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Abstract

We study projective objects in the category OHc(0) of the Cherednik
algebra introduced recently by Berest, Etingof and Ginzburg. We prove
that it has enough projectives and that it is a highest weight category in
the sense of Cline, Parshall and Scott, and therefore satisfies an analog of
the BGG-reciprocity formula for a semisimple Lie algebra.

1 Introduction

In the representation theory of a semisimple Lie algebra g, a well studied cat-
egory of modules is the category Og of Bernstein,Gelfand, and Gelfand [3].
Generalizations of this category have been extensively investigated since the
publication of their seminal paper. In this paper, we consider a category OHc

(0)
of modules over the Cherednik algebra Hc, defined in [8] (see also [7]), which
can be considered as an analog of the category Og.

The category OHc is defined in the first section, where we recall also some
of its basic properties and the definition of the standard modules introduced in
[2] and [7]. These standard modules play the same role as the Verma modules
in Og. A certain full subcategory OHc

(0) of OHc
is of particular interest and we

are going to be mostly exclusively concerned with it. To each standard module
in OHc(0) corresponds a simple Hc-module, and these simple modules are in
bijection with the irreducible representations of a given Weyl group W . The
first main result we prove is the following theorem.

Theorem 1.1. The category OHc
(0) has enough projective objects.

In particular, to each simple module, we can associate its projective cover.
Given an irreducible representation σ of W , we denote by ∆(σ) the correspond-
ing standard module with its unique simple quotient L(σ) whose projective
indecomposable cover is P (σ). We show that P (σ) admits a finite filtration
whose successive quotients are standard modules. We denote the multiplicity
of a standard module ∆(τ) in such a filtration by [P (σ) : ∆(τ)]. Furthermore,
since modules in OHc(0) have finite length, we can define the multiplicity of a
simple module L(σ) in a module M ∈ OHc(0), which we denote by [M : L(σ)].
Our second main result is that a BGG-type reciprocity formula [3] holds in
OHc

(0).

Theorem 1.2. [P (σ) : ∆(τ)] = [∆(τ) : L(σ)].

In [5], the authors introduced a general notion of a highest weight category,
which includes some classical examples from Lie theory, for instance Og and
certain categories of representations of reductive algebraic groups over fields
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of positive characteristic. In subsequent papers, they generalized to those cate-
gories many results aboutOg. In particular, our second main theorem is actually
a corollary of the next result.

Theorem 1.3. The category OHc
(0) is a highest weight category.

In section 2, we recall some definitions and set up the notation. The main
results are proved in sections 3 and 4. At the end of section 4, we point out
how our second main result yields a necessary and sufficient condition for the
semisimplicity of the category OHc

(0). In section 5, we introduce a decomposi-
tion of OHc

(0) into a direct sum of subcategories, which we call Z-strings, and
study their cohomological dimension.

Remark 1.1. Similar results have been obtained independently by E. Opdam
and R. Rouquier [9].

Acknowledgements The author gratefully acknowledges the financial sup-
port of the Fonds FCAR and thanks V. Ginzburg for his help and guidance.

2 Category OHc
for the Cherednik algebra

The Cherednik algebra Hc is defined in the following way. Let h be a complex
vector space and W a finite Weyl group acting on h with corresponding root
system R ⊂ h∗. We denote by C[R]W the vector space of W -invariant functions
c : R → C, α 7→ cα. Given such a function c, we define the Cherednik algebra
Hc (denoted H1,c in [8]) as the algebra generated by h, h∗, and C[W ] subject to
the following relations:

w · x · w−1 = w(x) , w · y · w−1 = w(y) ,∀y ∈ h , x ∈ h∗ , w ∈W

[x1, x2] = 0 = [y1, y2] ,∀y1, y2 ∈ h, x1 , x2 ∈ h∗

[y, x] = 〈y, x〉 −
∑

α∈R+

cα · 〈y, α〉〈α∨, x〉 · sα ,∀y ∈ h , x ∈ h∗.

The main reason why Hc admits a theory of modules with certain similarities
with the case of a semisimple Lie algebra is that an analog of the Poincaré-
Birkhoff-Witt decomposition holds for Hc: the multiplication map induces a
vector space isomorphism C[h]⊗C C[W ]⊗C C[h∗] ∼−→Hc [8].

A central object of study in the representation theory of Hc is the following
category of modules.

Definition 2.1 ([2] 2.4). Let OHc
denote the abelian category of finitely gener-

ated left Hc-modules M such that the action on M of the subalgebra C[h∗] ⊂ Hc

is locally finite, i.e. dimC C[h∗] ·m <∞ for any m ∈M .
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As in the Lie algebra case, the category OHc affords a block decomposition.
More precisely, it splits into the direct sum

⊕
λ̄∈h∗/W OHc

(λ̄) where OHc
(λ̄)

is the category of modules on which P − P (λ̄) acts locally nilpotently for all
P ∈ C[h∗]W .

This category contains analogs of the Verma modules of a semisimple Lie
algebra. We call them standard modules and they are defined in the following
way ([2],[7]). Fix λ ∈ h∗, and let Wλ be its stabilizer in W . We can form
the smash product C[h∗]#Wλ since W acts on C[h∗]. Let τ be an irreducible
representation of Wλ on a vector space V (τ), and let Iλ be the maximal ideal
of C[h∗] generated by y−λ(y) with y ∈ h; set λ#τ = (C[h∗]/Iλ)⊗C V (τ). Then
λ#τ is a module over C[h∗]#Wλ, Wλ acting diagonally and C[h∗] by left multi-
plication, which we can induce to Hc, and we set ∆(λ, τ) = IndHc

C[h∗]#Wλ
(λ#τ),

and ∆(τ) = ∆(0, τ). These are the standard modules.
We recall here some basic properties of the category OHc .

Lemma 2.1 ([2] lemma 2.5). 1. Any object M ∈ O
Hc

is finitely generated
over the subalgebra C[h] ⊂ Hc, hence O

Hc
is an abelian category.

2. For any λ ∈ h∗ and τ ∈ Irrep(Wλ) , we have ∆(λ, τ) ∈ O
Hc

.

3. For any M ∈ O
Hc

, there exists a non-zero homomorphism ∆(λ, τ) → M
for certain λ ∈ h∗ and τ ∈ Irrep(Wλ).

4. Every object of the category O
Hc

(0) has finite length.

In the remaining sections, we will be only concerned with the category
OHc(0), which appears to be the most interesting case among all the OHc(λ̄). By
a highest weight vector in a module M ∈ OHc(0), we will mean a vector which
is annihilated by any element of h. In our analysis of that category, we will use
very often the canonical element h = − 1

2

∑n
i=1 xiyi +yixi which was introduced

in [2]. Here, {xi}n
i=1 and {yi}n

i=1 are dual bases of h∗ and h respectively. Any
other choice of dual bases gives the same element h, so in particular h is W -
invariant. In [2], the element −h was used; the reason for the minus sign is that
it allows us to work with highest weight vectors and modules instead of lowest
weight ones. This element h differs also from the Euler element E =

∑n
i=1 xiyi

introduced in [7]. h + E = − 1
2

∑n
i=1[yi, xi] ∈ C[W ] and [h,E] = [h,E + h] = 0

since h commutes with elements of C[W ].
The next lemma will be used very frequently.

Lemma 2.2 ([2] 2.6). [h, x] = −x, [h, y] = y for all x ∈ h∗, y ∈ h, that is,
hx = x(h− 1),hy = y(h + 1).

Every module M in OHc
(0) splits into a direct sum of finite dimensional gen-

eralized weight spaces for the action of h. This follows by induction from the fact
that M has finite length and the action of h on a simple (or standard) module
is diagonalizable, which is an easy consequence of the previous lemma. Indeed,
the action of h on a standard module ∆(σ) can be described quite explicitly.
Let z(c) be the following element in the center of W : z(c) = 2

∑
α∈R+

cαsα.
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That z(c) lies in the center of W follows from the invariance of the coefficients
cα. z(c) acts on the irreducible representation σ of W by multiplication by
a constant which we denote k(σ, c). Moreover, the following relation holds:∑n

i=1 cα〈yi, α〉〈α∨, xi〉 = cα〈
∑n

i=1 yi〈xi, α
∨〉, α〉 = cα〈α, α∨〉 = 2cα, so that∑n

i=1[yi, xi] =
∑n

i=1

(
〈yi, xi〉 −

∑
α∈R+

cα〈yi, α〉〈α∨, xi〉sα

)
= n− z(c).

Now, suppose that v ∈ V (σ), and that p ∈ C[h] is homogeneous of degree
m. We think of p⊗ v as an element of the Hc-module ∆(σ), which isomorphic
to C[h] ⊗C V (σ) as a C[h]-module. Elements of 1 ⊗ V (σ) are highest weight
vectors. h acts on p⊗ v by multiplication by the constant −m+ 1

2

(
k(σ, c)−n

)
.

Indeed, [h, xi1 · · ·xim
] =

∑m−1
j=0 xi1 · · ·xij

[h, xij+1 ]xij+2 · · ·xim
= −mxi1 · · ·xim

for xij
∈ h∗, so

h(p⊗ v) = [h, p]⊗ v + ph⊗ v = −mp⊗ v − p

2

n∑
i=1

yixi ⊗ v

= −mp⊗ v − p

2

n∑
i=1

[yi, xi]⊗ v = −(m+
n

2
)p⊗ v +

1
2
p⊗ z(c)v

=
(
−m− n

2
+

1
2
k(σ, c)

)
p⊗ v

This shows that each standard module acquires a grading from the action of
h, which is simply the opposite of the grading coming from the order grading
on C[h] shifted by the constant 1

2 (k(σ, c) − n). Every quotient and submodule
of a standard module is similarly graded, but this is not necessarily true for
extensions of those modules.

3 Projective objects

In this section, we prove our first main theorem.

Theorem 3.1. The category OHc(0) has enough projective objects.

However, before we proceed with the proof, we need to introduce a duality on
the category OHc

(0). To define it, we first have to put an Hc-module structure
on the dual M∗ = HomC(M,C) of a module M ∈ OHc

(0). To achieve this,
choose a non-degenerate W -invariant symmetric bilinear form ( , ) on h∗, and
let θ : h → h∗ be the (W -equivariant) isomorphism such that 〈y, x〉 = x(y) =(
x, θ(y)

)
for x ∈ h∗, y ∈ h. Then θ(α∨) = 2

(α,α)α.
We define ζ on the generators of Hc by ζ(x) = θ−1(x), ζ(y) = θ(y), ζ(w) =

w−1. ζ can be extended to an anti-involution of the free algebra A on generators
x ∈ h∗, y ∈ h, w ∈ W , hence to an algebra anti-homomorphism A → Hc. To
prove that ζ indeed defines an anti-involution of Hc, we have to show that
if x ∈ h∗, y ∈ h, then ζ

(
[y, x] − 〈y, x〉 +

∑
α∈R+

cα〈y, α〉〈α∨, x〉sα

)
= 0 and

ζ
(
wxw−1 − w(x)

)
= ζ

(
wyw−1 − w(y)

)
= 0. The last two relations are obvious

from the equivariance of θ, so let us prove only the first one.
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ζ
(
[y, x]

)
= [ζ(x), ζ(y)] = 〈ζ(x), ζ(y)〉 −

∑
α∈R+

cα〈ζ(x), α〉〈α∨, ζ(y)〉sα

=
〈
θ−1(x), θ(y)

〉
−

∑
α∈R+

cα(α, x)
(
θ(y),

2
(α, α)

α
)
sα

=
(
θ(y), x

)
−

∑
α∈R+

cα
(
x,

2
(α, α)

α
)(
α, θ(y)

)
sα

= ζ
(
〈y, x〉 −

∑
α∈R+

cα〈α∨, x〉〈y, α〉sα

)
.

Notice that ζ(h) = h since {ζ(xi)}n
i=1 and {ζ(yi)}n

i=1 are also dual bases.
Using the anti-involution ζ, we can give the dualM∗ of a moduleM ∈ OHc

(0)
the structure of a module over OHc

(0): given m ∈ M,f ∈ M∗, z ∈ Hc, set
(zf)(m) = f(ζ(z)m). We can now define the “restricted” dual M∨ for an
arbitrary M ∈ OHc(0) to be the submodule of M∗ generated (spanned) by its
generalized h-weight vectors. We let ∇(τ) be ∆(τ)∨.

If M is a standard or simple module, then the dimension of the h-weight
space M(a), corresponding to the weight a ∈ C, is the same as the dimension of
M∨(a). This follows from the fact that, in this case, h acts semisimply on M
(and on M∨). Using induction on the length, we can show that this equality of
dimension is true for any module M ∈ OHc(0).

We claim that M∨ is in the category OHc(0). Before proving this, we will
need one of the following properties of (·)∨, which is, a priori, only a functor
from OHc

(0) to modL − Hc, the category of all left modules over Hc.

Lemma 3.1. 1. The functor M 7→M∨ is exact.

2. (M∨)∨ ∼= M canonically.

3. The canonical map HomHc
(M1,M2) → HomHc

(M∨
2 ,M

∨
1 ) is an isomor-

phism.

Proof. (1) If 0 → M1 → M2 → M3 → 0 is an exact sequence, then 0 →
M∗

3 →M∗
2 →M∗

1 → 0 is also exact; taking the sum of the generalized h-weight
spaces, we get an exact sequence 0 → M∨

3 → M∨
2 → M∨

1 → 0. That this last
sequence is exact at M∨

3 and M∨
2 is obvious; surjectivity of the homomorphism

M∨
2 → M∨

1 follows by considering the dimensions of the generalized h-weight
spaces.

(2) The inclusion M ↪→ (M∨)∨ and the equality of the dimension of the
weight spaces imply the isomophism M ∼= (M∨)∨.

(3) This follows from part 2 and the natural embeddings HomHc
(M1,M2) ↪→

HomHc
(M∨

2 ,M
∨
1 ) and HomHc

(M∨
2 ,M

∨
1 ) ↪→ HomHc

(
(M∨

1 )∨, (M∨
2 )∨

)
.

We can now prove that M∨ ∈ OHc
(0).

(i) M∨ is finitely generated: It is enough to show that M∨ has finite length
- actually, the same length as M . This is clearly true when M is simple, for
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then M∨ must be simple by (2) and in fact M ∼= M∨ because the isomorphism
V (σ) ∼= V (σ)∗ holds for any representation of a finite Weyl group. The general
case follows by induction from lemma 3.1 (1).

(ii) C[h∗] acts locally nilpotently on M∨: By using induction on the length,
we can reduce to proving this for simple modules, and then for standard modules;
in this case, this is clear because they are graded by the degree of polynomials
in C[h] and the action of the elements of h decreases the degree by one - their
action is given by the Dunkl operators [7]. Alternatively, that C[h∗] acts locally
nilpotently on M∨ also follows from the fact that the generalized weights of h
on M∨, which are the same as those of M , are bounded from above.

Before proceeding any further, we also need to define a partial order ≤ on Σ,
Σ being the finite set of irreducible representations of W or, equivalently, the set
of simple modules in OHc(0). We define τ1 ≤ τ2 if and only if k(τ2, c)− k(τ1, c)
is a non-negative number. We will assume also, from now on, that if τ1 is
not isomorphic to τ2, then the constants k(τ1, c) and k(τ2, c) are distinct. This
excludes the case, for instance, c ≡ 0.

Proof. PROOF of theorem 3.1. To prove that OHc(0) has enough projective
objects, we use a criterion given in theorem 3.2.1 of [4] - see also the important
third remark following that theorem. It is proved there that an abelian C-
category which satisfies five precise properties has enough projective objects.
We translate below these properties in the context of the category OHc

(0) and
we verify that they are indeed satisfied.

1. Every object has finite length: This is lemma 2.1 (4).
2. There are only finitely many isomorphism classes of simple objects in

OHc
(0): We know already that simple objects in OHc

(0) are in bijection with
the irreducible representations of W .

3. The endomorphism ring of a simple object reduces to the scalars: This is
simply Schur’s lemma.

4. Choose a closed subset T ⊂ Σ and τ ∈ T a maximal element. We
denote by OHc

(0)T the full subcategory of OHc
(0) consisting of all objects whose

simple subquotients are in T ; the functor (·)∨ induces also an equivalence of this
category. What we have to prove is that ∆(τ) is a projective cover of L(τ) inside
OHc

(0)T and that ∇(τ)(= ∆(τ)∨) is an injective hull of L(τ) in OHc
(0)T . The

second assertion follows by duality, so we will only prove the first one.
Let ψ : M → N be an epimorphism, N,M ∈ OHc(0)T . We want to show

that a homomorphism ϕ : ∆(τ) → N factors through M , and that the kernel of
∆(τ) → L(τ) is superfluous – this last assertion follows from 5 below.

Let v ∈ ∆(τ) be a generator of maximal weight, so h acts on it by the
constant 1

2 (k(τ, c) − n) and yv = 0 ∀y ∈ h. ϕ(v), which we can assume to be
non-zero, is also a highest weight vector and h acts on it by multiplication by
the same constant. Choose w ∈ ψ−1

(
ϕ(v)

)
. We can assume that

(
h− 1

2 (k(τ, c)−
n)

)r
w = 0 for some r ≥ 1, with r minimal, and that w generates an irreducible

W -submodule of type τ , so to construct a map ∆(τ) → M which lifts ϕ, we
only have to show that yw = 0 ∀y ∈ h.
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Choose a monomial P (y1, . . . , yn) which does not annihilate w, but such that
yiP (y1, . . . , yn)w vanishes for i = 1, . . . , n. Let d = deg

(
P (y1, . . . , yn)

)
, and

assume d ≥ 1. Consider the vector w̃ =
(
h−( 1

2 (k(τ, c)−n)+d)
)t
P (y1, . . . , yn)w,

with t maximal such that this is non-zero. w̃ is a highest weight vector and it
belongs to the ν-isotypic component of M with ν > τ because the constant by
which h acts on it is strictly larger than 1

2 (k(τ, c) − n). This contradicts our
assumption that M ∈ OHc(0)T . It follows that d = 0 and yw = 0 ∀y ∈ h.
Incidentally, r must be equal to 1.

5. ker
(
∆(τ) → L(τ)

)
and coker

(
L(τ) → ∇(τ)

)
lie in the subcategory

OHc
(0)<τ where OHc

(0)<τ is the category of modules whose simple subquo-
tients L(ν) satisfy ν < τ : It is enough to consider only the assertion concerning
the kernel. Suppose that u is a highest weight vector of type µ inside ∆(τ).
Then h acts on it by multiplication by 1

2 (k(µ, c)−n). On the other hand, if u is
a sum of elements of the form p⊗ v with p of degree m,v ∈ V (τ), then we know
already that h acts on it by multiplication by −m + 1

2 (k(τ, c) − n), so if these
two constant are equal and m > 0, it must be the case that k(µ, c) < k(τ, c), so
µ < τ .

Remark 3.1. The hypothesis of theorem 3.2.1 in [4] includes a sixth condition
which, in our case, is the vanishing of the group Ext2OHc (0)

(
∆(σ),∇(τ)

)
, ∀σ, τ ∈

Σ. This extra condition yields a stronger conclusion, namely that the projec-
tives have standard filtrations in the sense of the next section. We will argue in
the opposite direction: we will prove the vanishing of certain Ext-groups (corol-
lary 4.2) only after showing that the projective cover P (σ) of L(σ) possesses a
standard filtration.

4 Standard filtrations and reciprocity

The goal of this section is to prove an analog of the classical BGG-reciprocity [3]
for the category OHc(0) (theorem 4.2), but first, we have to construct filtrations
on the projective covers P (σ) of L(σ) which are “standard” in the sense that
the quotient of two successive modules in such a filtration is a standard module.
This is achieved in proposition 4.5 below.

We start by considering certain subcategories of OHc
(0); although this is

not essential for our argument, the result of the preceeding section leads to an
interesting conclusion regarding them (proposition 4.1).

Fix k ∈ N and define Ok
Hc

(0) to be the full subcategory of OHc
(0) consisting

of the modules M such that if m ∈ M is a generalized weight vector of h with
weight a, then (h−a)km = 0. We have a functor Fk : OHc

(0) → Ok
Hc

(0) given by
Fk(M) = span{m ∈ M |(h − a)km = 0 for some a ∈ C}. Note that lemma 2.2
and the invariance of h under W imply that Fk(M) is indeed an Hc-submodule.
These subcategories provide a “filtration” of OHc

(0) which is exhaustive in the
sense that any M ∈ OHc

(0) is an object of Ok
Hc

(0) for k large enough – actually,
k can be taken to be one if M is a quotient of a standard module and, in general,
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it can be proved by induction that the least such k is less than or equal to the
length of M .

Proposition 4.1. OHc
(0) = Ok

Hc
(0) if k is large enough.

Proof. Every module in OHc
(0) is an epimorphic image of a finite direct sum of

copies of the indecomposable projectives P (σ), σ ∈ Σ, so we have to choose k
such that P (σ) ∈ Ok

Hc
(0) for every σ ∈ Σ, e.g. k ≥ maxσ∈Σ length

(
P (σ)

)
.

It can be checked that the conditions 1–5 in the proof of theorem 3.1 are
satisfied for any of the categories Ok

Hc
(0) – the same argument as in that proof

applies – so these categories contain also enough projectives. However, we will
give a new proof of this assertion by giving an explicit construction similar to the
original one in [3]. This does not provide a new proof that OHc

(0) has enough
projectives, because proposition 4.1 depends on this fact. Afterwards, using
some modules that we will construct, we will deduce that projective modules in
OHc

(0) have filtrations by standard modules.
We define now some modules in OHc

(0) which are extensions of standard
modules and possess standard filtrations; we show also below that certain quo-
tients of these modules are projective in Ok

Hc
(0). Fix k ∈ N, a ∈ C. There exists

a minimal integer N(a) such that if M ∈ OHc(0) and m ∈ M is a generalized
weight vector of h of weight a, then C[h∗]N(a)

+ m = 0, where C[h∗]+ is the space
of polynomials with constant term equal to zero. This is simply because there
is an upper bound on the possible weights of h on an Hc-module which are in
the set {a + Z} (i.e. this upper bound is valid for any module). We choose
N(a) minimal with this property. For σ ∈ Σ, let Q(a, σ) be the Hc-module
obtained by induction from the C[h∗]#W -module C[h∗]/(C[h∗]N(a)

+ ) ⊗C V (σ).
(C[h∗] acts by left multiplication and W acts diagonally on this module.) As a
C[h]-module, Q(a, σ) ∼= C[h]⊗C C[h∗]/(C[h∗]N(a)

+ )⊗CV (σ): this follows from the
PBW-property of Hc. Let Q(k, a, σ) be the quotient of Q(a, σ) by the left sub-
module generated by (h− a)k ⊗ 1⊗ V (σ) ∈ Hc ⊗C[h∗]#W C[h∗]/(C[h∗]N(a)

+ )⊗C
V (σ). Let also R(a) be the Hc-module induced from the C[h∗]#W -module
C[h∗]/(C[h∗]N(a)

+ ) ⊗C C[W ]. Let R(a, k) be the quotient of R(a) by the sub-
module generated by (h − a)k1; 1 ∈ R(a) denotes the generator 1 ⊗ 1 ⊗ 1 ∈
Hc ⊗C[h∗]#W C[h∗]/(C[h∗]N(a)

+ ) ⊗C C[W ], and we denote its image in R(a, k)
also by 1. Viewed as a left W -module, by Wedderburn’s theorem, C[W ] =
⊕σ∈ΣV (σ)d(σ) where d(σ) is the dimension of V (σ), so R(a) = ⊕σ∈ΣQ(a, σ)d(σ)

and R(a, k) = ⊕σ∈ΣQ(a, k, σ)d(σ).

Proposition 4.2. For any M ∈ Ok
Hc

(0), HomHc

(
R(a, k),M

) ∼−→M(a) given by
ϕ 7→ ϕ(1) is an isomorphism. Here, M(a) is the generalized weightspace of h
for the weight a.

Proof. The map is clearly injective, so choose m ∈ M(a). Then the homomor-
phism C[h∗] ⊗C C[W ] → M that we get by sending (p ⊗ w) to pwm descends
to a homomorphism C[h∗]/(C[h∗]N(a)

+ ) ⊗C C[W ] → M . By the universal prop-
erty of induced modules, we obtain a homomorphism R(a) → M . Since this
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homomorphism maps 1 to an h-generalized weight vector of M with weight a,
it sends the submodule generated by (h − a)k1 to zero, thus it descends to a
homomorphism ϕ : R(a, k) →M satisfying ϕ(1) = m.

This proposition and the decomposition R(a, k) = ⊕σ∈ΣQ(a, k, σ)d(σ) imply
that M(a, σ), the σ-isotypic component of M(a), is isomorphic to the space
HomHc

(
Q(a, k, σ)d(σ),M

)
, this isomorphism being given by ϕ 7→ ϕ(1σ) where

1σ is the projection of 1 ∈ R(a) in Q(a, k, σ)d(σ) in the decomposition above.

Proposition 4.3. The modules R(a, k) and Q(a, k, σ) are projective in Ok
Hc

(0).

Proof. The previous proposition says that the functor Hom
(
R(a, k), ·

)
is exact

because it is isomorphic to the exact functor M → M(a). Since Q(a, k, σ) is a
direct summand of R(a, k), Q(a, k, σ) is also projective.

Remark 4.1. This last proposition also implies that the category Ok
Hc

(0) has
enough projectives because any module in OHc

(0) is generated by finitely many
generalized h-weight vectors.

We will need the next proposition to prove the main theorem of this section.

Proposition 4.4. The module Q(a, σ) admits a finite filtration whose successive
quotients are standard modules.

Proof. Let Mj be the Hc-submodule of Q(a, σ) which is generated by the space
C[h∗]j+/C[h∗]N(a)

+ ⊗C V (σ). Then Q(a, σ) = M0 ⊃ M1 ⊃ . . . ⊃ MN(a) = 0.
The quotient Mj/Mj+1 can be identified with the Hc-module induced from
the C[h∗]#W -module

(
C[h∗]j+/C[h∗]j+1

+

)
⊗C V (σ). C[h∗] acts trivially on this

module; decompose it as a sum of irreducible W -modules: C[h∗]j+/C[h∗]j+1
+ ⊗C

V (σ) ∼= ⊕τ∈ΣV (τ)⊕n(τ,σ,j), where n(τ, σ, j) is the corresponding multiplic-
ity. It follows that the quotient Mj/Mj+1 is isomorphic to the direct sum
⊕τ∈Σ∆(τ)⊕n(τ,σ,j).

Consider the projection π : P (σ) → L(σ) where P (σ) is the projective
cover of L(σ). Let v ∈ L(σ) be a generator of highest weight, which is thus
annihilated by C[h∗], belongs to a simple W -module isomorphic to V (σ) and
is a weight vector for h of weight a = 1

2 (k(σ, c) − n). Then we can choose
a w ∈ π−1(v) which is also a generalized weight vector for h with the same
weight and is in an irreducible W -submodule isomorphic to V (σ). Therefore,
we can find an epimorphism Q(a, σ) → P (σ). Since P (σ) is projective, this
epimorphism splits.

Proposition 4.5. The projective cover P (σ) has a standard filtration P (σ) =
F 0

σ ⊃ F 1
σ ⊃ . . . ⊃ F

r(σ)
σ = 0 with the property that F 0

σ/F
1
σ
∼= ∆(σ) and

F i
σ/F

i+1
σ

∼= ∆(τi,σ) for some τi,σ > σ if i ≥ 1.

Proof. Let P̃ ∈ OHc
(0) be a complement of P (σ) inside Q(a, σ), i.e. Q(a, σ) =

P (σ) ⊕ P̃ . Let us denote by F •a,σ the submodules of a standard filtration for
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Q(a, σ). Choose a highest weight vector v ∈ Q(a, σ) which is in an irreducible
W -module of type µ ∈ Σ. We can further assume, without loss of generality,
that v ∈ P (σ) – the same argument applies if v ∈ P̃ . Suppose that v ∈
F l

a,σ r F l+1
a,σ . Then we have a non-zero homomorphism ∆(µ) → F l

a,σ/F
l+1
a,σ .

By the maximality of the weight of v, this must be an epimorphism. Since
F l

a,σ/F
l+1
a,σ is a standard module, hence free over C[h], this epimorphism must be

an isomorphism. Therefore, we have a splitting F l
a,σ = F l+1

a,σ ⊕Hcv, Hcv ∼= ∆(µ),
and since F l

a,σ/Hcv ∼= F l+1
a,σ , Q(a, σ)/Hcv also has a standard filtration, so we

can repeat this argument and apply it to P (σ)/Hcv ⊕ P̃ .
What we have to check now is that the standard filtration F •σ of P (σ) thus

obtained satisfies the condition of the proposition. If the first subquotient of this
filtration is ∆(ν), then F 0

σ/F
1
σ
∼= ∆(ν) and F 1

σ is contained in the unique maxi-
mal submodule rad

(
P (σ)

)
of P (σ). The image rad

(
P (σ)

)
/F 1

σ of this maximal
submodule in F 0

σ/F
1
σ is the unique maximal submodule rad

(
∆(ν)

)
of ∆(ν); the

quotient of ∆(ν) by rad
(
∆(ν)

)
is L(ν), so L(ν) ∼= P (σ)/rad

(
P (σ)

)
and ν = σ.

To prove the second assertion, we use the lemma below. Assume that,
in our standard filtration of P (σ), two consecutive terms satisfy F l−1

σ /F l
σ
∼=

∆(µ1), F l
σ/F

l+1
σ

∼= ∆(µ2) and µ2 6> µ1. Then Ext1
(
∆(µ1),∆(µ2)

)
= 0, so

that we can define a new filtration F̃ •σ with F̃ q
σ = F q

σ if q 6= l and F̃ l−1
σ /F̃ l

σ
∼=

∆(µ2), F̃ l
σ/F̃

l+1
σ

∼= ∆(µ1). Now F 1
σ/F

2
σ
∼= ∆(ζ) for some ζ ∈ Σ, so ζ must be

strictly greater than σ because P (σ) has a unique maximal submodule. Com-
bining these two observations, we get the desired conclusion.

Lemma 4.1. Suppose that ν 6> µ. Then Ext1OHc (0)

(
∆(µ),∆(ν)

)
= 0.

Proof. Suppose that 0 → ∆(ν) → M
π→ ∆(µ) → 0 is an extension of ∆(µ)

by ∆(ν). Let v ∈ ∆(µ) be a generator of highest weight, that is, of weight
1
2 (k(µ, c) − n). In π−1(v), we can choose a vector m which is in an irreducible
representation of W of type µ and which is a generalized weight vector of h
of weight 1

2 (k(µ, c) − n) also. Furthermore, since 1
2 (k(µ, c) − n) is a maximal

weight of M under the action of h by assumption, hm = 0, and therefore
hm = − 1

2

∑n
i=1[yi, xi]m = 1

2 (k(µ, c)− n)m.
Since the Hc-submodule generated by m is a quotient of a standard module

and surjects onto ∆(µ), π|Hcm must be an isomorphism onto ∆(µ) (since ∆(µ)
is a free module over C[h]), thus its intersection with ∆(ν) is trivial. This gives
us an Hc-splitting M ∼= ∆(ν)⊕∆(µ).

Remark 4.2. Using induction, the long exact sequence of Ext-groups along
with proposition 4.5, it is possible to prove more general vanishing results for
Ext-groups between standard modules or between standard and simple modules.
For instance, the previous lemma generalizes to all higher Ext-groups. Similar
results which are true in any highest weight category can be found in [5].

Remark 4.3. This proposition allows us to characterize the standard module
∆(σ) as being the largest quotient of P (σ) supported on OHc

(0)≤σ, i.e. whose
composition factors L(λ) all satisfy λ ≤ σ (cf.[5]). Indeed, suppose that M ⊂
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P (σ),M 6= P (σ), and P (σ)/M has this property. Let i be maximal such that
F i

σ 6⊂ M . We want to show that i = 0, since this means that F 1
σ ⊂ M and

therefore ∆(σ) ∼= P (σ)/F 1
σ � P (σ)/M , proving our claim. F i

σ/F
i
σ ∩ M ↪→

P (σ)/M , so F i
σ/F

i
σ ∩M is supported on OHc

(0)≤σ because so is P (σ)/M by
assumption. Let N be the largest proper submodule of F i

σ containing F i+1
σ ,

so that F i
σ/N

∼= L(τi,σ) since F i
σ/F

i+1
σ

∼= ∆(τi,σ) for some τi ∈ Σ. Then
F i

σ ∩M ⊂ N because F i+1
σ ⊂M by the maximality of i, so F i

σ/F
i
σ ∩M surjects

onto F i
σ/N ; this implies that L(τi,σ) ∼= F i

σ/N is also supported on OHc
(0)≤σ.

We already know that τi,σ ≥ σ (by proposition 4.5), so the only possibility is
that τi,σ = σ and i = 0.

Theorem 4.1. Every projective module in OHc(0) has a filtration with standard
subquotients.

Proof. Every projective module is a direct sum of copies of the indecomposable
modules P (σ), so this is clear from the previous proposition.

Proposition 4.5 actually shows that the category OHc
(0) is a highest weight

category with duality in the sense of [5],[6]. We can therefore state the following
corollary, which is true in any highest weight category.

Theorem 4.2. BGG-reciprocity holds also in the category OHc
(0), that is, the

multiplicity of ∆(σ) in a standard filtration of P (τ) is independent of the choice
of such a filtration and is equal to the multiplicity of L(τ) in ∆(σ).

Proof. See [5] Theorem 3.11, using remark 4.3.

Furthermore, this corollary imply the following.

Corollary 4.1. The category OHc
(0) is semisimple if and only if all the standard

modules ∆(σ), σ ∈ Σ, are simple.

Proof. By theorem 4.2, if all the standard modules are simple, then the simple
modules are projective, so any module is isomorphic to the sum of the simple
modules which occur in any of its composition series. Conversely, if the category
OHc

(0) is semisimple, then ∆(σ) splits into a direct sum of simple modules, and
this can occur only if ∆(σ) = L(σ).

This occurs, for instance, when c ∈ C[R]Wreg. (As explained in [2], C[R]Wreg is
the set of functions c such that the corresponding Hecke algebra HW (e2πic) is
semisimple.)

We can now recover the sixth condition alluded to after the proof of theorem
3.1. Actually, we even obtain a stronger vanishing statement.

Corollary 4.2. Extj
OHc (0)

(
∆(σ),∇(τ)

)
= 0 for all σ, τ ∈ Σ and any j ∈ Z≥1.

Proof. As noted in the proof of theorem 3.11 in [5], this is true in any highest
weight category.

11



5 Z-strings and cohomological dimension

In this section, we introduce a decomposition of the category OHc(0) and use
it to obtain an upper bound on its cohomological dimension, which we know is
finite by corollary 3.2.2 of [4].

Definition 5.1. By the Z-string through σ ∈ Σ, we will mean the set τ ∈ Σ
such that k(τ, c) − k(σ, c) ∈ Z. The Z>0-string and the Z<0-string through σ
are defined similarly. The length of a Z-string is the number of elements in that
set.

The Z-strings, denoted S1, . . . ,St, give us a partition of Σ; we choose an
arbitrary set of representatives σ1, . . . , σt of these Z-strings, i.e. σj ∈ Sj . Given
a module M ∈ OHc

(0) and σ ∈ Σ, let Mσ be the set of elements m ∈ M such
that m is a generalized weight vector of h of weight b with b ∈ Z + k(σ, c). If
k(τ, c) and k(σ, c) are in the same Z-string, then the spaces Mτ and Mσ are
the same, so we can define unambiguously MSj to be Mσj . The direct sum
M = ⊕j=1,...,tM

Sj is actually a decomposition into Hc-submodules: this is a
consequence of lemma 2.2.

Definition 5.2. We denote by Sj the full subcategory of modules M ∈ OHc
(0)

such that M = MSj .

Therefore, we obtain the following proposition.

Proposition 5.1. OHc(0) is the direct sum of its strings Sj , j = 1, . . . , t.

It follows from this that the cohomological dimension of OHc(0) is bounded
above by the maximum of the cohomological dimensions of its strings, and an
upper bound for these is the content of our next result.

Proposition 5.2. The cohomological dimension of Sj is bounded above by
2(Lj − 1), Lj being the length of Sj.

Before giving the proof, note that if σ is minimal in its Z-string, so that
1
2 (k(σ, c)−n) is smaller than 1

2 (k(τ, c)−n) for any other τ in the same Z-string,
then the standard module ∆(σ) is irreducible. This follows from the argument
used to prove lemma 2.31 (i) in [7]. If it is maximal, ∆(σ) is projective: this
follows from the argument used to prove theorem 3.1. These two observations
provide the starting point for the two induction arguments in the following
proof.

Proof. We claim that, for a standard module ∆(σ), an upper bound for its
projective dimension is given by the length L>σ

j of the Z>0-string through σ.
Consider the exact sequence 0 → F 1

σ → P (σ) → ∆(σ) → 0. The standard
modules occuring in a standard filtration of F 1

σ are in the Z>0-string of σ by
proposition 4.5, so by induction the cohomological dimension of F 1

σ is strictly
smaller than L>σ

j , hence the cohomological dimension of ∆(σ) is less than or
equal to L>σ

j .
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We now turn to simple modules and claim that the cohomological dimension
of L(σ) with σ ∈ Sj , is bounded above by 2Lj−L≥σ

j −1 where L≥0
j is the length

of the Z≥0-string through σ. Consider the exact sequence 0 → rad(∆(σ)) →
∆(σ) → L(σ) → 0. The simple modules which occur in a composition series for
rad(∆(σ)) are in the Z<0-string through σ, so induction and the result of the
preceding paragraph gives us also that the cohomological dimension of L(σ) is
less than or equal to 2Lj −L≥σ

j − 1. In particular, the cohomological dimension
of any simple module is less than or equal to 2(L− 1), L = maxj=1,...,t Lj .
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