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Abstract

To a finite subgroup I' of SL2(C), we associate a new family of quantum algebras which are related
to symplectic reflection algebras for wreath products S; ! I' via a functor of Schur-Weyl type. We
explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras
for I' and construct for them a PBW basis. When ' is a cyclic group, we are able to give more
information about their structure and to relate them to Yangians.

1 Introduction

The theory of symplectic reflection algebras was introduced a few years ago in the seminal paper [EtGi]
of P. Etingof and V. Ginzburg. Since then, applications have been found in representation theory and
in algebraic geometry, see e.g. [Bo, EGGO, GoSt, GoSm]. One important example of such algebras is
given by the rational Cherednik algebras [Ch2],[GGOR],[BEG] associated to a complex reflection group
W acting on the symplectic vector space h @ h*, b being its reflection representation. A large class of
symplectic reflection algebras are those associated to wreath products I'; = ST = I'*! % S; for I a finite
subgroup of SLy(C).

In this paper, we introduce a new family of quantum algebras that we call I-deformed double cur-
rent algebras (I-DDCA). They are flat deformations of the enveloping algebra of an enlargement of
sl,,(C[u, v] x T), the universal central extension of s, (C[u,v] x T'). They can also be viewed as flat defor-
mations of Ugl, (A; x T') where A; is the first Weyl algebra. We construct a PBW basis for T-DDCA by
using a Schur-Weyl functor which relates them to symplectic reflection algebras for I';, When I = Z/rZ,
we are able to give a second definition of I-DDCA by realizing them as certain subalgebras of a cyclic
version of affine Yangians.

One can consider the general problem of studying spaces of maps X — g from an algebraic variety
to a semisimple Lie algebra g. When X is smooth and of dimension one, this leads to current Lie algebras
g ®c Clu], loop algebras g ®c Clu,u 1] and their universal central extensions, the affine Lie algebras.
When X has dimension two, the most natural case to consider is the two-dimensional torus X = C* xC*,
but two simpler cases are X = C x C* and X = C2. Quantizations of the corresponding enveloping
algebras are known as quantum toroidal algeras [GKV], affine Yangians and deformed double current
algebras [Gu2], respectively. We may also consider singular varieties and one of the simplest example is
a Kleinian singularity C2?/I’. We are thus led to consider the Lie algebra g ®¢ Clu,v]' and its universal
central extension. We can also follow one of the main ideas in [EtGi] and replace the ring of invariants
C[u,v]" by the smash-product C[u,v] x I' since it is believed by ring theorists that the latter encodes
more the geometry of the quotient C2/I" and of its (minimal) resolution of singularities than the former.
This is another motivation for studying I-DDCA.

The representation theory of quantum toroidal algebras was studied in [Hel, He2, VaVal, VaVa2]
and, via geometric methods, in [VaVa3]. We hope that understanding the representations of I-DDCA
will eventually lead to a better understanding of quantum toroidal algebras and affine Yangians, but will
also exhibit new phenomena which do not occur for these two types of algebras.

After recalling the definition of symplectic reflection algebras for wreath products, we devote two
sections to the Lie algebras sl,,(Clu,v]) and sl,(Clu,v] x T'), giving presentations in terms of families
of generators and relations which are useful later on. The main idea is to obtain presentations with
only finitely many generators and relations of low degree. The principal results here are lemma 4.5 and



lemma 5.1. The latter is modified version of a theorem of C. Kassel and J.L. Loday [KalLo] which is
useful for our purpose. We also mention some results about the first cyclic homology group of the smash
product Clu,v] x T" since this space gives the center of the universal central extension sl,(Clu,v] x T').
The following section is simply devoted to defining the I'-deformed double current algebras D ,,. Section
7 contains one of the main results of this paper: we explain how to extend the classical Schur-Weyl
functor to the double affine setup and when it yields an equivalence of certain categories of modules -
see theorem 7.1. When A = 0, the I'-deformed double current algebras are enveloping algebras of Lie
algebras closely related to sl,, with entries in a rank-one symplectic reflection algebra for I': this is the
content of section 8. Section 9 contains our second main theorem: we prove that the associated graded
ring of Dj ;, is isomorphic to the undeformed ring Dfz_ },_o, whence the name PBW property by analogy
with the classical Poincaré-Birkhoff-Witt theorem.

The second half of the paper (all of section 10) is devoted to the special case I' = Z/dZ. The symplectic
reflection algebras for the wreath product (Z/dZ)*! x S; are rational Cherednik algebras, so they afford
a Z-grading. This explains in part why we can obtain more results in this specific case. We start by
studying certain degenerate affine Hecke algebras associated to I'; and then extend the results of [Gul]
to the double affine trigonometric setting where we have a functor of Schur-Weyl type (see theorem 10.1)
between modules for a localization of a rational Cherednik algebra for I'; and a certain algebra which turns
out to be isomorphic to a Yangian for sl,4 (see corollary 10.3). The main goal of section 10 is reached
in subsection 10.3 where we prove that deformed double current algebras for Z/dZ can be realized as
subalgebras of certain loop Yangians: see theorem 10.3. This provides another set of generators, which
might be convenient in the study of representations.

Throughout this paper, we will assume that n > 4: analogous results most probably hold for n = 2, 3,
but some definitions may involve more complicated relations and certain proofs would have to be modified
accordingly.
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3 Symplectic reflection algebras for wreath products

Isomorphism classes of finite subgroups of SLy(C) are known to be in bijective correspondence with affine
Dynkin diagrams of type A,D,E via the McKay correspondence. We will denote by I' such a subgroup.
For instance, the group corresponding to the Dynkin diagram of type A,_; is the cyclic group T = Z/rZ.
In this section, we recall a few definitions and facts about symplectic reflection algebras for the wreath
product I'; = S; 1 T of T' with the symmetric group S;. Let w be a non degenerate symplectic form on
U = C? and choose a basis {x,y} of U such that w(z,y) = 1. We will denote by {z;,y;} the same basis
of C2, this time viewed as the i*" direct summand of U®!. Note that I'; acts on U®L.

The definition of a symplectic reflection algebra depends on two parameters: ¢ € C and ¢ = k- id +
>_ver\{id} ¢vY € ZT', which is an element in the center ZI" of C[I']. We have adapted the definition of the
symplectic reflection algebra Hy (I';) from [GaGi]. For v € ', we write ; for (id,...,id,~,id,...,id) € T}
where v is in the i*" position.

Definition 3.1. The symplectic reflection algebra Hy o(I';) is defined as the algebra generated by the two



sets of pairwise commuting elements x1,...,%;,Y1,...,y and by 7 € I'; with the relations:

Texg Tt = 7(x;), Ty ! =7(y;), i=1,..., [,V 1Ty (1)
l
K _ .
[q;“yz]:t—f— 522(7”717]1—’— Z CyYis Z:l,...J (2)
1=t er ~er\ {id}

where o;; € Sy is the permutation i < j. For i # j and any wl,w? € U, wf € span{x;, y; }-

K _
[wy, w3] = —3 Zw(V(wl),WQ)Uiﬂwj ! (3)
yel’

To simplify the notation, we will write w3 = w(y(z), ), w = w(v(y),y), Wi = w(y(z), ).

It is possible to filter the algebra H;.(I';) by giving degree 1 to the generators z;,y;,1 < i < [,
and degree 0 to the elements of I';. This filtration will be denoted Fo(Hc(I';)) and the corresponding
associated graded ring gr(Htﬁc(I‘l)).

Theorem 3.1 (PBW Property, [EtGi]). The canonical map Hy—o.c—0(T1) — gr(He,c(I)) is an isomor-
phism.

4 Double current algebras

Before defining I'-deformed double current algebras in section 6, we need to prove a series of lemmas for
the Lie algebra s, (Clu,v] x I'), the universal central extension of sl,,(Clu,v] x T"). In this section, we
threat the case I' = {id}. We will need to assume that n > 4 in this section and, a fortiori, for the rest of
the paper. The first lemma is similar to proposition 3.5 in [MRY] and should admit an analog for other
semisimple Lie algebras; however, we doubt that lemma 4.2 admits such a generalization, except perhaps
by adding a few relations. We start with a theorem which gives a description of sl,[u,v]. We will denote
by Q'(C?) the space of polynomial 1-forms on the affine plane C? and by d(C[u,v]) the space of exact
1-forms on C?2.

~ Ql ((:2

Theorem 4.1. [Ka] The Lie algebra sl,[u,v] is isomorphic to the Lie algebra sl [u,v] ® Wuv)]) with

the following bracket (where (-,-) is the Killing form on sl ):
[m1 ® p1,ma ® pa] = [m1, ma] @ pip2 + (M1, ma)prdpz, Vmyi,ma € sy, p1,pa € Clu,v]

Q' (C?)
and the elements of AT re central.

We denote by 6’n_1 = (¢ij)o<i,j<n—1 the n x n Cartan matrix of affine type gn_lz

2 -1 0 0 -1

-1 2 -1 0 0

o -1 2 -1 0 0
anfl =

0 o -1 2 -1 0

0 o -1 2 -1

-1 0 0o -1 2

The set of roots of sl,, will be denoted A = {a;;|1 < i # j < n} with choice of positive roots AT =
{ai;|1 <i < j <n}. The longest positive root 6 equals cv1,,. The elementary matrices will be written E;;,
Hi = Eii_Ei+1’i+1 for 1 S ) S n—1 and Hij = Eii—EJ‘j. We set E;r = Ei,i+1,E; = L4114, 1 S ) S n—1.

The following is lemma 2.5 in [Gu2].



Lemma 4.1. The Lie algebra ;[n [u, v] is isomorphic to the Lie algebra [ which is generated by the elements
X* H; T,Xgrﬂ,, 1<i<n-—1,r >0 which satisfy the following relations:

1,77

[Hip Hj] =0V1<ij<n—1rs>0, [HyoX;,]=+c;X;,V1<i<n—-1,0<j<n-1,7>0
(4)

XGE, XE) =0, (X, X5 = (X5, XE ), (Hie, X5 = [Hie, X, V1< j<n—175>0
(X X = 0, (X[, X = (X Xl [Hiren, X&) = [Him Xy VI<i<n—1rs > <0)

X, Xy = G Hiss, YOS i<n—1,1<j<n—1,7,5>0 E?i
[X?O’[Xzio’XiH:OVTZOifCij:* [Xzioni]*OVTZOifCij:O, (8)

Remark 4.1. In (8), when i =0 or j = 0, we have defining relations only in the + case.

We will need a simpler set of generators and relations for the Lie algebra sA[n [u, v], whence the impor-
tance of the next lemma, which is lemma 2.7 in [Gu2], except for a minor difference.

Lemma 4. 2 The Lie algebra s?[ [u,v] is isomorphic to the Lie algebra € which is generated by the
elements X H; ., XO 1 <i<n—1,r=0,1 satisfying the following relations:

ZT’

[Hivr,vag]:O,lgi,jSTL*l, T,S:O,l, [HL(),X;:T]::‘:C”X 1<Z<’ﬂ 1 0<j<n 1 T =

J,r?
(X750, X5] =0, X5, X5 = (X770, X)), [Hin, Xl = [Hio, X;3], 1<d,j<n—1,
[XJOaXJJ =0, [Xz'J,rleO,O] = [X;,FOVXO,l]v [HiyleOfO] = [HiyonO,l]ﬂ I<i<n-—1,
(X5, X5 ]_5ini,r:[X;0,Xf], V0<i<n-1,1<j<n-1,r=0,1

[Xfo,[Xfo,XfO]] =0ifc; = [Xzio,X o=01ifc; =0,0<ij<n-—-1

An isomorphism £ — sl,, [u, v] is given by

XfTHE?[(X)UT,Hi,T.HHi@vT forlSiSn—l,X&,HEm@uvr, r=0,1.

We will need a corollary of the previous lemma which gives a fourth presentation of ;[n [w,v]. Tt is an
immediate consequence of lemma 3.2 since we are only eliminating X({ ; from all the relations, so we will
use the same letter &.

Lemma 4. 3 The Lie algebra sA [.[u,v] is isomorphic to the Lie algebra € which is generated by the
elements X H;,, X0 01 <i<n—1,r=0,1 satisfying the following relations:

27‘7

(Hir,Hjs]=0,1<4,5<n—1,rs=0orl, [HZ-,O,X;’ET]::ECUX 1<iq,j<n—-1,r=0,1 (14)

J,r?

[Xzio’Xi] 0, [Xzil’inO] [X%,X]il], [Hil,X]o] [Hi7o,Xf1],V1§i,j§n—1 (15)

(X3, Xohol = [Hjn, [ X0, Xgolls [Hia, Xool = [Hn-1,1, Xgol, V1 <45 <n—1, (16)

(X005 [Hn-1,1, Xgol] =0, [Hio, Xl = cioXgo, [Hin, Xgol =0 ifi #1,n—1, (17)

(Xt X5 ) = 0 Hi s [[Hno1,0, Xg o), X ] =0, as)
V0<i<n—-1,1<j<n—-1,0<r4+s<1(r=0 zfz:O)

[Xzi()a [XzimXi ]] =0ifci; = [Xzioanio] 0ifcij=0,0<4,j<n-1 (19)



+

In the previous lemmas, the elements X, H;, with i # 0 generate a Lie subalgebra which is iso-

morphic to sl,[v], whereas those with » = 0 along with Xo+, o generate an isomorphic image of sl,[u]. We

would like to end this section by giving one last definition of 5A[n [, v] in which these two algebras play a
more symmetric role, but before that we need to introduce one more lemma (which is probably known
to other people).

Lemma 4.4. The Lie algebra sl,[v] is isomorphic to the Lie algebra f generated by elements Eup €
50, Eqp(v) for 1 < a # b < n which satisfy the following relations:

[Eab, Ebc(v)} = Eac(v) = [Ead(v), Edc]a [Eab(v)v Ebc(v)] = [Ead(v)a Edc(v)] ifa 7& b 7£ c 7& a 74‘ d 74‘ c
[Eab, Eca(v)] = 0= [Eap(v), Eca(v)] ifa#£b# c#dF#a
Proof. We want to define elements E,;(v¥)Vk > 2,1 < a # b < n, by setting inductively E,p(vF*!) =

[Eqe(v), Ecp(vF)] for some ¢ # a,b. This does not depend on the choice of ¢, for if d # a,b,c and (21) is
satisfied for k instead of k + 1, then:

[Eaa(v), Eay(v")] = [Eaa(v), [Ede, Eer(v°)]] = [[Eaa(v), Eacl Ecy(v*)] = [Eac(v), Ecy(v")].
We have to show that
[Eab(v"),Bpe ()] = Eae(0'™) if i+ j=k+La#b#c#a (20)
and ‘ A
[Eap(v'),Eca(v?)]=0ifi+j=k+1lori=1,j=k+1, whena #b# c#d #a. (21)
We proceed by induction on k, the case k = 0 being true by the definition of f. Assume that
i+ 7 =k+ 1. Suppose that a # b # ¢ # a and choose d # a, b, c. First, suppose that i > 1.
[Eab(v'), Eve(v”)] = [[Ead(v), Eap(v' ")), Ebe(v”)] = [Eaa(v), Eac (v 7)) = Eqc(v'™)
Ifi=0,7=k+1, then
[Eabs Eve (0] = [Eap, [Epa(v), Ege(v™)] = [Ead(v), Eac(v")] = Eac(0*).
We have established (20), so let us turn to (21). If @ # b, ¢ # a, choose d # a, b, c. Then, ifi+j =k+1
and, without loss of generality, j > 2,
[Eab (v), Eac(v”)] = [Eap(v), [Eaa(v), Eae(v’"H)]] = 0

by induction. Similarly, [Euy(v?), Esp(v?)] = 0ifi+j =k + 1, and, if i = 1,5 = k + 1, we can show that
[Eap(v), Eqe(v*t1)] = 0 = [Eqp(v), Ecp (vF )]

If a,b,c,d are all distinct and i +j =k + 1,1 < 4,5 <k, then
[Eab(v"), Eca(v”)] = [Ean(v"), [Ec(v), Epa(v? V)] = [Ecy(v), Eaa (v 7))
= [Ect(v), [Eac(v'™), Eca(v?)]] = ~[Eas(v"), Eea(v”)].
Compairing the first and last terms, we see that [Eqy(v?), Ecg(v?)] = 0. If i = 0,5 = k + 1, then
[Eaps Eca(v"™)] = [Eap, [Ecb(v), Epa(vF)]] = [Ect(v), Eaa(v")] = 0
by the previous case. The same argument works if i =k + 1,5 = 0.

Finally, if again a, b, ¢, d are all distinct, we have

[Eap(v), Ecd(vk+1)] = [Eab(v)v [Eca(vk)v Ead(U)H = *[Ecb(karl)v Eaa(v)]
= —[[Eca(v*),E), Eaa(v)]] = [Eca(v™*!), Eap(v)]
Compairing the first and last terms shows that [Eap(v), Ecq(vFT1)] = 0. O



Lemma 4.5. The Lie algebra ;[n [u, v] is isomorphic to the Lie algebra t that is generated by the elements
Eap € slp, Eap(u), Eap(v) for 1 < a # b < n with the following relations: For any wi = aju + biv,ws =
ast + bav,a;,b; € C,

[Ealh Ebc(wl)] = Eac(wl) = [Eab(wl)a Ebc} (22)

[Eap(w1), Epe(w2)] = [Eaa(wi), Eae(w2)], [Eap(wi), Epe(w2)] = [Eap(w2), Epc(wr)] if a #bF# c# a#d 7(’5 C»)
23

[Eap(w1), Eca(wa)] = 0= [Eap, Eca(w1)] if a#bF# cF#d#a (24)

Proof. We can define an epimorphism ¢ — t by the formulas
Xi-t_l — Ei,i-‘rl(v)) Xz_,l —> Ei-‘rl,i(v)? H,L'71 — Hi,i-l—l(v) for 1 S 7 S n — 1, XS:O — Em(u)

We have to check that this respects the relations (14) - (19). We will explain why this is indeed the case
for the first equation in (14), the first and second one in (16), the first one in (17) and the second one in
(18), but before we do this, we need to deduce a few consequences of the relations in this lemma.

For a # b, we define Hup(w) by Hep(w) = [Eap(w), Epa]. Choose ¢ # a, b, so
Hap(w) = [[Eam Ecb(w)]v Eba} = _[Ebm Ecb(w)] + [Eaca Eca(w)]
= _[Ebcy Ecb(w)] + [[Eab7 Ebc]7 Eca<w)] = [Eab7 Eba(w)] = _Hba(w)

Starting from [Eqp(w1), Epe(w2)] = [Eqa(w1), Eqc(w2)] with a, b, c,d all distinct and applying [, Epq] gives
the relation

[Hap (w1), Epe(w2)] = —[Epa(w1), Ege(ws)]. (25)
Although we needed to assume that a,b,c,d were distinct to deduce this equality, it is also true that
[Hao(w1), Epe(w2)] = —[Epa(w1), Eac(w2)] if a, b, ¢ are all distinct, due to relation (23).
Similarly, [Has(w), Epe(w)] = —[Epa(w), E4e(w)] and commuting both sides with E., yields

[Hap (w), Bpa (w)] = [Eca(w), Epe(w)] = [Epa(w), Baa(w)] = —2[Epa(w), Ega(w)].

We now apply [Eqp, -] to both sides of this equation to get

[Eab(w), Eba(w)] + [Ebd(w), Edb(w)] + [Eda(w), Ead(w)] =0 (26)

This is a useful equation since it helps us deduce the following for a, b, ¢ all distinct:

[Hap(w), Hpe(w)] = [[Eab(w), Epal, [Ebe, Eco(w)]]
= [ )> Ebals Eco(w)] — [Epe, [Eap(w), Eca(w )H
= —[Ebc(w),E b(w)] + [Eac(w), Eca(w)] — [Eap(w), Epa(w)] = 0 (27)

The first equation in (14) is now an immediate consequence of (27). Applying [Ei2,:] to 0 =
[Er—1,1(u), E21(v)] gives 0 = —[E_1,2(u), E21(v)] + [En—1,1(w), Hi2(v)]. Therefore,
—[H12(U), En—1,1(u)] = [En—l,Q(U), E21(U)] = [En—l,n(v)a Em(u)] = [Hn—l,n(v), En—1,1(u)]7
the last equality being a consequence of applying [-, Ej n—1] to 0 = [E;—1.,(v),Ep—1,1(w)]. We now use
[Enn—1,] again to obtain
—[Hi12(v), En1(uw)] = [Hn—1,n(v), En1(w)] + 2[Ep n—1(v), En_1,1(u)
= [Hn—1.0(v), Ena(w)] + 2[Hy n—1(v), Epa1 (u)] = —[Hp—1,0(v), Ena (u)].

This implies that the second relation in (16) is respected. As for the first relation in (16) when j =n—1
or j =1, it is a consequence of (25) with w; = v, wy = w.



The first relation in (17) and the second one in (18) follow also from (25) and from (24).

To prove that it is an isomorphism, we would like to construct an inverse {£. We do this by using
lemma 4.3 which identifies ¢ with the Lie algebra in theorem 4.1. We set &(Eqp(u)) = Eup @ u and
E(Eap(v)) = Eqp @ v. Clearly, this defines a Lie algebra map t — f?[n [u,v]. Taking the composite with the
map € — t above yields a homomorphism ¢ — ;[n [, v] which is the isomorphism given in lemma 4.3 (see
the formulas after lemma 4.2). Therefore, &€ — t. O

5 The universal central extension of sl,(Clu,v] x T)

For an arbitrary associative algebra A, sl,,(A) is defined as the space of matrices in gl,,(A) with trace in
[A, A]. This Lie algebra is perfect, so it admits a universal central extension whose kernel is isomorphic
to the first cyclic homology group HC;(A) [KaLo]. When A is the group ring A = C[['], HC;(4) = 0
(see chapter 9 in [We]), so we conclude that sl, (C[I']) is universally closed. Therefore, theorem 5.1 gives
a description of sl (C[T']). We will need to use the following theorem of C. Kassel and J.L. Loday in the
case A = Clu,v] x I'. We will compute later in this section HC; (Clu, v] x T').

Theorem 5.1. [KaLo] Let A be an associative algebra over C. The universal central extension s, (A)
of sl,(A) is the Lie algebra generated by elements Fop(p),1 < a #b < n,p € A, satisfying the following
relations:

Fop(tip1 + tape) = tiFup(p1) + taFup(pa) ti,t2 € Cop1,pa € A (28)
[Fub(p1), Foe(p2)] = Fac(pip2) ifa#£b#c#a (29)
[Fap(p1), Fea(p2)] =0 ifa#b#c#d+#a (30)

We will need to simplify theorem 5.1 when A = Clu,v] x T'. A generalization of the following lemma,
under the extra condition that n > 5, is given by proposition 3.3 in [Gu3].

Lemma 5.1. The universal central extension sl (Clu,v] xT) is isomorphic to the Lie algebra e generated
by elements Egp(w), w = tu+ sv,Eqp(y),1 <a#b<n,y e, st e C such that the following relations
hold:

Ifa#tb#c#a#d#cand w; =tju+ sv,i=1,2:

Eap(w) = tEap(u) + sEap(v), [Eap(w1), Eve(w2)] = [Eaa(w2), Eac(wi)], (31)

[Eab(7); Eve(w)] = [Eaa(v(w)), Eac(7)], [Eab(11); Ese(72)] = Eac(1172) (32)
Ifa#b+#c#d+#a:

[Ean(w1), Eca(w2)] = 0 = [Eap(11), Eca(72)] = [Eas(7), Eca(w)] (33)

Proof. We will introduce elements E,;(g) for any g € Clu,v] x T and show that they satisfy the relations
in theorem 5.1. When ¢ € C[u, v], the elements E,;(¢q) can be defined using the map sl,, [u,v] — ¢ given
by lemma 4.5 and theorem 5.1 in the case A = Clu,v]. Suppose ¢ = pv,p € Clu,v],7 € T. We can
assume that p = u°'v®. Set e = e; + eo; we will use induction on e. Choose a # b and ¢ # a,b; set
Ear(q) = [Eac(p), Eco(7y)]. We claim that this definition of E4,(g) does not depend on the choice of ¢. (This
is true when the degree of p is one according to (32).) Indeed, suppose that d # a,b, c and ey, e > 1 (the
cases e; = 0 or eg = 0 are similar) and write E,.(p) = [Ena(v), Ege(uv®2~1)]. Arguing by induction, we
can assume that [Egp(u®v®2~1) Egp(y)] = 0. Then

Eaw(q) = [[Ead(v)y Edc(u61U6271)]7 Ecb('}/)} = [Ead(v)7 [Edc(u61U8271)7 Ecb(7)]]
= {Ead(v), [Edc(uelverl), [Eca, Edb(fy)]ﬂ = [Ead(’U), [[Edc(uelver“_lﬁ Ecal, Edb(V)H
= [Eaa(u®v?), Ean(7)] + [[Eac(u v ™"), Ecal, Eap(vy)] = [Eaa(uv?), Ean(v)]



since [Ege(u®v®271), Eqy(vy)] = 1 [[Hac(w), Ege(u® ~*0%271)], Eqp(vy)] = 0 by induction.

Let us assume that [Eqp(p171), Ebe(P2y2)] = Eac(p171(p2)y172) for any a # b # ¢ # a and also that
[Eav(P171), Eca(p2y2)] = 0 for any a # b # ¢ # d # a, any 1,72 € I' and any p1,p2 € Clu,v] of total
degree < e. We want to prove that the same relation hold when the total degree of p1,ps is e.

Step 1: Suppose that a,b,c,d are all distinct and e; > 1. Set p = u®~'v°, so p = up. Using
induction, we get
[Eab(7); Eve(P)] = [Eav(7), [Eva(u), Eac(D)] = [[Ean(7) Eva(w)], Eac(P)] = [[Ean(¥(w)), Epa(7)], Eac(P)]
= [Eap(v(w)), [Esa(7), Eac(®)] = [Eap(v(w)), Enc(¥(P))]
[Eab(v(w)), [Esa((P)), Eac (V)] = [[Eab(7(w)), Esa(v(P))], Eac(7)]
= [Eaa(y(uD)), Eac(7)] = Eac(v(p)7)

Step 2: Assume that a # b # ¢ # d # a and e; > 1. There are three subcases to consider: a,b,c,d

are all distinct, a = ¢, b = d. In the first subcase, [Eqs(p), Eca(7)] = 3 [[Hab (), Eap(D)], Eca(y)] = 0 by

induction. In the second subcase, choose e # a, ¢, d; then [Eqp(p), Eqa(7)] = [[Eae(w), Ecs(D)], Eaa(y)] = 0
by induction since deg(p) < e. The third subcase is similar to the second one.

Step 3: Choose a, b, ¢, d all distinct. We know from step 2 that [E.p(p1), Eqe(72)] = 0, so

[Eav(p1), Ese(p2v2)] = [Eas(p1), [Eva(p2), Eac(v2)]] = [[Eas(p1), Eva(p2)], Eac(v2)]
= [Ead(p1P2), Eac(72)] = Eac(p1p272)

Step 4: Again, suppose that a, b, ¢, d are all distinct.
[Eab(P171) Eve(p2)] = [[Eaa(p1), Ean(11)], Eve(p2)] = [Ead(p1), [Eas(711), Ebe(p2)]]
= [Eaa(P1), Eac(11(p2)711)] = Eac(p1mi(p2)11)

The last equality is a consequence of step 3.

Step 5 : Assume that a # b # ¢ # d # a. As in step 2, there are three subcases to consider. In the
first subcase, using step 2 twice, we get

[Eab (P171), Eca(72)] = [[Ead(p1); Eav(11)], Eca(72)] = —[Eaa(p1), Ecs(y271)] = 0.

In the second subcase, choosing e # a, b, d, we get [Eqp(p171), Eac(72)] = [[Eae(pl), Een(71)], Ead(’)/Q)] =0.
The third subcase is similar to the second one.

Step 6: Suppose that a, b, c,d are all distinct.

[Eab(P171), Epe(p272)] = [Eab(p171)s [Epa(p2), Eac(12)]] = [[Eab(P171): Eva(p2)], Edc(72)]
= [Eaa(p171(p2)M1), Bac(72)] = [[Ean(p171(p2)), Eva(71)]; Eae(72)]
= [Eab(P171(P2)): [Eva(11), Eac(12)]] = [Ean(P171(p2)), Epe(7172)]
= Bac(p171(p2)1172)

Step 7: Finally, suppose that a # b # ¢ # d # a and q1 = p17y1,q2 = p2y2. As in step 2 and 5, there
are three subcases. In the first case,
[Eab<q1); Ecd(q2)] = [[Eac(QI)y Ecb]; Ecd(q2)] = [Ead(q1q2)7 Ecb]
= [[Eab(q1); Eva(g2)], Ect] = —[Ean(q1), Eca(g2)]
Comparing that first and last terms, we conclude that [E.(g1), Eca(g2)] = 0. In the second case, suppose

that a,b,d are all distinct and choose e # a,b,d. Then [E45(q1), Ead(q2)] = [[Eaes Eev(q1)], Eaa(g2)] = 0 by
the previous subcase and step 2. The third case can be handled as the second one. O



As recalled earlier, the center of s, (Clu,v] x T') is known to be isomorphic to HCy(C[u, v] x T), see
[KaLo]. Consequently, the following proposition will be useful:

Proposition 5.1. The first cyclic homology group of C[u,v] T is isomorphic to Q*(Clu, v])' /d(C[u,v]"),
the quotient of the space of I'-invariant 1-forms on the complex affine plane by the space of exact forms
coming from I'-invariant polynomials.

Proof. 1t is proved in [Fa] that the Hochschild homology of Clu,v] x I is given by:
HHo(C[u, v] x T) = Clu, v)" @ C'T =1 HH, (Clu,v] x T') = (Clu,v] ®c U)F where U = span{u, v} = C?

HHy(Clu,v] x T') = Clu,v)", HH;(Clu,v] x T) = 0 for i > 3.

Here, cl(T") is the number of conjugacy classes of I'. There exists an exact sequence HHy(Clu, v] X T') —
HH; (Clu,v] x ') — HC;(Clu,v] x I') — 0 and the first map is given by the differential d, the space
C[u,v] ® U being identified with the space of regular 1-forms on C? = U. O

Proposition 5.2. The first cyclic homology group of Clu,v] X T' can be identified as a vector space with
Clu,v]".

Proof. The form w (see section 3) allows us to identify Q!(C[u,v]) with the space V of polynomial vector
fields on C2. (We assume here that w(u,v) = 1.) There is a contraction map V —» C[u,v], so we can
define a linear map Q! (Clu,v]) — C[u,v] given explicitly by u*v"du — rusv"™ ! usv"dv — —su®~1o".
Since w is T-invariant, this restricts to a surjective map Q!(C[u,v])l' — C[u,v]" and the kernel of this
last map is d(Clu, v])", which equals d(C[u, v]"). Thus, HC;(C[u,v] x T') 2 C[u, v]'. O

These two propositions suggest that it may be possible to relate the enveloping algebra of ;[n((C[u, v] X
T) to Ugl,, (A1 x ') where A; is the first Weyl algebra: this is explained in section 8.

In the last section, we will consider deformations of an algebra related to il;[n((C[u, v] x T'), namely
ilg:\[n((C[uil,w} x T') when ' & Z/dZ is cyclic, acts trivially on w and on u by £(u) = (u, £ being a
generator of Z/dZ and ¢ a primitive d*"-root of unity. It is explained in [GHL] that sl, (C[u*!, w] x T") =
sl,q(C[sT!, w]): this follows from the isomorphism of associative algebras given in loc. cit. Clu®!] x T' =
M4(C[sT1]) where s = u?. Tt follows that HCo(C[u™!, w] x T') 2 C[s*!, w] & Clu™!, w]" and

N QY(C[s*, w))

+1 ) o &~ ol +1 .
HC(Clu™",w] x T) A(Cls,w)) C-s'ds® C[s™", wwds

Let g be the Lie algebra defined by the relations in definition 10.5 when A = 0,3 = 0. The next
proposition will be useful to understand the algebras in section 10.

Proposition 5.3. The Lie algebra g is isomorphic to sl,(Clu®!,w] x T).

Proof. See proposition 4.4 in [GHL] and also [MRY]. An isomorphism is given by

For1<i<n-1, X' = Ef@u'e;, Hi,;+— H; @ w"e;

1,75

- 1 -1
Xatr}j — FE,® wruej, XO,r,j — Fi, @ w'u €, HO,r,j — Eu, ® wrej —FE1® wrej_H + 50_j$ w"ds

Here, we identify the center of sl,,(Clu*!, w] x T with HC; (C[u*!,w] x T') as above. O

Let a be the Lie subalgebra of g generated by X:- H;.j, Xar”.,

i X(;T_Fl’jforlgignfl,rZO,OS
j < d—1. Via the isomorphism g — sl,(C[u=!,w] x T), we see that a contains sl,(C[u,v] x ') with

v = u lw. As we have mentioned earlier, we are interested in deformations of the enveloping algebra



of a Lie algebra slightly bigger than 5A[ (Clu,v] x T). The projection g — g/(>-1, Zd L H; 0j) =g is
injective on a (note that Y . Zj o0 ' H; .0,j is a central element of g), so we can view sl,, (Clu,v] x T)
as contained in the Lie subalgebra a of g which is the unage of a under the previous projection. The

Lie subalgebra of g generated by XZOJ)H’L,O,JvHO,O,_]) 0.0, for1 <i<n—-1,0<j<d-1is larger
than sl,(C[u] x T'). (Here,” denotes the image under the projection g — g.) For instance, 2?701 ﬁi,o,j =
Eii(ej —ejy1) € sL,(Clu] x T). (Note that span{e; —e;11/0 < j <d —1} = @Z}/C- ¢ C C[T].) In the

last section, we will explain how I'-DDCA in the cyclotomic case are deformatlons of a.

6 I'-deformed double current algebras

We introduce in this section a new family of quantum algebras which are deformations of the enveloping
algebra of an enlargement of sl,, (Clu,v] x T') and which are related to symplectic reflection algebras for
wreath products of I" via a functor of Schur-Weyl type. (By enlargement of a Lie algebra g, we mean a Lie

algebra g which contains a.) Before defining them, we need to introduce the Lie algebra gl,, (C[I']) which is
the Lie subalgebra of gl,,(C[I']) spanned by sl,,(C[I']) and by the elements E,,(7) Vy € T\{id},1 < a < n.
The necessity to consider gl,,(C[[']) instead of just sl,, (C[I']) will become clear in sections 7 and 8.

We will use the following notation: given an algebra A and elements a1, as € A, we will set S(a1,a2) =
aias + asaq.

Definition 6.1. The I'-deformed double current algebra Dy, with parameters 8 € C,b € ZI''b =
A-id+ 32 e giay Oy 18 the algebra generated by the elements of al,, (C[T)), Eap (t1w1 + tows) for 1 < a #
b<n,t1,ts € C,w,wy,wy € U which satisfy Eqp(t1wy + taws) = t1Eqp(w1) 4 taEgp(wa) and the following
relations:

Ifa#b#c#a#d#c,
[Eab(w)’ Ebc(w)] = [Ead(v(w))v Edc(7)]7 [Eaa(’Y)v Eac(w)} = [Eab(w)’ EbC(w>] = [EGC(’Y(U})L ECC(’Y)] (34)

[Eap(w2), Epe(w1)] = [Eaa(w1), Ege(ws)] + w(wy, w2)Eqe (b + B) + %w(wl,wg) >
~eld,j=1

(S([Eab(vfl)v Eijl. [Ejis Eoe(7)]) + S([Eaa(7), Eijl: [Ejis Edc(fl)]))
_% Z(w(v(wl),wg) — w(wr, w2)) (Epp (Y ") Eac(¥) + Eaa(7)Eac(v™")) (35)

yel

If a,b, c are all distinct, [Ecc(Y), Eap(w)] =0, and if a # b # ¢ # d # a, then [Eqp (), Eca(w)] =0 and

[Eanwn). Eaalwa)] = 3 3 wr(wn), w2)$ (Eaaly™), Ean(7) (36)

yel

Set b = 3
the elements E,p(w1), Eqp(w2), Eqp(y) for a # b. Lemma 5.1 says that Bgzo,b:o is isomorphic to the

JET\{id} by, so b = b(A = 0). Let 5276 be the subalgebra of DZ,b(A:o) generated by

enveloping algebra of ;[n((C[u,v] x ). When 8 = 1,A =0 = b, for v # id, Dj_, j,_o is exactly the
enveloping algebra of gl,,(A; x T') where A; is the first Weyl algebra. D§_o,b—o is the enveloping algebra
of a Lie algebra that we denote sl,(C[u,v] x I') and we have sl, (C[u,v] x T') D ;In((C[u,v] x I'). See
section 8 for more details.

When T' is the trivial group, D ;, is isomorphic to the algebra DY ; in [Gu2] (see also [Gul]). The
main difference in the definitions of D%, and DY 5 is that the former does not involve any Yangian.
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Actually, there does not seem to be any sensible notion of Yangian associated to I' in general, which,
from a heuristic point of view, is not surprising since, when I' is not cyclic, C? is not the direct sum of two
one-dimensional '-invariant subspaces. When I is a finite cyclic group, we can give another definition of
D}, which involves Yangians: see section 10.

By giving degree 0 to the elements of g~[n((C[F]) and degree one to Eg(w),w € U, we can define a
filtration Fy on Dj , such that Df_,4_q — ng(Dg’b). The PBW theorem in section 9 says that this
canonical map is an isomorphism.

7 Schur-Weyl functor and equivalence of categories

Given a right module M over Hy ¢(I';), we set SW(M) = M ®¢(s,) (C")®'. We would like to give SW(M)
a structure of left module over Dj ;,. The action of E, is simply via the sl,-module structure on (Cmy®t,

Let us assume that u,v,x,y € U are such that the map v — x,v — y is a I'-equivariant automorphism of
the symplectic vector space U, so that w(y(u),v) = w(vy(x),y). In particular, {u,v} is a symplectic basis
of C*. We would like to let Eqp(w), Eap(7) € D} 43 act on SW(M) in the following way:

Eap(w)(m @ v) mek®E v), Ew(y)(m® V) Zm'yk ®E(k()

Here, wy, = tizp +toyp if w =tz +toy, v=1; ® - ®v; € C" and

E((LIZ)(V) =0 @ - QU,_, @ Eab(vik) & Vig 11 R

These operators define a representation of D%, on SW(M) if and only if the following relations hold
between t,c,\,b: A =k,by =c,-1 for y #id and 8 =1 — %IF\ — K.

To prove our claim, we have to verify that the operators above satisfy the defining relations of D ,,
We start by computing that, for a # b # ¢ # a # d # ¢,

([Eab(u)’ EbC(u)} - [Ead(u)a EdC(“)]) (m®v)

=Y mlare; —27) ® (Eii)EzEf) - Efﬁz)Ec(l’z)) (v)
k=1

J#k

1
K . _ ) o (k i) ok
= =2 3 Y wimowme; ! @ (B ER - EQER) v)

l
o ) - ) .
= =5 3 > wimynit @ (B ER - EGEY) (v)
j,k=1~v€l
J;ﬁk

K — x
=3 S S wrmoi © HYEY () = o3 e Eae)m @)
J'tl;‘é:kl’yEF ’yEF
J

The computations are the same when u is replaced by v and w7 is replaced by w¥. Under the same
assumption on a, b, ¢, d, we now compute:

11



m
S
5]

([Eab(v), Eve(u)] — [Eaa(w), Ege(v)]) (m @ v)

l !
- Zm(xkyk — ) @ B (v) + Z m[zy, ;] ®E(J Z mly;, o] ®E,§d)E§f:)(V)
l
- Z Yoot Y, o | @ ER )
k=1 le;kl ~yerl ~er\{id}
!
K -~ i '
— 5 D Do Wy o @ BB Z > wimyg o © B EY) (v)
hotyel jk=1~yel
i#k for:

=Eu | t+ Z eyt (mev) ZZZm'y'y ® EYWE® (v)

~veT\{id} j;ék ~yel e=1
l
B g Z Z Y ym’Yﬂk ®E1§i)E Z Zw Ymy, ®E(k)E(J)( )
e g
=Eu [t+ > 7' - %\FI (mev) Z Z ) Eee()(m@v)
~yel\{id} 'yEF e=1,e#a,c
+ g Z (S(Hab(’yil% EHC(PY)) + S(HCd(fY), Eac(’yil)) + S(Had(7)7 Eac(vil))
yel
+ S(Hoo(v1),Eae(v)) ) (m @ v) — z (w2 — 1) (Eep(v " )Eac(7) 4+ Eaa(7)Eac(y 1)) (m @ v)
2
yer

We now check that ([Eas(7), Epe(w)] — [Eaa(¥(w)), Eac()]) (m @ v)

MN

m (zey, = g k() © ES W) (v Z xk,% ® Eéi)Ezgc)(V)

Jsék

>
Il
—

1
_ ] k
" mby (e © EYEE (v)

k=1

j#

<L
o

o

since vglfyk(xk) = xkvgl in Hyo(I'y) and vz, = apy;, ¥y € I'if j # k. Exactly the same computations
work with v instead of u and in the case a = b or ¢ = d with ~ # id.

Now, we will assume instead that a # b # ¢ # d # a:

[Eap(u), Eca(v)](m @ v) Z mlyj, xi| ® E(k)E(J) Z Z W ,ymajmk,yj ® E(k)E(J)( )
JF#k ’YGF J#k
k T - k
= Y Y wtmy ! @ B EQ (v) = 5D wiYEa(1)Eaa(y ) (m @ v)
v€T j#k ’YGF

The computations are the same for [Eqp(u), Eca(u)](m @ v) and [Eup(v), Eca(v)](m @ v) with w? (resp.
wY) instead of wiY.

We can state what we have proved so far in this section, but before that we need a definition.
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Definition 7.1. A module over Df,, is called integrable if it is a direct sum of integral weight spaces
under the action of b and is locally nilpotent under the action of Eqp(w) for any 1 < a # b < n and any
welU.

Definition 7.2. A module over D, is said to be of level | if, as a module over sl,,, it decomposes as a

direct sum of irreducible sl,,-submodules of (C™)®!.

kn|T|
4

Proposition 7.1. Suppose that A =k, =1 — — K and by = c,—1 for v # id. Then there exists a
functor SW : modg — Hy ¢(I';) — mod®™"! — D%, given by SW(M) = M ®¢g,) (C™)®". Here, mod?"!
is the category of integrable left modules of level [.

This proposition can be strengthened to yield a new generalization of the classical Schur-Weyl duality
theorem between sl,, and 5.

Theorem 7.1. Suppose that A\ =k, B =1 — 'mf‘ — Kk and by = cy-1 for vy #id. If 1+ 2 < n, then the
functor SW yields an equivalence between the category of right Hy o(I'1)-modules and the category of left
modules over Dy, which are integrable of level I.

The proof of this theorem will follow the same lines as the analogous result in [Gul],[Gu2] (see also
[ChPrl], [VaVal]). However, before proving it, we have to establish a similar result for I'; and sl, (C[I']).
(When T is the cyclic group Z/dZ, a more general result was established in [ATY] in the context of
cyclotomic Hecke algebras and where sl,, (C[[']) = sI2¢ is replaced by gly, @ -+ @ gly,. ) We will need
the following lemma.

Lemma 7.1. If v=1; ®---®u;, is a generator of (C™)®! as a module over sl,, (e.g. ifi; # ix for any
j#£k), thenm®v=0= m=0.

Proposition 7.2. The functor SW : modg —C[I';] — mod}, —sl,,(C[T]) given by M — M ®¢s,) (C™)®
which is an equivalence of categories of finite dimensional modules when I +1 < n.

Proof. Given a right I'l-module M, we can put on M ®cg, (C™)®! a structure of left module over sl,, (C[T])
by setting

!
Ea(M(mev)=> my ' @EY (v).
k=1

This extends the classical Schur-Weyl functor to modg — C[;] and mod}, — sl,,(C[I']). The second part
of the proposition requires more work; to prove it, we will follow the approach and ideas in [ChPr1].

Suppose that I + 1 < n. Let N be a left sl,(C[[])-module which is of level [ as sl,-module. Then
N = M ®c[s (C™)®! as left sl,-module for some right S;-module M by the classical case. We want to
show that M is a right module over the group I;.

For 1 <k<l set v =0, @--- @ @ v, @ Upy1 @ - @ v where {v1,v,...,v,} is the standard
basis of C™. Let w(*) be the same element of (C™)® as v(*) except that v, is replaced by v;. As in
[ChPrl], we write w'™ for the element obtained by permuting the factors of w(*) by 7 € S;. The set
{w&k)|7' € S;} is a basis for the subspace of (C™)®! of weight \; = €; + ...+ ¢ where ¢; is the weight on
diagonal matrices given by E;; — d;;, so we can write

Etn()(meav®)=>"m, o wh
TES]

for some m, € M. This can be rewritten as E1,,(7)(m @ v(®) = m/ @ w¥) for some m’ € M. By lemma

TR of M such that m' = ¢7:¥(m) for all

7.1 above, m’ is unique, so there exists a linear endomorphism ¢}, o

me M.
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One can show, exactly as in lemma 4.5 in [ChPrl], that Ey,(y)(m®v) =Y, _; Pk m) @ Eg? (v) for
any v € (C")®!. Instead of the quantized Serre relation that they use, one should consider the relation
[En,n_l, [Enn-1, Eln(fy)]] = 0, which is a consequence of [E1, (), Enn_1] = [E1.n—2(7), En—2,n-1].

Similarly, it is possible to show also that, for any 1 < a # b < n, there exists an endomorphism

¢;" € Endc(M) such that Eqp(y)(m @ v) = 22:1 ¢ m) ® E(]Z) (v). We claim that, for any choice of

a

a#be#d, (=" Suppose, for instance, that b # d # a, Then Euq(y) = [Eap(7), Epal, 50

l

Eaa(7)(m @ v) = [Eap(7), Esal(m @ v) = Y (¥ (m) @ B (v).
k=1

Since this is true for any v € (C")!,m € M, C;Yb’k = C;Ya’lk. The other cases can be treated similarly.
Therefore, we can define (*** € End¢ (M) unambiguously by setting (7% = Qgék for any choice of a # b.

We can now show that setting my, = O—l’k(m) gives M a structure of right module over I';. We will
prove the following relations:

1. (mye)yk = m(yy)k, V7,5 €T.
= (myj)m Vv, 7 €T if j # k.

2. (mye)y;
3. (mojr)y; = (myk)oje, V1 <j#k<IVyel.

(1): Set v=12® QU QUp QU1 Q- @ and V=03 ® - @ v Q@ v1 ® V41 ® - -+ ®@ vy Since

[El,n—l(:Yil)v Evz—l,n('yil)] = Eln(:Y71771)a we obtain

[E1n-1(371) Enc1n (7 DIm @ v) = ((myi)Fk) © V= Ein (3197 (m @ v).
This equality, along with lemma 7.1, imply that (m~yg)3x = m(y¥)k, which is what we wanted.

(2): Suppose that 1 <j <k <Il. Set v=03®  Q@j11 Q0 QVj12Q @Vt QUp—1 QU411 @ QU
and V=103®@ - @j41 QU1 QUj4a Q@ Q Uk @ V2 @ Vg1 @ -+ - @ . Since [E1n(571),Ezn_1(v1)] =0,
we get

0=[Ein(y) Ean1(v"Dlm@v) = ((myk)3;) ® ¥ = ((m;)m) @ ¥,
so, by lemma 7.1, (mvyx)%; = (Mm7;)Vk-

(3): Setv=12® - QU QU ®Vj41 Q- QVk—1 D Vp—1 @ V1 ®--- Qv and Vv = 0,(v); let V be
the same as v except that v, is replaced by v; and set V= 0,,(V). Then

(moj)y; @V =Eni(v7)(mojx @ V) = Eni (77 )(m @ V) = myy, @ V = (myp)oje @ V.
Again, lemma 7.1 allows us to conclude that (moji)v; = (myk)0 k.
Finally, one can check that the functor F' is bijective on sets of morphisms. O

Proof of theorem 7.1. Let N be a left module over Dj; }, which is integrable and of level [. Proposition 7.2

says that N = M Qc[g] (C™)®! for some right I';-module M. We have to extend this to a right module
structure over H; ¢(I';).

We can proceed exactly as in the proof of proposition 7.2 (mimicking the arguments in [ChPrl]) to
show that there exist endomorphisms ¢}’ € Endc (M) such that Eqp(w)(m®v) = Zic:l ¢r(m) ®EC(LIZ)(V).
We proceed as in [Gu2| to show that setting mxy = (f(m), my; = (f(m) turns M into a module over
Hec(Ty).
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Fix1<j,k<Il,j#k. Choosev=1; ®--®uy suchthat iy =2, =n—-1,i, =r+2ifr <j,r #k,
iy =r+1ifr>j,r#k Set v=E%EY) _ (v). On the one hand,

(Etn—1(w2)Epa(wi) — Epa(w1)E1 n1(w2))(m @ v) =
l

1ol !
ZZ mw}w? ®E£ST)L 1E7(3 Zme w, ®E(T)E§s7)1 1(v):m(wiwj2*w]2'wli)®‘~’

s=1r=1

Using relation (36) for Ey, = E,2 and E.q = Eq 1, we find that

A

[E1n—1(w2), Epa(wr)] = —3 ZW(V(UH),wz)En,nfl(V_l)Eu(’Y%
yel’

SO

A _
[Evn(we), Ena(w)](m @ v) = =2 3 w(y(wn), wo)my 'y @ B B} (v)

:—72 ), wq m’yj'yk crjk®v
yel’

Therefore, m (wiw? — wiwy, + 2 Zwerw(v(wl),wg)ajkykvfl) ® v = 0. From lemma 7.1 and our as-

2

sumption that A = x, we deduce that m (wiwj —wiwg + % > erw(v(@), y))ajk’yk'yj_l) =0.

We use equation (35) in the case (a,b) = (n,1),(c,d) = (n — 1,1). It implies that the difference
[Enl(v)7 Eq n—l(u)] - [Enl (u)a = n—l(v)] is equal to

Enn 1 bJFﬂ ZZS ny Jn 1 71))+22 (S(Hnl(’Y)aEn,n—l(’Yil))
’YEFJ 1 ner
+ S(En,n—l(’Y)a Hn—l,l(inl))) - % Z(w(’y(u), v) — 1)(E11(771)En,n—1(7) + Ell(V)En,n—l('yil))

yel

Now fix k£ and let v be determined by i, =n—1,4; =j+1if j # k. Set v = Eff}kl(v). Applying
both sides of the previous equality to m ® v, we deduce that

N _ Al A - IR
m(Tpyr — YTr) @V =m ﬁ—|—/\—|—ZbV’y Hev+ 4||m®v+§ZZmajk’yk’yjl®v

~y€er yeTl j,k=1
y#id J#k
Lemma 7.1 and our assumption that A\ = ,8 = ¢ — =2l _ K,by = cy—1 imply that [z, yx] = t +

K n -1
5 s Oy Y er e
2 Zﬂyef‘ Z]j;ékl ]k7k7‘7 Jilrd V’Y

That the functor SW is bijective on sets of morphisms follows from the classical Schur-Weyl duality
and lemma 7.1. O

8 Specialization at A =0

In [Gu2], we proved that, when the parameters A = 0 and 8 # 0, the deformed double current algebra
is isomorphic to the enveloping algebra of the Lie algebra gl, over the first Weyl algebra, which is a
symplectic reflection algebra of rank one for the trivial group I' = {1}. Therefore, it is natural to
conjecture that, for an arbitrary finite subgroup I' of SLy(C), a similar result is true, the first Weyl
algebra being replaced by a symplectic reflection algebra of rank one for I'. Theorem 8.1 confirms this.
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Definition 8.1. /[CBHo] Set ¢ = Z'yeI‘\{id} cyy. Let Az be the algebra generated by the elements

x,y,v € I' and satisfying the relations v -x -y~ 1 = y(x),y-y -y *

spanc{z,y} = C? and ' thus acts on spanc{x,y}.)

=~(y) and xy —yx =t + <. (Here,

We recall that the Lie algebra sl,(A; ) is defined as the Lie subalgebra of gl,,(A;z) of matrices with
trace in [A; 5, A 5]. As a vector space, sl,(A;z) = sl, @c Ay ® D([Atg, Atvg]), where D([At,g, Atvg]) is the
space of scalar matrices in gl,,(A¢z) with entries in [A; &, A; 5]

Lemma 8.1. For all ¢ and all t € C* except a countable set, the Lie algebra sb,,(A,z) is universally
closed, that is, it is its own universal central extension.

Proof. Theorem 1.7 in [KaLo] states the the center of the universal central extension of s, (A), where A
is an arbitrary associative algebra, is isomorphic to the first cyclic homology group HC;(A). It shown
in [EtGi] that the first Hochschild homology group HH;(A; ) vanishes for all ¢ and all t € C* outside a
countable set. The groupe HC;(A;5) is a quotient of HH; (A, ), so it vanishes also. O

Theorem 8.1. Suppose that 8 =1t and b, = c,—1 for v #id. Then the algebra f)g 5 is isomorphic to the

enveloping algebra of the Lie algebra ;[n(At’E), the universal central extension of sl,(Arz).

Proof. It follows from the definition of Bz i and theorem 5.1 that LLsA[n(At’g) is a quotient of ng. To

s

prove that the quotient map is an isomorphism, we construct elements E,;(p) € E)g i for1<a#b<n

and any p € A,z and show that they satisfy the relations in theorem 5.1. We will give a proof when
n > b; it illustrates how the calculations are sometimes simpler when n > 5. Let g be the Lie algebra
defined by the relations in definition 6.1 with A = 0. Lemma 4.4 gives us homomorphisms sl,[v] —
9,50, [u] — g. Define Eup(v/7y) = [Eac(v?),Ewp(y)] for v # id, a,b,c all distinct, and set inductively
Eup (u'v77) = [Ege(u), Ecp(u'~t0v75)] for some ¢ # a,b and for i,j > 1. We define E,;(p) by linearity when
p is a sum of monomials. We have to show that [Eqp(p1), Epe(p2)] = Eac(pip2) if @ # b # ¢ # a and
[Eab(p1); Eca(p2)] = 0if a # b # ¢ # d # a for any p1 = u"'v7' 1, p2 = uv72 7.

The first step, however, is to show that the definition of E,;(u*v7+) does not depend on the choice of
c. Since we are assuming that n > 5, choose d, e such that a,b,c,d, e are all distinct and assume that
i>2. (The case i = 1,j > 1 is similar.) Then

[Eac(u); Ecb(ui_lvj'y)] = [Eac(u)y [Ecda [Ede (’LL), Eeb(ui_ij’y)H}
= [[Eac(u)7 Ech [Ede(u)7 Eeb(ui_2vj7)]] = [Ead(u)7 Edb(ui_Q’Uj'y)]
The arguments used are similar to those in the proofs of lemma 4.4, 4.5 and 5.1. We proceed again by
induction on deg(p1) +deg(p2) to prove the two equalities above, which hold when deg(p;) + deg(p2) < 1.

If a £ b +# ¢ # d # a, choose e # a,b,c,d. Without loss of generality, we can suppose that p; = up;
and deg(p1) > 2. Then [Eay(p1), Eca(p2)] = [[Eac(w), Ect(P1)], Eca(p2)] = 0 by induction.

If p1 = upy with deg(p1) > 1, choose a, b, ¢, d all distinct, so that, by induction,

[Eab(P1), Evc(p2)] = [[Eaa(w), Ean(P1)], Evc(p2)] = [Ead(u), [Eas(P1)], Evc(p2)]]
= [Ead(u),Eqc(p1p2)] = Eac(up1p2) = Eac(p1p2)

If p1 =" with r > 1 and ps = ups, then choose a, b, ¢, d, e all distinct, so that

[Eas(p1): Eve(p2)] = [[Ead(v), Ean(v" '], Ebe(p2)] = [Ead(v), [Ean(v" "), Eve(p2)]]
= [Eaa(v), Bac(v" " 'pa)] = [Eqa(v), Eac(wv™ " P2) + Eac([v" ™, ulp2)]
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= [Ead(v)v[EdE(u)aEEC(UT )]] [Ead(v), EdC([ ,U]ﬁz)]

= [[Ead(v)aEdE(u)]7 SC(UT 1732)] +Ea0( [ B ]pg)

= [[Ead(u>7Ed6(U)]7 Eec(v'™ lpz)] [Eae(€), Ece(v"™ P )} + Ege(v[v" 17“]152)
= Eae(uv"B2) = Eqe(@"'P2) + Eac(v[ ", ulp2)

= Eac(pip2)

If p1 = p1y with p; a monomial in u, v, ps = ups and a, b, ¢,d, e are all distinct, then

Ean(m) Eoe(@2)] = [[Eac (1), Eeb(1)]s [Ena(), EacB2)]] = |Eae (1), [[Ecn(7); Ena(w)], EaelF2)] |

— [Eae(P); [[Eo(y(), Eva(1)], EaelF2)] | = [Eae(P1), Euel(y(upz) )
= [Eae(ﬁ1)7Eec<’7<p2) )] Eac( )

The last line follows from the previous cases since p; is assumed to be a monomial in u, v. O

Corollary 8.1. For all b(A = 0) and all B € C* outside a countable set, the algebra Dj b(A=0) 8
isomorphic to the enveloping algebra of the Lie algebra gl,,(Ayg) with t = 3,cy = by—1 for v # id. This
is true, in particular, when A = 0 = by for v #id and 8 # 0.

Proof. Lemma 8.1 and theorem 8.1 imply that D" ~ is isomorphic to s, (A; ) with t = 3, ¢, = b,-1 for
v # id. The isomorphism given in theorem 8.1 can be extended to DB b(A=0) and gl,(A¢¢) by sending

Eoa(7) to Eqq ® 7y for v # id. Note that g[[ E:Z Cg = [Aﬁt/:t = = HCy(A;z) and it is proved in [EtGi] that
dimg(Asg) = cl(T") — 1 for generic values of the parameters (in the same sense as above). O

9 PBW bases

We follow the same approach as in [Gu2] to prove that a I'-deformed double current algebra admits a
vector space basis of PBW type. This can be formulated by saying that the map D5_0b=0 ng(D;b)
is an isomorphism. We will construct inductively a vector space basis of D%, which yields the natural

PBW basis on grp(Dj},) = Usl, (Clu,v] x T'). We make the same assumption on u,v, x,y as in section 7.
We need to assume that B+ A— A%IF\ # 0 in this section.

~

We need to choose in C[u,v] a I'-invariant space E complementary to Clu,v]"', so that Clu,v] =
Clu,v]" & E as T-modules. We can suppose that E = &,,>1 E[m] is graded by the degree of the monomials
and E(1) = U. Let us assume that we have constructed elements F;,(p) € Dj 4, for all p € E®span{py|p €
Clu,v],y # id} of degree < N V 1 < a,b < n and also V p € C[u,v]" + C[I] of degree < N — 2
V1< a,b<n,such that Fuy(p)(h® v) = Sk, hp(ak, vk, ) @ B (v) if h € Hyo(T)), v € (C™)®L. This
is already known to hold for N = 1. We use the notation Fg(p) nstead of Eun(p) because we must set
Far(7) = Eap(v7 1), Fap(t1u + t2v) = Eap(tiu + tav),t1,t2 € C and Fup(wy) = [Eae(y™1), Ecp(w)] for some
¢ # a,b. We want to construct by induction such elements Fq;(p) for any p € Clu,v] xT', 1 < a,b < n.
Set Hap(p) = [Fap(p), Fpa] for 1 < a # b < n if Fo(p) has already been defined.

Let p(u,v) € Clu,v]",p(u,v) # 0 be a polynomial of degree N — 1 (we can assume that p(u,v) is
homogeneous). In the computations below for P(h®v), we will not need to use that p(u, v) is I-invariant.
However, we have to start with this case in the induction step.

—1 917")

Suppose that p(u,v) = ZT s>0(c rutv’ T — & su where ¢ ., 7 € Cand £, =0 =¢(p,r,s)

if r + s # f. The proof of proposmon 5.2 suggests that we consider the following elements;
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~ _ _ R o 1~
P, = Z (c§7S[Hi(usvT),Hi(u)] + cf,s[Hi(u v, Hl(v)]) and P = 5 ZPi'
i=1

n l
D 1 oy s, T
Phev) = 5 Z Z (¢ shlzk, k) — & h[ziyk, vel) @ (Bii + Eip1,i1)®v

i=1r,s>0k=1
1 n l
~ k
3 > (e ahlon w5y;) — @ hlwy; ) © HO B
i=117,5>0j,k=1
Jj#k
l r—1
= (sz,s hz} i, yily; - Z haf [ek, yilzg " 1yk> ®v
r,s>0 k=1 d=0
n s—1 I P op .
P30T S5 (Eematlonsates; — Fohatte ulas ) © B O
1=1 r,s>0 d=0 j, k=1
Jj#k
n I r—1 P P ) 2r)
+Y> N ( 5o hasyg on vy~ = S hagy Ty wely; T 1) ® H"HY v

r,s>0 k=1
r—1 l
+ Y, &, gz > hapylopn; e T+ Y ehapyinr
r,s>0 d=0 j]ﬂ;é:];’yél‘ ~yel\{id}
s—1
- G - Z thko'jk'yk'y] Lpgmd=lyr 4 Z eyhadypas T yn
r,s>0 d=0 Jj;vékl yel’ ~yel'\{id}
P n s—1
4 Zzh 75 JUjk'Yk'YJ Slpids 1y§—5f,sw§y5€ Ujk'}/]'}/kl j =

i=1r,52>0 j#k d=0~y€l

T, -1, r—d-—1 1, r—
1 Z Z ZZZ h(w ycféajjy] IikVkYj Y wycfsx]y]ak]%yk Y;
i=1 r,s>0 j#k d=0~€l’

® H?’“>HU>(V)

:ch Tk yk) @V
k=

r—1
+Y ) e ( > hagyiy(yp m—cmzhm @dlkwk)@v

r,5>0 yel'\{id} d=0

r—1
+zzzz(iwm%“mx
d=0

7,520 j,k 1761"61 1
s— r k j
-a thw i >®E£i’E§2)(v>
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g E; Z ZZZ (h sl = Wi hafy ™ a ™ )y

0j,k=1d=0~€l i=1
J#k

i 1 , 1
4ww>@%sz%w@m

= S S St st ey G e e

r,5>0j,k=1d=0 €l i=1
J#k

Ny LG Lk k
(BB - 80,88, - 35D B0 ) o)

! r—1 l
) t;hp(xk’yk)(gv_ EDIDIPIPIC N R

r,s>0d=0~€l k=1

=D Z_: YD ARy TRty (h @ v) (37)

r,s2>0d=0~v€l e,i=1
e#i

r—1 n
+ 35 S Y e (@ Rty (0 ) + & Fauty (w o)) (hev)  (38)

7,5>0 d=0 'yeF\{id} i=1

5 2 S Y S (= Rl () Falurta ) (h e v) (39)
TS>0d O’YEF\{ld}Z 1
s—1 n
r s s—a— r —
S 2 YNy @l T Y ) Fauly T (h e ) (40)
r,sZOd:OveFe,;:;
eFx1

s—1 n
£ 9D 9 3) AT

r,s>0d=0~€l k=1

—= Z Z Z Zc (1—w F“-(v(us_d_lvr)v)Fii(udv_l)(h®v) (41)

rs>0d OWGF\{ld}Z 1

-5 Z Z Z ZCH w? 1 Fii(y(u* ™)) Fi(uby ) (h @ v) (42)

'r5>0d O’yEF\{ld}Z 1

5> ZZZ P Wy — & W) (Fipri (v (™0 0 ) ) Fy g (udy ™)

rs>0d 0yeli=1
+Fi i1 (YT )Y i (wdy ) (he v) (43)

+E Z z_: Z Z Cr.s yFu G d_l)’Y)Fii(USUd'Y_l)(hQ?V) (44)

T‘S>0d O’YGF\{Id} =1

+ Z ZZZ Crs i Clr)swg)(Fi+1,i(7(vr_d_l)7)Fz‘,i+1(usvdv_l)

r,s>0 d=0~€l i=1

+Fi i (v (0 )y Fii(wiely ) (h@ v) (45)
Set |( =P-— (37) (38) — ... —(45)" where (37)" is the expression on line (37)’ but without h ®v,
-1
and I(p ( + A ) I(p). Then l(p)(h®@v) = ZZ=1 hp(zk, yx) @ v.
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Finally, set Fi1(p) = 21(p) + Y05 (1= 2)Hiir1(p), s0 Fia(p)(h ® v) = S5y hplae, ye) © ELy (v).
We can then obtain F;;(p) with the same property. We let Fop(p) = [Faa(p), Fap] if 1 <a #b<n.

We must now construct elements F,;,(p) V p € E @ span{p7|p € Clu,v],y # id} of degree N + 1 and
V1< a,b < n. Suppose first that 1 < a # b < n and put p = v’v"y with r + s = N + 1 and, without
loss of generality, r > 1. Choose ¢ # a,b and set Fay(u*0") = [Fae(v), Fop(usv"~1)]. We compute that
Fap(uv")(h ® v) equals

l
> haiyi @ B (v) +thky; Lyl @ EQES (v)

J#k
!
=" hajyp ® B (v) + Z Zh% sl Tyt @ BQER (v)
k=1 d=1d=0
J#k
_ o o
Z Z wivilve vlyy 2 @ EQ B (v)
k: 1d=0
k
!
=Y hajyp @ B (v) - 5 Z ZZ“ Uhafogen; e 'e EQBG) ()
k=1 2 Do er
J#k
I r-=2
K - )k
D) Z ZZwthkykajk’ykny ! 2 Et(zjc)Eéb)(V)
k=1d=0~y€el
J#k
!
x, S T— - k
= Y hajyp @ E®( _fzzzw Yhady(2): "y () et @ EYDER (v)
k=1 J’;kld 0~el
J

I r—2
K s r—2— — j k
=3 2 > > whhaiyiy )yt My © B B (v)

j];:kl d=0~el
l
s, T k
= Z hzyy;, ® Eflb) (v)
k=1

,,Z (Zw ’yF s 1-d ( )T717)Fab(ud771> (46)

yel’

+Zw3Fab(usvd7’l), Fcc(v(v)rzd7)> (h@wv) (47)

d=0

Setting Fop(usv") = Fap(u®v") — (46)" — (47)" where (46)’ is the expression on line (46) but without
(h ® v), we have obtained an element with the required property. For v # id, we can set Fg,(uv"y) =
[Eaa(v™1), Fap(u®v™)] and Hep(usv™y) = [Fap(u®v™), Epa]. If p = Py, v # id, then p is a sum of monomials
uv" of degree N + 1, so we can also define F,;(p) and Hgp(p).

Suppose that v € T'\ {id} and let u(y),v(y) be a basis of U = C? consisting of eigenvectors of
v (necessarily for non-trivial eigenvalues u(7y),v(y ), respectively). The vector z(v),y(v) are defined

similarly. For s > 1, we set D(u(v)*v(7)"7) Py “(7)) S Hi(uw(y)* = o()™), Hi(u(v))], whereas if
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s=0and r > 1, we set D(v(y)"y) = % S Hi(w(y)" 1), Hi(v(7))]. Let us assume that s > 1;
then D(u(v)*v(7)")(h ® v) equals

! n l
m ; hlz(Mk (MY (V] @ v + % ;J; hz(e, 2()j3(0)jv] @ B HY (v)
J#k
! n r—1
th(v)zﬂy( )k’m@v—l—( Zth (’Y)kay(’y)k]y('y)zilid’)/k(@v
k=1 ) ioi=

n I s—
T 2 2 el a ()l g @ BV HO )

s
l
> hx()i (i e v
k=1
n r—1
SRAED I WSO () w9 oSS ARSI DR POV
Py k=1d=0 1751 yer FeT\{id}
J
n I s—1
K z o —1— r k) 77 (i
o o 2 2 2w Tha(fondid; e 5y © BV HD (v)
(1=n0)) 5 o= i
J#k
n l
Z Z Z sz(v) y(v)hx (1)5y(7)? Ujkﬁkﬁjily(’)’);ilid’}/j ® Hi(k)Hi(J)(V)
i=1 j,k=1 d=0F€T
J#k
l n
s v
> he()i Y ()i BV (() Z eV
1 — n(7)) 1
ZZZW WD) Ao © v
]k 1d=0~5€l
J#k
I r—1
Aoy 2= 2 e T e v
k 1d=07eT\{id}
DS h<zw~ ) O e+
i=1 j#k €T
. . s o) (i . . _
ZW~ ‘Q(V)?’Y 1(9(7))k - d%% ’Yk> ® (2E1(1 )Ei(ij) - Ei(,ilrlEi(i)l i Ez(+)1 zEz(jz)H)(V)

th s+1 k'7k®v

M u(y)*v V) r -1 v
+(17u(7))|( (o) (he %; Faa(u(7)*0()" ')(h @) (48)
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n

)ZZ 3 FaG0)) o) o ()5 &) (49

d=07€Tl a,b=1

Z > elu@) () Fe) ) (hev) (50)
) 205ty

n s—1

ZZZW (2F‘ ) T () A Y)Fa(u(1)9) (51)

i=1 d=0 7€l
_Fi+1,i(§_1<u(7))s AT () A ) Fa i (u(y)?7) (52)
—Fiir1(37" (U(v))s‘l‘dﬁ‘l (v(v))rﬁ‘lw)Fi+1,i(U(v)d7)) (hewv) (53)
WO (R ()™ )P (u() 0 (1)) (54)

'Y i=1 d=0~€el’
—Firr,i(F0(7) 95 ) Fa g (u(y) v () %) (55)
—Fiit1(F(o(y)) 195~ 7>Fi+17i(u(7>sv(7)d7))(h ® V) (56)

Set D(u(y)*v(y)™) = D(u()*v(y)™y) — (48)" — ... — (56)’ where (48)" denotes the expression on
line (48) but without (h ® v). We define F;;(u(y)*v(y)"y) in the following way: Fpp,(u(y)%v(y)"™y) =
1 (D(u(’y)sv(v Ty =St iﬁi(u('y)sv(w)TV)) and, recursively, Fy;(u(7)*v(y)™y) = H;(u(y)*v(y)™y) +
Fit1,it1(u(y)v(y)™y) for 1 <i<n—1. If p=py, v #id, then p is a sum of monomials u*v" of degree

d

N + 1, and u®v" can be expressed uniquely as a sum of monomials in u(y),v(7), so we can also define
Fii(p)-

Finally, we should explain how to construct elements F;;(p) when p € E[N + 1]. It is enough to
consider the case when p is a monomial u(7y)*v(7)r on which some element v # id acts by the non-zero
eigenvalue p(y)*~". We have just seen how to define F;(u(y)*v(y)"™y), and we set F;;(u(y)%v(y)") =

(1 = =) HFaa(u()*v(3)"™), Fi(y )]
We have thus constructed elements Fqp(p) Vp € Clu,v] x T, 1 < a,b < n. Let
B={Fu(u’v"y)|1<a,b<n,r,s>0,v€l}
Let us fix an < order on B. We can assume that F,,p, (u®2 0" 1) < Fg,p, (4%20™29) if a1 # ag and ag = b.

Theorem 9.1. The canonical map Dj_g ,_g — grr(D}4,) is an isomorphism.

Proof. We follow the same ideas as in [Gu2]. We will prove that, when 5+ X — %IF\ # 0, the set of
ordered monomials in the elements of B is a vector space basis of Dj ;,. Suppose that we have a non-trivial
relation of the type

> >, c(d, A, B, R, S,y, EY)M(d, A, B, R, S,7, E) = 0 (57)

desy (A,B,R,S,v,E)€S2(d)
where Sq, S2(d) are finite sets, S1 C Z>o, S2(d) C [1,n]4 x [1,n]* X (Z>0)*? X (Z>0) 4 x X4 x (Z0)*4,
A= (a1,...,aq),B = (b1,...,bq), R = (r1,...,rq),S = (51,...,54), ¥ = (v, 7Y, E = (e1,...,eq),
[1,n] ={1,...,n} and
M(da A, B, R, Sv s E) = Falbl (u81vrl'71)el T Fadbd(uSdurdvd)Ed

is an ordered monomials in the elements of B. (In particular, Fq,p, (u*v"y%) # Fop, (u®0797) if i # j.)

Let us choose a specific (d, 4, B, R, S, %, E) such that
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1. Zgzl(rg + 54)ey has maximum value for which ¢(d, A, B, R, S, v, E) # 0;
. . d
2. and, among these, it has maximum value for > _; (1 — da 0, )eg :

. . d
3. and, among these, it has maximum value for 29:1 dazb,€q-

This choice may not be unique. Set M = M(d, A, B, R, S,j, F) Set 6 = ZZ=1 eg. Now suppose that
Lli,...,ln € Z>g are such that Iy + -+ 1, =1—6. Welet v=20'® - -@0,v=0'® .- @7 be the
following elements of (C")®! for [ > §: for e; +--- + ej—1+1<g<e +---+ej, set vI = vbj,ﬁg = Vg,

mg:xziy;i,ig:'y;EFXl,andsetvg:59:viif§+ll+~'+li_1+l§g§5+l1+~~~+li.

Because of our assumption that equality (57) holds,

> > c¢(d,A,B,R,S,v,E)M(d, A, B,R,S,7,E)(1® V) = 0. (58)
deS1 (A,B,R,S,y,E)€S2(d)

Consider the vector space basis of H;c(I'1) ®cjg,] (C™)®! (with t,c,3,b as in section 7, so that this

T Y x Y
space is a module for Dg)b) given by the monomials x?l qu’ e xflh yfl'y ®@V where ¢¥,q] € Z>o,7 € It

V=7 ®- - @7 with 79 € {v1,...,v,}. We can decompose the left-hand side of (58) as a sum of
vectors in that basis and do the same for M(1 ® v). The coefficient of mgsms_1---m17s---31 @ ¥ in
M(1 ® v) is equal to éc(d, A, B, R, S,%, E) for some ¢ # 0 which depends on the multiplicities ei, ;.
Furthermore, the only other monomials in the left-hand side of (57) which can produce a non-zero
multiple of msmgs_1 ---mi7ys - - -1 ® Vv when applied to 1 ® v differ from M only by the value of eg for g
such that a; = by, my = 1,7, = id. Because of our assumption on the order on B, these elements always
appear at the end of each monomials in (57). Therefore, the coefficient of mgmes_1 ---m17yy---y1 @ V in
the left-hand side of (58) can be viewed as a polynomial in [y, ...,[,. Since this polynomial vanishes for
infinitely many values of these variables, which can be given arbitrarily large independent values, it must
vanish identically, so its coefficients are zero and c(d, A,B,R,S,7, E‘) = 0. Repeating this argument, we
conclude that all the coefficients ¢(d, A, B, R, S,v, F) in (57) equal zero. This completes the proof of the

linear independance when g + A — )‘"Tm # 0. This means that the map Djj_q,_o — ng(Dg’b) is an

isomorphism if 5+ X — /\"T\FI # 0. By upper-semicontinuity, it must be an isomorphism for any g,b. O

Let ®; be the algebra homomorphism D} ;, — Endc (V') coming from the D} p-module structure on
H.c(l1) ®cis,) (C™)®

Corollary 9.1. (of the proof of theorem 9.1) Suppose that 8+ X\ — MT\Fl # 0. Given M € Dj,, M # 0,
there exists an 1> 0 such that ®;(M) is not identically zero.

10 Cyclotomic case

It is possible to generalize most of the results of [Gul] and [Gu2] to the case when T is a cyclic group of
order d. In order to do this, we first have to consider a family of graded Hecke algebras for the complex
reflection groups S; ! Z/dZ which were first introduced in [RaSh] and studied when d = 2 in [Del] and,
in general, in [De2]. We will then prove an equivalence of Schur-Weyl type between a localization of a
rational Cherednik algebra and an affine Yangian, generalizing the work in [Gul]. Afterwards, we will
explain how to realize the Z/dZ-deformed double current algebra D51, as a subalgebra of this affine
Yangian.
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10.1 Graded Hecke algebras for S, Z/dZ

Fix I,d > 1. Set I' = Z/dZ and let T'; be the complex reflection group G(I,1,d), which is the wreath
product I'y = S Z/dZ = 7./dZ*' x S;. It is generated by reflections Oiit1 € 5,1 < i <[ -1,
and by pseudo-reflections &; of order d, so (55}?;3 ~ 7/dZ,1 < i < 1. Let h = C! be its reflection
representation and chose dual bases {yi1,...,u},{®1,...,2;} of h and h*. Fix a primitive d*"-root of
unity ¢ so that &(z;) = (x4, &(yi) = (Tly;. Let e;,i = 0,...,d — 1, be the primitive idempotents of
Z/dZ, so e; = % Z?;é ¢77¢1 and let e; ; be the idempotent of T'; corresponding to e; in the k" copy of
I'inTy,so e, = %E;‘l;é C_ﬂfi

Definition 10.1. [RaSh] Let k € C. We define the degenerate affine Hecke algebra of Ty to be the
algebra H, (T;) generated by T; and by the pairwise commuting elements {u;}._, which obey the following
relations:

Eug =wi&G forany 1 <4,j <1, oy =ujo; if j#i,i+1
d—1
O;Uj+1 = U0 —+ Kzgi_kgf+l fOT’ 1 S 7 § l -1
k=0

Remark 10.1. Note that, when r = 2, T'; is the Weyl group of type B (or C), but the algebra Hi(T) is
not isomorphic to the degenerate Hecke algebra of this type as defined originally in [Dri1],[Lu]. If k # 0,
then HK (Fl) = H,‘Q:l(FZ)'

Proposition 10.1. The elements of the form p(uy,...,u)w constitute a basis of He(T'y), where w € T
and p(uq,...,u;) is a monomial in the variables uq,. .., uy.

The proof of proposition 10.1 given below uses the PBW property of a subalgebra of H; .(I';) - see
proposition 10.2. It will be convenient to rewrite definition 3.1 in a slightly different form.

Definition 10.2. [DuOp, EtGi] The rational Cherednik algebra Hyc(I'y) of Ty with (multi-)parameters
t € C,c = (K,c1,...,c4-1) € C4 is the algebra generated by C[h], C[h*] and T; subject to the following
relations:

oc-x-0ct=0(x), o-y-ol=0(y) forzeh*, ych ol
d—1
[y ) = yymi —wiy; = =k Y P& 0wl if i #
k=0
d—1

1 d—1
[Yi, i) = yiwi — iy =t + K ZZ Uz;§k+zd0k €k — €k—1,)
1 k=0

k=1
We denote by Vi, U; the following elements of H; o(I';) (see [DuOp]):

I od—1 d—1
1 t K _ 1
Vi = i(xiyi +yiz;) = 5ty g E E & ko ek + 5 E dei(er,i — ex—1,i)
1=t k=0 k=1
j

U, = +xzyz+’i Z Zg Uz]£k+zdckekz

1<j<i k=0

= -2 ngn j—i Zf el + i dey(er,i +ex—1,) (59)

J#Z B

24



In the computations below, the following formulas will be useful:

d—1

For i # j, [Vj, ;] = —g Z(C xj+x)& O'ijk (60)
k=0
o L=l 14!
Vi, 2] = tai + 5 DO @i+ CFay)g Foi el + 3 > der(eniri — ex—1.)i (61)
i=1 k=0 k=1

We need to obtain an expression for [V;, V;] for i # j which will be useful later, so we compute:

d—1
K _
Vi, V] = wilyis w5ly; + @52, yslvi + 5 | Z ij F o€l + Z Zf obilTYj (62)
b=1 k=0 b=1 k=0
b#j b#i
l d-1 l d—1
DD &owg" Y > & 0wl | (63)
b=1 m=0 e=1 k=0
b#i e#j _
K I d-1 d—1
Z dca ea i — €a—1, Z Zf O-b]f + Z Z Zgi_k(fbi§1k7 Z dca(ea,j - ea—l,j) (64)
5751 k=0 g;l‘ k=0 a=1
J 7

We compute each of the sums in (62),(63) and (64) separately.

d—1
K
(62 —HCEZZC 5 Uzgg Yj + KT ZC f Uzjgkyl + = Z xlyza§ Ut]f + 5 Zg kaij€f7xjyj]
k=0 k=0
=0
K, m oe—
TR DD D RO LR Fa Sl pl C it
b=1 k,m=0 b=1 k,m=0
b#w b#1,5
d—1
I{/ —m m —
T S S e
b=1 k,m=0
b#i,j
K}2 l d—1

—k—m ¢k —m—k gm ok —k kb
— & ovion + & E ovon — §ETTMES mo'biabj)

= 4 Z Z &R e (o0, oni]

sH
—
SH

-1

(64) = gzdca (l(eay — €a—1,0), &5 F0ii €81 + 1677 045€) s (€a; — €a—1,4)]) =0

a=1 k=0
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Therefore,

Vi, V5] = Z Z &R [ovs, o] (65)
b=1 k,m=0
b#1,5

Let ﬁm(I’l) be the subalgebra of Hy ¢(T';) generated by I'; and Uf;,1 <14 </.

Proposition 10.2 ([DuOp]). The elements Uy, ... ,U; commute pairwise. Moreover, the elements of the
form p(Us, ... ,U)w, where p(U,...,U;) is a monomial and w € Ty, form a vector space basis of the
algebra H ().

Proof. In view of equality (59) above, it is enough to show that

Vi, V] = Zagn —i Z& ablfz,ngne—y 25 ")

b7 e

Let us assume that ¢ < j. The right-hand side is equal to

d—1 l

2
K — —m
=—Zs1gn ) § § (€7 il & " on ) + sign(b— 1) Y Y €7 okl & o€
k,m=0 k,m=0 b=1
b;éz,] b#i,j

— %Slgﬂ((b Z Z 5 Ublgz 75 O-b7§ }

k,m=0 b=1

b#i,j

d—1
—k—m ke—k ke emk
Y S (e oo — & o — 7RG g
—m—k gm ok [ etk em e—k
+ & oigon — & +m€j &y obion; +§; mikeme: UbjUbi)

o d—1
K _
+ Z Z Z ( E k— 7n£ gb 0ji0b; _|_§ m£7n+k:§ 0104 + § k€m+k§J "LO'bzo'z]

k,m=0b>j
—m—k g ok —ktm g—m ok — etk gm o~k
— &R oo — & VT M ooy + 6 TREE; Ubj%i)
—k— —m emtk e—k —kgmtk e—
Z Z (f M oy — & R ayioiy 4+ &R M ovion;
k,m=01i<b<j

—m—k gm ok —ktm p—m gk —mtk pm e—k
— &R G oo + & VT e ooy — £ TRETE; O'bjabz‘>

2 l d—1
K —m—k¢m
=T 2. D & o onl = V)]
b=1 k,m=0
b#i,j
where the last equality is (65) below.
The second part of the proposition follows immediately from the PBW theorem for Hy o(I';) - see e.g.
[EtGi]. O

Proof of proposition 10.1. Tt follows from the definition of H,(T';) that the elements p(uy,...,u,)w span
H.(T';) as a vector space. We have to show that they are linearly independent. The operators U; satisfy
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the same relations as the elements w; in H,(I';) (see [DuOp]). For instance,

d-1
t
oliv1 = 50i + OiTit1Yit1 + K > Zaz£z+1o—z+1 i 00> derer i
1<]<z+1k 0 k=1
d-1
k
= 207 + x;y;0; +HZZ£ (71]5 014’526 £1+1+chkea,ioi
§<i k=0 k=1

—UJ,L—FFLZ& §z+1

k=0
This shows that we have an a~lgebra epimorphism H(T;) — ﬁt,c(Fg), which must also be injective
because of the PBW property of Hy o(I';). O
Corollary 10.1 (Corollary of the proof of proposition 10.1). The algebras H,(T';) and H;(T;) are iso-
morphic.
From corollary 10.1 and the computations before proposition 10.2, we deduce the following proposition.

Proposition 10.3. The algebra H,(I';) can also be defined as the algebra generated by elements y;, 1 <
1 <1, and v € I'; satisfying the following relations:

[fl # .77 YwYJ E E €7m kfmgb [Ubj70bl] oy;o = yg(z gayz = Yz'fa, o c Sl7 1 <a< l.
b;ﬁl k,m=0
2,

Setting yi x = yi€k,, 1 <1 < 1,0 <k <d—1, we see that H,(I';) can also be defined in the following
way, which will be useful later.

Proposition 10.4. The algebra H,(T';) is isomorphic to the algebra generated by the elements y; r,1 <
i <1,0 <k <d-—1, the idempotents ey; € C[I'}] and o € S; which satisfy the following relations:

[yi,k17yj7k2:| =0 Zf k1 7£ k27 €k1,iYi ks = 5k1k2§’i,k2 = Yi,k2€ky,ir €k1,5Yika = YikaCky,j ZfZ #j

d?K?
4

OYik = Yo(i),k0 [Yiks Ykl = €r,i€k, i€k b[0bi, Obs) if @ F# . (66)

b=1
bi,j

For each Weyl group, I. Cherednik has introduced the notion of double affine Hecke algebras (DAHA)
[Chl]. These algebras afford two types of limit versions called degenerate (trigonometric) DAHA’s and
rational DAHA’s. These rational Cherednik algebras can be defined for any finite complex reflection
group, but no such definition exists for affine or double affine Hecke algebras. We propose to introduce
the following algebra, which extends the definition of the degenerate DAHA of type gl; when d = 1.

Definition 10.3. We denote by Hy (') the algebra (C[xli, ... ,xli] ®Clzy,....) He,e(T1). (We can localize
Hie(Ty) at Ul {1,2;,22,...} since this is an Ore set.)

We can obtain a presentation for H o(I';) which is an affine version of definition 10.1.
Proposition 10.5. The algebra Hy (T';) can also be defined as the algebra generated by xli, e xli,v el

and the pairwise commuting elements uy, ..., u; subject to the following relations:

1. The subalgebra generated by xft, . ,xli, v € I'y is an epimorphic image of (C[a:li, e ,a:li] x I'y.
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2. The subalgebra generated by uq,...,u; and v € I'; is an epimorphic image of Hy(I';).

d—1 ._ 7 _

3. oou; — oo(uj)og = —k{ao,u;) Zk:})g‘ keke ™  where oy = w12 oy, u € spang{uy,...,u} and

ap = ul —ui, {ui,...,uf} being the basis dual to {u1,...,w}. (0o(u;) is defined in analogy with
the action of the affine Weyl group on h*.)

4. Uy = uim if ¢ 1, mup = (ug — t)m where T = x17 and T = 012023 - - 01—14-

Corollary 10.2. For any ¢ = (k,c1,...,¢cq-1), Hec(I'1) = Hy c—(,c,—0) (7).
An isomorphism H; ((I';) — H; c—(s,c,—0)(I'1) is given by y; = y; — (ZZ;} dckek,lyi) x;l

Proof. The second set of relations was already obtained in the proof of proposition 10.1. We have to
establish the third and fourth relations for U;. The conclusion will then follow from the PBW property
of Hy ¢(I';). Suppose first that ¢ # 1, 1.

d—1 d—1 d—1
-t el k. ck k. ek dever s
oold; = 2Uo+wzx1x, Y01 + K & oo+ R Y 0o Tou& + CLek,i00
2<j<i k=0 k=0 k=1

d—1
_t 1 ~1 —k_ ok
= 500 +xizr [z, yilou + ziryix, ou+ K & "oi& o0
2<j<i k=0

d—1 d—1
ek stk
+ K E xix; & Topgionu + E dcrey ;00
k=0 =1

d—1

t -1 ke—k k,.—1 -1 -1

= §Uo+f€$i$1 (-% E ¢ fl ou&; x; 01z+$i[$1,yz‘]$l o1 + ZiYix1T; o1
k=0

d-1 -1 d-1
k_ ¢k ke—k ok o —1
+kK E § & o 00+"€§ CU6 Fou&i iy oy + E depey ;00
2<;5<i k=0 k=0 k=1

d—1 d—1
R S | ke—k k) -1
=—K E & Cxy ou& i r; o1 + Ky ( E ¢7& Uli§1> x; "oy +Uog
k=0 k=0

d—1 d—1
—k —k —1
*”Zgi Jlifl]-c(f()‘i’lizckfi ailff:clxi 011
k=0 k=0

= U;09

The other case left to check is ¢ = 1. (The case i = [ follows from this one.)

d—1 d—1

t —1 —1 —ka ¢k
ooldy = 500 +z12; "TIY1011 + 2 an ZC oy
a=1 k=0
; d-1  d-1
_ “k(a—1) ¢k, .1
= 5090 +z1y1011 + an ZC (a )fz T, T10u
a=1 k=0
; d-1
= 500 + (@1, ylou + yixroy + chkekq,zao
k=1
; d-1 d-1
=300+ RZCkffkguﬁfUu + [y, z1loo + 2iyio0 + chkekﬂ,lao
k=0 k=1
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-1 d—1 d—1
l ke—k ok —k ¢k
= 500-1-/@];)( G+ |t+k Z Zfl o1& “"kz_ldck(ek,l_ekfl,l) oo

1<j<l k=0
d—1
+ zyio0 + E degeg—1,100
k=1

—/‘JZC §7EE + (U + t)oo

We now have to check the third relation involving 7. First, let us assume that 7 # [.

d—1 d—1

t —k k
U = 57 + 21 | Tig1Yiv1 + K E E §it10i+1,585% + § deperit1 | T
2<j<i+1 k=0 k=1
d-1 d—1
=357 + | ziv1[®1, Yis1] + Tig1yiz R §il10i+1,58i41%1 + Ck€ki+1T1 | T
2<j<i+1 k=0 k=1

= §7T+ Tit1 (HZC 51 o1 z+1€1> + ZTit1Yi+1T1 + K Z Z£1+101+1,]§z+1$1

— 1<j<i+1 k=0

d—1 d—1
§ —k k §
—K £i+1017i+1£i+1x1 T+ deek7i+1ﬂ'

k=0 k=1

i+170

Finally, we check the relation for ¢ = [.

d—1 —
Uy §7T+ x1y1+f€3€1 Z 251 Uljf1 +Z%ZC kaxlgf T
a=1

2<;<1 k=0
d—1 d—1
_ t —k ¢k d
=57 + | iz + @[z, ] + k2 & To& + CrLek+1,1T1 | T
2<;<1 k=0 k=1

d-1 d-1
t _
= §7r+x1y17r+ T | —t—k E E & oy e8 — E dei(er,1 — ex—1,1)
k=1

1<5<l k=0

+r21 Z 251 o8 T+chkek+1 1T

2<5<l k=0

= (Z/{l - t)ﬂ'

10.2 Schur-Weyl duality in the trigonometric setting
In this section, we establish Schur-Weyl type of equivalences for H,(I';) and for H; ¢(I';). This will have

applications for H; ¢(I';) in the next subsection. Recall that C’n_l = (¢ij)o<i,j<n—1 18 the n x n Cartan
matrix of affine type A, _1.
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Definition 10.4. Let A € C. We denote by Y," 4 the algebra generated by the elements Xt . HE

IR 17“3’

1<n—1,0<j<d-—1,7r >0 which satisfy the following relations: for any 1 <iy,i0 <n—1,11,72,8 E
Zzo.‘

If j1 # ja,
+ + + +
[Xll r _]17X12 ro 32] [X“ r1,j1° Xz:'; ro J2] =0= [Hilg"'l’jl’Xlg T’Q,J2] = [Hi17""11j17Hi2gT2’j2]
+ + —
[Hiy o gs Hira i) = 05 [Hiz 03, X, o5) = Fiia X5, 50 X0 50 Xy g] = i Hivritraj - (67)
A
+ + +
[Hi1,T1+1,j7 Xi27r27j] - [Hhﬂ“l,j? XiQ,r2+17j] = i§Ci17i2S(Hi1,T1,jvX127r2,_j) (68)
A
+ + + + + +
[Xil’ﬁJrl,j’Xiz:Tz,j] o [Xi17""1aj’X7;2:7”2+17j] = iich’ir"s(xlhhd’ Xi2ﬂ"2,j) (69)
. . + + + +
For any 0 < j1,70 <d—1, Z |:X'i117"7r(1)1j1’ [Xil,r,rm,jl’ o [Xil,r,,<m>,j1’Xi2,s,jz] .. H =0 (70)
TESm
where m =1 —¢;j,71,...,7m, 5 € Z>g.

Remark 10.2. The algebra Y/\”’d is isomorphic to (Y{*)®? where Y* = Y)\"’d:1 is the Yangian (of finite
type) for sl,. The reason for using the notation above will become clear in the next definition. We will

write X, H; ij instead ofX H;io;-

i.,j° 4,0,§7

Definition 10.5. We denote by ?;\Lg, B=(Po,B1,.-.,B4-1) € C?, the algebra generated by the elements
X+ H;,;;0<i<n—1,0<j<d—1,r >0 which satisfy the relations in definition 10.4 (extended to

2,7,J7
i1 =0 oriy =0) except that certain relations for iy = 0 or is = 0 must be modified:

[Ho,ri+1,i5 Xafr27j} — [Ho,ry i XJTQHJ] = 0ij—1AS(Hor i, X(;fm,j)v (71)

[H0,07i7X1i,7‘,_]] Foij- 1X1 30 [HO,O,i,Xo rJ] 20;,5- 1X0 T (72)

(X010 X065 = 0im1,jHorts.5 (73)

[H1,04 Xg,5] = 0041 X050 [Hno104 Xg 5] = =0i41,; X3, 5 (74)

[X(j_n«H_]’X;:rh]] [Xarrl,yXlJr,errl,j] = (B —NX 1 FON| 0 JT1d - B X, 0 10 ]—.‘r’rz,_] (75)
[XO_nJrl,J’Xl_mz,jH] [XO_rl,_]’ Xl_,rz+17j+1] = 6j+1X1_,r27j+1X0_r1j - (5j+1 - A)X(Zi_rl,JXI_r27J+1 (76)
X501 Xl gl = X o1 X g g) = B = VXS a1 =B 50 g (TT)
(X0 415 Xn—t,ra5] = (Ko 30 Xn—1ra113] = BiXo 5 Xn—1,00.5 (BJ )X,y T27JX0_T1,J (78)
Xt g0 Koy = 0= X0, 50 X1y go) G2 # 51 +1 (79)

From relations (73) and (75)-(78), we can obtain relations similar to (68).

Remark 10.3. Proposition 5.3 states that Y)\ 0,60 i isomorphic to Usl, (Clu*!, w] x T') with T acting
on u by &(u) = Cu and trivially on w. The subalgebra of ?Zg generated by the elements Xi Xfod
and H;5 = H, o5 is isomorphic to Usl, (Clu®!] x T). It is explained in [GHL] that sl,(Clu®!] x T') =
sl (C[tHY)) with t = u® and thus sb, (Clu™, w] x T) = sl,,4(C[t*!, w])

Definition 10.6. A module M over ?;\lg is said to have trivial central charge if the action of the element

Z Zn ' H; 0 18 trivial.

Definition 10.7. The quotient of Y" d by the ideal generated by the central element Zd ! Zn ! H;o;
will be denoted LYfﬁ
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The main results of this section are the next two propositions, which extends the results in [Gul].

Proposition 10.6. If A\ = kd, there exists a functor SW : Hy(T';) — modp — Yf’d — modlIf"t given by
M — M ®¢(s,) (C™)®" which is an equivalence of categories if | +1 < n.

Theorem 10.1. If A = kd and §; = £ )‘(n4_2) + (Cj_c;“)d (where co = 0 = cq), there exists a functor
SW : H; (T}) — modr —> Yfg odlL i given by M — M ®cjg,) (C™)®! which is an equivalence of

categories if | +2 < n.

Proof of proposition 10.6. We use the presentation of H,(I;) given in proposition 10.4. Set wi =
e DI S([Xi Xi] XOT) S(Xi ij), where X is the matrix E;; € sl, if fa = ¢ — ¢,

.37 .37
! +,(k
and J(EF); = Xli1J + /\wfj. Setting J(Ei) (mev) = 1myr; ®E; ( )(v) and Xz.jz.(m@v) =

Zk 1 Me;j K (X)EjE (k)( ) for m € M, v € (C")®! gives M ®¢[s,] (C")®" a structure of left module over Y;".
This follows from [Dr1] and equality (66). Since yi, j, Vs, jo = Yka,joVk1,j2 a0d €, i, €5s ko = 0 if j1 # jo,
we can conclude that these module structures commute, so we get a functor SW : He(I';) — modg —
v? — mody™.

Assume now that [ + 1 < n and let N be an integable Y/\"’d-module of level [. Since it is a direct
sum of finite dimensional modules over sl,(C[Z/dZ]), according to proposition 7.2 (see also [ATY]),
N = M®cjs) (C™)®! for a certain I';-module M. It follows also from [Dr1] (or by mimicking the argument
in section 4.5 in [ChPr1]) that J(EF); = Zk LMYk @ F; .0 )( ) and that y; x, 1 < i < satisfy (66).
That y; %, and y;x, commute as operators on M if ki # kg is a consequence of [J(EF)y, , J(Eji)kz] =0
if Ky # ko 0

Proof of theorem 10.1. This is similar to the proof of theorem 5.4 in [Gul]. Let M € H;. — modg.
—8iyn —8iyn

We define a linear automorphism 7' of M ®c(s, (C")®! by T(m ® v) = max; sy ® vy1 where
Vil =010 - Quj ifv=0, @ Quy,. Y" 4 admits an automorphism p defined by

r P
p(Xfrvj) = Z < ; ) (;\) Xii_u_p,j if i # 0,1 and similarly for p(H; r ;) (80)
p=0
T r T r
(X)) =D ( » )5?X()+,rp,j’ P(Xrs) =D ( » ) 1 X1 pio1 (81)
p=0 p=0
_ ~ [ r _ - T _
p(Xl,r,j) = Z < P > BfXO r—p,j—1’ p(XO,nj) = Z < D ) Ban—l,r—p,j (82)
p=0 p=0

s

p(Hirj) = Z < ; > BYHor—pj-1, p(Horj) = Z ( ; )6?H7L—1,r—p,j (83)

p=0 p=0

Let ¢ : V{"" — Ende(M ®cysy) (C™)®') be the algebra homomorphism coming from the Yy module
structure on M ®c[g,] (C™)®!. The next lemma is the crucial part of the proof of proposition 10.1.

Lemma 10.1. Under the same hopytheses on the parameters as in theorem 10.1, the following equalities
hold:

P(XEg) =Tow(p(XEy)) o T if2<i<n—1, p(Xf

1,7, 7,7, 1,7.j

) =T2op(p(XF, ) o T (89)

and similarly for H; ,; instead of XZ e
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Proof. We give a direct, detailed proof of this equality similar to the first approach to lemma 6.2 in [Gul].

We only need to prove it for = 1 and for Xj’l’f.

We have the following expressions for wff ¢ and w;ll’f:

n

1

Jj=3

13 1
+_17f = _Z Z S(Ejn,f; Enfl,j,f) - ZS(Enfl,n,fa anl,f)
=1

Fix v=v; ® - ®uv; € (C")®". Suppose that ji,...,j, (resp. n1,.

(resp. of 1)) such that i; = n (vesp. i, =n —1). Then T?(m ® v) = ma; "

Ji
wpt go=apteap el o= ap et Since X = J(X)r — )\wa, we obtain:
I
X1+,1,f (T2(m ® V)) = Z mxjil%..A,jpx’gll,...,’l’]cyk‘ef»k ® E§§)(V+2)
k=1
Ay 1

1 > S(Bjog, Evie)(may | al

Jj=3

A
+4S(E12f7H1 e)(mz; ' art

11, I MLy Me

In the summation (85), we can assume that k = j, for some r, since otherwise Eg)(vw)

P e

- _1 71 . ...
(85) - Z mxj1,~-7jp$711 Im; 1[ U ’y]T] 7]b+1
r=1b=1
p P
—1 -1,.—1
+szle g 1[ Jb ’yJT] Jb+1 '.'a:jp TR

,_.
S
Il

1

-1 -1 ()
+ mykle,...7jpxn1,...,neef7k ®EJlQ (V-‘r?)

~
Il
-

1
wie= Z ZS(Ejz’f,Elj’f) - ZS(EIQ,ﬁHLf)

o ter ), © B (vis)

esj ® BL) (vis)

.,77@) are exactly the values of j
x;ﬁl ® Vyg. Set

=0.

The last expression is equal to T%(J(X;'_;)¢—1(m ® v)). As for the term on line (87) above, it is

equal to %T2 (S(Enflyn’ff]_, anlyffl) (m® V)) Therefore,

X (T2 (m @ v)) = (88) + (89) + (86) + T2(X,} | ¢ 1 (m®V)) -

(The expression (102) appears explicitly below.)
We need to decompose the sums (88) and (89). Sum (88) equals

p e b-—1

_ k -1 -1 -1 /-1 kg 71
- _5 ZZ mejl ,,,,, Jpxnl e xﬂb—l( +C )gnb Unb7]7"€77b 77b+1 ’

r=1b=1 k=0

_ _k 1 -1 -1 _—1_-1 -1 , (1s) )
- szxjh jpxnl x"]b—lxnb m.77174.1 xne CrmCf.jn ® E12 (Unb,Jr (V+2))

rlbl

_k 1 -1 -1 -1 -1 —1 ) (ns) )
sz%h ipTm Lry1Tj, Lopia Z, €fmerilj, @ El, (Unb,Jr (V+2))

rlbl
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As for the sum (89), it equals

p P
_ -1 NS . | , (Ja)
- szle xgb 1[ b 7y]a] ]b+1 ‘rjp xnl,.“,neefvja ®E12 (V+2)
a=1 b=1
b#a
‘ (o)
—1 —1 —1 —-1_-1 Ja
+mej1 T, 1[ s Vialj, ]a+1 Ty, Topseme €Fda @ B2 (Vi2)
a=1
K p p d-1
_ K —1 k k 1 Ja
- 92 ZZ ml’jlu“wjbfl( +< :E )gjb Tib:Ja waijrh odpTn,eme ©F da ®E12(V+2)
a=1 b=1 k=0
b#a
p K l d-1
-1 -1 —k—1\e—k ¢k -1
+mej1,...7ja,1 D) Z (‘Tja +¢ T4 )gja U]aaQEja+tha
= q=1 k=0
q#Jja
—1d-1
J -1 -1 (4a)
+= > dey(epirg, —ev-1) |25t s wnt L ers. @ B (Vi) (93)
b=1

pod P L . ~ - _
- 2 Z Z (mlev SJb— 1ij10ja’jb (:Ujblﬂ,--~7jp)xml,m,neef,jbef—5(a>b)7jn, ® Egb) (Jjafjb (V+2))(94)

b#a
-1 21 -1 — (€]
+mx]1y SJb—1 Ja Ojv.da ('ij+1,...7jp)xnllw-77]eefajbef+1—5(a>b)7ja & El%b) (Oja,jb (V+2))) (95)
P 19=
2t achueb,ja epag) | marl L anh ers, © BE) (vis) (96)
a=1 b=1
l
kd -1 -1 -1 -1 (9)
g 2l Yo magt o aterg ot et )en ® By (0,4(v42)) (97)
=1 gq=
¢ qq jla
kd I~
-1 - —1 — )
Ty Somant v e 1.0 T 0 )era @ B (0,,0(V42)) (98)
a=1 q=1
q#ja

where §(a >b)=1ifa>band =0if a <b.

We now focus on wie(T?(m ® v)) and T?(w,_; ¢_;(m ® v)). Earlier, we have used the equality

)\wif (T?(m ® v)) = —(86) — (87). We can decompose (86) by considering the cases when Ej; and Ejs
act on the same tensorand and on different ones:

n—2 _ _
60 = A7) ot s B (van) (99)
k=1
A n ! D
+§Z Z ngf1 7];0‘7;77111 ,neef,qefjb®E§2)(qub(v+2)) (100)
j=3 z‘qflzjb 1
A n—2
AT (W) y(m@v)) = fZTQ > S(Bjng-1,En-1j-1)(m®V) (101)
j=1
A 2
-7 (S(En-1nf-1,Ho-1,6-1)(m@V)) (102)
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We observe that —(87) = (102). As with (86), we can decompose (101):

l
n—2 _ _ k
(101) = =-A ( 4 ) Zm‘rjl%...,jpxnll,‘..,neef;k? ® (E7(L—)17TL(V))+2 (103)

=

A n—2
_§T2 Z Z Z mef_1,q€f-14, & Efztzzl,n (Jq,jb (V)) (104)

j=1 a=1 b=1
1q=]

We note that (99) — (103) = A (252) T?(Ep—1,nf-1(m ®v)) and

l D
-1 o—1o—1 (q) )
E , E :mef—l,qef—l,mejl,...,jpijxq T ®El (quyb(v+2))-

(104) = —

<
Il
—
i
o
=

To obtain the last expression, note that i, # ju, 7 for any a, h since i, = j and we consider values of j
different from n and n — 1.

We now decompose the sums (97) and (98) into three different sums. In the first case, ¢ = jp # jqo; in
the second one, ¢ = ny,; and in the third case g # j,, np for any a, h. The sum (97) equals

p p
rkd -1 -1 - j
-5 > magt ericion @it et e, © B (05, 5, (v42)) (105)
a=1 b=1

b#a

Kl _ _ _ _
‘*‘7 Z Z mle%...,jaef;jaxjail ,,,,, jpx’l’]ll,...,ngxnh :Cjalefﬂlh ® Egh) (T <V+2>) (106)

Kkd _ _ _
+7 Z Z mxjj...,ja eﬁjaxjail ,,,,, jpxml,.‘.meef,q ® Eg) (U.ja;q(v+2)) (107)
a=1 q=1

qF#ja:mn

As for the sum (98), it equals

Kd o~ o -1 -1 -1 - j
7 Z mejla“wja—lij €f—1,5a05a,jb (xja+17~~ujp)x7711a-~7773ef7jb ® Egb) (Uja7jb (V+2)) (108)

a=1 b=1

€

p

kd

-1 -1 | -1 -1 (nn) (.

"‘?E E:m% ..... Jac1Tnn ©F=13aLju iy, ipTan,me Tonly, efm, ® Eiy (Ujavnh(v+2)) (109)
a=1h=1

kd _ _ _ _
+?Z Z mxﬁ%---,ja—lxq1ef*1’jaxja1+1 ----- jpxmlw,neefflxq®E£g)(0ja,q(v+2)) (110)

The following equalities hold since we are assuming that A\ = kd:
(87) = —(102), (107) = (100), (110) = —(104), (109) = —(91),

(92) = —(106), (94) = —(108), (95) = —(105)

i A(”;Q) + (cffzf“)d, we can prove that X7, ¢((T?(m @ v)) =

T2<(X:—1,1,f—1 + (By + ﬂf—l)X:—Lf—l)(m ® V))i

Using our assumption that 3; =

Xf:l,f (Tz(m ® V)) - 17 (X;——l,lf—l(m ® V)) = (85) + (86) + (87) — T* (X:—Ll,f—l(m ® V))
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=(88)+<89)+T2(J(X _Di—1(m @) = THX i (m@v)) + (86) + (87)
=(91) 4+ ...+ (98) + (86) + (87) + (101) + (102)
=(91) + ...+ (96) + (105) + ... + (110) — (99) — (100)

+(87) (102) (103) + (104)

=((87) + (102)) + ((91) + (109)) + ((92) + (106)) + ((94) + (108)) + ((95) + (105))
+(96) — (99) + (—(100) + (107)) + ((104) + (110)) + (103)

=(96) — (99) + (103)

_ (t y (n ; 2) N d(Cf—12— Cf+1)> T*(Epormga(m ®v))
=By + Br-1)T? (Xr—l;l,ffl(m ®v))

O

Using the equalities (84), we can extend ¢ to an algebra homomorphism Yfg — Endc(M ®cs,]
(C™)®!) (also denoted ¢) by setting @(X(#”) Top(p (XSE”) oT~!. We have thus constructed a functor
H,; .(I;) —modg — \A{z\lg — modfifw. The proof that it is an equivalence of categories when [ +2 < n

follows the same approach as the second part of the proof of theorem 5.4 in [Gul].

Let N € ?”’d dZL”;,lw Since N is a module over Yy and over $Usl, (C[ut!] x T), it is equal to

M ®c(s;] ((C”)®l for some T';-module M, which is also a module over H,(T;) and Clzi’,..., 2] x I
We have to show that these two structures can be glued together to give M a structure of module over
H, .(T).

Fix 1 < j,k < 1,j # k. We choose v to be the following generator of (C™)®! as Usl,-module:
V=0 @V, @---®@v;, where ¢ =b+3ifb<jb#k, iy =0+2if 0> j,0#k,i; =2 and i), = 1.

We can express w, ¢ explicitly in the following way:

1
Cn)@l = —— Z SlgIl 2 - b Egb’f, Eblf) — ZS(Egg’fy HQ’f)

b7£2,5

We find that (XZTLleaf& - X(;fsz;,l,fl)(m ® V) equals

l
> (mares,—1rep, Vo @ B EY (v) —mey, JViwrep, 1, ® BB (v))

MN

1s=1
= Mwy g, Xog, ) (m @ V)

\3
Il

A N
=mlzres,_1k, Vies ;] @ ESES (V) = 6, 1, 5MTje 180k © ESYEY) (v)
A N
—0f,fo—1 5MTkEf,—1,k€f1,j ® ESYEY) (v)
A A -
=m | [zrep— 1k, Vies il = 0p1. 125205k 18815 — 01 fo-1 5 TRTjR 1 j -1k | BV

where v = E§J2)E7(ﬁ) (v). We know from relation (69) that [X2_,1,f1’X(Ifz] = 0, so the last expression

is equal to 0. Since V is a generator of (C")®! as a Usl,-module, it follows, from lemma 7.1 and our
assumption that A = kd, that

rd rd
m | [vkes, -1k, Vier ] — Of1.f2 5 TjOGhC 21k 1j ~ Oy fo=15 ThOjRC S j€ -1k | = 0.
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Summing over fi,fo = 0,1,...,d — 1 and using Z?;éef’kef}j = 4 Ef ofk f§Jf, Z?;é ef_1k€f; =
3 Zf OC fg,;fgj yields relation (60).

We consider now the relation between xj and ). Setting

n

1 & 1 1 1
VLE =g 2_; S(Evig, Eig) + §S(E12,f7E21,f) 1 ; S(Eai g, Eiog) — §H127f7

we have that H; 1 ;(m®v) = J(H,;);(m®v)—Avi ¢(m®v) with J(H;)(m®v) = Zizl mykef7k®Hi(k)(v).

Fix k, 1 <k <1. We now choose v to be equal tov=1v;, ®---®u;, with i, =b+2ifb <k, i =0+1
if b > k and i, = 1. Note that v;, # 2,n,n — 1Vb since [+ 1 < n — 1 by assumption. We obtain:

. 1o~ (r 1 . n—
B () = 5 Y EYEY (V) = Jou By (v) if r # k. [Eff?,vl](v)=< y )Ef!?() (111)
b=3

We need (111) to obtain equation (112) below. We compute that (HLLfXS:f - ngfH1717f)(m ® V)
equals

l l l

SN meparep V@ H{ES (v) =Y Z me;. Vses iz, @ B HY (v)

r=1s=1 s=1r=1
—Alva g, Xg:f](m ® V)
l
= —mey, kykef kTr & E(k)H(k)( % Z mirefr_1r€fk ® o'kTEgi) (V)
rk
n—2 (k)
+A <4> mesxy @ B, (V)
l

~ A ~ n—2 ~
= —mlerpTref_1k DV + 3 Z MTrOkref_1k€fr OV + A (4) mrgef_1 5V (112)

r=1
r#k

where v = Eﬁlk)( ). We want to obtain a similar relation with H; 1 ¢ replaced by Hy—11¢-

From the definition of v,,_1 ¢_1,

n—2
1 1
Vn—1f-1 =7 Z S(Epnf-1, Enpg—1) + is(En—l,n,f—lv Enn-1£-1)
1= 1,
EZ (Bv—1,6-1,FEn—1p£-1) — 2Hn—1,f—1
=1
We can check that [E,(fl)7 Un—1](v) =0if r # k and
12l n— n—2
k k) (s k) - k
) =~ S S AR - (U5 et = 5 owrttn - (57 et
=2 2k oz

(113)

The equation (113) allows us to compute that [Hy—1.1¢-1, X(')ff](m ® V) equals
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l
S (mep aver 1.V ® H B (v) —mes_1Veep oz, @ EWHY, (v))

r,s=1
_A[Vn—l,f—lan:f](m ®V)
= mzresr_1 pVker—1k ®H(k) E,(ﬁ)( )
A ! n—2
D) > mak (orres_1ner_1,) ® B (v) - ( 1 ) er 1k ® B (v) (114)

r=1
r#k
From relations (67), (74), (75) and (77) in Yfg, we know that
Xie=—[Hive, Xgel + (Br — NH1 e Xge — B Xg ¢Hu g
= *[Hn—1,1,f—17 07f] - /Bf—lHn—l,f—lXS:f + (By-1 — A)X(]L,an—1,f—1

Applying these two expressions for XSLM to m ® v, using equalities (112),(114) and the fact that
Hl’fXJf(V) =0 and Xafan,Lf,l(v) = 0, we obtain that the expression

l
~ A - n—2 ~
mYpxres 1, QV — 5 My Opr€f_1 k€FrV — A ( 1 ) mrref_1p @V — 6fX6":fH17f(m V)
"k
equals
_ A¢ _
mapYVrer_1x @V + = mekakref—l,kef—l,r Qv
2 r=1
r;ék
n—2 ~ +
+A magefs_1, @V — Br1Hp 1p-1Xg(m®v)
Therefore,

!
~ A ~
mlzg, Viler—1.6 @V + 5 Z m(zrer i + Th€—1k)0kr€ 1% QV

+A<”_

Since Vv is a generator of (C")®! as a Usl,,-module, it follows from lemma 7.1 and our assumption that

Bf _ % i /\(n472) + (C.f*c2f+1)d’)\ — rkd that

r=1
r#k

2 ~ ~
) mIges_1 5@V + (ﬁf—l + ﬁf)ml‘kef_Lk ®v=0.

l
kd d
m [xkvyk]effl,k + 5 Z(xref,k + xkeffl,k)akref—l,k + (t + §(Cf71 - Cf+1)).%‘kef,1’k

2
r=1
r#k

vanishes. Taking the sum over f =0,...,d — 1, we obtain that
o Ll =
m([zk, V] + tzg + 522 ar + w8 Soinéi + 5 cha €at1k — €a—1,k)Tk) = 0.
j=1 s=0 a=1
I#k
Therefore, we have proved that the H,(I';)- and the Clzi', ..., z;""] x I';-module structure on M

can be glued to yield a right module over H; ¢(I';). To prove that SW is an equivalence, we are left
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to show that it is fully faithful. That SW is injective on morphisms is true because this is true for
the Schur-Weyl duality functor between C[S;] and Lsl,, so suppose that f : SW(M;) — SW(Ms) is
a Yz\’:g-homomorphism. Schur-Weyl equivalence for sl,(C[u*1]) and Yi* says that it must be of the

form f(m; ® v) = g(m1) ® v,¥m, € M, where g € Home(My, My) is a linear map which is also a

homomorphism of right ClzT?,. .. ,xi7']- and H,(T;)-modules. Since H, (I;) is generated by these two

subalgebras, g is even a homomorphlsm of H; ¢(I';)-modules. Therefore, f = SW(g) and this completes
the proof of proposition 10.1. O

It was explained after proposition 10.5 that Hy ¢(I';) = Hy c(x,c,—0)(I'1). Therefore, it is reasonable
to expect that {/fg depends only on two parameters. This is confirmed in the next proposition. Let
=257 B; and let Y" ? be the algebra defined as Y}'§ with all the f; and A — §; replaced by 3

relatlons (75) - (78) except that (75) and (76) for the cases j = 0 and j = d — 1, respectively, must be
replaced by

A
[X(;trl-i-l,O?XlJCrbO} - [X(;fr1707X1+,r2+1,0] (B - )Xfrz,oXJrl,o (B + )Xo r1,0X1 2,0

[X(;r1+1d 17Xfr2,0] [X(;rl d— l’Xfr2+1 0]

_ B B ~ ~ ~
= (5 + 2> X1 0.0%X0m a1~ <ﬂ - 2) X0 r1.d-1%51,r2,0

Proposition 10.7. The following formulas define an algebra isomorphism ¥ : Y” 4 ?Z% for any

A B.
_ . T s A\ .
\I/(X07T,7j)z< s >2 (50+---+5j]2> Xoyosyfor0<j<d-1
s=0
. r s ) A\ ° )
\IJ(XJT’J.):Z<S)2 <ﬁ0+...+ﬁj_1—(j—1)2) XS'T sjforl<j<d
s=0

. T A\’ .
‘I/(Ho,r,j) = ( 5 )23 (50 +... 45 —]2) Hyp 53 for0<j<d-1
0

s=
For1<i<n-1,

T

V(X)) = < Z ) <2ﬁo+...+2ﬂj1+5j —(2j—1)

s=0

| >

> er ng0r0<]<d—1
and similarly for H; ;5

In view of proposition 5.3 and the comments preceding it, the next corollary is not surprising.

Corollary 10.3. Y)\ 8 is isomorphic to an affine Yangian Y)\ Nl for sl,q

H;, for 0 <i <nd-1,r € Z>¢ and an isomorphism sends X:r — X

Y/\ % is generated by X”,7 Jnisr
for1<i<n-1,0<j<d-1, XOrfn—>X

for0<z<n—10<]<d—1,X ;X

Jntir ,. for
0<j<d-1(and X, . =X;,)

(F+1)n,

dn,r

In the definition of affine Yangians in [Gu2], the parameter 8 appears in relations involving X0 ” X 1s
and also X0 - X,f 1,s- However, the relations before proposition 10.7 involves only X - and X7 i . This
is not a contradlctlon affine Yangians can also be defined in such a way: this is explamed in sectlon 3in

[FENR)].
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As is explained in [Gu2], when A = 0 and 8 # 0, the affine Yangian ?f{:o,ﬁ is isomorphic to
5A[,1(D((CX))7 the universal central extension of sl,, over the ring D(C*) of differential operators on the
torus C*. Corollary 10.3 then implies that Y;\Lfo’ﬁ is isomorphic to sl,q(D(C*)) when ' # 0. This is a

consequence of the following observation: D(C*) x T' 2 My(D(C*)), an isomorphism being given on the
generators of D(C*) x T by

do 0 0 0 1 0O --- 0
0 do—1 0 : S0 1

we [0 : , ue 0
0 0 do—(d—2) 0 0o . .0 1
0 0 0 dd —(d—1) 2 0 - 0 0

and the generator ¢ of Z/dZ goes to the diagonal matrix with entries 1,¢~',¢~2,...,¢~ (@1, Here, we
view D(C*) x T as the algebra generated by w,u,u™! and &/ € I',j = 0,...,d — 1, with the relations
wu —uw = u, Ew = wg and u = (ué; we view D(C*) as the algebra generated by 0, z with the relation
0z — 20 = z. Note that u¢ is mapped to the diagonal matrix with entries z, z, ...,z on the diagonal.

10.3 D}, (Z/dZ) as a subalgebra of LY‘ié

Since Hy,c(I'1) <= Hy,c(I'1), we may expect Djj ,(Z/dZ) to be isomorphic to a subalgebra of LY(;\’E' This
is indeed true.

Definition 10.8. Let Lﬁ’é be the subalgebra of LY‘;\’E generated by Xz‘j,tr,jﬂHiyr,jﬂX(ir,j»X(;,r+1,j for 1 <
i<n—-1,r>00<j5;<d-1.

In order to prove theorem 10.3 below, we need to construct a Schur-Weyl functor between IL W] and
Hic(T';). Asin [Gul], we have to compute how Xo j acts on M ®cjs,) (C™)®! for a right Hy ¢ (';)-module
M. For m € M, we find that [J(Hi)¢, Xg¢ 4](m ® v) equals

l
> may Veerr @ EQ) (v) + Z mlzp !, Viler1xer,; @ HYEL) (v)
k=1
J#k

l
== > mlye + i ra)err © B (v)
1

k=
. l d—1 . ' ‘
) Z (Z(Cﬂ%l +$k1)£k’0jk£i> erpes; @ HOEW (v)

=0

l\D\'—‘

l 1 l

k
=) mykefk®E() )5 > mlr weleker e ® By (v)
k=1 k=1

Hd
Z may tojresres; @ HY B (v)

J#k
l

= myresi ® B, (v)
k=1
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+ = Zm tr, —|—KZZ$,€ & ajkgk—kchaxk €4k — €a—1k) efk®E(k)()

i=1 =0
J#k
kd ) (K ) (K
S e egy e (FOES - EDE)
J,k=1
ik
!
t _
=Y mly+ 3%k ek ® ELY (v) mek ey —cp)ers @ ELY(v)
k=1 2=

l
rd _ k kd _ ) (K i) (K
5 > magteprer o @ By (v) — > > malerrer; ® (Efjl)E&) - Eg)Eén)) (v)

gy 7
I ; I
= mye+ 5oy ers ® By (v) +rd Y mayleprer; @ B By (v)
k=1 J]J;é:kl
wd l n d l
_ . k
Ty Z > mayesier; @ B ER)(v) T3 > magt(er — cpa1)epn @ ELY(v)
,k: = k=1
We compute that [v1¢, Xgp ](m ® v) equals
1 n l .
522 mayerjep, @ B EL (V) mek esr @ EL)(v)
=3 :k k=1
+ Z may ey jerk ® By EL (V) Z zyerienn @ HY B (v)
ik ik

Combining all these computations and using relations (76),(74) along with the assumption that
Ccr—Cfi1 n— — k
A= kKd By = L+ dleg 51t ) _ X 1 2 we find that Xorgamev) = S myrerr © ER —
Yo mey 1kyk®E( .

We have the following analog of theorem 8.4 in [Gul].

Theorem 10.2. Suppose that A = kd and ; = § — A(n472) + (CFCQ'”l)d (where co = 0). There ezists a
functor SW : Hy ¢(T;) — modr — L 5 — dlet which is given by SW(M) = M ®c(s,] (C")®". This
functor is an equivalence of categories if | +2 < n.

Proof. That the functor SW is well defined is a consequence of the calculations above concerning the
action of X ¢ on VL. The rest of the proof follows the same lines as the proof of theorem 10.1. O

Theorem 10.3. Suppose that A = —%,Egj = —%Z ek Br—3), b= (\be,...,be, ,) and B =

_é Z?;S (28; —\) + A= —% Zj;é Bi + %. Then the algebras LA,Q and DE,E(Z/dZ) are isomorphic.

This is a generalization of theorem 10.1 in [Gu2].

Proof. Our strategy is to construct an epimorphism 7 : D%E(Z/ dZ) —» L‘i, s and to use corollary 9.1 to
show that it is injective. We start by observing that we have a homomorphism 7 : aln((C[Z /dZ)) — L;{_’ s
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which allows us to define unambiguously elements Eij( ), Eije € L‘i R images of the corresponding ele-
ments in gl,,(C[Z/dZ]). In particular, Ejj¢ = k o CIRE(ER), Hip = SHi(1) + L 002 IR (Bu(er) -
BEit1,41(6%)) for 1 <i<n—1and Hog = % Zkzl CT* (B (&%) — CPE1(€7)) + %(Enn(l) — Eii(1)).

To extend 7, we start by setting 7(E,1(u)) = Zd ! XSFJ, T(Epn-1(v)) = - 1[X0*1 X, 1) and
W(Eng( )) = Zd 1[X(;“J,XjL] 7T(E21n71(1))) = [[ka+1,X(;17k],X;_1,k]. Then we compute that
[W(En2<u ) (Eg,n,l( ))] equals

d—1 d—1
[ X530 X T Xorwach X | = 20 [[XGhiesns Xiicrah X Xonad) X
J;k=0 k=0
d—1
= [[X(;karlaXo 1, k] Xr? 1, k] + “ka+17 [HO,I,kva,kHH’Xr;Lk}
k=0
d—1
= Z ([HOJ,kvX; 1, k] + [[ka+17 _ijl,kjtl + (ﬁk-s-l - /\)Xik+1H0,k - ﬁk+1H0,kX1+,k+1]a Xr;Lk])
k=0
d—1
= (X, 1ig T BeHo kX, — (Br — /\)X;l,kHo,k)
k=0
d—1
+ > ([N = Bre) Hixer 1 Hoxe + Bror HoxeHi e, X,y )
k=0
d—1 d—1
= (X'r:—l,l,k + (5k - > X, 1kt S( n—1x Hox > + Z/\Hlvk'f‘an_—l,k
k=0 k=0
(115)
We set W(Enl(v)) =3 Z” k=0 [[ 0 1,iaEn1,j]7En1,k] where the element F,; x is given by Fpx =
[[ o [X;—l,k’ X;—Q,kL e ],X;k} Then
d—1
7T(EM(U)> - (HXJIJ’E"LJ'H]’EMJ] +5 2 [[X& J’EnLj]aEnl,j] +35 5 [[X&J,Enl,jﬂ],En1,j+1})
3=0
(116)

We also set m(Eq,—1(u)) = Z;lklo [Enj, [XO - B1n—1x]| where the elements are simply given by

Ein-1k = [Xf:b [ 7[er_f3,k7X:;2,k]“']] and Eyn 5 = [Xfry [ [X:f 2,J’X+ ] ” Then
d—1
T(E1no1(u)) = ([Em,k, [ngk, Ein-1x)] + [Eink-1 [Xafk, El,n—l,k]]) (117)
k=0

We have to find [ (E,1(v)),m(Ein-1(u))]. Computing separately the commutator of each pair of
sums in (116) and (117), we find that they are all equal to zero except the following one:

d—1

|: 0 1,j° nl,j+1]7 Enl,j]a [Eln,kfla [X({k, El,nfl,k]]:|
J,k=0

which equals
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T
L

\d

[[[Xa17j7 Enl,j+1]; Enl,j] ) E1n7k,1:| ) [XJky El,nfl,k]:|

J,k=0
1
+ [Eln,k—ly |:[[X0_71,ja [Xee Brn—1xll, Bn1 i), Enl,jH
4,k=0
-1
= ([UX(ILyEnlJH]’HMJL [Xo+,j+1>ELn*1J+1]} + [[[Xtil,yHnl,j+1]=En1,j]= [X(T,Hz’El,n—l,Hz]D
=0
d-1
- Z {Eln,_jv “[Ho,l,j,ELn—LjH],En1,j+1],En1,jH
=0
d—1 d—1
= [[Xal,jvEn17j+1}, [Xajj+1’E1,n*11j+1]] - [Eln,jv [[[Ho,l,jvEl,nfl,jJrlLEnl,j%»l]aEnl,j}}
j=0 j=0
d-1
= ([[—Hml,jaEl,n—l,j+1]’En17j+1] + [Eln,ja X7 410 Brnojral
j=0
— (Bj+1 = NE1n-1j+1Ho;+ Bj+1Ho jE1 n-13+1, Eni,j+1], En1,jﬂ)
d-1
= (“XIJTLHL Esn-1j+1), Enj+1] + ME1n—15+1Hoj + Bij+1[Ho
j=0

Er -1l Bnvjra] + [Bing, —ABnn—1j+1En1 + Bit1[Enn—1,j+1, Enl,j]])

d—1
= Z ( - J(Emn—l)j-&-l - A[[ijJrla E2,n—1,j+1], Enl,j+1] + Bj+1En,n—1,j+1>
j=0
d—1
+ ()‘Enynfl-,jJrl(Hnl,j — Hyj;) + )\El,n—1,j+1En1,j+1)
j=0

(118)
Using (115) and (118), we conclude that [W(Enl(v)),w(ELn,l(u))] - {W(Eng(u)),w(Eg’n,l(v))} equals
- :Z_; (Xn—l,l,k + (516 - ;\) X1kt %S(X;—l,w HO,k))

-1
A B A
+Y° (—ZS(Hl,kJrlaan,k) + J(Enn—1)k — <5k - ) En,nl,k)

2
k=0
A d—1 [n—2
N Z Z Z S(Ej7"_17k’ E"jvk) + S(H"—LQak? E”lﬂ’b—l,k) + S(En,n—l,ka HnLk)
=0 \j=3
A d—1
+ 72 (S(Enn-116 Hia) + S(Brn-11 Bni k) = S (Bnz ke Ban-1x))
k=0
A d—1
-3 (S(Bnn-14 Huik—1 = Hox—1) + S(E1,n-1k, En1x))
k=0
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—:Z_: (2 <ﬁk - ;) -1k + ;d(l =) (S(Bnn1(65), Bra(€7)) + S(En,nl(ﬁ’“)ﬂm(gk))))

d—1 [n—2
A
-3 Z S(Ejn—1x Enjx) +S(Hn-12k Enn-1x) +S(Enn_1x Hn1x)
k=0 \ j=1

The last expression is exactly what one obtains by applying 7 to the right-hand side of equation (35)
(except for the first term) in the case a = n,b=1,c =n — 1,d = 2 for the algebra D%E(Z/dZ).

In order to verify that 7 respects relation (36), we now compute that [7(E,1(w)), m(Es—1(v))] equals

IS
Ju

d

|
—

{Xo k» HX_JH’XO 1_]] Xoe 1,_]:|:| = [[X_J+1’ [X(;’:j+l’X0 1JH X 1,J

3,k=0 j=0
d—1 d—1

[[X;J+17 HO,LJ']»X;—Lj} = Z[Xfl 1T Bitr X, J+1 — (Bj+1 — )HOJXfJ-HvX; 1,ﬂ
j=0 7=0

d—1 5 a1 4 4

=AY Xin ZGS(W w1 (€7). 7 (En(€)))
§=0

The other cases of relation (35) for arbitrary a # b # ¢ # a # d # ¢ and of relation (36) for arbitrary
a # b # c# d# a follow from the two cases above.

Let U, : ]Lgl\’ﬁ — Endc(V!) be the algebra map coming from the Liﬁ—module structure on V! given

by theorem 10.2. Then one can check that ¥; o 7 = ®; with ®; as defined at the end of section 9. From
corollary 9.1, we can deduce that = must be injective. O
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