) = ψ(Fij(abc), Fkl(d)) + ψ(0, Hpq(a, b)) + ψ(Fkl(abd), Fij(c))
= εijkl(abcd) + 0 + εklij(abdc) = 0.

Case 2: If neither x nor y is in H, we can assume that x = Fip(a) and y = Fpj(b) with p ∈ {k, l}, so
[x, y] = Fij(ab). For p = k, we have [y, z] = 0 and [z, x] = Fil(ad), so

J(x, y, z) = ψ(Fij(ab), Fkl(d)) + ψ(0, Fik(a)) + ψ(Fil(ad), Fkj(b))
= εijkl(abd) + 0 + εilkj(adb) = 0.

For p = l, we have [y, z] = Fkj(db) and [z, x] = 0, so

J(x, y, z) = ψ(Fij(ab), Fkl(d)) + ψ(Fkj(db), Fil(a)) + ψ(0, Flj(b))
= εijkl(abd) + εkjil(dba) + 0 = 0.
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We therefore obtain a central extension of the Lie superalgebra st4(A), 0→W → ŝt4(A) π→ st4(A)→ 0,
i.e. ŝt4(A) = st4(A) ⊕ W, with Lie superbracket [(x, c), (y, c′)] = ([x, y], ψ(x, y)) for all x, y ∈ st4(A) and
c, c′ ∈ W. π is the projection on the first summand π : st4(A)⊕W → st4(A).

We can now apply definition 4.2 with C = W and ξ = ψ to obtain the Lie superalgebra st4(A)]. Since
A is a unital algebra, st4(A)] is perfect. By lemma 4.1, there exists a unique Lie superalgebra isomorphism
ρ : st4(A)] → ŝt4(A) such that ρ(F ]ij(a)) = Fij(a) and ρ|W = id.

8 Central Extension of st3(A)

In this section, we shall handle st3(A). Recall that I3 = 3A+A[A,A] and A3 = A/I3 is an associative super
commutative K-algebra.

For {i, j, k} = {1, 2, 3}, let εijpq(A3) for (p, q) = (i, k) or (k, j) denote a copy of A3 and identify
εijpq(r̄) with εpqij(−r̄). Thus, we have six distinct copies of A3 whose direct sum is denoted U . Us-
ing the decomposition in lemma 5.1 of st3(A), we define a K-bilinear map ψ : st3(A) × st3(A) → U by
ψ(Fij(r), Fpq(s)) = εijpq(rs) for (p, q) = (i, k) or (k, j) with {i, j, k} = {1, 2, 3} and r, s ∈ A, and by
ψ(x, y) = 0 for all other pairs of elements from the summands of lemma 5.1.

As for st4(A), we have the following lemma.

Lemma 8.1. The bilinear map ψ is a super 2-cocycle.

Proof. As in the proof of Lemma 7.2, we can assume A = A3, i.e., A is super commutative and 3A = 0. By
definition, ψ is super skew-symmetric and ψ(x, x) = 0 for all x in st3(A)0.

Similarly to the proof of lemma 7.2, we show that J(x, y, z) = 0 by taking homogeneous elements x, y, z in
summands of lemma 5.1. If a term of J(x, y, z) is not 0, we can assume that z = Fpq(d) and 0 6= [x, y] ∈ Fst(A)
with (p, q) = (s, u) or (u, t) and {s, t, u} = {1, 2, 3}.

Case 1: If x or y is in H, we can assume x = Hij(a, b) and y = Fst(c). By (8),(9) for A = A3, we have
J(x, y, z) = εstpq(θabcd) with θ = 0, 3 or −3, thus J(x, y, z) = 0.

Case 2: If neither x nor y is in H, we can assume that x = Fsu(a) and y = Fut(b). We have, if
(p, q) = (s, u),

J(x, y, z) = (−1)|a||d|ψ(Fst(ab), Fsu(d)) + (−1)|a||b|ψ(−(−1)|b||d|Fst(db), Fsu(a))

= (−1)|a||d|εstsu(abd)− (−1)|a||b|+|b||d|εstsu(dba) = 0,

while, if (p, q) = (u, t),

J(x, y, z) = (−1)|a||d|ψ(Fst(ab), Fut(d)) + (−1)|b||d|ψ(−(−1)|a||d|Fst(ad), Fut(b))

= (−1)|a||d|εstut(abd)− (−1)|a||d|+|b||d|εstut(adb) = 0.

As in the st4(A) case, we have a central extension of st3(A), 0→ U → ŝt3(A) π→ st3(A)→ 0 i.e. ŝt3(A) =
st3(A) ⊕ U , and we can apply definition 4.2 with C = U and ξ = ψ to obtain the Lie superalgebra st3(A)].
st3(A)] is perfect and, by lemma 4.1, there exists a unique Lie superalgebra isomorphism ρ : st3(A)] → ŝt3(A).
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9 Proof of the main theorem when n = 3, 4.

In last two sections, we constructed the Lie superalgebra ŝtn(A) as a covering of stn(A) for n = 3, 4. Now
we can prove the main theorem when n = 3, 4. We follow ideas used in [CGS, GaSh].

Theorem 9.1. For n = 3 or 4, the universal central extension of stn(A) is (ŝtn(A), π).

Proof. Suppose that
0 −→ V −→ g

χ−→ stn(A) −→ 0

is a central extension of stn(A). We will show that we can choose a preimage F̃ij(a) of Fij(a) under χ for
1 ≤ i 6= j ≤ n, a ∈ A and a linear map µ : C → V which satisfy the relations (4)-(6) for stn(A)] with
ξ = µ ◦ ψ and C = U ,W for n = 3, 4 respectively. Thus, we will have a homomorphism θ : stn(A)] → g with
θ(F ]ij(a)) = F̃ij(a) so χ ◦ θ = π ◦ ρ as in lemma 4.1 (with θ, χ playing the roles of ρ, π). This will give us
the homomorphism θ ◦ ρ−1 : ŝtn(A) → g satisfying χ ◦ (θ ◦ ρ−1) = π and we will be able to conclude that
(ŝtn(A), π) is the universal covering of stn(A).

We begin by choosing any preimage F̃ij(a) under χ of Fij(a) for a in a K-basis of A and extend
linearly to all elements in A. We observe as before that, since g is a central extension, H̃ij(a, b) :=
[F̃ij(a), F̃ji(b)] is independent of the choice of F̃ij(a), F̃ji(b). Moreover, if [Hpq(a, b), Fij(c)] = Fij(d), then
[H̃pq(a, b), F̃ij(c)] ∈ F̃ij(d) +V. Also, if [Hpq(1, 1), Fij(c)] = Fij(mc), where m ∈ {0,±1,±2}, then we always
have [Hpq(1, 1), Fji(d)] = Fji(−md) for any d ∈ A. Therefore,

[H̃pq(1, 1), H̃ij(a, b)] ∈ [F̃ij(ma) + V, F̃ji(b)] + [F̃ij(a), F̃ji(−mb) + V] = {0} (18)

for any 1 ≤ i, j, p, q ≤ n, i 6= j, p 6= q.

Now fix some k 6= i, j and replace F̃ij(a) by F̌ij(a) with F̌ij(a) = [H̃ik(1, 1), F̃ij(a)]. It then follows that
[H̃ik(1, 1), F̌ij(a)] = [H̃ik(1, 1), [H̃ik(1, 1), F̃ij(a)]] = [H̃ik(1, 1), F̃ij(a) + ν] = F̌ij(a) for some ν ∈ V. F̌ij(a)
is another element in the preimage of Fij(a) under χ, which we will rename F̃ij(a). In other words, we can
assume, without loss of generality, that [H̃ik(1, 1), F̃ij(a)] = F̃ij(a) and this holds for any a in a K-basis of
A.

Using (18), we see that

[H̃pq(a, b), F̃ij(c)] =
[
H̃pq(a, b), [H̃ik(1, 1), F̃ij(c)]

]
=
[
H̃ik(1, 1), [H̃pq(a, b), F̃ij(c)]

]
= F̃ij(d)

if [Hpq(a, b), Fij(c)] = Fij(d). In particular, taking (p, q) = (i, l), we observe that F̃ij(a) does not depend on
the choice of k 6= i, j. Applying ad(H̃ij(1, 1)) to [F̃ij(a), F̃jk(b)] ∈ F̃ik(ab) + V (with i, j, k all distinct) yields
[F̃ij(2a) + ν1, F̃jk(b)] + [F̃ij(a), F̃jk(−b) + ν2] = F̃ik(ab) with ν1, ν2 ∈ V, hence [F̃ij(a), F̃jk(b)] = F̃ik(ab).
Thus, F̃ij(a),V satisfy relations (4)-(5). (Recall that ψ(Fij(a), Fjk(b)) = 0.)

We now focus on relation (6). Applying ad(F̃ik(1)) to [F̃kj(a), F̃ij(b)] ∈ V for i, j, k all distinct gives
[F̃ij(a), F̃ij(b)] = 0. When n = 4, picking l 6= i, j, k and applying ad(H̃kl(1, 1)) to [F̃kj(a), F̃ij(b)] yields
[F̃kj(a), F̃ij(b)] = 0; similarly, if n = 4, [F̃ij(a), F̃ik(b)] = 0.

Therefore, when n = 3 or 4, all cases in relation (6) are satisfied, except perhaps

[F̃ij(a), F̃pq(b)] = µ(εijpq(ab)) with (p, q) = (i, k) or (p, q) = (k, j), if n = 3 (19)

[F̃ij(a), F̃kl(b)] = µ(εijkl(ab)) if n = 4, and i, j, k, l are all distinct. (20)

for some map µ which remains to be defined.
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Let us establish (19). Define a K-linear map µijpq : A −→ V by setting µijpq(c) = [F̃ij(c), F̃pq(1)] for
(p, q) = (i, k) or (k, j). Applying ad(H̃ij(a, b)) to this central element gives

µijpq(abc+ (−1)|a||b|+|b||c|+|c||a|cba) + (−1)|c||a|+|b||c|[F̃ij(c), F̃pq(d)] = 0 (21)

where d = ab if (p, q) = (i, k) and d = (−1)|a||b|ba if (p, q) = (k, j). Setting a = b = 1 implies µijpq(3c) = 0
for any c ∈ A, while setting c = 1 gives µijpq(ab + (−1)|a||b|ba) + [F̃ij(1), F̃pq(d)] = 0, so that µpqij(d) =
µijpq(ab + (−1)|a||b|ba). In particular, b = 1 gives µpqij(a) = µijpq(2a) = −µijpq(a) for any a ∈ A, so
µijpq(2d) = µijpq(−d) = µpqij(d) = µijpq(ab + (−1)|a||b|ba), which implies µijpq(ab) = (−1)|a||b|µijpq(ba)
whether d = ab or (−1)|a||b|ba. Using this and letting b = 1 in (21) yields (−1)|a||c|[F̃ij(c), F̃pq(a)] =
−µijpq(ac + (−1)|c||a|ca) = −µijpq(ac + ac) = µijpq(ac). We can now deduce that (21) is equivalent to
µijpq(abc + (−1)|b||c|acb) + µijpq(dc) = 0, hence to µijpq(abc − (−1)|b||c|acb) = 0. Therefore, µijpq(I3) = 0
since I3 is linearly spanned by the elements 3a and a[b, c] for a, b, c ∈ A by lemma 7.1. We can now define
µ : U → V by µ(εijpq(ā)) = µijpq(a) such that (19) holds.

To establish (20), we set µijkl(c) = [F̃ij(c), F̃kl(1)] ∈ V for {i, j, k, l} = {1, 2, 3, 4}. Applying ad(H̃ij(a, b))
gives µijkl(abc+ (−1)|a||b|+|b|c|+|c||a|cba) = 0. If we set b = c = 1, we get µijkl(2a) = 0; using this and setting
c = 1, we obtain µijkl(ab) = −(−1)|a||b|µijkl(ba) = µijkl(ba). Moreover,

µijkl(a[b, c]) = µijkl(abc)− (−1)|b|c|µijkl(acb) = µijkl(abc)− (−1)|b|c|µijkl(−(−1)|a||b|+|c||a|cba)

= µijkl(abc+ (−1)|a||b|+|b|c|+|c||a|cba) = 0

Therefore, µijkl(I2) = 0. We now have to verify the invariance property of µijpq upon certain permutation of
its indices. Note that [F̃ij(a), F̃kl(b)] = −[F̃il(ab), F̃kj(1)] = −µilkj(ab); in particular, b = 1 gives µijkl(a) =
−µilkj(a), hence µijkl(a) = µilkj(a) for any a ∈ A because µijkl(a) = −µijkl(a). It now follows that
[F̃ij(a), F̃kl(b)] = µijkl(ab).

Furthermore, µklij(a) = [F̃kl(1), F̃ij(a)] = −[F̃ij(a), F̃kl(1)] = −µijkl(a) = µijkl(a). In conclusion,
µkjil(a) = µilkj(a) = µijkl(a). This implies that we can now define µ : W → V by µ(εijkl(ā)) = µijkl(a) so
(20) holds.

We have now established that (19) and (20) hold and this completes the proof of theorem 9.1.
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10 Appendix

In this appendix, we present computations which establish the relations (11),(12) and are useful in the proof
of theorem 5.1 and corollary 5.1. We set Fab = Fab(1).

If 1 ≤ k 6= m ≤ n:

[H1k(a, 1), H1m(b, 1)] =
[
[F1k(a), Fk1], [F1m(b), Fm1]

]
=

[[
F1k(a), [F1m(b), Fm1]

]
, Fk1

]
+
[
F1k(a),

[
Fk1, [F1m(b), Fm1]

]]
= −(−1)|a||b|[F1k(ba), Fk1] + [F1k(a), Fk1(b)] = H1k(a, b)− (−1)|a||b|H1k(1, ba)
= h(a, b)

[H1k(a, 1), H1k(b, 1)] =
[
H1k(a, 1), [F1k(b), Fk1]

]
=

[
[H1k(a, 1), F1k(b)], Fk1

]
+ (−1)|a||b|

[
F1k(b), [H1k(a, 1), Fk1]

]
= [F1k(ab+ (−1)|a||b|ba), Fk1]− 2(−1)|a||b|[F1k(b), Fk1(a)]
= H1k(ab, 1) + (−1)|a||b|H1k(1, ba)− 2(−1)|a||b|H1k(b, a)
= H1k(ab, 1) + (−1)|a||b|H1k(1, ba)− 2(−1)|a||b|h(b, a)− 2H1k(1, ab)
= 2h(a, b)−H1k(1, [a, b])

We have proved the two relations in (11). If 2 ≤ k ≤ n,

[h(a, b), H1k(c, 1)] =
[
h(a, b), [F1k(c), Fk1]

]
=
[
[h(a, b), F1k(c)], Fk1

]
+ (−1)|c|(|a|+|b|)

[
F1k(c), [h(a, b), Fk1]

]
= [F1k([a, b]c), Fk1]− (−1)|c|(|a|+|b|)[F1k(c), Fk1([a, b])]
= H1k([a, b]c, 1)− (−1)|c|(|a|+|b|)H1k(c, [a, b])
= −(−1)|c|(|a|+|b|)h(c, [a, b]) = h([a, b], c)

This establishes the first relation in (12). As for the second one,

[h(a, b), h(c, d)] = [h(a, b), H1j(c, d)− (−1)|c||d|H1j(1, dc)]

= H1j([a, b]c, d)− (−1)(|c|+|d|)(|a|+|b|)H1j(c, d[a, b])− (−1)|c||d|H1j([a, b], dc)

+(−1)|c||d|+(|c|+|d|)(|a|+|b|)H1j(1, dc[a, b])

= h([a, b]c, d) + (−1)|d|(|c|+|a|+|b|)H1j(1, d[a, b]c)− (−1)(|c|+|d|)(|a|+|b|)h(c, d[a, b])

−(−1)|d|(|a|+|b|+|c|)H1j(1, d[a, b]c)

−(−1)|c||d|h([a, b], dc)− (−1)|c||d|+(|c|+|d|)(|a|+|b|)H1j(1, dc[a, b])

+(−1)|c||d|+(|c|+|d|)(|a|+|b|)H1j(1, dc[a, b])
= h([a, b], [c, d])

We now give all the computations relevant for the proof of corollary 5.1. In order to verify that the
natural homomorphism stn(A) −→ (sln(K) ⊗K A) ⊕ 〈A, a〉 admits an inverse given by the formula in the
proof of corollary 5.1, we have to replace, in relations (13),(14), the elements Eij ⊗ a, 〈a, b〉 by their images
as specified in that proof and see if the relations that we obtain are satisfied in stn(A). Relation (13) can be
checked quickly if (x, y) = 0, so we verify only the case x = Fij , y = Fji with 1 ≤ i 6= j ≤ n. The right-hand
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side becomes

h(a, b)− 1
n

n∑
k=2

H1k

(
[a, b], 1

)
+

1
2
Hij(ab+ (−1)|a||b|ba, 1) +

1
2n

n∑
k=1
k 6=i

Hik

(
[a, b], 1

)
+

1
2n

n∑
k=1
k 6=j

Hjk

(
[a, b], 1

)

= h(a, b)− 1
n

n∑
k=2

H1k([a, b], 1) +
1
2
Hij(ab+ (−1)|a||b|ba, 1) +

1
2
Hi1

(
[a, b], 1

)
+

1
2
Hj1

(
[a, b], 1

)
+

1
n

n∑
k=2

H1k

(
[a, b], 1

)
= h(a, b) +

1
2
Hij(ab+ (−1)|a||b|ba, 1) +

1
2
Hi1([a, b], 1) +

1
2
Hj1([a, b], 1)

= h(a, b) +
1
2
Hi1(ab+ (−1)|a||b|ba, 1) +

1
2
H1j(ab+ (−1)|a||b|ba, 1) +

1
2
Hi1([a, b], 1) +

1
2
Hj1([a, b], 1)

= h(a, b) +Hi1(ab, 1) + (−1)|a||b|H1j(ba, 1) = Hij(a, b)

The first relation in (14) is very similar to the second one in (12) but it does not follow automatically from
it. It left-hand side equals[

nh(a1, a2)−
n∑
k=2

H1k([a1, a2], 1), nh(b1, b2)−
n∑

m=2

H1m([b1, b2], 1)

]

= n2h
(
[a1, a2], [b1, b2]

)
− n

n∑
m=2

h
(
[a1, a2], [b1, b2]

)
+ n(−1)(|a1|+|a2|)(|b1|+|b2|)

n∑
k=2

h
(
[b1, b2], [a1, a2]

)
+

n∑
k,m=2
k 6=m

h
(
[a1, a2], [b1, b2]

)
+

n∑
k=2

(
2h
(
[a1, a2], [b1, b2]

)
−H1k

(
1, [[a1, a2], [b1, b2]]

))

= nh
(
[a1, a2], [b1, b2]

)
−

n∑
k=2

H1k

([
[a1, a2], [b1, b2]

]
, 1
)

As for the second relation in (14), it follows from (8), (9) when i 6= 1 and j 6= 1; when i = 1, j 6= 1, its
left-hand side equals

nF1j

(
[a1, a2]b

)
−

n∑
k=2,k 6=j

[
H1k([a1, a2]), 1), F1j(b)

]
−
[
H1j

(
[a1, a2], 1

)
, F1j(b)

]
= nF1j

(
[a1, a2]b

)
−

n∑
k=2,k 6=j

F1j

(
[a1, a2]b

)
− F1j

(
[a1, a2]b+ (−1)|b|(|a1|+|a2|)b[a1, a2]

)
= Fij([[a1, a2], b])
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