Central extensions of matrix Lie superalgebras over $\mathbb{Z} / 2 \mathbb{Z}$-graded algebras

Hongjia Chen, Nicolas Guay

Abstract

We study central extensions of the Lie superalgebra $\mathfrak{s l}_{n}(A)$ when A is a $\mathbb{Z} / 2 \mathbb{Z}$-graded superalgebra over a commutative ring K. Steinberg Lie superalgebras and their central extensions play an essential role. We use a $\mathbb{Z} / 2 \mathbb{Z}$-graded version of cyclic homology to study the center of the extensions in question.

1 Introduction

The article [KaLo] is one of the main references on the subject of central extensions of the Lie algebra $\mathfrak{s l}_{n}(A)$ when A is an associative ring. Its results have been extended to many other related algebras: for instance, when A is commutative, $\mathfrak{s l}_{n}$ can be replaced by a simple Lie algebra [Ka1] or by a Lie superalgebra [IoKo1]. $[\mathrm{Ne}]$ is a good reference for the general theory of central extensions. To the authors' best knowledge, it seems however that the central extensions of the Lie superalgebra $\mathfrak{s l}_{n}(A)$ when A is a $\mathbb{Z} / 2 \mathbb{Z}$-graded associative superalgebra over a unital commutative ring K have never been studied, so the aim of our paper is to provide general results about these extensions in the spirit of [KaLo]. The paper [IoKol] provides general results about central extensions of Lie superalgebras of the form $\mathfrak{g} \otimes_{k} A$ where A is a commutative k algebra, k a commutative ring and \mathfrak{g} is a basic classical Lie superalgebra. The article [IoKo2] of the same authors computes the second homology groups of Lie superalgebras of the form $\mathfrak{g} \otimes_{\mathbb{K}} A$ where \mathbb{K} is a field of characteristic zero, A is a supercommutative superalgebra and \mathfrak{g} is a Lie superalgebra.

This work is an outgrowth of a section of [ChGu] where the following two cases are considered: if $K=\mathbb{C}$ and A is the Clifford algebra $\mathbb{C}\langle c\rangle /\left(c^{2}+1\right)$ with c an odd element of degree 1 , then $\mathfrak{g l}_{n}(A)$ is the Lie superalgebra \mathfrak{q}_{n} and $\mathfrak{s l}_{n}(A)$ is its derived Lie subsuperalgebra $\mathfrak{s q}_{n}$. (The quotient $\mathfrak{p s q}_{n}$ of $\mathfrak{s q}_{n}$ by the subspace spanned by the identity matrix is isomorphic to the "strange" simple Lie superalgebra of type Q_{n} in Kac's classification $[\mathrm{K}])$. If $K=\mathbb{C}$ and A is the affine Clifford algebra $\mathbb{C}\left\langle c, x, x^{-1}\right\rangle /\left(c^{2}-1, c x-x^{-1} c\right)$ with $\operatorname{deg}(x)=0=\operatorname{deg}\left(x^{-1}\right), \operatorname{deg}(c)=1$, then $\mathfrak{g l}_{n}(A)$ is a twisted loop superalgebra of type Q and it admits a non-trivial central extension. Quantized enveloping superalgebras attached to these Lie superalgebras have received some attention lately [GJKK, GJKKK, ChGu] since they have an interesting representation theory. (See also [Na] for Yangians of type Q.) It is thus natural to try to develop a more general theory for extensions of Lie superalgebras of the form $\mathfrak{s l}_{n}(A)$ when A is $\mathbb{Z} / 2 \mathbb{Z}$-graded. We should mention that [IoKo2] provides results about central extensions of Lie superalgebras of the form $\mathfrak{p s q}_{n} \otimes_{\mathbb{K}} A$ with A a supercommutative superalgebra over the field \mathbb{K}. In particular, proposition 5.9 in [IoKo 2$]$ states that $\mathfrak{s q}_{n}$ is the universal central extension of $\mathfrak{p s q}_{n}$. This is in agreement with the following corollary of the results of our paper: when A is $\mathbb{C}\langle c\rangle /\left(c^{2}+1\right)$ as above, then $\mathfrak{s l}_{n}(A)$ is centrally closed since $H C_{1}(A)=0$ - see [ChGu]. Another paper on this subject is [MiPi2].

A central role is played by Steinberg Lie superalgebras, whose definition is a natural super version of the Steinberg Lie algebras denoted $\mathfrak{s t}_{n}$ in [KaLo]. When $n \geq 5$ and for arbitrary base ring K, they are the universal central extensions of $\mathfrak{s l}_{n}(A)$; moreover, the kernel of this extension is isomorphic to $H C_{1}(A)$ where $H C_{1}$ is the first $\mathbb{Z} / 2 \mathbb{Z}$-graded cyclic homology group of A. (The $\mathbb{Z} / 2 \mathbb{Z}$-graded version of cyclic homology that we use was introduced in [Ka2].) When $n=3$ or $n=4, \mathfrak{s t}_{n}(A)$ is not the universal central extension of $\mathfrak{s l}_{n}(A)$: to obtain the latter, we need to construct the universal central extension of $\mathfrak{s t}_{n}(A)$. The Steinberg Lie superalgebras that we consider are different from those studied in [CGS, MiPi1]: in those two articles, they provide central extensions of the Lie superalgebras $\mathfrak{s l}_{m \mid n}(A)$ (with A viewed as an ungraded algebra). Many of the arguments in our paper are similar to those used in [CGS] and in [GaSh].

2 Acknowledgements

The second author was partially supported by an NSERC Discovery Grant and a start-up grant from the University of Alberta. The authors thank Erhard Neher for pointing out an error in an earlier version.

3 Extensions of Lie superalgebras

Let K be a unital commutative ring. We will use the definition of Lie superalgebra over K given in section 1.2 of [Ne].

Let $L=L_{0} \oplus L_{1}$ be a Lie superalgebra over K. The pair (\widetilde{L}, φ), where $\widetilde{L}=\widetilde{L}_{0} \oplus \widetilde{L}_{1}$ is a Lie superalgebra and $\varphi: \widetilde{L} \rightarrow L$ an epimorphism, is called a central extension of L if $[\operatorname{Ker}(\varphi), \widetilde{L}]=0$. A central extension (\widetilde{L}, φ) of L is called universal if for any central extension $\left(L^{\prime}, \psi\right)$ of L there exists a unique homomorphism $h: \widetilde{L} \rightarrow L^{\prime}$ such that $\psi \circ h=\varphi$.

Let $A=A_{0} \oplus A_{1}$ be a unital, $\mathbb{Z} / 2 \mathbb{Z}$-graded, associative K-superalgebra. Elements of K have degree 0 and we always assume that A has a homogeneous K-basis $\left\{a_{\beta}\right\}_{\beta \in \mathcal{B}}$ (\mathcal{B} is an index set), which contains the identity element 1 of A. Let $M_{n}(A)$ be the $n \times n$ matrix superalgebra with coefficients in A and $\operatorname{deg}\left(E_{i j}(a)\right)=\operatorname{deg}(a)=|a|$, for any homogeneous element $a \in A$. Under the Lie superbracket $[A \otimes a, B \otimes b]=$ $A B \otimes a b-(-1)^{|a||b|} B A \otimes b a$, where $A, B \in M_{n}(K)$ and $a, b \in A, M_{n}(A)$ becomes a Lie superalgebra denoted $\mathfrak{g l}_{n}(A)$. (A more general construction in the context of Leibniz superalgebras and super dialgebras is considered in $[\mathrm{HuLi}]$.) For $n \geq 3$, the Lie superalgebra $\mathfrak{s l}_{n}(A)$ is the subsuperalgebra of $\mathfrak{g l}_{n}(A)$ generated by the elements $E_{i j}(a), 1 \leq i \neq j \leq n, a \in A$. One can show that $\mathfrak{s l}_{n}(A)$ can be equivalently defined as $\mathfrak{s l}_{n}(A)=\left[\mathfrak{g l}_{n}(A), \mathfrak{g l}_{n}(A)\right]$, the derived subsuperalgebra of $\mathfrak{g l}_{n}(A)$, or as the set of matrices $X \in \mathfrak{g l}_{n}(A)$ such that $\operatorname{Tr}(X) \in[A, A]$.

Definition 3.1. For $n \geq 3$, the Steinberg Lie superalgebra $\mathfrak{s t}_{n}(A)$ is defined to be the Lie superalgebra over K generated by the homogeneous elements $F_{i j}(a), a \in A$ homogeneous, $1 \leq i \neq j \leq n$ and $\operatorname{deg} F_{i j}(a)=|a|$, subject to the following relations for $a, b \in A$:

$$
\begin{align*}
& a \mapsto F_{i j}(a) \text { is a K-linear map, } \tag{1}\\
& {\left[F_{i j}(a), F_{j k}(b)\right]=F_{i k}(a b), \text { for distinct } i, j, k} \tag{2}\\
& {\left[F_{i j}(a), F_{k l}(b)\right]=0, \text { for } i \neq j \neq k \neq l \neq i} \tag{3}
\end{align*}
$$

$\mathfrak{s t}_{n}(A)$ is a central extension of $\mathfrak{s l}_{n}(A)$ which is centrally closed most of the time: this is explained below.

4 Central extensions of $\mathfrak{s t}_{n}(A)$ constructed from super 2-cocycles

Definition 4.1. Let $L=L_{0} \oplus L_{1}$ be a Lie superalgebra and $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ be a $\mathbb{Z} / 2 \mathbb{Z}$-graded free module over K. A K-bilinear map $\psi: L \times L \rightarrow \mathcal{C}$ is called a super 2 -cocycle if it is super skew-symmetric and

$$
(-1)^{\operatorname{deg}(x) \operatorname{deg}(z)} \psi([x, y], z)+(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)} \psi([y, z], x)+(-1)^{\operatorname{deg}(y) \operatorname{deg}(z)} \psi([z, x], y)=0
$$

for homogenous elements $x, y, z \in L$ and $\psi(w, w)=0$ for $w \in L_{0}$.

A central extension of the Lie superalgebra L can be constructed from a super 2-cocycle in the standard way. (See $[\mathrm{Ne}]$ for instance.) The following definition provides a priori a slightly different construction.

Definition 4.2. Let ξ be a super 2-cocycle on $\mathfrak{s t}_{n}(A)$ with value in \mathcal{C} as above. Let $\mathfrak{s t}_{n}(A)^{\sharp}$ be the Lie superalgebra generated by elements $F_{i j}^{\sharp}(a), a \in A, 1 \leq i \neq j \leq n$, and by elements of \mathcal{C} with $\operatorname{deg}\left(F_{i j}^{\sharp}(a)\right)=|a|$
and satisfying the relations:

$$
\begin{align*}
& {[\mathcal{C}, \mathcal{C}]=\left[F_{i j}^{\sharp}(a), \mathcal{C}\right]=0, \text { for distinct } i, j, \quad a \mapsto F_{i j}^{\sharp}(a) \text { is a } K \text {-linear map, }} \tag{4}\\
& {\left[F_{i j}^{\sharp}(a), F_{j k}^{\sharp}(b)\right]=F_{i k}^{\sharp}(a b)+\xi\left(F_{i j}(a), F_{j k}(b)\right), \text { for distinct } i, j, k,} \tag{5}\\
& {\left[F_{i j}^{\sharp}(a), F_{k l}^{\sharp}(b)\right]=\xi\left(F_{i j}(a), F_{k l}(b)\right), \text { for distinct } i \neq j \neq k \neq l \neq i} \tag{6}
\end{align*}
$$

where $a, b \in A, 1 \leq i, j, k, l \leq n$.

The following lemma shows that this construction of a central extension of $\mathfrak{s t}_{n}(A)$ is actually the same as the classical construction if ξ is surjective.

Lemma 4.1. If $0 \longrightarrow \mathcal{C} \longrightarrow \mathfrak{s t}_{n}^{\prime}(A) \xrightarrow{\pi} \mathfrak{s t}_{n}(A) \longrightarrow 0$ is a central extension of $\mathfrak{s t}_{n}(A)$ constructed from a surjective super 2 -cocycle ξ (so that $\mathfrak{s t}_{n}^{\prime}(A) \cong \mathfrak{s t}_{n}(A) \oplus \mathcal{C}$ as K-modules), then there is an isomorphism $\rho: \mathfrak{s t}_{n}(A)^{\sharp} \rightarrow \mathfrak{s t}_{n}^{\prime}(A)$ with $\rho\left(F_{i j}^{\sharp}(a)\right)=F_{i j}(a)$ and $\rho(c)=c$ for $a \in A, c \in \mathcal{C}$.

Proof. Since \mathcal{C} and $F_{i j}(a)$ in $\mathfrak{s t}_{n}^{\prime}(A)$ satisfy (4)-(6), there is a Lie superalgebra epimomorphism $\rho: \mathfrak{s t}_{n}(A)^{\sharp} \rightarrow$ $\mathfrak{s t}_{n}^{\prime}(A)$ with $\rho\left(F_{i j}^{\sharp}(a)\right)=F_{i j}(a)$ and $\rho(c)=c$, for $a \in A, c \in \mathcal{C}$. Also, since \mathcal{C} is an ideal of $\mathfrak{s t}_{n}(A)^{\sharp}$ and since (4)-(6) for $\mathfrak{s t}_{n}(A)^{\sharp}$ reduce $\bmod \mathcal{C}$ to $(1)-(3)$ for $\mathfrak{s t}_{n}(A)$, there exists a homomorphism $\theta: \mathfrak{s t}_{n}(A) \rightarrow \mathfrak{s t}_{n}(A)^{\sharp} / \mathcal{C}$ with $\theta\left(F_{i j}(a)\right)=\overline{F_{i j}^{\sharp}(a)}$. Moreover, $\mathcal{C} \subset \operatorname{ker}(\pi \circ \rho)$, so there is an induced homomorphism $\overline{\pi \circ \rho}: \mathfrak{s t}_{n}(A)^{\sharp} / \mathcal{C} \rightarrow$ $\mathfrak{s t}_{n}(A)$ with $(\overline{\pi \circ \rho})\left(\overline{F_{i j}^{\sharp}(a)}\right)=F_{i j}(a)$. Since $\left\{\overline{F_{i j}^{\sharp}(a)} \mid 1 \leq i \neq j \leq n, a \in A\right\}$ is a set of generators of $\mathfrak{s t}_{n}(A)^{\sharp} / \mathcal{C}$, we see that $\overline{\pi \circ \rho}$ is an isomorphism and $\overline{\pi \circ \rho}=\theta^{-1}$. Thus, $\mathcal{C}=\operatorname{ker}(\pi \circ \rho), \operatorname{ker}(\rho) \subset \mathcal{C}$. But $\left.\rho\right|_{\mathcal{C}}=i d$ yields $\operatorname{ker}(\rho)=0$. Therefore ρ is injective and it is thus an isomorphism.

5 Universal Central Extension of $\mathfrak{s t}_{n}(A)$

For $n \geq 3$, both Lie superalgebras $\mathfrak{s l}_{n}(A)$ and $\mathfrak{s t}_{n}(A)$ are perfect. Let φ be the epimorphism of Lie superalgebras $\varphi: \mathfrak{s t}_{n}(A) \longrightarrow \mathfrak{s l}_{n}(A)$ given by $\varphi\left(F_{i j}(a)\right)=E_{i j}(a)$ for $1 \leq i \neq j \leq n$. Let $H_{i j}(a, b)=\left[F_{i j}(a), F_{j i}(b)\right]$. Let \mathfrak{N}^{+}and \mathfrak{N}^{-}be the K-submodules of $\mathfrak{s t}_{n}(A)$ generated by $F_{i j}(a)$ for $1 \leq i<j \leq n$ and $F_{i j}(a)$ for $1 \leq j<i \leq n$, respectively. Let H be the K-submodule of $\mathfrak{s t}_{n}(A)$ generated by $H_{i j}(a, b)$ for $1 \leq i \neq j \leq n$.

Before stating and proving the main theorem of this section (theorem 5.1), we need a few lemmas.
Lemma 5.1. For $n \geq 3$, we have a triangular decomposition $\mathfrak{s t}_{n}(A)=\mathfrak{N}^{+} \oplus H \oplus \mathfrak{N}^{-}$. Moreover, we have $\mathfrak{s t}_{n}(A)=H \bigoplus\left(\sum_{i \leq i \neq j \leq n} F_{i j}(A)\right)$.

Proof. The proof is the same as for lemma 1.11 in [KaLo].
Lemma 5.2. For $n \geq 3$, we have $\operatorname{Ker} \varphi \subseteq H$ and $\left(\mathfrak{s t}_{n}(A), \varphi\right)$ is a central extension of $\mathfrak{s l}_{n}(A)$, i.e., $\left[\operatorname{Ker} \varphi, \mathfrak{s t}_{n}(A)\right]=0$.

Proof. The proof is the same as for proposition 1.12 in [KaLo].

Cyclic homology of $\mathbb{Z} / 2 \mathbb{Z}$-graded algebras was studied in [Ka2] - see also [IoKo2]. We define the chain complex of K-modules $C_{*}(A)$ where $C_{0}(A)=A$ and for $n \geq 1$ the module $C_{n}(A)$ is the quotient of the K-module $A^{\otimes(n+1)}$ by the K-submodule I_{n} generated by the elements

$$
a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}-(-1)^{n+\left|a_{n}\right| \sum_{i=0}^{n-1}\left|a_{i}\right|} a_{n} \otimes a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n-1}
$$

with homogeneous elements $a_{i} \in A$, for $0 \leq i \leq n$. The homomorphism $\widetilde{d_{n}}: A^{\otimes(n+1)} \rightarrow A^{\otimes n}$ is given by

$$
\begin{equation*}
\widetilde{d_{n}}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}+(-1)^{n+\left|a_{n}\right|} \sum_{i=0}^{n-1}\left|a_{i}\right| a_{n} a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n-1} . \tag{7}
\end{equation*}
$$

One can check $\widetilde{d_{n}}\left(I_{n}\right) \subseteq I_{n-1}$, hence it induces a homomorphism $d_{n}: C_{n}(A) \rightarrow C_{n-1}(A)$ and we have $d_{n-1} d_{n}=0$. This is a $\mathbb{Z} / 2 \mathbb{Z}$-graded version of the Connes complex. The $n^{\text {th }} \mathbb{Z} / 2 \mathbb{Z}$-graded cyclic homology group $H C_{n}(A)$ of the superalgebra A is defined by $H C_{n}(A)=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Image}\left(d_{n+1}\right)$.

The following is the $\mathbb{Z} / 2 \mathbb{Z}$-graded analog of one of the main results in [KaLo].
Theorem 5.1. If $n \geq 3$, the kernel of the central extension $\left(\mathfrak{s t}_{n}(A), \varphi\right)$ of the Lie superalgebra $\mathfrak{s l}_{n}(A)$ is isomorphic to $H C_{1}(A)$.

To prove this theorem below, we will need a few more lemmas.
Lemma 5.3. For $H_{i j}(a, b)=\left[F_{i j}(a), F_{j i}(b)\right], 1 \leq i \neq j \leq n$ and homogeneous elements $a, b, c \in A$ we have

1. $(-1)^{|a||c|} H_{i j}(a b, c)=(-1)^{|a||c|} H_{i k}(a, b c)+(-1)^{|a||b|} H_{k j}(b, c a)$ for pairwise distinct i, j, k.
2. $H_{1 j}(a, b)-(-1)^{|a||b|} H_{1 j}(1, b a)=H_{1 k}(a, b)-(-1)^{|a||b|} H_{1 k}(1, b a)$ for any $j, k \neq 1$.

From 2 in the previous lemma, we see that it is possible to define, for $a, b \in A$ homogeneous, the elements $h(a, b)=H_{1 j}(a, b)-(-1)^{|a||b|} H_{1 j}(1, b a)$ and this definition does not depend on $j, j \neq 1$.

Lemma 5.4. The elements $h(a, b)$ satisfy the relation

$$
(-1)^{|a||c|} h(a b, c)=(-1)^{|a||c|} h(a, b c)+(-1)^{|a||b|} h(b, c a) .
$$

Proof. (-1$)^{|a||c|} h(a b, c)$ equals

$$
\begin{aligned}
& (-1)^{|a||c|} H_{1 j}(a b, c)-(-1)^{|a||c|}(-1)^{|c|| | a|+|b|)} H_{1 j}(1, c a b) \\
& \left.=(-1)^{|a| c \mid} H_{1 k}(a, b c)+(-1)^{|a||b|} H_{k j}(b, c a)\right)-(-1)^{|c||b|}\left(H_{1 k}(1, c a b)+H_{k j}(1, c a b)\right) \\
& =(-1)^{|a||c|} h(a, b c)+(-1)^{|a||b|} H_{k j}(b, c a)-(-1)^{|c||b|} H_{k j}(1, c a b) \\
& +(-1)^{|a||b|} H_{1 k}(1, b c a)-(-1)^{|c||b|} H_{1 k}(1, c a b) \\
& =(-1)^{|a| c|c|} h(a, b c)+(-1)^{|a||b|}\left(H_{k 1}(1, b c a)+H_{1 j}(b, c a)\right) \\
& -(-1)^{|c||b|}\left(H_{k 1}(1, c a b)+H_{1 j}(1, c a b)\right)+(-1)^{|a||b|} H_{1 k}(1, b c a)-(-1)^{|c||b|} H_{1 k}(1, c a b) \\
& =(-1)^{|a||c|} h(a, b c)+(-1)^{|b||a|} h(b, c a)
\end{aligned}
$$

Lemma 5.5. Every element $x \in H$ can be written as $x=\sum_{i \in I_{x}} h\left(a_{i}, b_{i}\right)+\sum_{j=2}^{n} H_{1 j}\left(1, c_{j}\right)$ where $a_{i}, b_{i}, c_{j} \in$ A and I_{x} is a finite indexing set.

We now collect some formulas which may be useful to prove some of the results below. For i, j, k all distinct,

$$
\begin{align*}
& {\left[H_{i j}(a, b), F_{i k}(c)\right]=F_{i k}(a b c), \quad\left[H_{i j}(a, b), F_{k i}(c)\right]=-(-1)^{|c|}| | a|+|b|)} \tag{8}\\
& {\left[H_{k i}(a, b a b), F_{i j}(c)\right]=F_{i j}\left(a b c+(-1)^{|a||b|+|b||c|+|a||c|} c b a\right), \quad\left[h(a, b), F_{j k}(c)\right]=0 \text { for } j, k \geq 2} \tag{9}\\
& {\left[h(a, b), F_{1 i}(c)\right]=F_{1 i}\left(\left(a b-(-1)^{|a||b|} b a\right) c\right), \quad\left[h(a, b), F_{i 1}(c)\right]=-(-1)^{|c|(|a|+|b| \mid} F_{i 1}\left(c\left(a b-(-1)^{|a||b|} b a\right)\right)} \tag{10}\\
& {\left[H_{1 k}(a, 1), H_{1 m}(b, 1)\right]=h(a, b), \quad\left[H_{1 k}(a, 1), H_{1 k}(b, 1)\right]=2 h(a, b)-H_{1 k}(1,[a, b]), 2 \leq k \neq m \leq n} \tag{11}\\
& {\left[h(a, b), H_{1 k}(c, 1)\right]=h([a, b], c), 2 \leq k \leq n, \quad[h(a, b), h(c, d)]=h([a, b],[c, d])} \tag{12}
\end{align*}
$$

Note that, as a consequence of these formulas, if a and b supercommute, then $h(a, b)$ is in the center of $\mathfrak{s t}_{n}(A)$.

Proof of theorem 5.1. Let $\langle A, A\rangle$ be the quotient of $A \otimes A$ by the two-sided K-submodule $I\left(=I_{1}+\operatorname{Image}\left(\widetilde{d_{2}}\right)\right)$ generated by $a_{1} \otimes a_{2}+(-1)^{\left|a_{1}\right|\left|a_{2}\right|} a_{2} \otimes a_{1}$ and $(-1)^{\left|a_{2}\right|\left|a_{1}\right|} a_{2} a_{3} \otimes a_{1}+(-1)^{\left|a_{3}\right|\left|a_{2}\right|} a_{3} a_{1} \otimes a_{2}+(-1)^{\left|a_{3}\right|\left|a_{1}\right|} a_{1} a_{2} \otimes a_{3}$. Hence $\langle A, A\rangle \cong C_{1}(A) / \operatorname{Image}\left(d_{2}\right)$. The first cyclic homology group $H C_{1}(A)$ is, by definition, the kernel of the map $d:\langle A, A\rangle \rightarrow[A, A], a_{1} \otimes a_{2} \mapsto\left[a_{1}, a_{2}\right]=a_{1} a_{2}-(-1)^{\left|a_{1}\right|\left|a_{2}\right|} a_{2} a_{1}\left(d\right.$ is induced by $\left.d_{1}\right)$.

The proof follows the same ideas as the proof of theorem 1.7 in [KaLo]. The main steps of the proof in loc. cit. are to show that the kernel of the map $\mathfrak{s t}_{n}(A) \rightarrow \mathfrak{s l}_{n}(A)$ is contained in the submodule H, that this kernel is central in $\mathfrak{s t}_{n}(A)$ and, finally, isomorphic to $H C_{1}(A)$. The first two steps are lemma 5.2, and the last one reduces to showing that the map $\eta:\langle A, A\rangle \longrightarrow \mathfrak{s t}_{n}(A)$ given by $\eta(a \otimes b)=h(a, b)$ identifies $H C_{1}(A)$ with the kernel of the projection $\mathfrak{s t}_{n}(A) \rightarrow \mathfrak{s l}_{n}(A)$. (Note that lemma 5.4 implies that η is well-defined.)

Corollary 5.1. Suppose $\mathbb{Q} \subseteq K$. For $n \geq 3, \mathfrak{s t}_{n}(A) \cong \mathfrak{s l}_{n}(A) \oplus H C_{1}(A)$ as super vector spaces and we have a Lie superalgebra isomorphism $\mathfrak{s t}_{n}(A) \cong\left(\mathfrak{s l}_{n}(K) \otimes_{K} A\right) \oplus\langle A, A\rangle$ where the Lie superbracket with respect to this second decomposition is given as follows:

$$
\begin{gather*}
{[x \otimes a, y \otimes b]=\frac{1}{n}(x, y)\langle a, b\rangle+\frac{1}{2}[x, y] \otimes[a, b]_{+}+\frac{1}{2}[x, y]_{+} \otimes[a, b],} \tag{13}\\
{\left[\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle\right]=\left\langle\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right\rangle, \quad\left[\left\langle a_{1}, a_{2}\right\rangle, y \otimes b\right]=y \otimes\left[\left[a_{1}, a_{2}\right], b\right] .} \tag{14}
\end{gather*}
$$

where

$$
[x, y]_{+}=x y+y x-\frac{2}{n}(x, y) I, \quad[a, b]_{+}=a b+(-1)^{|a||b|} b a
$$

and (\cdot, \cdot) is the Killing form on $\mathfrak{s l}_{n}(K)$.

Proof. We have a Lie superalgebra homomorphism $\operatorname{st}_{n}(A) \longrightarrow\left(\mathfrak{s l}_{n}(K) \otimes_{K} A\right) \oplus\langle A, A\rangle$ given by $F_{i j}(a) \mapsto$ $E_{i j} \otimes a$ for $1 \leq i \neq j \leq n$ and one can check, using relations (8)-(12), that its inverse is given by $E_{i j} \otimes a \mapsto$ $F_{i j}(a)$ for $1 \leq i \neq j \leq n,\left(E_{i i}-E_{j j}\right) \otimes a \mapsto H_{i j}(a, 1)$ and $\langle A, A\rangle \ni\langle a, b\rangle \mapsto n h(a, b)-\sum_{k=2}^{n} H_{1 k}([a, b], 1)$. Detailed computations are available in the appendix.

Since $\mathfrak{s l}_{n}(A)$ and $\mathfrak{s t}_{n}(A)$ are perfect Lie superalgebras and $\left(\mathfrak{s t}_{n}(A), \varphi\right)$ is a central extension of $\mathfrak{s l}_{n}(A)$ for $n \geq 3$, the universal central extension $\widehat{\mathfrak{s}}_{n}(A)$ of the Lie superalgebra $\mathfrak{s l}_{n}(A)$ is also the universal central extension of $\mathfrak{s t}_{n}(A)$, which is denoted $\widehat{\mathfrak{s t}}_{n}(A)$. Indeed, by the universal property of $\widehat{\mathfrak{s}}_{n}(A)$, we have a homomorphism $f_{1}: \widehat{\mathfrak{s}}_{n}(A) \longrightarrow \mathfrak{s t}_{n}(A)$ with $\operatorname{Ker}\left(f_{1}\right)$ central in $\widehat{\mathfrak{s}}_{n}(A)$. Moreover, f_{1} is surjective since $\mathfrak{s t}_{n}(A)$ is generated by any choice of preimages of $E_{i j} \otimes a \in \mathfrak{s l}_{n}(A)$. Therefore, $\widehat{\mathfrak{s}}_{n}(A)$ is a central extension of $\mathfrak{s t}_{n}(A)$, so we have a homomorphism $f_{2}: \widehat{\mathfrak{s t}}_{n}(A) \longrightarrow \widehat{\mathfrak{s l}}_{n}(A)$ whose kernel is central in $\widehat{\mathfrak{s t}}_{n}(A)$. Moreover, f_{2} is onto because $\widehat{\mathfrak{s}}_{n}(A)$ is perfect and thus generated by a set of preimages of the elements in a K-spanning set of $\mathfrak{s l}_{n}(A)$. (Note that the composite $\widehat{\mathfrak{s}}_{n}(A) \rightarrow \mathfrak{s t}_{n}(A) \rightarrow \mathfrak{s l}_{n}(A)$ is onto, hence Image $\left(f_{2}\right)$ contains a set of generators of $\widehat{\mathfrak{s}}_{n}(A)$.) Since f_{2} is an epimorphism and $\widehat{\mathfrak{s}}_{n}(A)$ is its own universal central extension, f_{2} must admit a splitting $f_{3}: \widehat{\mathfrak{s}}_{n}(A) \longrightarrow \widehat{\mathfrak{s t}}_{n}(A)$: this can happen only if f_{2} is an isomorphism, in which case $f_{3}=f_{2}^{-1}$. In conclusion, $\widehat{\mathfrak{s}}_{n}(A)$ is isomorphic to $\widehat{\mathfrak{s t}}_{n}(A)$.

Our purpose now is to calculate $\widehat{\mathfrak{s t}}_{n}(A)$ for any ring K and $n \geq 3$.

6 Universal central extension of $\mathfrak{s t}_{n}(A), n \geq 5$.

When $n \geq 5$, we have the following super analog of one of the main results in [KaLo].

Theorem 6.1. Let $n \geq 5$ and let (\mathfrak{e}, ψ) be a central extension of the Lie superalgebra $\mathfrak{s l}_{n}(A)$. Then there exists a unique homomorphism $\eta: \mathfrak{s t}_{n}(A) \rightarrow \mathfrak{e}$ such that $\varphi=\psi \circ \eta$. Therefore $\mathfrak{s t}_{n}(A)$ is centrally closed and is the universal central extension of $\mathfrak{s l}_{n}(A)$.

Since ψ is surjective, for any $E_{i j} \otimes a \in \mathfrak{s l}_{n}(A)$ we can choose some $\widetilde{F}_{i j}(a) \in \psi^{-1}\left(E_{i j} \otimes a\right)$. We need the following lemmas.
Lemma 6.1. The commutator $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{k l}(b)\right]$ doesn't depend on the choice of representatives in $\psi^{-1}\left(E_{i j} \otimes a\right)$ and $\psi^{-1}\left(E_{k l} \otimes b\right)$.

Proof. This follows from the fact that, if $\check{F}_{i j}(a) \in \psi^{-1}\left(E_{i j} \otimes a\right)$, then $\check{F}_{i j}(a)-\widetilde{F}_{i j}(a) \in \operatorname{Ker}(\psi)$ and $\operatorname{Ker}(\psi)$ is central in \mathfrak{e}.

Lemma 6.2. Let $1 \leq i \neq j \leq n$, and suppose that $1 \leq k, l \leq n$, and k, l are different from i and j. Then we have $\left[\widetilde{F}_{i k}(a), \widetilde{F}_{k j}(b)\right]=\left[\widetilde{F}_{i l}(a), \widetilde{F}_{l j}(b)\right]$.

Proof. If $k \neq l$, then

$$
\begin{aligned}
{\left[\widetilde{F}_{i k}(a), \widetilde{F}_{k j}(b)\right] } & =\left[\widetilde{F}_{i k}(a),\left[\widetilde{F}_{k l}(1), \widetilde{F}_{l j}(b)\right]+c_{1}\right]=\left[\left[\widetilde{F}_{i k}(a), \widetilde{F}_{k l}(1)\right], \widetilde{F}_{l j}(b)\right]+\left[\widetilde{F}_{k l}(1),\left[\widetilde{F}_{i k}(a), \widetilde{F}_{l j}(b)\right]\right] \\
& =\left[\widetilde{F}_{i l}(a)+c_{2}, \widetilde{F}_{l j}(b)\right]+\left[\widetilde{F}_{k l}(1), c_{3}\right]=\left[\widetilde{F}_{i l}(a), \widetilde{F}_{l j}(b)\right]
\end{aligned}
$$

where c_{1}, c_{2}, c_{3} are central elements in \mathfrak{e}.

Proof of Theorem 6.1. For $1 \leq i \neq j \leq n$, set $w_{i j}(a)=\left[\widetilde{F}_{i l}(a), \widetilde{F}_{l j}(1)\right]$ for some $l \neq i, j$; by lemma 6.2, this does not depend on the choice of l.

We would like to define a homomorphism $\eta: \mathfrak{s t}_{n}(A) \rightarrow \mathfrak{e}$ is by $\eta\left(F_{i j}(a)\right)=w_{i j}(a)$. To see that this makes sense, we have to prove the following relations in \mathfrak{e}.

$$
\begin{align*}
& w_{i j}(x a+y b)=x w_{i j}(a)+y w_{i j}(b), \text { for all } a, b \in A, x, y \in K . \tag{15}\\
& {\left[w_{i j}(a), w_{j k}(b)\right]=w_{i k}(a b), \text { for distinct } i, j, k,} \tag{16}\\
& {\left[w_{i j}(a), w_{k l}(b)\right]=0, \text { for } j \neq k, i \neq l .} \tag{17}
\end{align*}
$$

Equality (15) follows from the fact that $\widetilde{F}_{i l}(x a+y b)=x \widetilde{F}_{i l}(a)+y \widetilde{F}_{i l}(b)+c$ with $c \in \operatorname{Ker}(\psi)$. As for (16), choose $l \neq i, j, k$; then

$$
\begin{aligned}
{\left[w_{i j}(a), w_{j k}(b)\right] } & =\left[w_{i j}(a),\left[\widetilde{F}_{j l}(b), \widetilde{F}_{l k}(1)\right]\right] \\
& =\left[\left[w_{i j}(a), \widetilde{F}_{j l}(b)\right], \widetilde{F}_{l k}(1)\right]+(-1)^{|a||b|}\left[\widetilde{F}_{j l}(b),\left[w_{i j}(a), \widetilde{F}_{l k}(1)\right]\right] \\
& =\left[\widetilde{F}_{i l}(a b)+c_{1}, \widetilde{F}_{l k}(1)\right]+\left[\widetilde{F}_{j l}(b), c_{2}\right]=w_{i k}(a b)
\end{aligned}
$$

where $c_{1}, c_{2} \in \operatorname{Ker}(\psi)$.
We need our assumption that $n \geq 5$ to prove that equality (17) holds. Choose $m \neq i, j, k, l$. Then

$$
\begin{aligned}
{\left[w_{i j}(a), w_{k l}(b)\right] } & =\left[w_{i j}(a),\left[\widetilde{F}_{k m}(b), \widetilde{F}_{m l}(1)\right]\right] \\
& =\left[\left[w_{i j}(a), \widetilde{F}_{k m}(b)\right], \widetilde{F}_{m l}(1)\right]+(-1)^{|a||b|}\left[\widetilde{F}_{k m}(b),\left[w_{i j}(a), \widetilde{F}_{m l}(1)\right]\right] \\
& =\left[c_{1}, \widetilde{F}_{m l}(1)\right]+\left[\widetilde{F}_{k m}(b), c_{2}\right]=0
\end{aligned}
$$

where again $c_{1}, c_{2} \in \operatorname{Ker}(\psi)$.
We have thus established relations (15)-(17), which proves that η is a well-defined homomorphism. The uniqueness of η follows from the fact that, since $F_{i j}(a)=\left[F_{i k}(a), F_{k j}(1)\right] \underset{\sim}{\sim}$ for any distinct i, j, k, we must have $\eta\left(F_{i j}(a)\right)=\left[\eta\left(F_{i k}(a)\right), \eta\left(F_{k j}(1)\right)\right]$ and $\eta\left(F_{i k}(a)\right)-\widetilde{F}_{i k}(a), \eta\left(F_{k j}(1)\right)-\widetilde{F}_{k j}(1) \in \operatorname{Ker}(\psi)$.

7 Central Extension of $\mathfrak{s t}_{4}(A)$

In this section, we define a super 2-cocycle on $\mathfrak{s t}_{4}(A)$ and construct the Lie superalgebra $\widehat{\mathfrak{s t}}_{4}(A)$ as a covering (eventually a universal covering) of $\mathfrak{s t}_{4}(A)$.

For any positive integer m, let \mathcal{I}_{m} be the 2 -sided $\mathbb{Z} / 2 \mathbb{Z}$-graded ideal of A generated by the elements: $m a$ and $a b-(-1)^{|a||b|} b a$, for homogeneous elements $a, b \in A$.

Lemma 7.1. $\mathcal{I}_{m}=m A+A[A, A]$ and $[A, A] A=A[A, A]$.
Proof. Since $m a$ and $a b-(-1)^{|a||b|} b a$ generate $\mathcal{I}_{m}, \mathcal{I}_{m}=m A+A[A, A] A$. Moreover, $[A, A] A \subseteq A[A, A]+$ $[[A, A], A] \subseteq A[A, A]+[A, A] \subseteq A[A, A]$, and similarly we have $A[A, A] \subseteq[A, A] A$, so $[A, A] A=A[A, A]$ and the lemma is proved.

Let $A_{m}:=A / \mathcal{I}_{m}$ be the quotient superalgebra over K; it is super commutative. Write $\bar{a}=a+\mathcal{I}_{m}$ for $a \in A$. If $m=2$ and 2 is invertible in A, then $A_{2}=0$.

For $\{i, j, k, l\}=\{1,2,3,4\}$, let $\epsilon_{i j k l}\left(A_{2}\right)$ denote a copy of A_{2} and identify $\epsilon_{i j k l}(\bar{r}), \epsilon_{i l k j}(\bar{r}), \epsilon_{k j i l}(\bar{r})$ and $\epsilon_{k l i j}(\bar{r})$ for $\bar{r} \in A_{2}$. Thus, we have six distinct copies of A_{2} whose direct sum is denoted by \mathcal{W}. Using the decomposition in lemma 5.1 of $\mathfrak{s t}_{4}(A)$, we define a K-bilinear map $\psi: \mathfrak{s t}_{4}(A) \times \mathfrak{s t}_{4}(A) \rightarrow \mathcal{W}$ by $\psi\left(F_{i j}(a), F_{k l}(b)\right)=\epsilon_{i j k l}(\overline{a b})$ for $\{i, j, k, l\}=\{1,2,3,4\}$ and $a, b \in A$, and by $\psi(x, y)=0$ for all other pairs of elements from the summands of lemma 5.1. Note that, if $m=2$, then $\bar{a}=-\bar{a}$ in A_{2}.

The following lemma is central to the construction of $\widehat{\mathfrak{s t}}_{4}(A)$.
Lemma 7.2. The bilinear map ψ is a super 2-cocycle.

Proof. Since there is a Lie superalgebra homomorphism $\alpha: \mathfrak{s t}_{4}(A) \rightarrow \mathfrak{s t}_{4}\left(A_{2}\right)$ with $\alpha\left(F_{i j}(a)\right)=F_{i j}(\bar{a})$ and $\psi(\alpha(x), \alpha(y))=\psi(x, y)$ is well-defined for $x, y \in \mathfrak{s t}_{4}(A)$, it suffices to verify the lemma for A_{2}, i.e., we can assume that $A=A_{2}$ and the proof is similar to the corresponding one in [GaSh]. In this case, it is clear that ψ is super skew-symmetric and $\psi(x, x)=0$ for all x in $\mathfrak{s t}_{4}(A)_{0}$. Now let $J(x, y, z)=$ $(-1)^{|x||z|} \psi([x, y], z)+(-1)^{|x||y|} \psi([y, z], x)+(-1)^{|y||z|} \psi([z, x], y)$. for homogeneous elements $x, y, z \in \mathfrak{s t}_{4}\left(A_{2}\right)$.

We will show $J(x, y, z)=0$ by taking homogenous elements x, y, z in summands of lemma 5.1. If a term of $J(x, y, z)$ is not 0 , we can reorder to assume that $z=F_{k l}(d)$ and $0 \neq[x, y] \in F_{i j}(A)$ with $\{i, j, k, l\}=\{1,2,3,4\}$.

Case 1: If x or y is in H, we can assume without loss of generality $x=H_{p q}(a, b)$ and $y=F_{i j}(c)$. Since $A\left(=A_{2}\right)$ is (super) commutative with $2 A=0,[x, y] \neq 0$ forces precisely one of p or q to be in $\{i, j\}$ (so the other to be in $\{k, l\}$ by (8),(9)). Moreover, in this case, $[x, y]=F_{i j}(a b c),[y, z]=0$ and $[z, x]=F_{k l}(a b d)$, so

$$
\begin{aligned}
J(x, y, z) & =\psi\left(F_{i j}(a b c), F_{k l}(d)\right)+\psi\left(0, H_{p q}(a, b)\right)+\psi\left(F_{k l}(a b d), F_{i j}(c)\right) \\
& =\epsilon_{i j k l}(a b c d)+0+\epsilon_{k l i j}(a b d c)=0
\end{aligned}
$$

Case 2: If neither x nor y is in H, we can assume that $x=F_{i p}(a)$ and $y=F_{p j}(b)$ with $p \in\{k, l\}$, so $[x, y]=F_{i j}(a b)$. For $p=k$, we have $[y, z]=0$ and $[z, x]=F_{i l}(a d)$, so

$$
\begin{aligned}
J(x, y, z) & =\psi\left(F_{i j}(a b), F_{k l}(d)\right)+\psi\left(0, F_{i k}(a)\right)+\psi\left(F_{i l}(a d), F_{k j}(b)\right) \\
& =\epsilon_{i j k l}(a b d)+0+\epsilon_{i l k j}(a d b)=0
\end{aligned}
$$

For $p=l$, we have $[y, z]=F_{k j}(d b)$ and $[z, x]=0$, so

$$
\begin{aligned}
J(x, y, z) & =\psi\left(F_{i j}(a b), F_{k l}(d)\right)+\psi\left(F_{k j}(d b), F_{i l}(a)\right)+\psi\left(0, F_{l j}(b)\right) \\
& =\epsilon_{i j k l}(a b d)+\epsilon_{k j i l}(d b a)+0=0
\end{aligned}
$$

We therefore obtain a central extension of the Lie superalgebra $\mathfrak{s t}_{4}(A), 0 \rightarrow \mathcal{W} \rightarrow \widehat{\mathfrak{s t}}_{4}(A) \xrightarrow{\pi} \mathfrak{s t}_{4}(A) \rightarrow 0$, i.e. $\widehat{\mathfrak{s t}}_{4}(A)=\mathfrak{s t}_{4}(A) \oplus \mathcal{W}$, with Lie superbracket $\left[(x, c),\left(y, c^{\prime}\right)\right]=([x, y], \psi(x, y))$ for all $x, y \in \mathfrak{s t}_{4}(A)$ and $c, c^{\prime} \in \mathcal{W} . \pi$ is the projection on the first summand $\pi: \mathfrak{s t}_{4}(A) \oplus \mathcal{W} \rightarrow \mathfrak{s t}_{4}(A)$.

We can now apply definition 4.2 with $\mathcal{C}=\mathcal{W}$ and $\xi=\psi$ to obtain the Lie superalgebra $\mathfrak{s t}_{4}(A)^{\sharp}$. Since A is a unital algebra, $\mathfrak{s t}_{4}(A)^{\#}$ is perfect. By lemma 4.1, there exists a unique Lie superalgebra isomorphism $\rho: \mathfrak{s t}_{4}(A)^{\sharp} \rightarrow \widehat{\mathfrak{s t}}_{4}(A)$ such that $\rho\left(F_{i j}^{\sharp}(a)\right)=F_{i j}(a)$ and $\left.\rho\right|_{\mathcal{W}}=i d$.

8 Central Extension of $\mathfrak{s t}_{3}(A)$

In this section, we shall handle $\mathfrak{s t}_{3}(A)$. Recall that $\mathcal{I}_{3}=3 A+A[A, A]$ and $A_{3}=A / \mathcal{I}_{3}$ is an associative super commutative K-algebra.

For $\{i, j, k\}=\{1,2,3\}$, let $\epsilon_{i j p q}\left(A_{3}\right)$ for $(p, q)=(i, k)$ or (k, j) denote a copy of A_{3} and identify $\epsilon_{i j p q}(\bar{r})$ with $\epsilon_{p q i j}(-\bar{r})$. Thus, we have six distinct copies of A_{3} whose direct sum is denoted \mathcal{U}. Using the decomposition in lemma 5.1 of $\mathfrak{s t}_{3}(A)$, we define a K-bilinear map $\psi: \mathfrak{s t}_{3}(A) \times \mathfrak{s t}_{3}(A) \rightarrow \mathcal{U}$ by $\psi\left(F_{i j}(r), F_{p q}(s)\right)=\epsilon_{i j p q}(\overline{r s})$ for $(p, q)=(i, k)$ or (k, j) with $\{i, j, k\}=\{1,2,3\}$ and $r, s \in A$, and by $\psi(x, y)=0$ for all other pairs of elements from the summands of lemma 5.1.

As for $\mathfrak{s t}_{4}(A)$, we have the following lemma.
Lemma 8.1. The bilinear map ψ is a super 2 -cocycle.

Proof. As in the proof of Lemma 7.2, we can assume $A=A_{3}$, i.e., A is super commutative and $3 A=0$. By definition, ψ is super skew-symmetric and $\psi(x, x)=0$ for all x in $\mathfrak{s t}_{3}(A)_{0}$.

Similarly to the proof of lemma 7.2 , we show that $J(x, y, z)=0$ by taking homogeneous elements x, y, z in summands of lemma 5.1. If a term of $J(x, y, z)$ is not 0 , we can assume that $z=F_{p q}(d)$ and $0 \neq[x, y] \in F_{s t}(A)$ with $(p, q)=(s, u)$ or (u, t) and $\{s, t, u\}=\{1,2,3\}$.

Case 1: If x or y is in H, we can assume $x=H_{i j}(a, b)$ and $y=F_{s t}(c)$. By (8),(9) for $A=A_{3}$, we have $J(x, y, z)=\epsilon_{\text {stpq }}(\theta a b c d)$ with $\theta=0,3$ or -3 , thus $J(x, y, z)=0$.

Case 2: If neither x nor y is in H, we can assume that $x=F_{s u}(a)$ and $y=F_{u t}(b)$. We have, if $(p, q)=(s, u)$,

$$
\begin{aligned}
J(x, y, z) & =(-1)^{|a||d|} \psi\left(F_{s t}(a b), F_{s u}(d)\right)+(-1)^{|a||b|} \psi\left(-(-1)^{|b||d|} F_{s t}(d b), F_{s u}(a)\right) \\
& =(-1)^{|a||d|} \epsilon_{s t s u}(a b d)-(-1)^{|a||b|+|b||d|} \epsilon_{s t s u}(d b a)=0
\end{aligned}
$$

while, if $(p, q)=(u, t)$,

$$
\begin{aligned}
J(x, y, z) & =(-1)^{|a||d|} \psi\left(F_{s t}(a b), F_{u t}(d)\right)+(-1)^{|b||d|} \psi\left(-(-1)^{|a||d|} F_{s t}(a d), F_{u t}(b)\right) \\
& =(-1)^{|a||d|} \epsilon_{s t u t}(a b d)-(-1)^{|a||d|+|b||d|} \epsilon_{s t u t}(a d b)=0
\end{aligned}
$$

As in the $\mathfrak{s t}_{4}(A)$ case, we have a central extension of $\mathfrak{s t}_{3}(A), 0 \rightarrow \mathcal{U} \rightarrow \widehat{\mathfrak{s t}}_{3}(A) \xrightarrow{\pi} \mathfrak{s t}_{3}(A) \rightarrow 0$ i.e. $\widehat{\mathfrak{s t}}_{3}(A)=$ $\mathfrak{s t}_{3}(A) \oplus \mathcal{U}$, and we can apply definition 4.2 with $\mathcal{C}=\mathcal{U}$ and $\xi=\psi$ to obtain the Lie superalgebra $\mathfrak{s t}_{3}(A)^{\sharp}$. $\mathfrak{s t}_{3}(A)^{\sharp}$ is perfect and, by lemma 4.1, there exists a unique Lie superalgebra isomorphism $\rho: \mathfrak{s t}_{3}(A)^{\sharp} \rightarrow \mathfrak{s t}_{3}(A)$.

9 Proof of the main theorem when $n=3,4$.

In last two sections, we constructed the Lie superalgebra $\widehat{\mathfrak{s t}}_{n}(A)$ as a covering of $\mathfrak{s t}_{n}(A)$ for $n=3,4$. Now we can prove the main theorem when $n=3,4$. We follow ideas used in [CGS, GaSh].
Theorem 9.1. For $n=3$ or 4 , the universal central extension of $\mathfrak{s t}_{n}(A)$ is $\left(\widehat{\mathfrak{s t}}_{n}(A), \pi\right)$.

Proof. Suppose that

$$
0 \longrightarrow \mathcal{V} \longrightarrow \mathfrak{g} \xrightarrow{\chi} \mathfrak{s t}_{n}(A) \longrightarrow 0
$$

is a central extension of $\mathfrak{s t}_{n}(A)$. We will show that we can choose a preimage $\widetilde{F}_{i j}(a)$ of $F_{i j}(a)$ under χ for $1 \leq i \neq j \leq n, a \in A$ and a linear map $\mu: \mathcal{C} \rightarrow \mathcal{V}$ which satisfy the relations (4)-(6) for $\mathfrak{s t}_{n}(A)^{\sharp}$ with $\xi=\mu \circ \psi$ and $\mathcal{C}=\mathcal{U}, \mathcal{W}$ for $n=3,4$ respectively. Thus, we will have a homomorphism $\theta: \mathfrak{s t}_{n}(A)^{\sharp} \rightarrow \mathfrak{g}$ with $\theta\left(F_{i j}^{\sharp}(a)\right)=\widetilde{F}_{i j}(a)$ so $\chi \circ \theta=\pi \circ \rho$ as in lemma 4.1 (with θ, χ playing the roles of ρ, π). This will give us the homomorphism $\theta \circ \rho^{-1}: \widehat{\mathfrak{s t}}_{n}(A) \rightarrow \mathfrak{g}$ satisfying $\chi \circ\left(\theta \circ \rho^{-1}\right)=\pi$ and we will be able to conclude that $\left(\widehat{\mathfrak{s t}}_{n}(A), \pi\right)$ is the universal covering of $\mathfrak{s t}_{n}(A)$.

We begin by choosing any preimage $\widetilde{F}_{i j}(a)$ under χ of $F_{i j}(a)$ for a in a K-basis of A and extend linearly to all elements in A. We observe as before that, since \mathfrak{g} is a central extension, $\widetilde{H}_{i j}(a, b):=$ $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{j i}(b)\right]$ is independent of the choice of $\widetilde{F}_{i j}(a), \widetilde{F}_{j i}(b)$. Moreover, if $\left[H_{p q}(a, b), F_{i j}(c)\right]=F_{i j}(d)$, then $\left[\widetilde{H}_{p q}(a, b), \widetilde{F}_{i j}(c)\right] \in \widetilde{F}_{i j}(d)+\mathcal{V}$. Also, if $\left[H_{p q}(1,1), F_{i j}(c)\right]=F_{i j}(m c)$, where $m \in\{0, \pm 1, \pm 2\}$, then we always have $\left[H_{p q}(1,1), F_{j i}(d)\right]=F_{j i}(-m d)$ for any $d \in A$. Therefore,

$$
\begin{equation*}
\left[\widetilde{H}_{p q}(1,1), \widetilde{H}_{i j}(a, b)\right] \in\left[\widetilde{F}_{i j}(m a)+\mathcal{V}, \widetilde{F}_{j i}(b)\right]+\left[\widetilde{F}_{i j}(a), \widetilde{F}_{j i}(-m b)+\mathcal{V}\right]=\{0\} \tag{18}
\end{equation*}
$$

for any $1 \leq i, j, p, q \leq n, i \neq j, p \neq q$.
Now fix some $k \neq i, j$ and replace $\widetilde{F}_{i j}(a)$ by $\check{F}_{i j}(a)$ with $\check{F}_{i j}(a)=\left[\widetilde{H}_{i k}(1,1), \widetilde{F}_{i j}(a)\right]$. It then follows that $\left[\widetilde{H}_{i k}(1,1), \check{F}_{i j}(a)\right]=\left[\widetilde{H}_{i k}(1,1),\left[\widetilde{H}_{i k}(1,1), \widetilde{F}_{i j}(a)\right]\right]=\left[\widetilde{H}_{i k}(1,1), \widetilde{F}_{i j}(a)+\nu\right]=\check{F}_{i j}(a)$ for some $\nu \in \mathcal{V}$. $\check{F}_{i j}(a)$ is another element in the preimage of $F_{i j}(a)$ under χ, which we will rename $\widetilde{F}_{i j}(a)$. In other words, we can assume, without loss of generality, that $\left[\widetilde{H}_{i k}(1,1), \widetilde{F}_{i j}(a)\right]=\widetilde{F}_{i j}(a)$ and this holds for any a in a K-basis of A.

Using (18), we see that

$$
\left[\widetilde{H}_{p q}(a, b), \widetilde{F}_{i j}(c)\right]=\left[\widetilde{H}_{p q}(a, b),\left[\widetilde{H}_{i k}(1,1), \widetilde{F}_{i j}(c)\right]\right]=\left[\widetilde{H}_{i k}(1,1),\left[\widetilde{H}_{p q}(a, b), \widetilde{F}_{i j}(c)\right]\right]=\widetilde{F}_{i j}(d)
$$

if $\left[H_{p q}(a, b), F_{i j}(c)\right]=F_{i j}(d)$. In particular, taking $(p, q) \underset{\sim}{\sim}=(i, l)$, we observe that $\widetilde{F}_{i j}(a)$ does not depend on the choice of $k \neq i, j$. Applying $\underset{\widetilde{F}}{ } \operatorname{ad}\left(\widetilde{H}_{i j}(1,1)\right)$ to $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{j k}(b)\right] \in \widetilde{F}_{i k}(a b)+\mathcal{V}$ (with i, j, k all distinct) yields $\left[\widetilde{F}_{i j}(2 a)+\nu_{1}, \widetilde{F}_{j k}(b)\right]+\left[\widetilde{F}_{i j}(a), \widetilde{F}_{j k}(-b)+\nu_{2}\right]=\widetilde{F}_{i k}(a b)$ with $\nu_{1}, \nu_{2} \in \mathcal{V}$, hence $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{j k}(b)\right]=\widetilde{F}_{i k}(a b)$. Thus, $\widetilde{F}_{i j}(a), \mathcal{V}$ satisfy relations (4)-(5). (Recall that $\psi\left(F_{i j}(a), F_{j k}(b)\right)=0$.)

We now focus on relation (6). Applying $a d\left(\widetilde{F}_{i k}(1)\right)$ to $\left[\widetilde{F}_{k j}(a), \widetilde{F}_{i j}(b)\right] \in \mathcal{V}$ for i, j, k all distinct gives $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{i j}(b)\right]=0$. When $n=4$, picking $l \neq i, j, k$ and applying $a d\left(\widetilde{F}_{k l}(1,1)\right)$ to $\left[\widetilde{F}_{k j}(a), \widetilde{F}_{i j}(b)\right]$ yields $\left[\widetilde{F}_{k j}(a), \widetilde{F}_{i j}(b)\right]=0$; similarly, if $n=4,\left[\widetilde{F}_{i j}(a), \widetilde{F}_{i k}(b)\right]=0$.

Therefore, when $n=3$ or 4 , all cases in relation (6) are satisfied, except perhaps

$$
\begin{gather*}
{\left[\widetilde{F}_{i j}(a), \widetilde{F}_{p q}(b)\right]=\mu\left(\epsilon_{i j p q}(\overline{a b})\right) \text { with }(p, q)=(i, k) \text { or }(p, q)=(k, j), \text { if } n=3} \tag{19}\\
{\left[\widetilde{F}_{i j}(a), \widetilde{F}_{k l}(b)\right]=\mu\left(\epsilon_{i j k l}(\overline{a b})\right) \text { if } n=4, \text { and } i, j, k, l \text { are all distinct. }} \tag{20}
\end{gather*}
$$

for some map μ which remains to be defined.

Let us establish (19). Define a K-linear map $\mu_{i j p q}: A \longrightarrow \mathcal{V}$ by setting $\mu_{i j p q}(c)=\left[\widetilde{F}_{i j}(c), \widetilde{F}_{p q}(1)\right]$ for $(p, q)=(i, k)$ or (k, j). Applying $a d\left(\widetilde{H}_{i j}(a, b)\right)$ to this central element gives

$$
\begin{equation*}
\mu_{i j p q}\left(a b c+(-1)^{|a||b|+|b||c|+|c||a|} c b a\right)+(-1)^{|c||a|+|b||c|}\left[\widetilde{F}_{i j}(c), \widetilde{F}_{p q}(d)\right]=0 \tag{21}
\end{equation*}
$$

where $d=a b$ if $(p, q)=(i, k)$ and $d=(-1)^{|a||b|} b a$ if $(p, q)=(k, j)$. Setting $a=b=1$ implies $\mu_{i j p q}(3 c)=0$ for any $c \in A$, while setting $c=1$ gives $\mu_{i j p q}\left(a b+(-1)^{|a||b|} b a\right)+\left[\widetilde{F}_{i j}(1), \widetilde{F}_{p q}(d)\right]=0$, so that $\mu_{p q i j}(d)=$ $\mu_{i j p q}\left(a b+(-1)^{|a||b|} b a\right)$. In particular, $b=1$ gives $\mu_{p q i j}(a)=\mu_{i j p q}(2 a)=-\mu_{i j p q}(a)$ for any $a \in A$, so $\mu_{i j p q}(2 d)=\mu_{i j p q}(-d)=\mu_{p q i j}(d)=\mu_{i j p q}\left(a b+(-1)^{|a||b|} b a\right)$, which implies $\mu_{i j p q}(a b)=(-1)^{|a||b|} \mu_{i j p q}(b a)$ whether $d=a b$ or $(-1)^{|a||b|} b a$. Using this and letting $b=1$ in (21) yields $(-1)^{|a||c|}\left[\widetilde{F}_{i j}(c), \widetilde{F}_{p q}(a)\right]=$ $-\mu_{i j p q}\left(a c+(-1)^{|c||a|} c a\right)=-\mu_{i j p q}(a c+a c)=\mu_{i j p q}(a c)$. We can now deduce that (21) is equivalent to $\mu_{i j p q}\left(a b c+(-1)^{|b||c|} a c b\right)+\mu_{i j p q}(d c)=0$, hence to $\mu_{i j p q}\left(a b c-(-1)^{|b||c|} a c b\right)=0$. Therefore, $\mu_{i j p q}\left(\mathcal{I}_{3}\right)=0$ since \mathcal{I}_{3} is linearly spanned by the elements $3 a$ and $a[b, c]$ for $a, b, c \in A$ by lemma 7.1. We can now define $\mu: \mathcal{U} \rightarrow \mathcal{V}$ by $\mu\left(\epsilon_{i j p q}(\bar{a})\right)=\mu_{i j p q}(a)$ such that (19) holds.

To establish (20), we set $\mu_{i j k l}(c)=\left[\widetilde{F}_{i j}(c), \widetilde{F}_{k l}(1)\right] \in \mathcal{V}$ for $\{i, j, k, l\}=\{1,2,3,4\}$. Applying $a d\left(\widetilde{H}_{i j}(a, b)\right)$ gives $\mu_{i j k l}\left(a b c+(-1)^{|a||b|+|b| c|+|c|| a \mid} c b a\right)=0$. If we set $b=c=1$, we get $\mu_{i j k l}(2 a)=0$; using this and setting $c=1$, we obtain $\mu_{i j k l}(a b)=-(-1)^{|a||b|} \mu_{i j k l}(b a)=\mu_{i j k l}(b a)$. Moreover,

$$
\begin{aligned}
\mu_{i j k l}(a[b, c]) & =\mu_{i j k l}(a b c)-(-1)^{|b| c \mid} \mu_{i j k l}(a c b)=\mu_{i j k l}(a b c)-(-1)^{|b| c \mid} \mu_{i j k l}\left(-(-1)^{|a||b|+|c||a|} c b a\right) \\
& =\mu_{i j k l}\left(a b c+(-1)^{|a||b|+|b| c|+|c|| a \mid} c b a\right)=0
\end{aligned}
$$

Therefore, $\mu_{i j k l}\left(\mathcal{I}_{2}\right)=0$. We now have to verify the invariance property of $\mu_{i j p q}$ upon certain permutation of its indices. Note that $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{k l}(b)\right]=-\left[\widetilde{F}_{i l}(a b), \widetilde{F}_{k j}(1)\right]=-\mu_{i l k j}(a b)$; in particular, $b=1$ gives $\mu_{i j k l}(a)=$ $-\mu_{i l k j}(a)$, hence $\mu_{i j k l}(a)=\mu_{i l k j}(a)$ for any $a \in A$ because $\mu_{i j k l}(a)=-\mu_{i j k l}(a)$. It now follows that $\left[\widetilde{F}_{i j}(a), \widetilde{F}_{k l}(b)\right]=\mu_{i j k l}(a b)$.

Furthermore, $\mu_{k l i j}(a)=\left[\widetilde{F}_{k l}(1), \widetilde{F}_{i j}(a)\right]=-\left[\widetilde{F}_{i j}(a), \widetilde{F}_{k l}(1)\right]=-\mu_{i j k l}(a)=\mu_{i j k l}(a) . \quad$ In conclusion, $\mu_{k j i l}(a)=\mu_{i l k j}(a)=\mu_{i j k l}(a)$. This implies that we can now define $\mu: \mathcal{W} \rightarrow \mathcal{V}$ by $\mu\left(\epsilon_{i j k l}(\bar{a})\right)=\mu_{i j k l}(a)$ so (20) holds.

We have now established that (19) and (20) hold and this completes the proof of theorem 9.1.

10 Appendix

In this appendix, we present computations which establish the relations $(11),(12)$ and are useful in the proof of theorem 5.1 and corollary 5.1. We set $F_{a b}=F_{a b}(1)$.

If $1 \leq k \neq m \leq n$:

$$
\begin{aligned}
{\left[H_{1 k}(a, 1), H_{1 m}(b, 1)\right] } & =\left[\left[F_{1 k}(a), F_{k 1}\right],\left[F_{1 m}(b), F_{m 1}\right]\right] \\
= & {\left[\left[F_{1 k}(a),\left[F_{1 m}(b), F_{m 1}\right]\right], F_{k 1}\right]+\left[F_{1 k}(a),\left[F_{k 1},\left[F_{1 m}(b), F_{m 1}\right]\right]\right] } \\
& =-(-1)^{|a||b|}\left[F_{1 k}(b a), F_{k 1}\right]+\left[F_{1 k}(a), F_{k 1}(b)\right]=H_{1 k}(a, b)-(-1)^{|a||b|} H_{1 k}(1, b a) \\
= & h(a, b) \\
{\left[H_{1 k}(a, 1), H_{1 k}(b, 1)\right] } & =\left[H_{1 k}(a, 1),\left[F_{1 k}(b), F_{k 1}\right]\right] \\
& =\left[\left[H_{1 k}(a, 1), F_{1 k}(b)\right], F_{k 1}\right]+(-1)^{|a||b|}\left[F_{1 k}(b),\left[H_{1 k}(a, 1), F_{k 1}\right]\right] \\
& =\left[F_{1 k}\left(a b+(-1)^{|a||b|} b a\right), F_{k 1}\right]-2(-1)^{|a||b|}\left[F_{1 k}(b), F_{k 1}(a)\right] \\
& =H_{1 k}(a b, 1)+(-1)^{|a||b|} H_{1 k}(1, b a)-2(-1)^{|a||b|} H_{1 k}(b, a) \\
& =H_{1 k}(a b, 1)+(-1)^{|a||b|} H_{1 k}(1, b a)-2(-1)^{|a||b|} h(b, a)-2 H_{1 k}(1, a b) \\
& =2 h(a, b)-H_{1 k}(1,[a, b])
\end{aligned}
$$

We have proved the two relations in (11). If $2 \leq k \leq n$,

$$
\begin{aligned}
{\left[h(a, b), H_{1 k}(c, 1)\right] } & =\left[h(a, b),\left[F_{1 k}(c), F_{k 1}\right]\right]=\left[\left[h(a, b), F_{1 k}(c)\right], F_{k 1}\right]+(-1)^{|c|(|a|+|b|)}\left[F_{1 k}(c),\left[h(a, b), F_{k 1}\right]\right] \\
& =\left[F_{1 k}([a, b] c), F_{k 1}\right]-(-1)^{|c|(|a|+|b|)}\left[F_{1 k}(c), F_{k 1}([a, b])\right] \\
& =H_{1 k}([a, b] c, 1)-(-1)^{|c|(|a|+|b|)} H_{1 k}(c,[a, b]) \\
& =-(-1)^{|c|(|a|+|b|)} h(c,[a, b])=h([a, b], c)
\end{aligned}
$$

This establishes the first relation in (12). As for the second one,

$$
\begin{aligned}
{[h(a, b), h(c, d)]=} & {\left[h(a, b), H_{1 j}(c, d)-(-1)^{|c||d|} H_{1 j}(1, d c)\right] } \\
= & H_{1 j}([a, b] c, d)-(-1)^{(|c|+|d|)(|a|+|b|)} H_{1 j}(c, d[a, b])-(-1)^{|c||d|} H_{1 j}([a, b], d c) \\
& +(-1)^{|c||d|+(|c|+|d|)(|a|+|b|)} H_{1 j}(1, d c[a, b]) \\
= & h([a, b] c, d)+(-1)^{|d|(|c|+|a|+|b|)} H_{1 j}(1, d[a, b] c)-(-1)^{(|c|+|d|)(|a|+|b|)} h(c, d[a, b]) \\
& -(-1)^{|d|(|a|+|b|+|c|)} H_{1 j}(1, d[a, b] c) \\
& -(-1)^{|c||d|} h([a, b], d c)-(-1)^{|c||d|+(|c|+|d|)(|a|+|b|)} H_{1 j}(1, d c[a, b]) \\
& +(-1)^{|c||d|+(|c|+|d|)(|a|+|b|)} H_{1 j}(1, d c[a, b]) \\
= & h([a, b],[c, d])
\end{aligned}
$$

We now give all the computations relevant for the proof of corollary 5.1. In order to verify that the natural homomorphism $\mathfrak{s t}_{n}(A) \longrightarrow\left(\mathfrak{s l}_{n}(K) \otimes_{K} A\right) \oplus\langle A, a\rangle$ admits an inverse given by the formula in the proof of corollary 5.1, we have to replace, in relations (13),(14), the elements $E_{i j} \otimes a,\langle a, b\rangle$ by their images as specified in that proof and see if the relations that we obtain are satisfied in $\mathfrak{s t}_{n}(A)$. Relation (13) can be checked quickly if $(x, y)=0$, so we verify only the case $x=F_{i j}, y=F_{j i}$ with $1 \leq i \neq j \leq n$. The right-hand
side becomes

$$
\begin{aligned}
& h(a, b)-\frac{1}{n} \sum_{k=2}^{n} H_{1 k}([a, b], 1)+\frac{1}{2} H_{i j}\left(a b+(-1)^{|a||b|} b a, 1\right)+\frac{1}{2 n} \sum_{\substack{k=1 \\
k \neq i}}^{n} H_{i k}([a, b], 1)+\frac{1}{2 n} \sum_{\substack{k=1 \\
k \neq j}}^{n} H_{j k}([a, b], 1) \\
= & h(a, b)-\frac{1}{n} \sum_{k=2}^{n} H_{1 k}([a, b], 1)+\frac{1}{2} H_{i j}\left(a b+(-1)^{|a||b|} b a, 1\right)+\frac{1}{2} H_{i 1}([a, b], 1) \\
& +\frac{1}{2} H_{j 1}([a, b], 1)+\frac{1}{n} \sum_{k=2}^{n} H_{1 k}([a, b], 1) \\
= & h(a, b)+\frac{1}{2} H_{i j}\left(a b+(-1)^{|a||b|} b a, 1\right)+\frac{1}{2} H_{i 1}([a, b], 1)+\frac{1}{2} H_{j 1}([a, b], 1) \\
= & h(a, b)+\frac{1}{2} H_{i 1}\left(a b+(-1)^{|a||b|} b a, 1\right)+\frac{1}{2} H_{1 j}\left(a b+(-1)^{|a||b|} b a, 1\right)+\frac{1}{2} H_{i 1}([a, b], 1)+\frac{1}{2} H_{j 1}([a, b], 1) \\
= & h(a, b)+H_{i 1}(a b, 1)+(-1)^{|a||b|} H_{1 j}(b a, 1)=H_{i j}(a, b)
\end{aligned}
$$

The first relation in (14) is very similar to the second one in (12) but it does not follow automatically from it. It left-hand side equals

$$
\begin{aligned}
& {\left[n h\left(a_{1}, a_{2}\right)-\sum_{k=2}^{n} H_{1 k}\left(\left[a_{1}, a_{2}\right], 1\right), n h\left(b_{1}, b_{2}\right)-\sum_{m=2}^{n} H_{1 m}\left(\left[b_{1}, b_{2}\right], 1\right)\right] } \\
= & n^{2} h\left(\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right)-n \sum_{m=2}^{n} h\left(\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right)+n(-1)^{\left(\left|a_{1}\right|+\left|a_{2}\right|\right)\left(\left|b_{1}\right|+\left|b_{2}\right|\right)} \sum_{k=2}^{n} h\left(\left[b_{1}, b_{2}\right],\left[a_{1}, a_{2}\right]\right) \\
& +\sum_{\substack{k, m=2 \\
k \neq m}}^{n} h\left(\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right)+\sum_{k=2}^{n}\left(2 h\left(\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right)-H_{1 k}\left(1,\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right]\right)\right) \\
= & n h\left(\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right)-\sum_{k=2}^{n} H_{1 k}\left(\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right], 1\right)
\end{aligned}
$$

As for the second relation in (14), it follows from (8), (9) when $i \neq 1$ and $j \neq 1$; when $i=1, j \neq 1$, its left-hand side equals

$$
\begin{aligned}
& \left.n F_{1 j}\left(\left[a_{1}, a_{2}\right] b\right)-\sum_{k=2, k \neq j}^{n}\left[H_{1 k}\left(\left[a_{1}, a_{2}\right]\right), 1\right), F_{1 j}(b)\right]-\left[H_{1 j}\left(\left[a_{1}, a_{2}\right], 1\right), F_{1 j}(b)\right] \\
= & n F_{1 j}\left(\left[a_{1}, a_{2}\right] b\right)-\sum_{k=2, k \neq j}^{n} F_{1 j}\left(\left[a_{1}, a_{2}\right] b\right)-F_{1 j}\left(\left[a_{1}, a_{2}\right] b+(-1)^{|b|\left(\left|a_{1}\right|+\left|a_{2}\right|\right)} b\left[a_{1}, a_{2}\right]\right) \\
= & F_{i j}\left(\left[\left[a_{1}, a_{2}\right], b\right]\right)
\end{aligned}
$$

References

[CGS] H. Chen, Y. Gao, S. Shang, Central extensions of Steinberg Lie superalgebras of small rank, Comm. Algebra 35 (2007), no. 12, 4225-4244.
[ChGu] H. Chen, N. Guay Twisted affine Lie superalgebra of type Q and quantization of its enveloping superalgebra, to appear in Mathematische Zeitschrift.
[FSS] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000. xxii+410 pp.
[GaSh] Y. Gao, S. Shang, Universal coverings of Steinberg Lie algebras of small characteristic, J. Algebra 311 (2007), no. 1, 216-230.
[GJKK] D. Grantcharov, J.H. Jung. S.-J. Kang, M. Kim, Highest weight modules over quantum queer superalgebra $U_{q}(\mathfrak{q}(n))$, Comm. Math. Phys. 296 (2010), no. 3, 827-860.
[GJKKK] D. Grantcharov, J.H. Jung. S.-J. Kang, M. Kashiwara, M. Kim, Quantum queer superalgebra and crystal bases, Proc. Japan Acad. Ser. A Math. Sci 86 (2010), no. 10, 177-182.
[HuLi] D. Liu, N. Hu, Leibniz superalgebras and central extensions, J. Algebra Appl. 5 (2006), no. 6, 765-780.
[IoKo1] K. Iohara, Y. Koga, Central extensions of Lie superalgebras, Comment. Math. Helv. 76 (2001), no. 1, 110-154.
[IoKo2] K. Iohara, Y. Koga, Second homology of Lie superalgebras, Math. Nachr. 278 (2005), no. 9, 10411053.
[K] V.G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96.
[Ka1] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983), J. Pure Appl. Algebra 34 (1984), no. 2-3, 265-275.
[Ka2] C. Kassel, A Künneth formula for the cyclic cohomology of $\mathbb{Z} / 2$-graded algebras, Math. Ann. 275 (1986), no. 4, 683-699.
[KaLo] C. Kassel, J.-L. Loday, Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 119-142 (1983).
[MiPi1] A.V. Mikhalev and I.A. Pinchuk, Universal central extension of the matrix Lie superalgebras $s l(m, n, A)$, Contemp. Math. 264 (2000), 111-125.
[MiPi2] A.V. Mikhalev and I.A. Pinchuk, The universal central extension $\mathrm{Q}(n, A)$ of Lie superalgebras, (Russian) Chebyshevskii Sb. 6 (2005), no. 4(16), 149-153.
[Na] M. Nazarov, Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999), no. 1, 195-223.
[Ne] E. Neher, An introduction to universal central extensions of Lie superalgebras, Groups, rings, Lie and Hopf algebras, St. John's, NF, 2001, 141-166 Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003.

[^0]
[^0]: Department of Mathematical and Statistical Sciences
 University of Alberta
 CAB 632
 Edmonton, AB T6G 2G1
 Canada
 nguay@math.ualberta.ca, hongchen@math.ualberta.ca

