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Abstract

To a finite subgroup Γ of SL2(C), we associate a new family of quantum algebras which are related
to symplectic reflection algebras for wreath products Sl o Γ via a functor of Schur-Weyl type. We
explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras
for Γ and construct for them a PBW basis. When Γ is a cyclic group, we are able to give more
information about their structure and to relate them to Yangians.

1 Introduction

The theory of symplectic reflection algebras was introduced a few years ago in the seminal paper [EtGi]
of P. Etingof and V. Ginzburg. Since then, applications have been found in representation theory and
in algebraic geometry, see e.g. [Bo, EGGO, GoSt, GoSm]. One important example of such algebras is
given by the rational Cherednik algebras [Ch2],[GGOR],[BEG] associated to a complex reflection group
W acting on the symplectic vector space h ⊕ h∗, h being its reflection representation. A large class of
symplectic reflection algebras are those associated to wreath products Γl = Sl oΓ = Γ×loSl for Γ a finite
subgroup of SL2(C).

In this paper, we introduce a new family of quantum algebras that we call Γ-deformed double cur-
rent algebras (Γ-DDCA). They are flat deformations of the enveloping algebra of an enlargement of

ŝln(C[u, v]oΓ), the universal central extension of sln(C[u, v]oΓ). They can also be viewed as flat defor-
mations of Ugln(A1 o Γ) where A1 is the first Weyl algebra. We construct a PBW basis for Γ-DDCA by
using a Schur-Weyl functor which relates them to symplectic reflection algebras for Γl. When Γ = Z/rZ,
we are able to give a second definition of Γ-DDCA by realizing them as certain subalgebras of a cyclic
version of affine Yangians.

One can consider the general problem of studying spaces of maps X −→ g from an algebraic variety
to a semisimple Lie algebra g. When X is smooth and of dimension one, this leads to current Lie algebras
g ⊗C C[u], loop algebras g ⊗C C[u, u−1] and their universal central extensions, the affine Lie algebras.
When X has dimension two, the most natural case to consider is the two-dimensional torus X = C××C×,
but two simpler cases are X = C × C× and X = C2. Quantizations of the corresponding enveloping
algebras are known as quantum toroidal algeras [GKV], affine Yangians and deformed double current
algebras [Gu2], respectively. We may also consider singular varieties and one of the simplest example is
a Kleinian singularity C2/Γ. We are thus led to consider the Lie algebra g⊗C C[u, v]Γ and its universal
central extension. We can also follow one of the main ideas in [EtGi] and replace the ring of invariants
C[u, v]Γ by the smash-product C[u, v] o Γ since it is believed by ring theorists that the latter encodes
more the geometry of the quotient C2/Γ and of its (minimal) resolution of singularities than the former.
This is another motivation for studying Γ-DDCA.

The representation theory of quantum toroidal algebras was studied in [He1, He2, VaVa1, VaVa2]
and, via geometric methods, in [VaVa3]. We hope that understanding the representations of Γ-DDCA
will eventually lead to a better understanding of quantum toroidal algebras and affine Yangians, but will
also exhibit new phenomena which do not occur for these two types of algebras.

After recalling the definition of symplectic reflection algebras for wreath products, we devote two
sections to the Lie algebras sln(C[u, v]) and ŝln(C[u, v] o Γ), giving presentations in terms of families
of generators and relations which are useful later on. The main idea is to obtain presentations with
only finitely many generators and relations of low degree. The principal results here are lemma 4.5 and
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lemma 5.1. The latter is modified version of a theorem of C. Kassel and J.L. Loday [KaLo] which is
useful for our purpose. We also mention some results about the first cyclic homology group of the smash
product C[u, v] o Γ since this space gives the center of the universal central extension ŝln(C[u, v] o Γ).
The following section is simply devoted to defining the Γ-deformed double current algebras Dnβ,b. Section
7 contains one of the main results of this paper: we explain how to extend the classical Schur-Weyl
functor to the double affine setup and when it yields an equivalence of certain categories of modules -
see theorem 7.1. When λ = 0, the Γ-deformed double current algebras are enveloping algebras of Lie
algebras closely related to sln with entries in a rank-one symplectic reflection algebra for Γ: this is the
content of section 8. Section 9 contains our second main theorem: we prove that the associated graded
ring of Dnβ,b is isomorphic to the undeformed ring Dnβ=0,b=0, whence the name PBW property by analogy
with the classical Poincaré-Birkhoff-Witt theorem.

The second half of the paper (all of section 10) is devoted to the special case Γ = Z/dZ. The symplectic
reflection algebras for the wreath product (Z/dZ)×l o Sl are rational Cherednik algebras, so they afford
a Z-grading. This explains in part why we can obtain more results in this specific case. We start by
studying certain degenerate affine Hecke algebras associated to Γl and then extend the results of [Gu1]
to the double affine trigonometric setting where we have a functor of Schur-Weyl type (see theorem 10.1)
between modules for a localization of a rational Cherednik algebra for Γl and a certain algebra which turns
out to be isomorphic to a Yangian for slnd (see corollary 10.3). The main goal of section 10 is reached
in subsection 10.3 where we prove that deformed double current algebras for Z/dZ can be realized as
subalgebras of certain loop Yangians: see theorem 10.3. This provides another set of generators, which
might be convenient in the study of representations.

Throughout this paper, we will assume that n ≥ 4: analogous results most probably hold for n = 2, 3,
but some definitions may involve more complicated relations and certain proofs would have to be modified
accordingly.
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3 Symplectic reflection algebras for wreath products

Isomorphism classes of finite subgroups of SL2(C) are known to be in bijective correspondence with affine
Dynkin diagrams of type A,D,E via the McKay correspondence. We will denote by Γ such a subgroup.
For instance, the group corresponding to the Dynkin diagram of type Âr−1 is the cyclic group Γ = Z/rZ.
In this section, we recall a few definitions and facts about symplectic reflection algebras for the wreath
product Γl = Sl o Γ of Γ with the symmetric group Sl. Let ω be a non degenerate symplectic form on
U ∼= C2 and choose a basis {x, y} of U such that ω(x, y) = 1. We will denote by {xi, yi} the same basis
of C2, this time viewed as the ith direct summand of U⊕l. Note that Γl acts on U⊕l.

The definition of a symplectic reflection algebra depends on two parameters: t ∈ C and c = κ · id +∑
γ∈Γ\{id} cγγ ∈ ZΓ, which is an element in the center ZΓ of C[Γ]. We have adapted the definition of the

symplectic reflection algebra Ht,c(Γl) from [GaGi]. For γ ∈ Γ, we write γi for (id, . . . , id, γ, id, . . . , id) ∈ Γl
where γ is in the ith position.

Definition 3.1. The symplectic reflection algebra Ht,c(Γl) is defined as the algebra generated by the two
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sets of pairwise commuting elements x1, . . . , xl, y1, . . . , yl and by τ ∈ Γl with the relations:

τ · xi · τ−1 = τ(xi), τ · yi · τ−1 = τ(yi), i = 1, . . . , l,∀ τ ∈ Γl (1)

[xi, yi] = t+
κ

2

l∑
j=1

j 6=i

∑
γ∈Γ

σijγiγ
−1
j +

∑
γ∈Γ\{id}

cγγi, i = 1, . . . , l (2)

where σij ∈ Sl is the permutation i↔ j. For i 6= j and any w1, w2 ∈ U,wji ∈ span{xi, yi}:

[w1
i , w

2
j ] = −κ

2

∑
γ∈Γ

ω(γ(w1), w2)σijγiγ
−1
j (3)

To simplify the notation, we will write ωxγ = ω(γ(x), x), ωyγ = ω(γ(y), y), ωx,yγ = ω(γ(x), y).

It is possible to filter the algebra Ht,c(Γl) by giving degree 1 to the generators xi, yi, 1 ≤ i ≤ l,
and degree 0 to the elements of Γl. This filtration will be denoted F•(Ht,c(Γl)) and the corresponding
associated graded ring gr

(
Ht,c(Γl)

)
.

Theorem 3.1 (PBW Property, [EtGi]). The canonical map Ht=0,c=0(Γl) −→ gr
(
Ht,c(Γl)

)
is an isomor-

phism.

4 Double current algebras

Before defining Γ-deformed double current algebras in section 6, we need to prove a series of lemmas for
the Lie algebra ŝln(C[u, v] o Γ), the universal central extension of sln(C[u, v] o Γ). In this section, we
threat the case Γ = {id}. We will need to assume that n ≥ 4 in this section and, a fortiori, for the rest of
the paper. The first lemma is similar to proposition 3.5 in [MRY] and should admit an analog for other
semisimple Lie algebras; however, we doubt that lemma 4.2 admits such a generalization, except perhaps
by adding a few relations. We start with a theorem which gives a description of ŝln[u, v]. We will denote
by Ω1(C2) the space of polynomial 1-forms on the affine plane C2 and by d(C[u, v]) the space of exact
1-forms on C2.

Theorem 4.1. [Ka] The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra sln[u, v] ⊕ Ω1(C2)
d(C[u,v]) with

the following bracket (where (·, ·) is the Killing form on sln):

[m1 ⊗ p1,m2 ⊗ p2] = [m1,m2]⊗ p1p2 + (m1,m2)p1dp2, ∀m1,m2 ∈ sln, p1, p2 ∈ C[u, v]

and the elements of Ω1(C2)
d(C[u,v]) are central.

We denote by Ĉn−1 = (cij)0≤i,j≤n−1 the n× n Cartan matrix of affine type Ân−1:

Ĉn−1 =



2 −1 0 · · · · · · 0 −1
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
−1 0 · · · · · · 0 −1 2


The set of roots of sln will be denoted ∆ = {αij |1 ≤ i 6= j ≤ n} with choice of positive roots ∆+ =

{αij |1 ≤ i < j ≤ n}. The longest positive root θ equals α1n. The elementary matrices will be written Eij ,
Hi = Eii−Ei+1,i+1 for 1 ≤ i ≤ n−1 and Hij = Eii−Ejj . We set E+

i = Ei,i+1, E
−
i = Ei+1,i, 1 ≤ i ≤ n−1.

The following is lemma 2.5 in [Gu2].
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Lemma 4.1. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra l which is generated by the elements
X±i,r, Hi,r, X

+
0,r, 1 ≤ i ≤ n− 1, r ≥ 0 which satisfy the following relations:

[Hi,r, Hj,s] = 0 ∀ 1 ≤ i, j ≤ n− 1, r, s ≥ 0, [Hi,0, X
±
j,r] = ±cijX±j,r ∀ 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, r ≥ 0

(4)
[X±i,r, X

±
i,s] = 0, [X±i,r+1, X

±
j,s] = [X±i,r, X

±
j,s+1], [Hi,r+1, X

±
j,s] = [Hi,r, X

±
j,s+1] ∀ 1 ≤ i, j ≤ n− 1, r, s ≥ 0

(5)
[X+

0,r, X
+
0,s] = 0, [X+

i,r+1, X
+
0,s] = [X+

i,r, X
+
0,s+1], [Hi,r+1, X

+
0,s] = [Hi,r, X

+
0,s+1] ∀ 1 ≤ i ≤ n− 1, r, s ≥ 0

(6)
[X+

i,r, X
−
j,s] = δijHi,r+s, ∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, r, s ≥ 0 (7)[

X±i,0, [X
±
i,0, X

±
j,r]
]

= 0 ∀ r ≥ 0 if cij = −1, [X±i,0, X
±
j,r] = 0 ∀ r ≥ 0 if cij = 0, (8)

Remark 4.1. In (8), when i = 0 or j = 0, we have defining relations only in the + case.

We will need a simpler set of generators and relations for the Lie algebra ŝln[u, v], whence the impor-
tance of the next lemma, which is lemma 2.7 in [Gu2], except for a minor difference.

Lemma 4.2. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra k which is generated by the
elements X±i,r, Hi,r, X

+
0,r, 1 ≤ i ≤ n− 1, r = 0, 1 satisfying the following relations:

[Hi,r, Hj,s] = 0, 1 ≤ i, j ≤ n−1, r, s = 0, 1, [Hi,0, X
±
j,r] = ±cijX±j,r, 1 ≤ i ≤ n−1, 0 ≤ j ≤ n−1, r = 0, 1

(9)
[X±i,0, X

±
i,1] = 0, [X±i,1, X

±
j,0] = [X±i,0, X

±
j,1], [Hi,1, X

±
j,0] = [Hi,0, X

±
j,1], 1 ≤ i, j ≤ n− 1, (10)

[X+
0,0, X

+
0,1] = 0, [X+

i,1, X
+
0,0] = [X+

i,0, X
+
0,1], [Hi,1, X

+
0,0] = [Hi,0, X

+
0,1], 1 ≤ i ≤ n− 1, (11)

[X+
i,r, X

−
j,0] = δijHi,r = [X+

i,0, X
−
j,r], ∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, r = 0, 1 (12)[

X±i,0, [X
±
i,0, X

±
j,0]
]

= 0 if cij = −1, [X±i,0, X
±
j,0] = 0 if cij = 0, 0 ≤ i, j ≤ n− 1 (13)

An isomorphism k
∼−→ ŝln[u, v] is given by

X±i,r 7→ E±i ⊗ v
r, Hi,r 7→ Hi ⊗ vr for 1 ≤ i ≤ n− 1, X+

0,r 7→ En1 ⊗ uvr, r = 0, 1.

We will need a corollary of the previous lemma which gives a fourth presentation of ŝln[u, v]. It is an
immediate consequence of lemma 3.2 since we are only eliminating X+

0,1 from all the relations, so we will
use the same letter k.

Lemma 4.3. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra k which is generated by the
elements X±i,r, Hi,r, X

+
0,0, 1 ≤ i ≤ n− 1, r = 0, 1 satisfying the following relations:

[Hi,r, Hj,s] = 0, 1 ≤ i, j ≤ n− 1, r, s = 0 or 1, [Hi,0, X
±
j,r] = ±cijX±j,r, 1 ≤ i, j ≤ n− 1, r = 0, 1 (14)

[X±i,0, X
±
i,1] = 0, [X±i,1, X

±
j,0] = [X±i,0, X

±
j,1], [Hi,1, X

±
j,0] = [Hi,0, X

±
j,1], ∀ 1 ≤ i, j ≤ n− 1 (15)

[X+
j,1, X

+
0,0] =

[
Hj,1, [X

+
j,0, X

+
0,0]
]
, [H1,1, X

+
0,0] = [Hn−1,1, X

+
0,0], ∀ 1 ≤ i, j ≤ n− 1, (16)[

X+
0,0, [Hn−1,1, X

+
0,0]
]

= 0, [Hi,0, X
+
0,0] = ci0X

+
0,0, [Hi,1, X

+
0,0] = 0 if i 6= 1, n− 1, (17)

[X+
i,r, X

−
j,s] = δijHi,r+s,

[
[Hn−1,r, X

+
0,0], X−j,s

]
= 0,

∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, 0 ≤ r + s ≤ 1 (r = 0 if i = 0)
(18)

[
X±i,0, [X

±
i,0, X

±
j,0]
]

= 0 if cij = −1, [X±i,0, X
±
j,0] = 0 if cij = 0, 0 ≤ i, j ≤ n− 1 (19)
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In the previous lemmas, the elements X±i,r, Hi,r with i 6= 0 generate a Lie subalgebra which is iso-

morphic to sln[v], whereas those with r = 0 along with X+
0,0 generate an isomorphic image of sln[u]. We

would like to end this section by giving one last definition of ŝln[u, v] in which these two algebras play a
more symmetric role, but before that we need to introduce one more lemma (which is probably known
to other people).

Lemma 4.4. The Lie algebra sln[v] is isomorphic to the Lie algebra f generated by elements Eab ∈
sln,Eab(v) for 1 ≤ a 6= b ≤ n which satisfy the following relations:

[Eab,Ebc(v)] = Eac(v) = [Ead(v),Edc], [Eab(v),Ebc(v)] = [Ead(v),Edc(v)] if a 6= b 6= c 6= a 6= d 6= c

[Eab,Ecd(v)] = 0 = [Eab(v),Ecd(v)] if a 6= b 6= c 6= d 6= a

Proof. We want to define elements Eab(v
k)∀k ≥ 2, 1 ≤ a 6= b ≤ n, by setting inductively Eab(v

k+1) =
[Eac(v),Ecb(v

k)] for some c 6= a, b. This does not depend on the choice of c, for if d 6= a, b, c and (21) is
satisfied for k instead of k + 1, then:

[Ead(v),Edb(v
k)] =

[
Ead(v), [Edc,Ecb(v

k)]
]

=
[
[Ead(v),Edc],Ecb(v

k)
]

= [Eac(v),Ecb(v
k)].

We have to show that

[Eab(v
i),Ebc(v

j)] = Eac(v
i+j) if i+ j = k + 1, a 6= b 6= c 6= a (20)

and
[Eab(v

i),Ecd(v
j)] = 0 if i+ j = k + 1 or i = 1, j = k + 1, when a 6= b 6= c 6= d 6= a. (21)

We proceed by induction on k, the case k = 0 being true by the definition of f. Assume that
i+ j = k + 1. Suppose that a 6= b 6= c 6= a and choose d 6= a, b, c. First, suppose that i ≥ 1.

[Eab(v
i),Ebc(v

j)] =
[
[Ead(v),Edb(v

i−1)],Ebc(v
j)
]

= [Ead(v),Edc(v
i+j−1)] = Eac(v

i+j)

If i = 0, j = k + 1, then

[Eab,Ebc(v
k+1)] =

[
Eab, [Ebd(v),Edc(v

k)]
]

= [Ead(v),Edc(v
k)] = Eac(v

k+1).

We have established (20), so let us turn to (21). If a 6= b, c 6= a, choose d 6= a, b, c. Then, if i+j = k+1
and, without loss of generality, j ≥ 2,

[Eab(v
i),Eac(v

j)] =
[
Eab(v

i), [Ead(v),Edc(v
j−1)]

]
= 0

by induction. Similarly, [Eab(v
i),Ecb(v

j)] = 0 if i+ j = k + 1, and, if i = 1, j = k + 1, we can show that
[Eab(v),Eac(v

k+1)] = 0 = [Eab(v),Ecb(v
k+1)].

If a, b, c, d are all distinct and i+ j = k + 1, 1 ≤ i, j ≤ k, then

[Eab(v
i),Ecd(v

j)] =
[
Eab(v

i), [Ecb(v),Ebd(v
j−1)]

]
= [Ecb(v),Ead(v

i+j−1)]

=
[
Ecb(v), [Eac(v

i−1),Ecd(v
j)]
]

= −[Eab(v
i),Ecd(v

j)].

Compairing the first and last terms, we see that [Eab(v
i),Ecd(v

j)] = 0. If i = 0, j = k + 1, then

[Eab,Ecd(v
k+1)] =

[
Eab, [Ecb(v),Ebd(v

k)]
]

= [Ecb(v),Ead(v
k)] = 0

by the previous case. The same argument works if i = k + 1, j = 0.

Finally, if again a, b, c, d are all distinct, we have

[Eab(v),Ecd(v
k+1)] =

[
Eab(v), [Eca(vk),Ead(v)]

]
= −[Ecb(v

k+1),Ead(v)]

= −
[
[Ecd(v

k+1),Edb],Ead(v)]
]

= [Ecd(v
k+1),Eab(v)]

Compairing the first and last terms shows that [Eab(v),Ecd(v
k+1)] = 0.
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Lemma 4.5. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra t that is generated by the elements
Eab ∈ sln,Eab(u),Eab(v) for 1 ≤ a 6= b ≤ n with the following relations: For any w1 = a1u + b1v, w2 =
a2u+ b2v, ai, bi ∈ C,

[Eab,Ebc(w1)] = Eac(w1) = [Eab(w1),Ebc] (22)

[Eab(w1),Ebc(w2)] = [Ead(w1),Edc(w2)], [Eab(w1),Ebc(w2)] = [Eab(w2),Ebc(w1)] if a 6= b 6= c 6= a 6= d 6= c,
(23)

[Eab(w1),Ecd(w2)] = 0 = [Eab,Ecd(w1)] if a 6= b 6= c 6= d 6= a (24)

Proof. We can define an epimorphism k −→ t by the formulas

X+
i,1 7→ Ei,i+1(v), X−i,1 7→ Ei+1,i(v), Hi,1 7→ Hi,i+1(v) for 1 ≤ i ≤ n− 1, X+

0,0 7→ En1(u)

We have to check that this respects the relations (14) - (19). We will explain why this is indeed the case
for the first equation in (14), the first and second one in (16), the first one in (17) and the second one in
(18), but before we do this, we need to deduce a few consequences of the relations in this lemma.

For a 6= b, we define Hab(w) by Hab(w) = [Eab(w),Eba]. Choose c 6= a, b, so

Hab(w) =
[
[Eac,Ecb(w)],Eba

]
= −[Ebc,Ecb(w)] + [Eac,Eca(w)]

= −[Ebc,Ecb(w)] +
[
[Eab,Ebc],Eca(w)

]
= [Eab,Eba(w)] = −Hba(w)

Starting from [Eab(w1),Ebc(w2)] = [Ead(w1),Edc(w2)] with a, b, c, d all distinct and applying [·,Eba] gives
the relation

[Hab(w1),Ebc(w2)] = −[Ebd(w1),Edc(w2)]. (25)

Although we needed to assume that a, b, c, d were distinct to deduce this equality, it is also true that
[Hab(w1),Ebc(w2)] = −[Eba(w1),Eac(w2)] if a, b, c are all distinct, due to relation (23).

Similarly, [Hab(w),Ebc(w)] = −[Ebd(w),Edc(w)] and commuting both sides with Eca yields

[Hab(w),Eba(w)] = [Eca(w),Ebc(w)]− [Ebd(w),Eda(w)] = −2[Ebd(w),Eda(w)].

We now apply [Eab, ·] to both sides of this equation to get

[Eab(w),Eba(w)] + [Ebd(w),Edb(w)] + [Eda(w),Ead(w)] = 0 (26)

This is a useful equation since it helps us deduce the following for a, b, c all distinct:

[Hab(w),Hbc(w)] =
[
[Eab(w),Eba], [Ebc,Ecb(w)]

]
=

[
[Eac(w),Eba],Ecb(w)]− [Ebc, [Eab(w),Eca(w)]

]
= −[Ebc(w),Ecb(w)] + [Eac(w),Eca(w)]− [Eab(w),Eba(w)] = 0 (27)

The first equation in (14) is now an immediate consequence of (27). Applying [E12, ·] to 0 =
[En−1,1(u),E21(v)] gives 0 = −[En−1,2(u),E21(v)] + [En−1,1(u),H12(v)]. Therefore,

−[H12(v),En−1,1(u)] = [En−1,2(u),E21(v)] = [En−1,n(v),En1(u)] = [Hn−1,n(v),En−1,1(u)],

the last equality being a consequence of applying [·,En,n−1] to 0 = [En−1,n(v),En−1,1(u)]. We now use
[En,n−1, ·] again to obtain

−[H12(v),En1(u)] = [Hn−1,n(v),En1(u)] + 2[En,n−1(v),En−1,1(u)]

= [Hn−1,n(v),En1(u)] + 2[Hn,n−1(v),En1(u)] = −[Hn−1,n(v),En1(u)].

This implies that the second relation in (16) is respected. As for the first relation in (16) when j = n− 1
or j = 1, it is a consequence of (25) with w1 = v, w2 = u.
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The first relation in (17) and the second one in (18) follow also from (25) and from (24).

To prove that it is an isomorphism, we would like to construct an inverse ξ. We do this by using
lemma 4.3 which identifies k with the Lie algebra in theorem 4.1. We set ξ(Eab(u)) = Eab ⊗ u and

ξ(Eab(v)) = Eab⊗ v. Clearly, this defines a Lie algebra map t � ŝln[u, v]. Taking the composite with the

map k � t above yields a homomorphism k � ŝln[u, v] which is the isomorphism given in lemma 4.3 (see
the formulas after lemma 4.2). Therefore, k

∼−→ t.

5 The universal central extension of sln(C[u, v] o Γ)

For an arbitrary associative algebra A, sln(A) is defined as the space of matrices in gln(A) with trace in
[A,A]. This Lie algebra is perfect, so it admits a universal central extension whose kernel is isomorphic
to the first cyclic homology group HC1(A) [KaLo]. When A is the group ring A = C[Γ], HC1(A) = 0
(see chapter 9 in [We]), so we conclude that sln(C[Γ]) is universally closed. Therefore, theorem 5.1 gives
a description of sln(C[Γ]). We will need to use the following theorem of C. Kassel and J.L. Loday in the
case A = C[u, v] o Γ. We will compute later in this section HC1(C[u, v] o Γ).

Theorem 5.1. [KaLo] Let A be an associative algebra over C. The universal central extension ŝln(A)
of sln(A) is the Lie algebra generated by elements Fab(p), 1 ≤ a 6= b ≤ n, p ∈ A, satisfying the following
relations:

Fab(t1p1 + t2p2) = t1Fab(p1) + t2Fab(p2) t1, t2 ∈ C, p1, p2 ∈ A (28)

[Fab(p1), Fbc(p2)] = Fac(p1p2) if a 6= b 6= c 6= a (29)

[Fab(p1), Fcd(p2)] = 0 if a 6= b 6= c 6= d 6= a (30)

We will need to simplify theorem 5.1 when A = C[u, v] o Γ. A generalization of the following lemma,
under the extra condition that n ≥ 5, is given by proposition 3.3 in [Gu3].

Lemma 5.1. The universal central extension ŝln(C[u, v]oΓ) is isomorphic to the Lie algebra e generated
by elements Eab(w), w = tu + sv,Eab(γ), 1 ≤ a 6= b ≤ n, γ ∈ Γ, s, t ∈ C such that the following relations
hold:
If a 6= b 6= c 6= a 6= d 6= c and wi = tiu+ siv, i = 1, 2:

Eab(w) = tEab(u) + sEab(v), [Eab(w1),Ebc(w2)] = [Ead(w2),Edc(w1)], (31)

[Eab(γ),Ebc(w)] = [Ead(γ(w)),Edc(γ)], [Eab(γ1),Ebc(γ2)] = Eac(γ1γ2) (32)

If a 6= b 6= c 6= d 6= a:

[Eab(w1),Ecd(w2)] = 0 = [Eab(γ1),Ecd(γ2)] = [Eab(γ),Ecd(w)] (33)

Proof. We will introduce elements Eab(q) for any q ∈ C[u, v]oΓ and show that they satisfy the relations

in theorem 5.1. When q ∈ C[u, v], the elements Eab(q) can be defined using the map ŝln[u, v] −→ e given
by lemma 4.5 and theorem 5.1 in the case A = C[u, v]. Suppose q = pγ, p ∈ C[u, v], γ ∈ Γ. We can
assume that p = ue1ve2 . Set e = e1 + e2; we will use induction on e. Choose a 6= b and c 6= a, b; set
Eab(q) = [Eac(p),Ecb(γ)]. We claim that this definition of Eab(q) does not depend on the choice of c. (This
is true when the degree of p is one according to (32).) Indeed, suppose that d 6= a, b, c and e1, e2 ≥ 1 (the
cases e1 = 0 or e2 = 0 are similar) and write Eac(p) = [Ead(v),Edc(u

e1ve2−1)]. Arguing by induction, we
can assume that [Edb(u

e1ve2−1),Edb(γ)] = 0. Then

Eab(q) =
[
[Ead(v),Edc(u

e1ve2−1)],Ecb(γ)
]

=
[
Ead(v), [Edc(u

e1ve2−1),Ecb(γ)]
]

=
[
Ead(v),

[
Edc(u

e1ve2−1), [Ecd,Edb(γ)]
]]

=
[
Ead(v),

[
[Edc(u

e1ve2−1),Ecd],Edb(γ)
]]

= [Ead(u
e1ve2),Edb(γ)] +

[
[Edc(u

e1ve2−1),Ecd],Eab(vγ)
]

= [Ead(u
e1ve2),Edb(γ)]
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since [Edc(u
e1ve2−1),Eab(vγ)] = 1

2

[
[Hdc(u),Edc(u

e1−1ve2−1)],Eab(vγ)
]

= 0 by induction.

Let us assume that [Eab(p1γ1),Ebc(p2γ2)] = Eac(p1γ1(p2)γ1γ2) for any a 6= b 6= c 6= a and also that
[Eab(p1γ1),Ecd(p2γ2)] = 0 for any a 6= b 6= c 6= d 6= a, any γ1, γ2 ∈ Γ and any p1, p2 ∈ C[u, v] of total
degree < e. We want to prove that the same relation hold when the total degree of p1, p2 is e.

Step 1: Suppose that a, b, c, d are all distinct and e1 ≥ 1. Set p̃ = ue1−1ve2 , so p = up̃. Using
induction, we get

[Eab(γ),Ebc(p)] =
[
Eab(γ), [Ebd(u),Edc(p̃)]

]
=
[
[Eab(γ),Ebd(u)],Edc(p̃)

]
=
[
[Eab(γ(u)),Ebd(γ)],Edc(p̃)

]
=
[
Eab(γ(u)), [Ebd(γ),Edc(p̃)]

]
= [Eab(γ(u)),Ebc(γ(p̃)γ)]

=
[
Eab(γ(u)), [Ebd(γ(p̃)),Edc(γ)]

]
=
[
[Eab(γ(u)),Ebd(γ(p̃))],Edc(γ)

]
= [Ead(γ(up̃)),Edc(γ)] = Eac(γ(p)γ)

Step 2: Assume that a 6= b 6= c 6= d 6= a and e1 ≥ 1. There are three subcases to consider: a, b, c, d
are all distinct, a = c, b = d. In the first subcase, [Eab(p),Ecd(γ)] = 1

2

[
[Hab(u),Eab(p̃)],Ecd(γ)

]
= 0 by

induction. In the second subcase, choose e 6= a, c, d; then [Eab(p),Ead(γ)] = [[Eae(u),Eeb(p̃)],Ead(γ)] = 0
by induction since deg(p̃) < e. The third subcase is similar to the second one.

Step 3: Choose a, b, c, d all distinct. We know from step 2 that [Eab(p1),Edc(γ2)] = 0, so

[Eab(p1),Ebc(p2γ2)] =
[
Eab(p1), [Ebd(p2),Edc(γ2)]

]
=
[
[Eab(p1),Ebd(p2)],Edc(γ2)

]
= [Ead(p1p2),Edc(γ2)] = Eac(p1p2γ2)

Step 4: Again, suppose that a, b, c, d are all distinct.

[Eab(p1γ1),Ebc(p2)] =
[
[Ead(p1),Edb(γ1)],Ebc(p2)

]
=
[
Ead(p1), [Edb(γ1),Ebc(p2)]

]
= [Ead(p1),Edc(γ1(p2)γ1)] = Eac(p1γ1(p2)γ1)

The last equality is a consequence of step 3.

Step 5 : Assume that a 6= b 6= c 6= d 6= a. As in step 2, there are three subcases to consider. In the
first subcase, using step 2 twice, we get

[Eab(p1γ1),Ecd(γ2)] =
[
[Ead(p1),Edb(γ1)],Ecd(γ2)

]
= −[Ead(p1),Ecb(γ2γ1)] = 0.

In the second subcase, choosing e 6= a, b, d, we get [Eab(p1γ1),Eac(γ2)] =
[
[Eae(p1),Eeb(γ1)],Ead(γ2)

]
= 0.

The third subcase is similar to the second one.

Step 6: Suppose that a, b, c, d are all distinct.

[Eab(p1γ1),Ebc(p2γ2)] =
[
Eab(p1γ1), [Ebd(p2),Edc(γ2)]

]
=
[
[Eab(p1γ1),Ebd(p2)],Edc(γ2)

]
= [Ead(p1γ1(p2)γ1),Edc(γ2)] =

[
[Eab(p1γ1(p2)),Ebd(γ1)],Edc(γ2)

]
=
[
Eab(p1γ1(p2)), [Ebd(γ1),Edc(γ2)]

]
= [Eab(p1γ1(p2)),Ebc(γ1γ2)]

= Eac(p1γ1(p2)γ1γ2)

Step 7: Finally, suppose that a 6= b 6= c 6= d 6= a and q1 = p1γ1, q2 = p2γ2. As in step 2 and 5, there
are three subcases. In the first case,

[Eab(q1),Ecd(q2)] =
[
[Eac(q1),Ecb],Ecd(q2)

]
= [Ead(q1q2),Ecb]

=
[
[Eab(q1),Ebd(q2)],Ecb

]
= −[Eab(q1),Ecd(q2)]

Comparing that first and last terms, we conclude that [Eab(q1),Ecd(q2)] = 0. In the second case, suppose
that a, b, d are all distinct and choose e 6= a, b, d. Then [Eab(q1),Ead(q2)] = [[Eae,Eeb(q1)],Ead(q2)] = 0 by
the previous subcase and step 2. The third case can be handled as the second one.
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As recalled earlier, the center of ŝln(C[u, v] o Γ) is known to be isomorphic to HC1(C[u, v] o Γ), see
[KaLo]. Consequently, the following proposition will be useful:

Proposition 5.1. The first cyclic homology group of C[u, v]oΓ is isomorphic to Ω1(C[u, v])Γ/d(C[u, v]Γ),
the quotient of the space of Γ-invariant 1-forms on the complex affine plane by the space of exact forms
coming from Γ-invariant polynomials.

Proof. It is proved in [Fa] that the Hochschild homology of C[u, v] o Γ is given by:

HH0(C[u, v] o Γ) = C[u, v]Γ ⊕Ccl(Γ)−1, HH1(C[u, v] o Γ) = (C[u, v]⊗C U)Γ where U ∼= span{u, v} ∼= C2

HH2(C[u, v] o Γ) ∼= C[u, v]Γ, HHi(C[u, v] o Γ) = 0 for i ≥ 3.

Here, cl(Γ) is the number of conjugacy classes of Γ. There exists an exact sequence HH0(C[u, v]oΓ) −→
HH1(C[u, v] o Γ) −→ HC1(C[u, v] o Γ) −→ 0 and the first map is given by the differential d, the space
C[u, v]⊗ U being identified with the space of regular 1-forms on C2 ∼= U .

Proposition 5.2. The first cyclic homology group of C[u, v] o Γ can be identified as a vector space with
C[u, v]Γ.

Proof. The form ω (see section 3) allows us to identify Ω1(C[u, v]) with the space V of polynomial vector
fields on C2. (We assume here that ω(u, v) = 1.) There is a contraction map V � C[u, v], so we can
define a linear map Ω1(C[u, v]) −→ C[u, v] given explicitly by usvrdu 7→ rusvr−1, usvrdv 7→ −sus−1vr.
Since ω is Γ-invariant, this restricts to a surjective map Ω1(C[u, v])Γ −→ C[u, v]Γ and the kernel of this
last map is d(C[u, v])Γ, which equals d(C[u, v]Γ). Thus, HC1(C[u, v] o Γ) ∼= C[u, v]Γ.

These two propositions suggest that it may be possible to relate the enveloping algebra of ŝln(C[u, v]o
Γ) to Ugln(A1 o Γ) where A1 is the first Weyl algebra: this is explained in section 8.

In the last section, we will consider deformations of an algebra related to Uŝln(C[u, v] o Γ), namely

Uŝln(C[u±1, w] o Γ) when Γ ∼= Z/dZ is cyclic, acts trivially on w and on u by ξ(u) = ζu, ξ being a
generator of Z/dZ and ζ a primitive dth-root of unity. It is explained in [GHL] that sln(C[u±1, w]oΓ) ∼=
slnd(C[s±1, w]): this follows from the isomorphism of associative algebras given in loc. cit. C[u±1]o Γ ∼=
Md(C[s±1]) where s = ud. It follows that HC0(C[u±1, w] o Γ) ∼= C[s±1, w] ∼= C[u±1, w]Γ and

HC1(C[u±1, w] o Γ) ∼=
Ω1(C[s±1, w])

d(C[s±1, w])
∼= C · s−1ds⊕ C[s±1, w]wds.

Let g be the Lie algebra defined by the relations in definition 10.5 when λ = 0, β = 0. The next
proposition will be useful to understand the algebras in section 10.

Proposition 5.3. The Lie algebra g is isomorphic to ŝln(C[u±1, w] o Γ).

Proof. See proposition 4.4 in [GHL] and also [MRY]. An isomorphism is given by

For 1 ≤ i ≤ n− 1, X±1
i,r,j 7→ E±i ⊗ w

rej , Hi,r,j 7→ Hi ⊗ wrej

X+
0,r,j 7→ En1 ⊗ wruej , X

−
0,r,j 7→ E1n ⊗ wru−1ej , H0,r,j 7→ Enn ⊗ wrej − E11 ⊗ wrej+1 + δ0js

−1wrds

Here, we identify the center of sln(C[u±1, w] o Γ with HC1(C[u±1, w] o Γ) as above.

Let a be the Lie subalgebra of g generated by X±i,r,j, Hi,r,j, X
+
0,r,j, X

−
0,r+1,j for 1 ≤ i ≤ n− 1, r ≥ 0, 0 ≤

j ≤ d − 1. Via the isomorphism g
∼−→ ŝln(C[u±1, w] o Γ), we see that a contains ŝln(C[u, v] o Γ) with

v = u−1w. As we have mentioned earlier, we are interested in deformations of the enveloping algebra
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of a Lie algebra slightly bigger than ŝln(C[u, v] o Γ). The projection g � g/〈
∑n−1
i=0

∑d−1
j=0 Hi,0,j〉 = g̃ is

injective on a (note that
∑n−1
i=0

∑d−1
j=0 Hi,0,j is a central element of g), so we can view ŝln(C[u, v] o Γ)

as contained in the Lie subalgebra ã of g̃ which is the image of a under the previous projection. The
Lie subalgebra of g̃ generated by X̃±i,0,j, H̃i,0,j, H̃0,0,j, X̃

+
0,0,j for 1 ≤ i ≤ n − 1, 0 ≤ j ≤ d − 1 is larger

than sln(C[u] o Γ). (Here,˜denotes the image under the projection g � g̃.) For instance,
∑n−1
i=0 H̃i,0,j =

E11(ej − ej+1) 6∈ sln(C[u] o Γ). (Note that span{ej − ej+1|0 ≤ j ≤ d− 1} = ⊕d−1
j=1C · ξj ( C[Γ].) In the

last section, we will explain how Γ-DDCA in the cyclotomic case are deformations of Uã.

6 Γ-deformed double current algebras

We introduce in this section a new family of quantum algebras which are deformations of the enveloping
algebra of an enlargement of ŝln(C[u, v] o Γ) and which are related to symplectic reflection algebras for
wreath products of Γ via a functor of Schur-Weyl type. (By enlargement of a Lie algebra g, we mean a Lie

algebra ǧ which contains a.) Before defining them, we need to introduce the Lie algebra g̃ln(C[Γ]) which is
the Lie subalgebra of gln(C[Γ]) spanned by sln(C[Γ]) and by the elements Eaa(γ)∀γ ∈ Γ\{id}, 1 ≤ a ≤ n.

The necessity to consider g̃ln(C[Γ]) instead of just sln(C[Γ]) will become clear in sections 7 and 8.

We will use the following notation: given an algebra A and elements a1, a2 ∈ A, we will set S(a1, a2) =
a1a2 + a2a1.

Definition 6.1. The Γ-deformed double current algebra Dnβ,b with parameters β ∈ C,b ∈ ZΓ,b =

λ · id +
∑
γ∈Γ\{id} bγγ is the algebra generated by the elements of g̃ln(C[Γ]),Eab(t1w1 + t2w2) for 1 ≤ a 6=

b ≤ n, t1, t2 ∈ C, w, w1, w2 ∈ U which satisfy Eab(t1w1 + t2w2) = t1Eab(w1) + t2Eab(w2) and the following
relations:
If a 6= b 6= c 6= a 6= d 6= c,

[Eab(γ),Ebc(w)] = [Ead(γ(w)),Edc(γ)], [Eaa(γ),Eac(w)] = [Eab(γ),Ebc(w)] = [Eac(γ(w)),Ecc(γ)] (34)

[Eab(w2),Ebc(w1)] = [Ead(w1),Edc(w2)] + ω(w1, w2)Eac (b + β) +
λ

8
ω(w1, w2)

∑
γ∈Γ

n∑
i,j=1(

S
(
[Eab(γ

−1),Eij ], [Eji,Ebc(γ)]
)

+ S
(
[Ead(γ),Eij ], [Eji,Edc(γ

−1)]
))

−λ
2

∑
γ∈Γ

(ω(γ(w1), w2)− ω(w1, w2))
(
Ebb(γ

−1)Eac(γ) + Edd(γ)Eac(γ
−1)
)

(35)

If a, b, c are all distinct, [Ecc(γ),Eab(w)] = 0, and if a 6= b 6= c 6= d 6= a, then [Eab(γ),Ecd(w)] = 0 and

[Eab(w1),Ecd(w2)] =
λ

4

∑
γ∈Γ

ω(γ(w1), w2)S
(
Ead(γ

−1),Ecb(γ)
)

(36)

Set b̃ =
∑
γ∈Γ\{id} bγγ, so b̃ = b(λ = 0). Let D̃n

β,b̃
be the subalgebra of Dnβ,b(λ=0) generated by

the elements Eab(w1),Eab(w2),Eab(γ) for a 6= b. Lemma 5.1 says that D̃nβ=0,b=0 is isomorphic to the

enveloping algebra of ŝln(C[u, v] o Γ). When β = 1, λ = 0 = bγ for γ 6= id, Dnβ=1,b=0 is exactly the
enveloping algebra of gln(A1 oΓ) where A1 is the first Weyl algebra. Dnβ=0,b=0 is the enveloping algebra

of a Lie algebra that we denote šln(C[u, v] o Γ) and we have šln(C[u, v] o Γ) ⊃ ŝln(C[u, v] o Γ). See
section 8 for more details.

When Γ is the trivial group, Dnβ,b is isomorphic to the algebra Dnλ,β in [Gu2] (see also [Gu1]). The
main difference in the definitions of Dnβ,b and Dnλ,β is that the former does not involve any Yangian.
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Actually, there does not seem to be any sensible notion of Yangian associated to Γ in general, which,
from a heuristic point of view, is not surprising since, when Γ is not cyclic, C2 is not the direct sum of two
one-dimensional Γ-invariant subspaces. When Γ is a finite cyclic group, we can give another definition of
Dnβ,b which involves Yangians: see section 10.

By giving degree 0 to the elements of g̃ln(C[Γ]) and degree one to Eab(w), w ∈ U , we can define a
filtration F• on Dnβ,b such that Dnβ=0,b=0 � grF (Dnβ,b). The PBW theorem in section 9 says that this
canonical map is an isomorphism.

7 Schur-Weyl functor and equivalence of categories

Given a right module M over Ht,c(Γl), we set SW(M) = M ⊗C[Sl] (Cn)⊗l. We would like to give SW(M)

a structure of left module over Dnβ,b. The action of Eab is simply via the sln-module structure on (Cn)⊗l.
Let us assume that u, v, x, y ∈ U are such that the map u 7→ x, v 7→ y is a Γ-equivariant automorphism of
the symplectic vector space U , so that ω(γ(u), v) = ω(γ(x), y). In particular, {u, v} is a symplectic basis
of C2. We would like to let Eab(w),Eab(γ) ∈ Dnλ,β act on SW(M) in the following way:

Eab(w)(m⊗ v) =

l∑
k=1

mwk ⊗ E(k)
ab (v), Eab(γ)(m⊗ v) =

l∑
k=1

mγ−1
k ⊗ E

(k)
ab (v)

Here, wk = t1xk + t2yk if w = t1x+ t2y, v = vi1 ⊗ · · · ⊗ vil ∈ Cn and

E
(k)
ab (v) = vi1 ⊗ · · · ⊗ vik−1

⊗ Eab(vik)⊗ vik+1
⊗ · · · ⊗ vil .

These operators define a representation of Dnβ,b on SW(M) if and only if the following relations hold

between t, c, λ,b: λ = κ, bγ = cγ−1 for γ 6= id and β = t− nκ|Γ|
4 − κ.

To prove our claim, we have to verify that the operators above satisfy the defining relations of Dnβ,b.
We start by computing that, for a 6= b 6= c 6= a 6= d 6= c,(

[Eab(u),Ebc(u)]− [Ead(u),Edc(u)]
)
(m⊗ v)

=

l∑
j,k=1

j 6=k

m(xkxj − xjxk)⊗
(
E

(j)
ab E

(k)
bc − E

(j)
ad E

(k)
dc

)
(v)

= −κ
2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωxγmσkjγkγ
−1
j ⊗

(
E

(j)
ab E

(k)
bc − E

(j)
ad E

(k)
dc

)
(v)

= −κ
2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωxγmγjγ
−1
k ⊗

(
E

(j)
bb E

(k)
ac − E

(j)
dd E

(k)
ac

)
(v)

= −κ
2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωxγmγjγ
−1
k ⊗H

(j)
bd E

(k)
ac (v) = −κ

2

∑
γ∈Γ

ωxγHbd(γ
−1)Eac(γ)(m⊗ v)

The computations are the same when u is replaced by v and ωxγ is replaced by ωyγ . Under the same
assumption on a, b, c, d, we now compute:
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(
[Eab(v),Ebc(u)]− [Ead(u),Edc(v)]

)
(m⊗ v)

=

l∑
k=1

m(xkyk − ykxk)⊗ E(k)
ac (v) +

l∑
j,k=1

j 6=k

m[xk, yj ]⊗ E(j)
ab E

(k)
bc (v)−

l∑
j,k=1

j 6=k

m[yj , xk]⊗ E(k)
ad E

(j)
dc (v)

=

l∑
k=1

m

t+
κ

2

l∑
j,k=1

j 6=k

∑
γ∈Γ

γjγ
−1
k σjk +

∑
γ∈Γ\{id}

cγγk

⊗ E(k)
ac (v)

− κ

2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωx,yγ mγjγ
−1
k σjk ⊗ E(j)

ab E
(k)
bc (v)− κ

2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωx,yγ mγjγ
−1
k σjk ⊗ E(k)

ad E
(j)
dc (v)

= Eac

t+
∑

γ∈Γ\{id}

cγγ
−1

 (m⊗ v) +
κ

2

∑
j 6=k

∑
γ∈Γ

n∑
e=1

mγjγ
−1
k ⊗ E

(j)
ae E

(k)
ec (v)

− κ

2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωx,yγ mγjγ
−1
k ⊗ E

(j)
bb E

(k)
ac (v)− κ

2

l∑
j,k=1

j 6=k

∑
γ∈Γ

ωx,yγ mγjγ
−1
k ⊗ E

(k)
dd E

(j)
ac (v)

= Eac

t+
∑

γ∈Γ\{id}

cγγ
−1 − κn

4
|Γ|

 (m⊗ v) +
κ

4

∑
γ∈Γ

n∑
e=1,e6=a,c

S
(
Eae(γ

−1),Eec(γ)
)
(m⊗ v)

+
κ

8

∑
γ∈Γ

(
S
(
Hab(γ

−1),Eac(γ)
)

+ S
(
Hcd(γ),Eac(γ

−1)
)

+ S
(
Had(γ),Eac(γ

−1)
)

+ S
(
Hcb(γ

−1),Eac(γ)
))

(m⊗ v)− κ

2

∑
γ∈Γ

(ωx,yγ − 1)
(
Ebb(γ

−1)Eac(γ) + Edd(γ)Eac(γ
−1)
)
(m⊗ v)

We now check that
(
[Eab(γ),Ebc(u)]− [Ead(γ(u)),Edc(γ)]

)
(m⊗ v)

=

l∑
k=1

m
(
xkγ

−1
k − γ

−1
k γk(xk)

)
⊗ E(k)

ac (v) +

l∑
j,k=1

j 6=k

m[xk, γ
−1
j ]⊗ E(j)

ab E
(k)
bc (v)

−
l∑

j,k=1

j 6=k

m[γ−1
k , γj(xj)]⊗ E(j)

ad E
(k)
dc (v)

= 0

since γ−1
k γk(xk) = xkγ

−1
k in Ht,c(Γl) and γjxk = xkγj , ∀γ ∈ Γ if j 6= k. Exactly the same computations

work with v instead of u and in the case a = b or c = d with γ 6= id.

Now, we will assume instead that a 6= b 6= c 6= d 6= a:

[Eab(u),Ecd(v)](m⊗ v) =
∑
j 6=k

m[yj , xk]⊗ E(k)
ab E

(j)
cd (v) =

κ

2

∑
γ∈Γ

∑
j 6=k

ωx,yγ mσjkγkγ
−1
j ⊗ E

(k)
ab E

(j)
cd (v)

=
κ

2

∑
γ∈Γ

∑
j 6=k

ωx,yγ mγjγ
−1
k ⊗ E

(k)
cb E

(j)
ad (v) =

κ

2

∑
γ∈Γ

ωx,yγ Ecb(γ)Ead(γ
−1)(m⊗ v)

The computations are the same for [Eab(u),Ecd(u)](m ⊗ v) and [Eab(v),Ecd(v)](m ⊗ v) with ωxγ (resp.
ωyγ) instead of ωx,yγ .

We can state what we have proved so far in this section, but before that we need a definition.
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Definition 7.1. A module over Dnβ,b is called integrable if it is a direct sum of integral weight spaces
under the action of h and is locally nilpotent under the action of Eab(w) for any 1 ≤ a 6= b ≤ n and any
w ∈ U .

Definition 7.2. A module over Dnβ,b is said to be of level l if, as a module over sln, it decomposes as a

direct sum of irreducible sln-submodules of (Cn)⊗l.

Proposition 7.1. Suppose that λ = κ, β = t− κn|Γ|
4 − κ and bγ = cγ−1 for γ 6= id. Then there exists a

functor SW : modR − Ht,c(Γl) −→ modint,lL − Dnβ,b given by SW(M) = M ⊗C[Sl] (Cn)⊗l. Here, modint,lL

is the category of integrable left modules of level l.

This proposition can be strengthened to yield a new generalization of the classical Schur-Weyl duality
theorem between sln and Sl.

Theorem 7.1. Suppose that λ = κ, β = t − κn|Γ|
4 − κ and bγ = cγ−1 for γ 6= id. If l + 2 < n, then the

functor SW yields an equivalence between the category of right Ht,c(Γl)-modules and the category of left
modules over Dnβ,b which are integrable of level l.

The proof of this theorem will follow the same lines as the analogous result in [Gu1],[Gu2] (see also
[ChPr1], [VaVa1]). However, before proving it, we have to establish a similar result for Γl and sln(C[Γ]).
(When Γ is the cyclic group Z/dZ, a more general result was established in [ATY] in the context of
cyclotomic Hecke algebras and where sln(C[Γ]) ∼= sl⊕dn is replaced by glm1 ⊕ · · · ⊕ glmd . ) We will need
the following lemma.

Lemma 7.1. If v = vi1 ⊗ · · · ⊗ vil is a generator of (Cn)⊗l as a module over sln (e.g. if ij 6= ik for any
j 6= k), then m⊗ v = 0 =⇒ m = 0.

Proposition 7.2. The functor SW : modR−C[Γl] −→ modlL−sln(C[Γ]) given by M 7→M⊗C[Sl] (Cn)⊗l

which is an equivalence of categories of finite dimensional modules when l + 1 < n.

Proof. Given a right Γl-module M , we can put on M⊗C[Sl](Cn)⊗l a structure of left module over sln(C[Γ])
by setting

Eab(γ)(m⊗ v) =

l∑
k=1

mγ−1
k ⊗ E

(k)
ab (v).

This extends the classical Schur-Weyl functor to modR − C[Γl] and modlL − sln(C[Γ]). The second part
of the proposition requires more work; to prove it, we will follow the approach and ideas in [ChPr1].

Suppose that l + 1 < n. Let N be a left sln(C[Γ])-module which is of level l as sln-module. Then
N ∼= M ⊗C[Sl] (Cn)⊗l as left sln-module for some right Sl-module M by the classical case. We want to
show that M is a right module over the group Γl.

For 1 ≤ k ≤ l, set v(k) = v2 ⊗ · · · ⊗ vk ⊗ vn ⊗ vk+1 ⊗ · · · ⊗ vl where {v1, v2, . . . , vn} is the standard
basis of Cn. Let w(k) be the same element of (Cn)⊗l as v(k) except that vn is replaced by v1. As in

[ChPr1], we write w
(k)
τ for the element obtained by permuting the factors of w(k) by τ ∈ Sl. The set

{w(k)
τ |τ ∈ Sl} is a basis for the subspace of (Cn)⊗l of weight λl = ε1 + . . .+ εl where εi is the weight on

diagonal matrices given by Ejj 7→ δij , so we can write

E1n(γ)(m⊗ v(k)) =
∑
τ∈Sl

mτ ⊗w(k)
τ

for some mτ ∈M . This can be rewritten as E1n(γ)(m⊗ v(k)) = m′ ⊗w(k) for some m′ ∈M . By lemma

7.1 above, m′ is unique, so there exists a linear endomorphism ζγ,k1n of M such that m′ = ζγ,k1n (m) for all
m ∈M .

13



One can show, exactly as in lemma 4.5 in [ChPr1], that E1n(γ)(m⊗v) =
∑n
k=1 ζ

γ,k
1n (m)⊗E(k)

1n (v) for
any v ∈ (Cn)⊗l. Instead of the quantized Serre relation that they use, one should consider the relation[
En,n−1, [En,n−1,E1n(γ)]

]
= 0, which is a consequence of [E1n(γ),En,n−1] = [E1,n−2(γ),En−2,n−1].

Similarly, it is possible to show also that, for any 1 ≤ a 6= b ≤ n, there exists an endomorphism

ζγ,kab ∈ EndC(M) such that Eab(γ)(m ⊗ v) =
∑l
k=1 ζ

γ,k
ab (m) ⊗ E(k)

ab (v). We claim that, for any choice of

a 6= b, c 6= d, ζγ,kab = ζγ,kcd . Suppose, for instance, that b 6= d 6= a, Then Ead(γ) = [Eab(γ),Ebd], so

Ead(γ)(m⊗ v) = [Eab(γ),Ebd](m⊗ v) =

l∑
k=1

ζγ,kab (m)⊗ E(k)
ad (v).

Since this is true for any v ∈ (Cn)l,m ∈ M , ζγ,kab = ζγ,kad . The other cases can be treated similarly.

Therefore, we can define ζγ,k ∈ EndC(M) unambiguously by setting ζγ,k = ζγ,kab for any choice of a 6= b.

We can now show that setting mγk = ζγ
−1,k(m) gives M a structure of right module over Γl. We will

prove the following relations:

1. (mγk)γ̃k = m(γγ̃)k, ∀ γ, γ̃ ∈ Γ.

2. (mγk)γ̃j = (mγ̃j)γk ∀γ, γ̃ ∈ Γ if j 6= k.

3. (mσjk)γj = (mγk)σjk, ∀ 1 ≤ j 6= k ≤ l,∀γ ∈ Γ.

(1): Set v = v2 ⊗ · · · ⊗ vk ⊗ vn ⊗ vk+1 ⊗ · · · ⊗ vl and ṽ = v2 ⊗ · · · ⊗ vk ⊗ v1 ⊗ vk+1 ⊗ · · · ⊗ vl Since
[E1,n−1(γ̃−1),En−1,n(γ−1)] = E1n(γ̃−1γ−1), we obtain

[E1,n−1(γ̃−1),En−1,n(γ−1)](m⊗ v) =
(
(mγk)γ̃k

)
⊗ ṽ = E1n(γ̃−1γ−1)(m⊗ v).

This equality, along with lemma 7.1, imply that (mγk)γ̃k = m(γγ̃)k, which is what we wanted.

(2): Suppose that 1 ≤ j < k ≤ l. Set v = v3⊗· · ·⊗ vj+1⊗ vn⊗ vj+2⊗· · ·⊗ vk⊗ vn−1⊗ vk+1⊗· · ·⊗ vl
and ṽ = v3 ⊗ · · · ⊗ vj+1 ⊗ v1 ⊗ vj+2 ⊗ · · · ⊗ vk ⊗ v2 ⊗ vk+1 ⊗ · · · ⊗ vl. Since [E1n(γ̃−1),E2,n−1(γ−1)] = 0,
we get

0 = [E1n(γ̃−1),E2,n−1(γ−1)](m⊗ v) =
(
(mγk)γ̃j

)
⊗ ṽ −

(
(mγ̃j)γk

)
⊗ ṽ,

so, by lemma 7.1, (mγk)γ̃j = (mγ̃j)γk.

(3): Set v = v2 ⊗ · · · ⊗ vj ⊗ vn ⊗ vj+1 ⊗ · · · ⊗ vk−1 ⊗ vn−1 ⊗ vk+1 ⊗ · · · ⊗ vl and ṽ = σjk(v); let v̂ be
the same as v except that vn is replaced by v1 and set v = σjk(v̂). Then

(mσjk)γj ⊗ v = En1(γ−1)(mσjk ⊗ v̂) = En1(γ−1)(m⊗ v) = mγk ⊗ ṽ = (mγk)σjk ⊗ v.

Again, lemma 7.1 allows us to conclude that (mσjk)γj = (mγk)σjk.

Finally, one can check that the functor F is bijective on sets of morphisms.

Proof of theorem 7.1. Let N be a left module over Dnβ,b which is integrable and of level l. Proposition 7.2

says that N = M ⊗C[Sl] (Cn)⊗l for some right Γl-module M . We have to extend this to a right module
structure over Ht,c(Γl).

We can proceed exactly as in the proof of proposition 7.2 (mimicking the arguments in [ChPr1]) to

show that there exist endomorphisms ζwk ∈ EndC(M) such that Eab(w)(m⊗v) =
∑l
k=1 ζ

w
k (m)⊗E(k)

ab (v).
We proceed as in [Gu2] to show that setting mxk = ζuk (m),myj = ζvj (m) turns M into a module over
Ht,c(Γl).
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Fix 1 ≤ j, k ≤ l, j 6= k. Choose v = vi1⊗· · ·⊗vil such that ik = 2, ij = n−1, ir = r+2 if r < j, r 6= k,

ir = r + 1 if r > j, r 6= k. Set ṽ = E
(k)
n2 E

(j)
1,n−1(v). On the one hand,(

E1,n−1(w2)En2(w1)− En2(w1)E1,n−1(w2)
)
(m⊗ v) =

l∑
s=1

l∑
r=1

mw1
rw

2
s ⊗ E

(s)
1,n−1E

(r)
n2 (v)−

l∑
s=1

l∑
r=1

mw2
sw

1
r ⊗ E

(r)
n2 E

(s)
1,n−1(v) = m

(
w1
kw

2
j − w2

jw
1
k

)
⊗ ṽ

Using relation (36) for Eab = En2 and Ecd = E1,n−1, we find that

[E1,n−1(w2),En2(w1)] = −λ
2

∑
γ∈Γ

ω(γ(w1), w2)En,n−1(γ−1)E12(γ),

so

[E1,n−1(w2),En2(w1)](m⊗ v) = −λ
2

∑
γ∈Γ

ω(γ(w1), w2)mγ−1
k γj ⊗ E(j)

n,n−1E
(k)
12 (v)

= −λ
2

∑
γ∈Γ

ω(γ(w2), w1)mγjγ
−1
k σjk ⊗ ṽ.

Therefore, m
(
w1
kw

2
j − w2

jw
1
k + λ

2

∑
γ∈Γ ω(γ(w1), w2)σjkγkγ

−1
j

)
⊗ ṽ = 0. From lemma 7.1 and our as-

sumption that λ = κ, we deduce that m
(
w1
kw

2
j − w2

jw
1
k + κ

2

∑
γ∈Γ ω(γ(x), y))σjkγkγ

−1
j

)
= 0.

We use equation (35) in the case (a, b) = (n, 1), (c, d) = (n − 1, 1). It implies that the difference
[En1(v),E1,n−1(u)]− [En1(u),E1,n−1(v)] is equal to

En,n−1(b + β) +
λ

4

∑
γ∈Γ

n−2∑
j=1

S(Enj(γ),Ej,n−1(γ−1)) +
λ

4

∑
γ∈Γ

(
S
(
Hn1(γ),En,n−1(γ−1)

)
+ S

(
En,n−1(γ),Hn−1,1(γ−1)

))
− λ

2

∑
γ∈Γ

(ω(γ(u), v)− 1)
(
E11(γ−1)En,n−1(γ) + E11(γ)En,n−1(γ−1)

)

Now fix k and let v be determined by ik = n− 1, ij = j + 1 if j 6= k. Set v̂ = E
(k)
n,n−1(v). Applying

both sides of the previous equality to m⊗ v, we deduce that

m(xkyk − ykxk)⊗ v̂ = m

β + λ+
∑
γ∈Γ

γ 6=id

bγγ
−1

⊗ v̂ +
λn|Γ|

4
m⊗ v̂ +

λ

2

∑
γ∈Γ

n∑
j,k=1

j 6=k

mσjkγkγ
−1
j ⊗ v̂

Lemma 7.1 and our assumption that λ = κ, β = t − κn|Γ|
4 − κ, bγ = cγ−1 imply that [xk, yk] = t +

κ
2

∑
γ∈Γ

∑n
j,k=1

j 6=k
σjkγkγ

−1
j +

∑
γ∈Γ

γ 6=id
cγγ.

That the functor SW is bijective on sets of morphisms follows from the classical Schur-Weyl duality
and lemma 7.1.

8 Specialization at λ = 0

In [Gu2], we proved that, when the parameters λ = 0 and β 6= 0, the deformed double current algebra
is isomorphic to the enveloping algebra of the Lie algebra gln over the first Weyl algebra, which is a
symplectic reflection algebra of rank one for the trivial group Γ = {1}. Therefore, it is natural to
conjecture that, for an arbitrary finite subgroup Γ of SL2(C), a similar result is true, the first Weyl
algebra being replaced by a symplectic reflection algebra of rank one for Γ. Theorem 8.1 confirms this.
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Definition 8.1. [CBHo] Set c̃ =
∑
γ∈Γ\{id} cγγ. Let At,c̃ be the algebra generated by the elements

x, y, γ ∈ Γ and satisfying the relations γ · x · γ−1 = γ(x), γ · y · γ−1 = γ(y) and xy − yx = t + c̃. (Here,
spanC{x, y} ∼= C2 and Γ thus acts on spanC{x, y}.)

We recall that the Lie algebra sln(At,c̃) is defined as the Lie subalgebra of gln(At,c̃) of matrices with
trace in [At,c̃,At,c̃]. As a vector space, sln(At,c̃) = sln ⊗C At,c̃ ⊕ d

(
[At,c̃,At,c̃]

)
, where d

(
[At,c̃,At,c̃]

)
is the

space of scalar matrices in gln(At,c̃) with entries in [At,c̃,At,c̃].

Lemma 8.1. For all c̃ and all t ∈ C× except a countable set, the Lie algebra sln(At,c̃) is universally
closed, that is, it is its own universal central extension.

Proof. Theorem 1.7 in [KaLo] states the the center of the universal central extension of sln(A), where A
is an arbitrary associative algebra, is isomorphic to the first cyclic homology group HC1(A). It shown
in [EtGi] that the first Hochschild homology group HH1(At,c̃) vanishes for all c̃ and all t ∈ C× outside a
countable set. The groupe HC1(At,c̃) is a quotient of HH1(At,c̃), so it vanishes also.

Theorem 8.1. Suppose that β = t and bγ = cγ−1 for γ 6= id. Then the algebra D̃n
β,b̃

is isomorphic to the

enveloping algebra of the Lie algebra ŝln(At,c̃), the universal central extension of sln(At,c̃).

Proof. It follows from the definition of D̃n
β,b̃

and theorem 5.1 that Uŝln(At,c̃) is a quotient of D̃nβ,b. To

prove that the quotient map is an isomorphism, we construct elements Eab(p) ∈ D̃n
β,b̃

for 1 ≤ a 6= b ≤ n

and any p ∈ At,c̃ and show that they satisfy the relations in theorem 5.1. We will give a proof when
n ≥ 5; it illustrates how the calculations are sometimes simpler when n ≥ 5. Let g be the Lie algebra
defined by the relations in definition 6.1 with λ = 0. Lemma 4.4 gives us homomorphisms sln[v] −→
g, sln[u] −→ g. Define Eab(v

jγ) = [Eac(v
j),Ecb(γ)] for γ 6= id, a, b, c all distinct, and set inductively

Eab(u
ivjγ) = [Eac(u),Ecb(u

i−1vjγ)] for some c 6= a, b and for i, j ≥ 1. We define Eab(p) by linearity when
p is a sum of monomials. We have to show that [Eab(p1),Ebc(p2)] = Eac(p1p2) if a 6= b 6= c 6= a and
[Eab(p1),Ecd(p2)] = 0 if a 6= b 6= c 6= d 6= a for any p1 = ui1vj1γ1, p2 = ui2vj2γ2.

The first step, however, is to show that the definition of Eab(u
ivjγ) does not depend on the choice of

c. Since we are assuming that n ≥ 5, choose d, e such that a, b, c, d, e are all distinct and assume that
i ≥ 2. (The case i = 1, j ≥ 1 is similar.) Then

[Eac(u),Ecb(u
i−1vjγ)] =

[
Eac(u),

[
Ecd, [Ede(u),Eeb(u

i−2vjγ)]
]]

=
[
[Eac(u),Ecd], [Ede(u),Eeb(u

i−2vjγ)]
]

= [Ead(u),Edb(u
i−2vjγ)]

The arguments used are similar to those in the proofs of lemma 4.4, 4.5 and 5.1. We proceed again by
induction on deg(p1)+deg(p2) to prove the two equalities above, which hold when deg(p1)+deg(p2) ≤ 1.

If a 6= b 6= c 6= d 6= a, choose e 6= a, b, c, d. Without loss of generality, we can suppose that p1 = up̃1

and deg(p1) ≥ 2. Then [Eab(p1),Ecd(p2)] =
[
[Eae(u),Eeb(p̃1)],Ecd(p2)

]
= 0 by induction.

If p1 = up̃1 with deg(p̃1) ≥ 1, choose a, b, c, d all distinct, so that, by induction,

[Eab(p1),Ebc(p2)] =
[
[Ead(u),Edb(p̃1)],Ebc(p2)

]
=
[
Ead(u), [Edb(p̃1)],Ebc(p2)]

]
= [Ead(u),Edc(p̃1p2)] = Eac(up̃1p2) = Eac(p1p2)

If p1 = vr with r ≥ 1 and p2 = up̃2, then choose a, b, c, d, e all distinct, so that

[Eab(p1),Ebc(p2)] =
[
[Ead(v),Edb(v

r−1],Ebc(p2)
]

=
[
Ead(v), [Edb(v

r−1),Ebc(p2)]
]

= [Ead(v),Edc(v
r−1p2)] = [Ead(v),Edc(uv

r−1p̃2) + Edc([v
r−1, u]p̃2)]
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=
[
Ead(v), [Ede(u),Eec(v

r−1p̃2)]
]

+ [Ead(v),Edc([v
r−1, u]p̃2)]

=
[
[Ead(v),Ede(u)],Eec(v

r−1p̃2)
]

+ Eac(v[vr−1, u]p̃2)

=
[
[Ead(u),Ede(v)],Eec(v

r−1p̃2)
]
− [Eae(c̃),Eec(v

r−1p̃2)
]

+ Eac(v[vr−1, u]p̃2)

= Eac(uv
rp̃2)− Eac(c̃v

r−1p̃2) + Eac(v[vr−1, u]p̃2)

= Eac(p1p2)

If p1 = p̃1γ with p̃1 a monomial in u, v, p2 = up̃2 and a, b, c, d, e are all distinct, then

[Eab(p1),Ebc(p2)] =
[
[Eae(p̃1),Eeb(γ)], [Ebd(u),Edc(p̃2)]

]
=
[
Eae(p̃1),

[
[Eeb(γ),Ebd(u)],Edc(p̃2)

]]
=

[
Eae(p̃1),

[
[Eeb(γ(u)),Ebd(γ)],Edc(p̃2)

]]
= [Eae(p̃1),Eec(γ(up̃2)γ)]

= [Eae(p̃1),Eec(γ(p2)γ)] = Eac(p1p2)

The last line follows from the previous cases since p̃1 is assumed to be a monomial in u, v.

Corollary 8.1. For all b(λ = 0) and all β ∈ C× outside a countable set, the algebra Dnβ,b(λ=0) is

isomorphic to the enveloping algebra of the Lie algebra gln(At,c̃) with t = β, cγ = bγ−1 for γ 6= id. This
is true, in particular, when λ = 0 = bγ for γ 6= id and β 6= 0.

Proof. Lemma 8.1 and theorem 8.1 imply that D̃n
β,b̃

is isomorphic to sln(At,c̃) with t = β, cγ = bγ−1 for

γ 6= id. The isomorphism given in theorem 8.1 can be extended to Dnβ,b(λ=0) and gln(At,c̃) by sending

Eaa(γ) to Eaa ⊗ γ for γ 6= id. Note that
gln(At,c̃)

sln(At,c̃)
∼= At,c̃

[At,c̃,At,c̃] = HC0(At,c̃) and it is proved in [EtGi] that

dimC(At,c̃) = cl(Γ)− 1 for generic values of the parameters (in the same sense as above).

9 PBW bases

We follow the same approach as in [Gu2] to prove that a Γ-deformed double current algebra admits a
vector space basis of PBW type. This can be formulated by saying that the map Dnβ=0,b=0 � grF (Dnβ,b)
is an isomorphism. We will construct inductively a vector space basis of Dnβ,b which yields the natural

PBW basis on grF (Dnβ,b) ∼= Ušln(C[u, v]oΓ). We make the same assumption on u, v, x, y as in section 7.

We need to assume that β + λ− λn|Γ|
4 6= 0 in this section.

We need to choose in C[u, v] a Γ-invariant space E complementary to C[u, v]Γ, so that C[u, v] ∼=
C[u, v]Γ⊕E as Γ-modules. We can suppose that E = ⊕m≥1E[m] is graded by the degree of the monomials
and E(1) = U . Let us assume that we have constructed elements Fab(p) ∈ Dnβ,b for all p ∈ E⊕span{p̃γ|p̃ ∈
C[u, v], γ 6= id} of degree ≤ N ∀ 1 ≤ a, b ≤ n and also ∀ p ∈ C[u, v]Γ + C[Γ] of degree ≤ N − 2

∀ 1 ≤ a, b ≤ n, such that Fab(p)(h⊗ v) =
∑l
k=1 hp(xk, yk, γk)⊗E(k)

ab (v) if h ∈ Ht,c(Γl),v ∈ (Cn)⊗l. This
is already known to hold for N = 1. We use the notation Fab(p) instead of Eab(p) because we must set
Fab(γ) = Eab(γ

−1),Fab(t1u+ t2v) = Eab(t1u+ t2v), t1, t2 ∈ C and Fab(wγ) = [Eac(γ
−1),Ecb(w)] for some

c 6= a, b. We want to construct by induction such elements Fab(p) for any p ∈ C[u, v] o Γ, 1 ≤ a, b ≤ n.
Set Hab(p) = [Fab(p),Fba] for 1 ≤ a 6= b ≤ n if Fab(p) has already been defined.

Let p(u, v) ∈ C[u, v]Γ, p(u, v) 6= 0 be a polynomial of degree N − 1 (we can assume that p(u, v) is

homogeneous). In the computations below for P̂ (h⊗v), we will not need to use that p(u, v) is Γ-invariant.
However, we have to start with this case in the induction step.

Suppose that p(u, v) =
∑
r,s≥0(cpr,sru

svr−1 − c̃pr,ssus−1vr) where cpr,s, c̃
p
r,s ∈ C and cpr,s = 0 = c̃(p, r, s)

if r + s 6= f . The proof of proposition 5.2 suggests that we consider the following elements:
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P̂i =
∑
r,s≥0

(
cpr,s[Hi(u

svr),Hi(u)] + c̃pr,s[Hi(u
svr),Hi(v)]

)
and P̂ =

1

2

n∑
i=1

P̂i.

P̂ (h⊗ v) =
1

2

n∑
i=1

∑
r,s≥0

l∑
k=1

(
cpr,sh[xk, x

s
ky
r
k]− c̃pr,sh[xsky

r
k, yk]

)
⊗ (Eii + Ei+1,i+1)(k)v

+
1

2

n∑
i=1

∑
r,s≥0

l∑
j,k=1

j 6=k

(
cpr,sh[xk, x

s
jy
r
j ]− c̃pr,sh[xsjy

r
j , yk]

)
⊗H(j)

i H
(k)
i v

=
∑
r,s≥0

l∑
k=1

(
cpr,s

r−1∑
d=0

hxsky
d
k[xk, yk]yr−d−1

k − c̃pr,s
s−1∑
d=0

hxdk[xk, yk]xs−d−1
k yrk

)
⊗ v

+

n∑
i=1

∑
r,s≥0

s−1∑
d=0

l∑
j,k=1

j 6=k

(
cpr,s
2

hxdj [xk, xj ]x
s−d−1
j yrj −

c̃pr,s
2

hxdj [xj , yk]xs−d−1
j yrj

)
⊗H(k)

i H
(j)
i v

+

n∑
i=1

∑
r,s≥0

l∑
j,k=1

j 6=k

r−1∑
d=0

(
cpr,s
2

hxsjy
d
j [xk, yj ]y

r−d−1
j −

c̃pr,s
2

hxsjy
d
j [yj , yk]yr−d−1

j

)
⊗H(k)

i H
(j)
i v

= t
∑
r,s≥0

l∑
k=1

(
cpr,srhx

s
ky
r−1
k − c̃pr,sshxs−1

k yrk
)
⊗ v

+
∑
r,s≥0

cpr,s

r−1∑
d=0

κ
2

l∑
j,k=1

j 6=k

∑
γ∈Γ

hxsky
d
kσjkγkγ

−1
j yr−d−1

k +
∑

γ∈Γ\{id}

cγhx
s
ky
d
kγky

r−d−1
k

⊗ v

−
∑
r,s≥0

c̃pr,s

s−1∑
d=0

κ
2

l∑
j,k=1

j 6=k

∑
γ∈Γ

hxdkσjkγkγ
−1
j xs−d−1

k yrk +
∑

γ∈Γ\{id}

cγhx
d
kγkx

s−d−1
k yrk

⊗ v

− κ

4

n∑
i=1

∑
r,s≥0

∑
j 6=k

s−1∑
d=0

∑
γ∈Γ

h(ωxγc
p
r,sx

d
jσjkγkγ

−1
j xs−d−1

j yrj − c̃pr,sωx,yγ xdjσjkγjγ
−1
k xs−d−1

j yrj )

⊗H(k)
i H

(j)
i (v)

− κ

4

n∑
i=1

∑
r,s≥0

∑
j 6=k

r−1∑
d=0

∑
γ∈Γ

h(ωx,yγ cpr,sx
s
jy
d
jσjkγkγ

−1
j yr−d−1

j − ωyγ c̃pr,sxsjydjσkjγjγ−1
k yr−d−1

j )

⊗H(k)
i H

(j)
i (v)

= t

l∑
k=1

hp(xk, yk)⊗ v

+
∑
r,s≥0

∑
γ∈Γ\{id}

cγ

(
cpr,s

r−1∑
d=0

hxsky
d
kγ(yr−d−1

k )γk − c̃pr,s
s−1∑
d=0

hxdkγ(xs−d−1
k yrk)γk

)
⊗ v

+
κ

2

∑
r,s≥0

l∑
j,k=1

j 6=k

∑
γ∈Γ

n∑
e,i=1

(
cpr,s

r−1∑
d=0

hxsky
d
kγ(yr−d−1

j )γjγ
−1
k

− c̃pr,s
s−1∑
d=0

hxdkγ(xs−d−1
j yrj )γjγ

−1
k

)
⊗ E(k)

ei E
(j)
ie (v)
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−κ
2

∑
r,s≥0

l∑
j,k=1

j 6=k

s−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x
γ − c̃pr,sω

x,y
γ−1)hxdjγ

−1(xs−d−1
k yrk)γjγ

−1
k

⊗
(
E

(j)
ii E

(k)
ii −

1

2
E

(j)
i,i+1E

(k)
i+1,i −

1

2
E

(j)
i+1,iE

(k)
i,i+1

)
(v)

−κ
2

∑
r,s≥0

∑
j,k=1

j 6=k

r−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x,y
γ − c̃pr,sω

y
γ−1)hxsjy

d
j γ
−1(yr−d−1

k )γjγ
−1
k ⊗

(
E

(j)
ii E

(k)
ii −

1

2
E

(j)
i,i+1E

(k)
i+1,i −

1

2
E

(j)
i+1,iE

(k)
i,i+1

)
(v)

= t

l∑
k=1

hp(xk, yk)⊗ v − κn

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ

l∑
k=1

cpr,shx
s
ky
r−1
k ⊗ v

+
κ

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ

n∑
e,i=1

e 6=i

cpr,sFie(γ(vr−d−1)γ)Fei(u
svdγ−1)(h⊗ v) (37)

+
∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

cγ
(
cpr,sFii(u

svdγ(vr−d−1)γ) + c̃pr,sFii(u
dγ(us−d−1vr)γ)

)
(h⊗ v) (38)

+
κ

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

cpr,s(1− ω
x,y
γ−1)Fii(γ(vr−d−1)γ),Fii(u

svdγ−1))(h⊗ v) (39)

−κ
2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ

n∑
e,i=1

e 6=i

c̃pr,sFie(γ(us−d−1vr)γ)Fei(u
dγ−1)(h⊗ v) (40)

+
κn

2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ

n∑
k=1

c̃pr,shx
s−1
k yrk ⊗ v

−κ
2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

c̃pr,s(1− ωx,yγ )Fii(γ(us−d−1vr)γ)Fii(u
dγ−1)(h⊗ v) (41)

−κ
2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

cpr,sω
x
γ−1Fii(γ(us−d−1vr)γ)Fii(u

dγ−1)(h⊗ v) (42)

+
κ

4

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x
γ−1 − c̃pr,sωx,yγ )

(
Fi+1,i(γ(us−d−1vr)γ)Fi,i+1(udγ−1)

+Fi,i+1(γ(us−d−1vr)γ)Fi+1,i(u
dγ−1)

)
(h⊗ v) (43)

+
κ

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

c̃pr,sω
y
γFii(γ(vr−d−1)γ)Fii(u

svdγ−1)(h⊗ v) (44)

+
κ

4

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x,y
γ−1 − c̃pr,sωyγ)

(
Fi+1,i(γ(vr−d−1)γ)Fi,i+1(usvdγ−1)

+Fi,i+1(γ(vr−d−1)γ)Fi+1,i(u
svdγ−1)

)
(h⊗ v) (45)

Set Ĩ(p) = P̂ − (37)
′− (38)

′− . . .− (45)
′

where (37)
′

is the expression on line (37)
′

but without h⊗ v,

and I(p) =
(
β + λ− nλ|Γ|

4

)−1

Ĩ(p). Then I(p)(h⊗ v) =
∑l
k=1 hp(xk, yk)⊗ v.
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Finally, set F11(p) = 1
n I(p) +

∑n−1
i=1 (1 − i

n )Hi,i+1(p), so F11(p)(h ⊗ v) =
∑l
k=1 hp(xk, yk) ⊗ E(k)

11 (v).
We can then obtain Fii(p) with the same property. We let Fab(p) = [Faa(p),Fab] if 1 ≤ a 6= b ≤ n.

We must now construct elements Fab(p) ∀ p ∈ E ⊕ span{p̃γ|p̃ ∈ C[u, v], γ 6= id} of degree N + 1 and
∀ 1 ≤ a, b ≤ n. Suppose first that 1 ≤ a 6= b ≤ n and put p = usvrγ with r + s = N + 1 and, without
loss of generality, r ≥ 1. Choose c 6= a, b and set F̃ab(u

svr) = [Fac(v),Fcb(u
svr−1)]. We compute that

F̃ab(u
svr)(h⊗ v) equals

l∑
k=1

hxsky
r
k ⊗ E

(k)
ab (v) +

l∑
j,k=1

j 6=k

h[xsky
r−1
k , yj ]⊗ E(j)

ac E
(k)
cb (v)

=

l∑
k=1

hxsky
r
k ⊗ E

(k)
ab (v) +

l∑
j,k=1

j 6=k

s−1∑
d=0

hxdk[xk, yj ]x
s−1−d
k yr−1

k ⊗ E(j)
ac E

(k)
cb (v)

+
l∑

j,k=1

j 6=k

r−2∑
d=0

hxsky
d
k[yk, yj ]y

r−2−d
k ⊗ E(j)

ac E
(k)
cb (v)

=

l∑
k=1

hxsky
r
k ⊗ E

(k)
ab (v)− κ

2

l∑
j,k=1

j 6=k

s−1∑
d=0

∑
γ∈Γ

ωx,yγ hxdkσjkγkγ
−1
j xs−1−d

k yr−1
k ⊗ E(j)

ac E
(k)
cb (v)

− κ

2

l∑
j,k=1

j 6=k

r−2∑
d=0

∑
γ∈Γ

ωyγhx
s
ky
d
kσjkγkγ

−1
j yr−2−d

k ⊗ E(j)
ac E

(k)
cb (v)

=

l∑
k=1

hxsky
r
k ⊗ E

(k)
ab (v)− κ

2

l∑
j,k=1

j 6=k

s−1∑
d=0

∑
γ∈Γ

ωx,yγ hxdkγ(x)s−1−d
j γ(y)r−1

j γjγ
−1
k ⊗ E

(j)
cc E

(k)
ab (v)

−κ
2

l∑
j,k=1

j 6=k

r−2∑
d=0

∑
γ∈Γ

ωyγhx
s
ky
d
kγ(y)r−2−d

j γjγ
−1
k ⊗ E

(j)
cc E

(k)
ab (v)

=

l∑
k=1

hxsky
r
k ⊗ E

(k)
ab (v)

−κ
2

∑
γ∈Γ

(
s−1∑
d=0

ωx,yγ Fcc(γ(u)s−1−dγ(v)r−1γ)Fab(u
dγ−1) (46)

+

r−2∑
d=0

ωyγFab(u
svdγ−1),Fcc(γ(v)r−2−dγ)

)
(h⊗ v) (47)

Setting Fab(u
svr) = F̃ab(u

svr) − (46)
′ − (47)

′
where (46)

′
is the expression on line (46) but without

(h ⊗ v), we have obtained an element with the required property. For γ 6= id, we can set Fab(u
svrγ) =

[Eaa(γ−1),Fab(u
svr)] and Hab(u

svrγ) = [Fab(u
svrγ),Eba]. If p = p̃γ, γ 6= id, then p̃ is a sum of monomials

usvr of degree N + 1, so we can also define Fab(p) and Hab(p).

Suppose that γ ∈ Γ \ {id} and let u(γ), v(γ) be a basis of U ∼= C2 consisting of eigenvectors of
γ (necessarily for non-trivial eigenvalues µ(γ), ν(γ), respectively). The vector x(γ), y(γ) are defined

similarly. For s ≥ 1, we set D̃(u(γ)sv(γ)rγ) = 1
2(1−µ(γ))

∑n
i=1[Hi(u(γ)s−1v(γ)rγ),Hi(u(γ))], whereas if
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s = 0 and r ≥ 1, we set D̃(v(γ)rγ) = 1
1−2(ν(γ))

∑n
i=1[Hi(v(γ)r−1γ),Hi(v(γ))]. Let us assume that s ≥ 1;

then D̃(u(γ)sv(γ)rγ)(h⊗ v) equals

1

(1− µ(γ))

 l∑
k=1

h[x(γ)k, x(γ)sky(γ)rkγk]⊗ v +
1

2

n∑
i=1

l∑
j,k=1

j 6=k

h[x(γ)k, x(γ)sjy(γ)rjγj ]⊗H
(k)
i H

(j)
i (v)


=

l∑
k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v +

µ(γ)

(1− µ(γ))

n∑
k=1

r−1∑
d=0

hx(γ)sky(γ)dk[x(γ)k, y(γ)k]y(γ)r−1−d
k γk ⊗ v

+
1

2(1− µ(γ))

n∑
i=1

l∑
j,k=1

j 6=k

s−1∑
d=0

hx(γ)dj [x(γ)k, x(γ)j ]x(γ)s−1−d
j y(γ)rjγj ⊗H

(k)
i H

(j)
i (v)

1

2(1− µ(γ))

n∑
i=1

l∑
j,k=1

j 6=k

r−1∑
d=0

hx(γ)sjy(γ)dj [x(γ)k, y(γ)j ]y(γ)r−1−d
j γj ⊗H(k)

i H
(j)
i (v)

=

l∑
k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v

+
µ(γ)

(1− µ(γ))

n∑
k=1

r−1∑
d=0

hx(γ)sky(γ)dk

t+
κ

2

l∑
j=1

j 6=k

∑
γ̃∈Γ

σjkγ̃kγ̃
−1
j +

∑
γ̃∈Γ\{id}

cγ̃ γ̃k

 y(γ)r−1−d
k γk ⊗ v

− κ

4(1− µ(γ))

n∑
i=1

l∑
j,k=1

j 6=k

s−1∑
d=0

∑
γ̃∈Γ

ω
x(γ)
γ̃ hx(γ)djσjkγ̃kγ̃

−1
j x(γ)s−1−d

j y(γ)rjγj ⊗H
(k)
i H

(j)
i (v)

− κ

4(1− µ(γ))

n∑
i=1

l∑
j,k=1

j 6=k

r−1∑
d=0

∑
γ̃∈Γ

ω
x(γ),y(γ)
γ̃ hx(γ)sjy(γ)djσjkγ̃kγ̃

−1
j y(γ)r−1−d

j γj ⊗H(k)
i H

(j)
i (v)

=

l∑
k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v +

trµ(γ)

(1− µ(γ))

n∑
k=1

hx(γ)sky(γ)r−1
k γk ⊗ v

+
κµ(γ)

2(1− µ(γ))

l∑
j,k=1

j 6=k

r−1∑
d=0

∑
γ̃∈Γ

hx(γ)sky(γ)dkγ̃(y(γ))r−1−d
j γ̃−1

k γ̃jγjσjk ⊗ v

+
µ(γ)

(1− µ(γ))

l∑
k=1

r−1∑
d=0

∑
γ̃∈Γ\{id}

cγ̃hx(γ)sky(γ)dkγ̃(y(γ))r−1−d
k γ̃kγk ⊗ v

− κ

4(1− µ(γ))

n∑
i=1

∑
j 6=k

∑
γ̃∈Γ

h

(
s−1∑
d=0

ω
x(γ)
γ̃ x(γ)dj γ̃

−1(x(γ))s−1−d
k γ̃−1(y(γ))rkγ̃j γ̃

−1
k γk +

r−1∑
d=0

ω
x(γ),y(γ)
γ̃ x(γ)sjy(γ)dj γ̃

−1(y(γ))r−1−d
k γ̃j γ̃

−1
k γk

)
⊗
(
2E

(k)
ii E

(j)
ii − E

(k)
i,i+1E

(j)
i+1,i − E

(k)
i+1,iE

(j)
i,i+1

)
(v)

=

l∑
k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v

+
trµ(γ)

(1− µ(γ))
I(u(γ)sv(γ)r−1γ)(h⊗ v)−

∑
γ̃∈Γ

n∑
a=1

rFaa(u(γ)sv(γ)r−1γ)(h⊗ v) (48)
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+
κµ(γ)

2(1− µ(γ))

r−1∑
d=0

∑
γ̃∈Γ

n∑
a,b=1

Fab(γ̃(v(γ))r−1−dγ̃γ)Fba(u(γ)sv(γ)dγ̃−1)(h⊗ v) (49)

+
µ(γ)

(1− µ(γ))

r−1∑
d=0

∑
γ̃∈Γ\{id}

cγ̃ I
(
u(γ)sv(γ)dγ̃(v(γ))r−1−dγ̃γ

)
(h⊗ v) (50)

− κ

4(1− µ(γ))

n∑
i=1

s−1∑
d=0

∑
γ̃∈Γ

ω
x(γ)
γ̃

(
2Fii(γ̃

−1(u(γ))s−1−dγ̃−1(v(γ))rγ̃−1γ)Fii(u(γ)dγ̃) (51)

−Fi+1,i(γ̃
−1(u(γ))s−1−dγ̃−1(v(γ))rγ̃−1γ)Fi,i+1(u(γ)dγ̃) (52)

−Fi,i+1(γ̃−1(u(γ))s−1−dγ̃−1(v(γ))rγ̃−1γ)Fi+1,i(u(γ)dγ̃)
)

(h⊗ v) (53)

− κ

4(1− µ(γ))

n∑
i=1

r−1∑
d=0

∑
γ̃∈Γ

ω
x(γ),y(γ)
γ̃

(
Fii(γ̃

−1(v(γ))r−1−dγ̃−1γ)Fii
(
u(γ)sv(γ)dγ̃) (54)

−Fi+1,i(γ̃(v(γ))r−1−dγ̃−1γ)Fi,i+1

(
u(γ)sv(γ)dγ) (55)

−Fi,i+1(γ̃(v(γ))r−1−dγ̃−1γ)Fi+1,i

(
u(γ)sv(γ)dγ)

)
(h⊗ v) (56)

Set D(u(γ)sv(γ)rγ) = D̃(u(γ)sv(γ)rγ) − (48)
′ − . . . − (56)

′
where (48)

′
denotes the expression on

line (48) but without (h ⊗ v). We define Fii(u(γ)sv(γ)rγ) in the following way: Fnn(u(γ)sv(γ)rγ) =
1
n

(
D(u(γ)sv(γ)rγ)−

∑n−1
i=1 iHi(u(γ)sv(γ)rγ)

)
and, recursively, Fii(u(γ)sv(γ)rγ) = Hi(u(γ)sv(γ)rγ) +

Fi+1,i+1(u(γ)sv(γ)rγ) for 1 ≤ i ≤ n− 1. If p = p̃γ, γ 6= id, then p̃ is a sum of monomials usvr of degree
N + 1, and usvr can be expressed uniquely as a sum of monomials in u(γ), v(γ), so we can also define
Fii(p).

Finally, we should explain how to construct elements Fii(p) when p ∈ E[N + 1]. It is enough to
consider the case when p is a monomial u(γ)sv(γ)r on which some element γ 6= id acts by the non-zero
eigenvalue µ(γ)s−r. We have just seen how to define Fii(u(γ)sv(γ)rγ), and we set Fii(u(γ)sv(γ)r) =
(1− µr−s)−1[Fii(u(γ)sv(γ)rγ),Fii(γ

−1)].

We have thus constructed elements Fab(p) ∀ p ∈ C[u, v] o Γ, 1 ≤ a, b ≤ n. Let

B = {Fab(usvrγ)|1 ≤ a, b ≤ n, r, s ≥ 0, γ ∈ Γ}

Let us fix an ≤ order on B. We can assume that Fa1b1(us1vr1γ1) < Fa2b2(us2vr2γ2) if a1 6= a2 and a2 = b2.

Theorem 9.1. The canonical map Dnβ=0,b=0 −→ grF (Dnβ,b) is an isomorphism.

Proof. We follow the same ideas as in [Gu2]. We will prove that, when β + λ − nλ|Γ|
4 6= 0, the set of

ordered monomials in the elements of B is a vector space basis of Dnβ,b. Suppose that we have a non-trivial
relation of the type∑

d∈S1

∑
(A,B,R,S,γ,E)∈S2(d)

c(d,A,B,R, S, γ, E)M(d,A,B,R, S, γ, E) = 0 (57)

where S1, S2(d) are finite sets, S1 ⊂ Z≥0, S2(d) ⊂ [1, n]×d×[1, n]×d×(Z≥0)×d×(Z≥0)×d×Γ×d×(Z>0)×d,
A = (a1, . . . , ad), B = (b1, . . . , bd), R = (r1, . . . , rd), S = (s1, . . . , sd), γ = (γ1, . . . , γd), E = (e1, . . . , ed),
[1, n] = {1, . . . , n} and

M(d,A,B,R, S, γ, E) = Fa1b1(us1vr1γ1)e1 · · ·Fadbd(usdvrdγd)ed

is an ordered monomials in the elements of B. (In particular, Faibi(u
sivriγi) 6= Fajbj (u

sjvrjγj) if i 6= j.)

Let us choose a specific (ď, Ǎ, B̌, Ř, Š, γ̌, Ě) such that
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1.
∑d
g=1(rg + sg)eg has maximum value for which c(d,A,B,R, S, γ, E) 6= 0;

2. and, among these, it has maximum value for
∑d
g=1(1− δagbg )eg ;

3. and, among these, it has maximum value for
∑d
g=1 δagbgeg.

This choice may not be unique. Set M̌ = M(ď, Ǎ, B̌, Ř, Š, γ̌, Ě) Set δ =
∑d
g=1 eg. Now suppose that

l, l1, . . . , ln ∈ Z≥0 are such that l1 + · · · + ln = l − δ. We let v = v1 ⊗ · · · ⊗ vl, v̂ = v̂1 ⊗ · · · ⊗ v̂l be the
following elements of (Cn)⊗l for l ≥ δ: for e1 + · · ·+ ej−1 + 1 ≤ g ≤ e1 + · · ·+ ej , set vg = vbj , v̂

g = vaj ,
mg = xsig y

ri
g , γ̃g = γig ∈ Γ×l, and set vg = v̂g = vi if δ + l1 + · · ·+ li−1 + 1 ≤ g ≤ δ + l1 + · · ·+ li.

Because of our assumption that equality (57) holds,∑
d∈S1

∑
(A,B,R,S,γ,E)∈S2(d)

c(d,A,B,R, S, γ, E)M(d,A,B,R, S, γ, E)(1⊗ v) = 0. (58)

Consider the vector space basis of Ht,c(Γl) ⊗C[Sl] (Cn)⊗l (with t, c, β,b as in section 7, so that this

space is a module for Dnβ,b) given by the monomials x
qxl
l y

qyl
l · · ·x

qx1
1 y

qy1
1 γ ⊗ v where qxi , q

y
i ∈ Z≥0, γ ∈ Γ×l,

v = v1 ⊗ · · · ⊗ vl with vg ∈ {v1, . . . , vn}. We can decompose the left-hand side of (58) as a sum of
vectors in that basis and do the same for M̌(1 ⊗ v). The coefficient of mδmδ−1 · · ·m1γ̃δ · · · γ̃1 ⊗ v̂ in
M̌(1 ⊗ v) is equal to c̃c(ď, Ǎ, B̌, Ř, Š, γ̌, Ě) for some c̃ 6= 0 which depends on the multiplicities ei, lj .
Furthermore, the only other monomials in the left-hand side of (57) which can produce a non-zero
multiple of mδmδ−1 · · ·m1γδ · · · γ1 ⊗ v̂ when applied to 1⊗ v differ from M̌ only by the value of eg for g
such that ag = bg,mg = 1, γ̃g = id. Because of our assumption on the order on B, these elements always
appear at the end of each monomials in (57). Therefore, the coefficient of mδmδ−1 · · ·m1γγ · · · γ1 ⊗ v̂ in
the left-hand side of (58) can be viewed as a polynomial in l1, . . . , ln. Since this polynomial vanishes for
infinitely many values of these variables, which can be given arbitrarily large independent values, it must
vanish identically, so its coefficients are zero and c(ď, Ǎ, B̌, Ř, Š, γ̌, Ě) = 0. Repeating this argument, we
conclude that all the coefficients c(d,A,B,R, S, γ, E) in (57) equal zero. This completes the proof of the

linear independance when β + λ − λn|Γ|
4 6= 0. This means that the map Dnβ=0,b=0 � grF (Dnβ,b) is an

isomorphism if β + λ− λn|Γ|
4 6= 0. By upper-semicontinuity, it must be an isomorphism for any β,b.

Let Φl be the algebra homomorphism Dnβ,b −→ EndC(Vl) coming from the Dnβ,b-module structure on

Ht,c(Γl)⊗C[Sl] (Cn)⊗l.

Corollary 9.1. (of the proof of theorem 9.1) Suppose that β + λ− λn|Γ|
4 6= 0. Given M ∈ Dnβ,b,M 6= 0,

there exists an l� 0 such that Φl(M) is not identically zero.

10 Cyclotomic case

It is possible to generalize most of the results of [Gu1] and [Gu2] to the case when Γ is a cyclic group of
order d. In order to do this, we first have to consider a family of graded Hecke algebras for the complex
reflection groups Sl o Z/dZ which were first introduced in [RaSh] and studied when d = 2 in [De1] and,
in general, in [De2]. We will then prove an equivalence of Schur-Weyl type between a localization of a
rational Cherednik algebra and an affine Yangian, generalizing the work in [Gu1]. Afterwards, we will
explain how to realize the Z/dZ-deformed double current algebra Dnβ,b as a subalgebra of this affine
Yangian.
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10.1 Graded Hecke algebras for Sl o Z/dZ

Fix l, d ≥ 1. Set Γ = Z/dZ and let Γl be the complex reflection group G(l, 1, d), which is the wreath
product Γl = Sl o Z/dZ = Z/dZ×l o Sl. It is generated by reflections σi,i+1 ∈ Sl, 1 ≤ i ≤ l − 1,

and by pseudo-reflections ξi of order d, so 〈ξji 〉
d−1
j=0
∼= Z/dZ, 1 ≤ i ≤ l. Let h ∼= Cl be its reflection

representation and chose dual bases {y1, . . . , yl}, {x1, . . . , xl} of h and h∗. Fix a primitive dth-root of
unity ζ so that ξi(xi) = ζxi, ξi(yi) = ζ−1yi. Let ei, i = 0, . . . , d − 1, be the primitive idempotents of

Z/dZ, so ei = 1
d

∑d−1
j=0 ζ

−jiξj , and let ei,k be the idempotent of Γl corresponding to ei in the kth copy of

Γ in Γl, so ei,k = 1
d

∑d−1
j=0 ζ

−jiξjk.

Definition 10.1. [RaSh] Let κ ∈ C. We define the degenerate affine Hecke algebra of Γl to be the
algebra Hκ(Γl) generated by Γl and by the pairwise commuting elements {ui}li=1 which obey the following
relations:

ξjui = uiξj for any 1 ≤ i, j ≤ l, σiuj = ujσi if j 6= i, i+ 1

σiui+1 = uiσi + κ

d−1∑
k=0

ξ−ki ξki+1 for 1 ≤ i ≤ l − 1

Remark 10.1. Note that, when r = 2, Γl is the Weyl group of type B (or C), but the algebra Hκ(Γl) is
not isomorphic to the degenerate Hecke algebra of this type as defined originally in [Dr1],[Lu]. If κ 6= 0,
then Hκ(Γl) ∼= Hκ=1(Γl).

Proposition 10.1. The elements of the form p(u1, . . . , ul)w constitute a basis of Hκ(Γl), where w ∈ Γl
and p(u1, . . . , ul) is a monomial in the variables u1, . . . , ul.

The proof of proposition 10.1 given below uses the PBW property of a subalgebra of Ht,c(Γl) - see
proposition 10.2. It will be convenient to rewrite definition 3.1 in a slightly different form.

Definition 10.2. [DuOp, EtGi] The rational Cherednik algebra Ht,c(Γl) of Γl with (multi-)parameters
t ∈ C, c = (κ, c1, . . . , cd−1) ∈ Cd is the algebra generated by C[h], C[h∗] and Γl subject to the following
relations:

σ · x · σ−1 = σ(x), σ · y · σ−1 = σ(y) for x ∈ h∗, y ∈ h, σ ∈ Γl

[yj , xi] = yjxi − xiyj = −κ
d−1∑
k=0

ζkξ−ki σijξ
k
i if i 6= j

[yi, xi] = yixi − xiyi = t+ κ

l∑
j=1

j 6=i

d−1∑
k=0

ξ−ki σijξ
k
i +

d−1∑
k=1

dck(ek,i − ek−1,i)

We denote by Yi,Ui the following elements of Ht,c(Γl) (see [DuOp]):

Yi =
1

2
(xiyi + yixi) =

t

2
+ xiyi +

κ

2

l∑
j=1

j 6=i

d−1∑
k=0

ξ−ki σijξ
k
i +

1

2

d−1∑
k=1

dck(ek,i − ek−1,i)

Ui =
t

2
+ xiyi + κ

∑
1≤j<i

d−1∑
k=0

ξ−ki σijξ
k
i +

d−1∑
k=1

dckek,i

= Yi −
κ

2

l∑
j=1

j 6=i

sign(j − i)
d−1∑
k=0

ξ−ki σijξ
k
i +

1

2

d−1∑
k=1

dck(ek,i + ek−1,i) (59)
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In the computations below, the following formulas will be useful:

For i 6= j, [Yj , xi] = −κ
2

d−1∑
k=0

(ζkxj + xi)ξ
−k
i σijξ

k
i (60)

[Yi, xi] = txi +
κ

2

l∑
j=1

j 6=i

d−1∑
k=0

(xi + ζkxj)ξ
−k
i σijξ

k
i +

1

2

d−1∑
k=1

dck(ek+1,i − ek−1,i)xi (61)

We need to obtain an expression for [Yi,Yj ] for i 6= j which will be useful later, so we compute:

[Yi,Yj ] = xi[yi, xj ]yj + xj [xi, yj ]yi +
κ

2

xiyi, l∑
b=1

b 6=j

d−1∑
k=0

ξ−kj σbjξ
k
j

+
κ

2

 l∑
b=1

b 6=i

d−1∑
k=0

ξ−ki σbiξ
k
i , xjyj

 (62)

+
κ2

4

 l∑
b=1

b 6=i

d−1∑
m=0

ξ−mi σbiξ
m
i ,

l∑
e=1

e 6=j

d−1∑
k=0

ξ−kj σejξ
k
j

 (63)

+
κ

4

d−1∑
a=1

dca(ea,i − ea−1,i),

l∑
b=1

b 6=j

d−1∑
k=0

ξ−kj σbjξ
k
j

+
κ

4

 l∑
b=1

b6=i

d−1∑
k=0

ξ−ki σbiξ
k
i ,

d−1∑
a=1

dca(ea,j − ea−1,j)

 (64)

We compute each of the sums in (62),(63) and (64) separately.

(62) = −κxi
d−1∑
k=0

ζkξ−kj σijξ
k
j yj + κxj

d−1∑
k=0

ζkξ−ki σijξ
k
i yi +

κ

2

d−1∑
k=0

[xiyi, ξ
−k
j σijξ

k
j ] +

κ

2

d−1∑
k=0

[ξ−ki σijξ
k
i , xjyj ]

= 0

(63) =
κ2

4

l∑
b=1

b 6=i,j

d−1∑
k,m=0

[
ξ−mi σbiξ

m
i , ξ

−k
j σbjξ

k
j

]
+
κ2

4

l∑
b=1

b 6=i,j

d−1∑
k,m=0

[ξ−mi σbiξ
m
i , ξ

−k
j σijξ

k
j ]

+
κ2

4

l∑
b=1

b6=i,j

d−1∑
k,m=0

[ξ−mi σijξ
m
i , ξ

−k
j σbjξ

k
j ]

=
κ2

4

l∑
b=1

b 6=i,j

d−1∑
k,m=0

(
ξ−m+k
i ξmb ξ

−k
j σbiσbj − ξ−kj ξk+m

b ξ−mi σbjσbi + ξ−mi ξm+k
b ξ−kj σbjσbi

− ξ−k−mj ξki ξ
m
b σbiσbj + ξ−m−ki ξmj ξ

k
b σbjσbi − ξ−kj ξk+m

b ξ−mi σbiσbj

)
=
κ2

4

l∑
b=1

b 6=i,j

d−1∑
k,m=0

ξ−m−ki ξmj ξ
k
b [σbj , σbi]

(64) =
κ

4

d−1∑
a=1

dca

d−1∑
k=0

(
[(ea,i − ea−1,i), ξ

−k
j σijξ

k
j ] + [ξ−ki σijξ

k
i , (ea,j − ea−1,j)]

)
= 0
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Therefore,

[Yi,Yj ] =
κ2

4

l∑
b=1

b 6=i,j

d−1∑
k,m=0

ξ−m−ki ξmj ξ
k
b [σbj , σbi] (65)

Let H̃t,c(Γl) be the subalgebra of Ht,c(Γl) generated by Γl and Ui, 1 ≤ i ≤ l.

Proposition 10.2 ([DuOp]). The elements U1, . . . ,Ul commute pairwise. Moreover, the elements of the
form p(U1, . . . ,Ul)w, where p(U1, . . . ,Ul) is a monomial and w ∈ Γl, form a vector space basis of the
algebra H̃t,c(Γl).

Proof. In view of equality (59) above, it is enough to show that

[Yi,Yj ] = −κ
2

4

 l∑
b=1

b6=i

sign(b− i)
d−1∑
k=0

ξ−ki σbiξ
k
i ,

l∑
e=1

e 6=j

sign(e− j)
d−1∑
m=0

ξ−mj σejξ
m
j

 .
Let us assume that i < j. The right-hand side is equal to

= −κ
2

4
sign(b− j)

d−1∑
k,m=0

l∑
b=1

b6=i,j

[ξ−ki σjiξ
k
i , ξ
−m
j σbjξ

m
j ] +

κ2

4
sign(b− i)

d−1∑
k,m=0

l∑
b=1

b 6=i,j

[ξ−ki σbiξ
k
i , ξ
−m
j σijξ

m
j ]

− κ2

4
sign

(
(b− i)(b− j)

) d−1∑
k,m=0

l∑
b=1

b6=i,j

[ξ−ki σbiξ
k
i , ξ
−m
j σbjξ

m
j ]

=
κ2

4

d−1∑
k,m=0

∑
b<i

(
ξ−k−mi ξkj ξ

m
b σjiσbj − ξ−mj ξm+k

b ξ−ki σbjσij − ξ−ki ξm+k
b ξ−mj σbiσij

+ ξ−m−kj ξmi ξ
k
b σijσbi − ξ−k+m

i ξ−mj ξkb σbiσbj + ξ−m+k
j ξmb ξ

−k
i σbjσbi

)
+
κ2

4

d−1∑
k,m=0

∑
b>j

(
− ξ−k−mi ξkj ξ

m
b σjiσbj + ξ−mj ξm+k

b ξ−ki σbjσij + ξ−ki ξm+k
b ξ−mj σbiσij

− ξ−m−kj ξmi ξ
k
b σijσbi − ξ−k+m

i ξ−mj ξkb σbiσbj + ξ−m+k
j ξmb ξ

−k
i σbjσbi

)
+
κ2

4

d−1∑
k,m=0

∑
i<b<j

(
ξ−k−mi ξkj ξ

m
b σjiσbj − ξ−mj ξm+k

b ξ−ki σbjσij + ξ−ki ξm+k
b ξ−mj σbiσij

− ξ−m−kj ξmi ξ
k
b σijσbi + ξ−k+m

i ξ−mj ξkb σbiσbj − ξ−m+k
j ξmb ξ

−k
i σbjσbi

)
=
κ2

4

l∑
b=1

b6=i,j

d−1∑
k,m=0

ξ−m−ki ξmj ξ
k
b [σbj , σbi] = [Yi,Yj ]

where the last equality is (65) below.

The second part of the proposition follows immediately from the PBW theorem for Ht,c(Γl) - see e.g.
[EtGi].

Proof of proposition 10.1. It follows from the definition of Hκ(Γl) that the elements p(u1, . . . , un)w span
Hκ(Γl) as a vector space. We have to show that they are linearly independent. The operators Ui satisfy
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the same relations as the elements ui in Hκ(Γl) (see [DuOp]). For instance,

σiUi+1 =
t

2
σi + σixi+1yi+1 + κ

∑
1≤j<i+1

d−1∑
k=0

σiξ
−k
i+1σi+1,jξ

k
i+1 + σi

d−1∑
k=1

dckek,i+1

=
t

2
σi + xiyiσi + κ

∑
j<i

d−1∑
k=0

ξ−ki σijξ
k
i σi + κ

d−1∑
k=0

ξ−ki ξki+1 +

d−1∑
k=1

dckea,iσi

= Uiσi + κ

d−1∑
k=0

ξ−ki ξki+1

This shows that we have an algebra epimorphism Hκ(Γl) −→ H̃t,c(Γl), which must also be injective
because of the PBW property of H̃t,c(Γl).

Corollary 10.1 (Corollary of the proof of proposition 10.1). The algebras Hκ(Γl) and H̃t,c(Γl) are iso-
morphic.

From corollary 10.1 and the computations before proposition 10.2, we deduce the following proposition.

Proposition 10.3. The algebra Hκ(Γl) can also be defined as the algebra generated by elements yi, 1 ≤
i ≤ l, and γ ∈ Γl satisfying the following relations:

If i 6= j, [yi, yj ] =
κ2

4

l∑
b=1

b 6=i,j

d−1∑
k,m=0

ξ−m−ki ξmj ξ
k
b [σbj , σbi], σyiσ

−1 = yσ(i), ξayi = yiξa, σ ∈ Sl, 1 ≤ a ≤ l.

Setting yi,k = yiek,i, 1 ≤ i ≤ l, 0 ≤ k ≤ d− 1, we see that Hκ(Γl) can also be defined in the following
way, which will be useful later.

Proposition 10.4. The algebra Hκ(Γl) is isomorphic to the algebra generated by the elements yi,k, 1 ≤
i ≤ l, 0 ≤ k ≤ d− 1, the idempotents ek,i ∈ C[Γl] and σ ∈ Sl which satisfy the following relations:

[yi,k1
, yj,k2

] = 0 if k1 6= k2, ek1,iyi,k2
= δk1k2

yi,k2
= yi,k2

ek1,i, ek1,jyi,k2
= yi,k2

ek1,j if i 6= j

σyi,k = yσ(i),kσ, [yi,k, yj,k] =
d2κ2

4

l∑
b=1

b 6=i,j

ek,iek,jek,b[σbi, σbj ] if i 6= j. (66)

For each Weyl group, I. Cherednik has introduced the notion of double affine Hecke algebras (DAHA)
[Ch1]. These algebras afford two types of limit versions called degenerate (trigonometric) DAHA’s and
rational DAHA’s. These rational Cherednik algebras can be defined for any finite complex reflection
group, but no such definition exists for affine or double affine Hecke algebras. We propose to introduce
the following algebra, which extends the definition of the degenerate DAHA of type gll when d = 1.

Definition 10.3. We denote by Ht,c(Γl) the algebra C[x±1 , . . . , x
±
l ]⊗C[x1,...,xl] Ht,c(Γl). (We can localize

Ht,c(Γl) at ∪li=1{1, xi, x2
i , . . .} since this is an Ore set.)

We can obtain a presentation for Ht,c(Γl) which is an affine version of definition 10.1.

Proposition 10.5. The algebra Ht,c(Γl) can also be defined as the algebra generated by x±1 , . . . , x
±
l , γ ∈ Γl

and the pairwise commuting elements u1, . . . , ul subject to the following relations:

1. The subalgebra generated by x±1 , . . . , x
±
l , γ ∈ Γl is an epimorphic image of C[x±1 , . . . , x

±
l ] o Γl.
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2. The subalgebra generated by u1, . . . , ul and γ ∈ Γl is an epimorphic image of Hκ(Γl).

3. σ0uj − σ0(uj)σ0 = −κ〈α0, uj〉
∑d−1
k=0 ζ

−kξk1 ξ
−k
l where σ0 = x1x

−1
l σ1l, u ∈ spanC{u1, . . . , ul} and

α0 = u∗l − u∗1, {u∗1, . . . , u∗l } being the basis dual to {u1, . . . , ul}. (σ0(uj) is defined in analogy with

the action of the affine Weyl group on ĥ∗.)

4. πui = ui+1π if i 6= l, πul = (u1 − t)π where π = x1τ and τ = σ12σ23 · · ·σl−1,l.

Corollary 10.2. For any c = (κ, c1, . . . , cd−1), Ht,c(Γl) ∼= Ht,c=(κ,ca=0)(Γl).

An isomorphism Ht,c(Γl)
∼−→ Ht,c=(κ,ca=0)(Γl) is given by yi 7→ yi −

(∑d−1
k=1 dckek−1,i

)
x−1
i .

Proof. The second set of relations was already obtained in the proof of proposition 10.1. We have to
establish the third and fourth relations for Ui. The conclusion will then follow from the PBW property
of Ht,c(Γl). Suppose first that i 6= 1, l.

σ0Ui =
t

2
σ0 + xix1x

−1
l yiσ1l + κ

∑
2≤j<i

d−1∑
k=0

ξ−ki σijξ
k
i σ0 + κ

d−1∑
k=0

σ0ξ
−k
i σ1iξ

k
i +

d−1∑
k=1

dckek,iσ0

=
t

2
σ0 + xix1[x−1

l , yi]σ1l + xix1yix
−1
l σ1l + κ

∑
2≤j<i

d−1∑
k=0

ξ−ki σijξ
k
i σ0

+ κ

d−1∑
k=0

x1x
−1
l ξ−ki σilξ

k
i σ1l +

d−1∑
k=1

dckek,iσ0

=
t

2
σ0 + κxix1

(
−x−1

l

d−1∑
k=0

ζkξ−kl σilξ
k
l x
−1
l

)
σ1l + xi[x1, yi]x

−1
l σ1l + xiyix1x

−1
l σ1l

+ κ
∑

2≤j<i

d−1∑
k=0

ξ−ki σijξ
k
i σ0 + κ

d−1∑
k=0

ζkξ−ki σilξ
k
i x1x

−1
i σ1l +

d−1∑
k=1

dckek,iσ0

= −κ
d−1∑
k=0

xiξ
−k
l x−1

l σilξ
k
l x1x

−1
l σ1l + κxi

(
d−1∑
k=0

ζkξ−k1 σ1iξ
k
1

)
x−1
l σ1l + Uiσ0

− κ
d−1∑
k=0

ξ−ki σ1iξ
k
i σ0 + κ

d−1∑
k=0

ζkξ−ki σilξ
k
i x1x

−1
i σ1l

= Uiσ0

The other case left to check is i = 1. (The case i = l follows from this one.)

σ0U1 =
t

2
σ0 + x1x

−1
l xlylσ1l + x−1

l

d−1∑
a=1

ca

d−1∑
k=0

ζ−kaξkl x1σ1l

=
t

2
σ0 + x1ylσ1l +

d−1∑
a=1

ca

d−1∑
k=0

ζ−k(a−1)ξkl x
−1
l x1σ1l

=
t

2
σ0 + [x1, yl]σ1l + ylx1σ1l +

d−1∑
k=1

dckek−1,lσ0

=
t

2
σ0 + κ

d−1∑
k=0

ζkξ−k1 σ1lξ
k
1σ1l + [yl, xl]σ0 + xlylσ0 +

d−1∑
k=1

dckek−1,lσ0
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=
t

2
σ0 + κ

d−1∑
k=0

ζkξ−k1 ξkl +

t+ κ
∑

1≤j<l

d−1∑
k=0

ξ−kl σjlξ
k
l +

d−1∑
k=1

dck(ek,l − ek−1,l)

σ0

+ xlylσ0 +

d−1∑
k=1

dckek−1,lσ0

= κ

d−1∑
k=0

ζkξ−k1 ξkl + (Ul + t)σ0

We now have to check the third relation involving π. First, let us assume that i 6= l.

πUi =
t

2
π + x1

xi+1yi+1 + κ
∑

2≤j<i+1

d−1∑
k=0

ξ−ki+1σi+1,jξ
k
i+1 +

d−1∑
k=1

dckek,i+1

 τ

=
t

2
π +

xi+1[x1, yi+1] + xi+1yi+1x1 + κ
∑

2≤j<i+1

d−1∑
k=0

ξ−ki+1σi+1,jξ
k
i+1x1 +

d−1∑
k=1

dckek,i+1x1

 τ

=
t

2
π +

xi+1

(
κ

d−1∑
k=0

ζkξ−k1 σ1,i+1ξ
k
1

)
+ xi+1yi+1x1 + κ

∑
1≤j<i+1

d−1∑
k=0

ξ−ki+1σi+1,jξ
k
i+1x1

−κ
d−1∑
k=0

ξ−ki+1σ1,i+1ξ
k
i+1x1

)
τ +

d−1∑
k=1

dckek,i+1π

= Ui+1π

Finally, we check the relation for i = l.

πUl =
t

2
π +

x2
1y1 + κx1

∑
2≤j≤l

d−1∑
k=0

ξ−k1 σ1jξ
k
1 +

d−1∑
a=1

ca

d−1∑
k=0

ζ−kax1ξ
k
1

 τ

=
t

2
π +

x1y1x1 + x1[x1, y1] + κx1

∑
2≤j≤l

d−1∑
k=0

ξ−k1 σ1jξ
k
1 +

d−1∑
k=1

dckek+1,1x1

 τ

=
t

2
π + x1y1π +

x1

−t− κ ∑
1<j≤l

d−1∑
k=0

ξ−k1 σ1jξ
k
1 −

d−1∑
k=1

dck(ek,1 − ek−1,1)


+κx1

∑
2≤j≤l

d−1∑
k=0

ξ−k1 σ1jξ
k
1

 τ +

d−1∑
k=1

dckek+1,1π

= (U1 − t)π

10.2 Schur-Weyl duality in the trigonometric setting

In this section, we establish Schur-Weyl type of equivalences for Hκ(Γl) and for Ht,c(Γl). This will have

applications for Ht,c(Γl) in the next subsection. Recall that Ĉn−1 = (cij)0≤i,j≤n−1 is the n × n Cartan

matrix of affine type Ân−1.
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Definition 10.4. Let λ ∈ C. We denote by Y n,dλ the algebra generated by the elements X±i,r,j, H
±
i,r,j, 1 ≤

i ≤ n− 1, 0 ≤ j ≤ d− 1, r ≥ 0 which satisfy the following relations: for any 1 ≤ i1, i2 ≤ n− 1, r1, r2, s ∈
Z≥0:
If j1 6= j2,

[X±i1,r1,j1 , X
±
i2,r2,j2

] = [X±i1,r1,j1 , X
∓
i2,r2,j2

] = 0 = [Hi1,r1,j1 , X
±
i2,r2,j2

] = [Hi1,r1,j1 , Hi2,r2,j2 ]

[Hi1,r1,j, Hi2,r2,j] = 0, [Hi1,0,j, X
±
i2,s,j

] = ±ci1,i2X±i2,s,j, [X+
i1,r1,j

, X−i2,r2,j] = δi1,i2Hi1,r1+r2,j (67)

[Hi1,r1+1,j, X
±
i2,r2,j

]− [Hi1,r1,j, X
±
i2,r2+1,j] = ±λ

2
ci1,i2S(Hi1,r1,j, X

±
i2,r2,j

) (68)

[X±i1,r1+1,j, X
±
i2,r2,j

]− [X±i1,r1,j, X
±
i2,r2+1,j] = ±λ

2
ci1,i2S(X±i1,r1,j, X

±
i2,r2,j

) (69)

For any 0 ≤ j1, j2 ≤ d− 1,
∑
π∈Sm

[
X±i1,rπ(1),j1

,
[
X±i1,rπ(2),j1

, . . . , [X±i1,rπ(m),j1
, X±i2,s,j2 ] . . .

]]
= 0 (70)

where m = 1− cij , r1, . . . , rm, s ∈ Z≥0.

Remark 10.2. The algebra Y n,dλ is isomorphic to (Y nλ )⊗d where Y nλ = Y n,d=1
λ is the Yangian (of finite

type) for sln. The reason for using the notation above will become clear in the next definition. We will
write X±i,j, Hi,j instead of X±i,0,j, Hi,0,j.

Definition 10.5. We denote by Ŷn,d
λ,β, β = (β0, β1, . . . , βd−1) ∈ Cd, the algebra generated by the elements

X±i,r,j, Hi,r,j, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ d− 1, r ≥ 0 which satisfy the relations in definition 10.4 (extended to
i1 = 0 or i2 = 0) except that certain relations for i1 = 0 or i2 = 0 must be modified:

[H0,r1+1,i, X
+
0,r2,j

]− [H0,r1,i, X
+
0,r2+1,j] = δi,j−1λS(H0,r1,i, X

+
0,r2,j

), (71)

[H0,0,i, X
±
1,r,j] = ∓δi,j−1X

±
1,r,j, [H0,0,i, X

+
0,r,j] = 2δi,j−1X

+
0,r,j (72)

[X+
0,r,i, X

−
0,s,j] = δi−1,jH0,r+s,j (73)

[H1,0,i, X
−
0,r,j] = δi,j+1X

−
0,r,j, [Hn−1,0,i, X

+
0,r,j] = −δi+1,jX

+
0,r,j (74)

[X+
0,r1+1,j, X

+
1,r2,j

]− [X+
0,r1,j

, X+
1,r2+1,j] = (βj − λ)X+

1,r2,j
X+

0,r1,j
− βjX+

0,r1,j
X+

1,r2,j
(75)

[X−0,r1+1,j, X
−
1,r2,j+1]− [X−0,r1,j, X

−
1,r2+1,j+1] = βj+1X

−
1,r2,j+1X

−
0,r1,j

− (βj+1 − λ)X−0,r1,jX
−
1,r2,j+1 (76)

[X+
0,r1+1,j+1, X

+
n−1,r2,j

]− [X+
0,r1,j+1, X

+
n−1,r2+1,j] = (βj−λ)X+

0,r1,j+1X
+
n−1,r2,j

−βjX+
n−1,r2,j

X+
0,r1,j+1 (77)

[X−0,r1+1,j, X
−
n−1,r2,j

]− [X−0,r1,j, X
−
n−1,r2+1,j] = βjX

−
0,r1,j

X−n−1,r2,j
− (βj − λ)X−n−1,r2,j

X−0,r1,j (78)

[X+
n−1,r1,j1

, X+
0,r2,j2

] = 0 = [X−0,r1,j1 , X
−
1,r2,j2

] if j2 6= j1 + 1 (79)

From relations (73) and (75)-(78), we can obtain relations similar to (68).

Remark 10.3. Proposition 5.3 states that Ŷn,d
λ=0,β=0 is isomorphic to Uŝln(C[u±1, w]oΓ) with Γ acting

on u by ξ(u) = ζu and trivially on w. The subalgebra of Ŷn,d
λ,β generated by the elements X±i,j = X±i,0,j

and Hi,j = Hi,0,j is isomorphic to Uŝln(C[u±1] o Γ). It is explained in [GHL] that sln(C[u±1] o Γ) ∼=
slnd(C[t±1]) with t = ud and thus sln(C[u±1, w] o Γ) ∼= slnd(C[t±1, w])

Definition 10.6. A module M over Ŷn,d
λ,β is said to have trivial central charge if the action of the element∑d−1

j=0

∑n−1
i=0 Hi,0,j is trivial.

Definition 10.7. The quotient of Ŷn,d
λ,β by the ideal generated by the central element

∑d−1
j=0

∑n−1
i=0 Hi,0,j

will be denoted LYd
λ,β
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The main results of this section are the next two propositions, which extends the results in [Gu1].

Proposition 10.6. If λ = κd, there exists a functor SW : Hκ(Γl) −modR −→ Y n,dλ −modl,intL given by
M 7→M ⊗C[Sl] (Cn)⊗l which is an equivalence of categories if l + 1 < n.

Theorem 10.1. If λ = κd and βj = t
2 −

λ(n−2)
4 +

(cj−cj+1)d
2 (where c0 = 0 = cd), there exists a functor

SW : Ht,c(Γl) −modR −→ Ŷn,d
λ,β −modl,intL,triv given by M 7→ M ⊗C[Sl] (Cn)⊗l which is an equivalence of

categories if l + 2 < n.

Proof of proposition 10.6. We use the presentation of Hκ(Γl) given in proposition 10.4. Set ω±i,j =

± 1
4

∑
α∈∆+ S

(
[X±i,j, X

±
α,j], X

∓
α,j

)
− 1

4S(X±i,j, Hi,j), where X±α is the matrix Eij ∈ sln if ±α = εi − εj ,

and J(E±i )j = X±i,1,j + λω±i,j. Setting J(E±i )j(m ⊗ v) =
∑l
k=1myk,j ⊗ E

±,(k)
i (v) and X±i,j(m ⊗ v) =∑l

k=1mej,k⊗E±,(k)
i (v) for m ∈M,v ∈ (Cn)⊗l gives M ⊗C[Sl] (Cn)⊗l a structure of left module over Y nλ .

This follows from [Dr1] and equality (66). Since yk1,j1yk2,j2 = yk2,j2yk1,j1 and ej1,k1
ej2,k2

= 0 if j1 6= j2,
we can conclude that these module structures commute, so we get a functor SW : Hκ(Γl) − modR −→
Y n,dλ −modl,intL .

Assume now that l + 1 < n and let N be an integable Y n,dλ -module of level l. Since it is a direct
sum of finite dimensional modules over sln(C[Z/dZ]), according to proposition 7.2 (see also [ATY]),
N ∼= M⊗C[Sl] (Cn)⊗l for a certain Γl-module M . It follows also from [Dr1] (or by mimicking the argument

in section 4.5 in [ChPr1]) that J(E±i )j =
∑l
k=1myk,j ⊗ E±,(j)i (v) and that yi,k, 1 ≤ i ≤ l satisfy (66).

That yi,k1
and yj,k2

commute as operators on M if k1 6= k2 is a consequence of [J(E±i )k1 , J(E±j )k2 ] = 0
if k1 6= k2.

Proof of theorem 10.1. This is similar to the proof of theorem 5.4 in [Gu1]. Let M ∈ Ht,c − modR.

We define a linear automorphism T of M ⊗C[Sl] (Cn)⊗l by T (m ⊗ v) = mx
−δi1n
1 · · ·x−δilnl ⊗ v+1 where

v+1 = vi1+1 ⊗ · · · ⊗ vil+1 if v = vi1 ⊗ · · · ⊗ vil . Ŷn,d
λ,β admits an automorphism ρ defined by

ρ
(
X±i,r,j

)
=

r∑
p=0

(
r
p

)(
λ

2

)p
X±i−1,r−p,j if i 6= 0, 1 and similarly for ρ(Hi,r,j) (80)

ρ
(
X+

1,r,j

)
=

r∑
p=0

(
r
p

)
βpjX

+
0,r−p,j, ρ

(
X+

0,r,j

)
=

r∑
p=0

(
r
p

)
βpj−1X

+
n−1,r−p,j−1 (81)

ρ
(
X−1,r,j

)
=

r∑
p=0

(
r
p

)
βpjX

−
0,r−p,j−1, ρ

(
X−0,r,j

)
=

r∑
p=0

(
r
p

)
βpjX

−
n−1,r−p,j (82)

ρ
(
H1,r,j

)
=

r∑
p=0

(
r
p

)
βpjH0,r−p,j−1, ρ

(
H0,r,j

)
=

r∑
p=0

(
r
p

)
βpjHn−1,r−p,j (83)

Let ϕ : Y n,dλ −→ EndC(M ⊗C[Sl] (Cn)⊗l) be the algebra homomorphism coming from the Y dλ module

structure on M ⊗C[Sl] (Cn)⊗l. The next lemma is the crucial part of the proof of proposition 10.1.

Lemma 10.1. Under the same hopytheses on the parameters as in theorem 10.1, the following equalities
hold:

ϕ
(
X±i,r,j

)
= T ◦ ϕ

(
ρ
(
X±i,r,j

))
◦ T−1 if 2 ≤ i ≤ n− 1, ϕ

(
X±1,r,j

)
= T 2 ◦ ϕ

(
ρ2
(
X±1,r,j

))
◦ T−2 (84)

and similarly for Hi,r,j instead of X±i,r,j.
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Proof. We give a direct, detailed proof of this equality similar to the first approach to lemma 6.2 in [Gu1].
We only need to prove it for r = 1 and for X+

i,1,f .

We have the following expressions for ω+
1,f and ω+

n−1,f :

ω+
1,f =

1

4

n∑
j=3

S(Ej2,f , E1j,f )−
1

4
S(E12,f , H1,f )

ω+
n−1,f = −1

4

n−2∑
j=1

S(Ejn,f , En−1,j,f )−
1

4
S(En−1,n,f , Hn−1,f )

Fix v = vi1 ⊗ · · · ⊗ vil ∈ (Cn)⊗l. Suppose that j1, . . . , jp (resp. η1, . . . , ηe) are exactly the values of j
(resp. of η) such that ij = n (resp. iη = n− 1). Then T 2(m⊗ v) = mx−1

j1
· · ·x−1

jp
x−1
η1
· · ·x−1

ηe ⊗ v+2. Set

x−1
j1,...,jp

= x−1
j1
· · ·x−1

jp
, x−1
η1,...,ηe = x−1

η1
· · ·x−1

ηe . Since X+
1,1,f = J(X+

1 )f − λω+
1,f , we obtain:

X+
1,1,f

(
T 2(m⊗ v)

)
=

l∑
k=1

mx−1
j1,...,jp

x−1
η1,...,ηeYkef,k ⊗ E

(k)
12 (v+2) (85)

−λ
4

n∑
j=3

S(Ej2,f , E1j,f )(mx
−1
j1,...,jp

x−1
η1,...,ηe ⊗ v+2) (86)

+
λ

4
S(E12,f , H1,f )(mx

−1
j1,...,jp

x−1
η1,...,ηe ⊗ v+2) (87)

In the summation (85), we can assume that k = jr for some r, since otherwise E
(k)
12 (v+2) = 0.

(85) =

p∑
r=1

e∑
b=1

mx−1
j1,...,jp

x−1
η1
· · ·x−1

ηb−1
[x−1
ηb
,Yjr ]x−1

ηb+1
· · ·x−1

ηe ef,jr ⊗ E
(jr)
12 (v+2) (88)

+

p∑
r=1

p∑
b=1

mx−1
j1
· · ·x−1

jb−1
[x−1
jb
,Yjr ]x−1

jb+1
· · ·x−1

jp
x−1
η1,...,ηeef,jr ⊗ E

(jr)
12 (v+2) (89)

+

l∑
k=1

mYkx−1
j1,...,jp

x−1
η1,...,ηeef,k ⊗ E

(k)
12 (v+2) (90)

The last expression is equal to T 2
(
J(X+

n−1)f−1(m ⊗ v)
)
. As for the term on line (87) above, it is

equal to λ
4T

2
(
S
(
En−1,n,f−1, Hn−1,f−1

)
(m⊗ v)

)
. Therefore,

X+
1,1,f

(
T 2(m⊗ v)

)
= (88) + (89) + (86) + T 2

(
X+
n−1,1,f−1(m⊗ v)

)
− (102).

(The expression (102) appears explicitly below.)

We need to decompose the sums (88) and (89). Sum (88) equals

= −κ
2

p∑
r=1

e∑
b=1

b−1∑
k=0

mx−1
j1,...,jp

x−1
η1
· · ·x−1

ηb−1
(x−1
ηb

+ ζ−kx−1
jr

)ξ−kηb σηb,jrξ
k
ηb
x−1
ηb+1
· · ·x−1

ηe ef,jr ⊗ E
(jr)
12 (v+2)

= −κ
2

p∑
r=1

e∑
b=1

mx−1
j1,...,jp

x−1
η1
· · ·x−1

ηb−1
x−1
ηb
x−1
ηb+1
· · ·x−1

ηe ef,ηbef,jr ⊗ E
(ηb)
12

(
σηb,jr (v+2)

)
(91)

−κ
2

p∑
r=1

e∑
b=1

mx−1
j1,...,jp

x−1
η1
· · ·x−1

ηb−1
x−1
jr
x−1
ηb+1
· · ·x−1

ηe ef,ηbef+1,jr ⊗ E
(ηb)
12

(
σηb,jr (v+2)

)
(92)
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As for the sum (89), it equals

=

p∑
a=1

p∑
b=1

b6=a

mx−1
j1
· · ·x−1

jb−1
[x−1
jb
,Yja ]x−1

jb+1
· · ·x−1

jp
x−1
η1,...,ηeef,ja ⊗ E

(ja)
12 (v+2)

+

p∑
a=1

mx−1
j1
· · ·x−1

ja−1
[x−1
ja
,Yja ]x−1

ja+1
· · ·x−1

jp
x−1
η1,...,ηeef,ja ⊗ E

(ja)
12 (v+2)

= −κ
2

p∑
a=1

p∑
b=1

b6=a

d−1∑
k=0

mx−1
j1,...,jb−1

(x−1
jb

+ ζ−kx−1
ja

)ξ−kjb σjb,jaξ
k
jb
x−1
jb+1,...,jp

x−1
η1,...,ηeef,ja ⊗ E

ja
12(v+2)

+

p∑
a=1

mx−1
j1,...,ja−1

κ
2

l∑
q=1

q 6=ja

d−1∑
k=0

(x−1
ja

+ ζ−kx−1
q )ξ−kja σja,qξ

k
ja + tx−1

ja

+
x−1
ja

2

d−1∑
b=1

dcb(eb+1,ja − eb−1,ja)

)
x−1
ja+1,...,jp

x−1
η1,...,ηeef,ja ⊗ E

(ja)
12 (v+2) (93)

= −κd
2

p∑
a=1

p∑
b=1

b 6=a

(
mx−1

j1,...,jb−1
x−1
jb
σja,jb(x

−1
jb+1,...,jp

)x−1
η1,...,ηeef,jbef−δ(a>b),ja ⊗ E

(jb)
12

(
σja,jb(v+2)

)
(94)

+mx−1
j1,...,jb−1

x−1
ja
σjb,ja(x−1

jb+1,...,jp
)x−1
η1,...,ηeef,jbef+1−δ(a>b),ja ⊗ E

(jb)
12

(
σja,jb(v+2)

))
(95)

+

p∑
a=1

(
t+

1

2

d−1∑
b=1

dcb(eb,ja − eb−2,ja)

)
mx−1

j1,...,jp
x−1
η1,...,ηeef,ja ⊗ E

(ja)
12 (v+2) (96)

+
κd

2

p∑
a=1

l∑
q=1

q 6=ja

mx−1
j1,...,ja−1

x−1
ja

ef,jaσja,q(x
−1
ja+1,...,jp

x−1
η1,...,ηe)ef,q ⊗ E

(q)
12

(
σja,q(v+2)

)
(97)

+
κd

2

p∑
a=1

l∑
q=1

q 6=ja

mx−1
j1,...,ja−1

x−1
q ef−1,jaσja,q(x

−1
ja+1,...,jp

x−1
η1,...,ηe)ef,q ⊗ E

(q)
12

(
σja,q(v+2)

)
(98)

where δ(a > b) = 1 if a > b and = 0 if a ≤ b.

We now focus on ω+
1,f

(
T 2(m ⊗ v)

)
and T 2

(
ω+
n−1,f−1(m ⊗ v)

)
. Earlier, we have used the equality

λω+
1,f

(
T 2(m ⊗ v)

)
= −(86) − (87). We can decompose (86) by considering the cases when E1j and Ej2

act on the same tensorand and on different ones:

−(86) = λ

(
n− 2

4

) l∑
k=1

mx−1
j1,...,jp

x−1
η1,...,ηeef,k ⊗ E

(k)
12 (v+2) (99)

+
λ

2

n∑
j=3

l∑
q=1

iq+2=j

p∑
b=1

mx−1
j1,...,jp

x−1
η1,...,ηeef,qef,jb ⊗ E

(q)
12

(
σq,jb(v+2)

)
(100)

λT 2
(
ω+
n−1,f−1(m⊗ v)

)
= −λ

4
T 2

n−2∑
j=1

S(Ejn,f−1, En−1,j,f−1)(m⊗ v)

 (101)

−λ
4
T 2
(
S(En−1,n,f−1, Hn−1,f−1)(m⊗ v)

)
(102)
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We observe that −(87) = (102). As with (86), we can decompose (101):

(101) = −λ
(
n− 2

4

) l∑
k=1

mx−1
j1,...,jp

x−1
η1,...,ηeef,k ⊗

(
E

(k)
n−1,n(v)

)
+2

(103)

−λ
2
T 2

n−2∑
j=1

l∑
q=1

iq=j

p∑
b=1

mef−1,qef−1,jb ⊗ E
(q)
n−1,n

(
σq,jb(v)

) (104)

We note that (99)− (103) = λ
(
n−2

2

)
T 2
(
En−1,n,f−1(m⊗ v)

)
and

(104) = −λ
2

n−2∑
j=1

l∑
q=1

iq=j

p∑
b=1

mef−1,qef−1,jbx
−1
j1,...,jp

xjbx
−1
q x−1

η1,...,ηe ⊗ E
(q)
12

(
σq,jb(v+2)

)
.

To obtain the last expression, note that iq 6= ja, ηh for any a, h since iq = j and we consider values of j
different from n and n− 1.

We now decompose the sums (97) and (98) into three different sums. In the first case, q = jb 6= ja; in
the second one, q = ηh; and in the third case q 6= ja, ηh for any a, h. The sum (97) equals

κd

2

p∑
a=1

p∑
b=1

b 6=a

mx−1
j1,...,ja

ef,jaσja,jb(x
−1
ja+1,...,jp

)x−1
η1,...,ηeef,jb ⊗ E

(jb)
12

(
σja,jb(v+2)

)
(105)

+
κd

2

p∑
a=1

e∑
h=1

mx−1
j1,...,ja

ef,jax
−1
ja+1,...,jp

x−1
η1,...,ηexηhx

−1
ja

ef,ηh ⊗ E
(ηh)
12 (σja,ηh

(
v+2)

)
(106)

+
κd

2

p∑
a=1

l∑
q=1

q 6=jd,ηh

mx−1
j1,...,ja

ef,jax
−1
ja+1,...,jp

x−1
η1,...,ηeef,q ⊗ E

(q)
12

(
σja,q(v+2)

)
(107)

As for the sum (98), it equals

κd

2

p∑
a=1

p∑
b=1

b 6=a

mx−1
j1,...,ja−1

x−1
jb

ef−1,jaσja,jb(x
−1
ja+1,...,jp

)x−1
η1,...,ηeef,jb ⊗ E

(jb)
12

(
σja,jb(v+2)

)
(108)

+
κd

2

p∑
a=1

e∑
h=1

mx−1
j1,...,ja−1

x−1
ηh

ef−1,jax
−1
ja+1,...,jp

x−1
η1,...,ηexηhx

−1
ja

ef,ηh ⊗ E
(ηh)
12

(
σja,ηh(v+2)

)
(109)

+
κd

2

p∑
a=1

l∑
q=1

q 6=jd,ηh

mx−1
j1,...,ja−1

x−1
q ef−1,jax

−1
ja+1,...,jp

x−1
η1,...,ηeef−1,q ⊗ E(q)

12

(
σja,q(v+2)

)
(110)

The following equalities hold since we are assuming that λ = κd:

(87) = −(102), (107) = (100), (110) = −(104), (109) = −(91),

(92) = −(106), (94) = −(108), (95) = −(105)

Using our assumption that βf = t
2 −

λ(n−2)
4 +

(cf−cf+1)d
2 , we can prove that X+

1,1,f

(
T 2(m ⊗ v)

)
=

T 2
((
X+
n−1,1,f−1 + (βf + βf−1)X+

n−1,f−1
)
(m⊗ v)

)
:

X+
1,1,f

(
T 2(m⊗ v)

)
− T 2

(
X+
n−1,1,f−1(m⊗ v)

)
= (85) + (86) + (87)− T 2

(
X+
n−1,1,f−1(m⊗ v)

)
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=(88) + (89) + T 2
(
J(X+

n−1)f−1(m⊗ v)
)
− T 2

(
X+
n−1,1,f−1(m⊗ v)

)
+ (86) + (87)

=(91) + . . .+ (98) + (86) + (87) + (101) + (102)

=(91) + . . .+ (96) + (105) + . . .+ (110)− (99)− (100)

+ (87) + (102) + (103) + (104)

=((87) + (102)) + ((91) + (109)) + ((92) + (106)) + ((94) + (108)) + ((95) + (105))

+ (96)− (99) + (−(100) + (107)) + ((104) + (110)) + (103)

=(96)− (99) + (103)

=

(
t− λ

(
n− 2

2

)
+
d(cf−1 − cf+1)

2

)
T 2
(
En−1,n,f−1(m⊗ v)

)
=(βf + βf−1)T 2

(
X+
n−1,f−1(m⊗ v)

)

Using the equalities (84), we can extend ϕ to an algebra homomorphism Ŷn,d
λ,β −→ EndC(M ⊗C[Sl]

(Cn)⊗l) (also denoted ϕ) by setting ϕ(X±0,r,j) = T ◦ϕ(ρ(X±0,r,j)◦T−1. We have thus constructed a functor

Ht,c(Γl)−modR −→ Ŷn,d
λ,β −modint,lL,triv. The proof that it is an equivalence of categories when l+ 2 < n

follows the same approach as the second part of the proof of theorem 5.4 in [Gu1].

Let N ∈ Ŷn,d
λ,β − modint,lL,triv. Since N is a module over Y dλ and over Uŝln(C[u±1] o Γ), it is equal to

M ⊗C[Sl] (Cn)⊗l for some Γl-module M , which is also a module over Hκ(Γl) and C[x±1
1 , . . . , x±l ] o Γl.

We have to show that these two structures can be glued together to give M a structure of module over
Ht,c(Γl).

Fix 1 ≤ j, k ≤ l, j 6= k. We choose v to be the following generator of (Cn)⊗l as Usln-module:
v = vi1 ⊗ vi2 ⊗ · · · ⊗ vil where ib = b+ 3 if b < j, b 6= k, ib = b+ 2 if b > j, b 6= k, ij = 2 and ik = 1.

We can express ω−2,f explicitly in the following way:

ω−2 |(Cn)⊗l = −1

4

n∑
b=1

b 6=2,3

sign(2− b)S(E3b,f , Eb2,f )−
1

4
S(E32,f , H2,f )

We find that (X−2,1,f1X
+
0,f2
−X+

0,f2
X−2,1,f1)(m⊗ v) equals

l∑
r=1

l∑
s=1

(
mxref2−1,ref1,sYs ⊗ E

(s)
32 E

(r)
n1 (v)−mef1,sYsxref2−1,r ⊗ E(r)

n1 E
(s)
32 (v)

)
− λ[ω−2,f1 , X

+
0,f2

](m⊗ v)

=m[xkef2−1,k,Yjef1,j ]⊗ E
(j)
32 E

(k)
n1 (v)− δf1,f2

λ

2
mxjef2−1,jef1,k ⊗ E

(k)
31 E

(j)
n2 (v)

− δf1,f2−1
λ

2
mxkef2−1,kef1,j ⊗ E

(k)
31 E

(j)
n2 (v)

=m

(
[xkef2−1,k,Yjef1,j ]− δf1,f2

λ

2
xjσjkef2−1,kef1,j − δf1,f2−1

λ

2
xkσjkef1,jef2−1,k

)
⊗ ṽ

where ṽ = E
(j)
32 E

(k)
n1 (v). We know from relation (69) that [X−2,1,f1 , X

+
0,f2

] = 0, so the last expression

is equal to 0. Since ṽ is a generator of (Cn)⊗l as a Usln-module, it follows, from lemma 7.1 and our
assumption that λ = κd, that

m

(
[xkef2−1,k,Yjef1,j ]− δf1,f2

κd

2
xjσjkef2−1,kef1,j − δf1,f2−1

κd

2
xkσjkef1,jef2−1,k

)
= 0.
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Summing over f1, f2 = 0, 1, . . . , d − 1 and using
∑d−1
f=0 ef,kef,j = 1

d

∑d−1
f=0 ξ

−f
k ξfj ,

∑d−1
f=0 ef−1,kef,j =

1
d

∑d−1
f=0 ζ

−fξ−fk ξfj yields relation (60).

We consider now the relation between xk and Yk. Setting

ν1,f =
1

4

n∑
i=3

S(E1i,f , Ei1,f ) +
1

2
S(E12,f , E21,f )−

1

4

n∑
i=3

S(E2i,f , Ei2,f )−
1

2
H2

1,f ,

we have that Hi,1,j(m⊗v) = J(Hi)j(m⊗v)−λν1,f (m⊗v) with J(Hi)(m⊗v) =
∑l
k=1mYkef,k⊗H

(k)
i (v).

Fix k, 1 ≤ k ≤ l. We now choose v to be equal to v = vi1 ⊗· · ·⊗vil with ib = b+ 2 if b < k, ib = b+ 1
if b > k and ik = 1. Note that vib 6= 2, n, n− 1 ∀b since l + 1 < n− 1 by assumption. We obtain:

[E
(r)
n1 , ν1](v) =

1

2

n∑
b=3

E
(r)
nb E

(k)
b1 (v) =

1

2
σkrE

(k)
n1 (v) if r 6= k, [E

(k)
n1 , ν1](v) =

(
n− 2

4

)
E

(k)
n1 (v). (111)

We need (111) to obtain equation (112) below. We compute that (H1,1,fX
+
0,f − X

+
0,fH1,1,f )(m ⊗ v)

equals

l∑
r=1

l∑
s=1

mef,rxref,sYs ⊗Hs
1E

(r)
n1 (v)−

l∑
s=1

l∑
r=1

mef,sYsef,rxr ⊗ E(r)
n1 H

(s)
1 (v)

−λ[ν1,f , X
+
0,f ](m⊗ v)

= −mef,kYkef,kxk ⊗ E(k)
n1 H

(k)
1 (v) +

λ

2

l∑
r=1

r 6=k

mxref−1,ref,k ⊗ σkrE(k)
n1 (v)

+λ

(
n− 2

4

)
mef,kxk ⊗ E(k)

n1 (v)

= −mYkef,kxkef−1,k ⊗ ṽ +
λ

2

l∑
r=1

r 6=k

mxrσkref−1,kef,r ⊗ ṽ + λ

(
n− 2

4

)
mxkef−1,k ⊗ ṽ (112)

where ṽ = E
(k)
n1 (v). We want to obtain a similar relation with H1,1,f replaced by Hn−1,1,f .

From the definition of νn−1,f−1,

νn−1,f−1 =
1

4

n−2∑
b=1

S(Ebn,f−1, Enb,f−1) +
1

2
S(En−1,n,f−1, En,n−1,f−1)

− 1

4

n−2∑
b=1

S(Eb,n−1,f−1, En−1,b,f−1)− 1

2
H2
n−1,f−1

We can check that [E
(r)
n1 , νn−1](v) = 0 if r 6= k and

[E
(k)
n1 , νn−1](v) = −1

2

n−2∑
b=2

l∑
s=1

s 6=k

E
(k)
b1 E

(s)
nb (v)−

(
n− 2

4

)
E

(k)
n1 (v) = −1

2

l∑
s=1

s6=k

σksE
(k)
n1 (v)−

(
n− 2

4

)
E

(k)
n1 (v)

(113)

The equation (113) allows us to compute that [Hn−1,1,f−1, X
+
0,f ](m⊗ v) equals
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l∑
r,s=1

(
mef,rxref−1,sYs ⊗H(s)

n−1E
(r)
n1 (v)−mef−1,sYsef,rxr ⊗ E(r)

n1 H
(s)
n−1(v)

)
−λ[νn−1,f−1, X

+
0,f ](m⊗ v)

= mxkef−1,kYkef−1,k ⊗H(k)
n−1E

(k)
n1 (v)

−λ
2

l∑
r=1

r 6=k

mxk (σkref−1,kef−1,r)⊗ E(k)
n1 (v)−

(
n− 2

4

)
ef−1,k ⊗ E(k)

n1 (v) (114)

From relations (67), (74), (75) and (77) in Ŷn,d
λ,β , we know that

X+
0,1,f = −[H1,1,f , X

+
0,f ] + (βf − λ)H1,fX

+
0,f − βfX

+
0,fH1,f

= −[Hn−1,1,f−1, X
+
0,f ]− βf−1Hn−1,f−1X

+
0,f + (βf−1 − λ)X+

0,fHn−1,f−1

Applying these two expressions for X+
0,1,f to m ⊗ v, using equalities (112),(114) and the fact that

H1,fX
+
0,f (v) = 0 and X+

0,fHn−1,f−1(v) = 0, we obtain that the expression

mYkxkef−1,k ⊗ ṽ − λ

2

l∑
r=1

r 6=k

mxrσkref−1,kef,rṽ − λ
(
n− 2

4

)
mxkef−1,k ⊗ ṽ − βfX+

0,fH1,f (m⊗ v)

equals

mxkYkef−1,k ⊗ ṽ +
λ

2

l∑
r=1

r 6=k

mxkσkref−1,kef−1,r ⊗ ṽ

+λ

(
n− 2

4

)
mxkef−1,k ⊗ ṽ − βf−1Hn−1,f−1X

+
0,f (m⊗ v)

Therefore,

m[xk,Yk]ef−1,k ⊗ ṽ +
λ

2

l∑
r=1

r 6=k

m(xref,k + xkef−1,k)σkref−1,k ⊗ ṽ

+λ

(
n− 2

2

)
mxkef−1,k ⊗ ṽ + (βf−1 + βf )mxkef−1,k ⊗ ṽ = 0.

Since ṽ is a generator of (Cn)⊗l as a Usln-module, it follows from lemma 7.1 and our assumption that

βf = t
2 −

λ(n−2)
4 +

(cf−cf+1)d
2 , λ = κd that

m

[xk,Yk]ef−1,k +
κd

2

l∑
r=1

r 6=k

(xref,k + xkef−1,k)σkref−1,k +
(
t+

d

2
(cf−1 − cf+1)

)
xkef−1,k


vanishes. Taking the sum over f = 0, . . . , d− 1, we obtain that

m([xk,Yk] + txk +
κ

2

l∑
j=1

j 6=k

d−1∑
s=0

(xk + ζsxj)ξ
−s
k σjkξ

s
k +

1

2

d−1∑
a=1

dca(ea+1,k − ea−1,k)xk) = 0.

Therefore, we have proved that the Hκ(Γl)- and the C[x±1
1 , . . . , x±1

l ] o Γl-module structure on M
can be glued to yield a right module over Ht,c(Γl). To prove that SW is an equivalence, we are left
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to show that it is fully faithful. That SW is injective on morphisms is true because this is true for
the Schur-Weyl duality functor between C[Sl] and Usln, so suppose that f : SW(M1) −→ SW(M2) is

a Ŷn,d
λ,β-homomorphism. Schur-Weyl equivalence for sln(C[u±1]) and Y nλ says that it must be of the

form f(m1 ⊗ v) = g(m1) ⊗ v,∀m1 ∈ M1, where g ∈ HomC(M1,M2) is a linear map which is also a
homomorphism of right C[x±1

1 , . . . , x±1
l ]- and Hκ(Γl)-modules. Since Ht,c(Γl) is generated by these two

subalgebras, g is even a homomorphism of Ht,c(Γl)-modules. Therefore, f = SW(g) and this completes
the proof of proposition 10.1.

It was explained after proposition 10.5 that Ht,c(Γl) ∼= Ht,c(κ,ca=0)(Γl). Therefore, it is reasonable

to expect that Ŷn,d
λ,β depends only on two parameters. This is confirmed in the next proposition. Let

β̃ = 2
∑d−1
i=0 βi and let Ŷn,d

λ,β̃
be the algebra defined as Ŷn,d

λ,β with all the βj and λ − βj replaced by λ
2 in

relations (75) - (78) except that (75) and (76) for the cases j = 0 and j = d − 1, respectively, must be
replaced by

[X+
0,r1+1,0, X

+
1,r2,0

]− [X+
0,r1,0

, X+
1,r2+1,0] = (β̃ − λ

2
)X+

1,r2,0
X+

0,r1,0
− (β̃ +

λ

2
)X+

0,r1,0
X+

1,r2,0

[X−0,r1+1,d−1, X
−
1,r2,0

]− [X−0,r1,d−1, X
−
1,r2+1,0]

=

(
β̃ +

λ

2

)
X−1,r2,0X

−
0,r1,d−1 −

(
β̃ − λ

2

)
X−0,r1,d−1X

−
1,r2,0

Proposition 10.7. The following formulas define an algebra isomorphism Ψ : Ŷn,d
λ,β

∼−→ Ŷn,d

λ,β̃
for any

λ, β.

Ψ(X−0,r,j) =

r∑
s=0

(
r
s

)
2s
(
β0 + . . .+ βj − j

λ

2

)s
X−0,r−s,j for 0 ≤ j ≤ d− 1

Ψ(X+
0,r,j) =

r∑
s=0

(
r
s

)
2s
(
β0 + . . .+ βj−1 − (j − 1)

λ

2

)s
X+

0,r−s,j for 1 ≤ j ≤ d

Ψ(H0,r,j) =

r∑
s=0

(
r
s

)
2s
(
β0 + . . .+ βj − j

λ

2

)s
H0,r−s,j for 0 ≤ j ≤ d− 1

For 1 ≤ i ≤ n− 1,

Ψ(X±i,r,j) =

r∑
s=0

(
r
s

)(
2β0 + . . .+ 2βj−1 + βj − (2j − 1)

λ

2

)s
X±i,r−s,j for 0 ≤ j ≤ d− 1

and similarly for Hi,r,j

In view of proposition 5.3 and the comments preceding it, the next corollary is not surprising.

Corollary 10.3. Ŷn,d
λ,β is isomorphic to an affine Yangian Ŷnd

λ,β′ for slnd.

Ŷnd
λ,β′ is generated by X±i,r, Hi,r for 0 ≤ i ≤ nd−1, r ∈ Z≥0 and an isomorphism sends X+

i,r,j 7→ X+
jn+i,r

for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ d− 1, X−i,r,j 7→ X−jn+i,r for 1 ≤ i ≤ n− 1, 0 ≤ j ≤ d− 1, X−0,r,f 7→ X−(j+1)n,r for

0 ≤ j ≤ d− 1 (and X−dn,r = X−0,r).

In the definition of affine Yangians in [Gu2], the parameter β appears in relations involving X±0,r, X
±
1,s

and also X±0,r, X
±
n−1,s. However, the relations before proposition 10.7 involves only X±0,r and X±1,s. This

is not a contradiction, affine Yangians can also be defined in such a way: this is explained in section 3 in
[FFNR].
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As is explained in [Gu2], when λ = 0 and β 6= 0, the affine Yangian Ŷn
λ=0,β is isomorphic to

ŝln(D(C×)), the universal central extension of sln over the ring D(C×) of differential operators on the

torus C×. Corollary 10.3 then implies that Ŷn,d
λ=0,β is isomorphic to ŝlnd(D(C×)) when β′ 6= 0. This is a

consequence of the following observation: D(C×) o Γ ∼= Md(D(C×)), an isomorphism being given on the
generators of D(C×) o Γ by

w 7→



d∂ 0 · · · · · · 0

0 d∂ − 1 0 · · ·
...

...
. . .

. . .
. . .

...

0
. . . 0 d∂ − (d− 2) 0

0 0 · · · 0 d∂ − (d− 1)


, u 7→



0 1 0 · · · 0
... 0 1

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . . 0 1
z 0 · · · 0 0


and the generator ξ of Z/dZ goes to the diagonal matrix with entries 1, ζ−1, ζ−2, . . . , ζ−(d−1). Here, we
view D(C×) o Γ as the algebra generated by w, u, u−1 and ξj ∈ Γ, j = 0, . . . , d − 1, with the relations
wu− uw = u, ξw = wξ and ξu = ζuξ; we view D(C×) as the algebra generated by ∂, z with the relation
∂z − z∂ = z. Note that ud is mapped to the diagonal matrix with entries z, z, . . . , z on the diagonal.

10.3 Dn
β,b(Z/dZ) as a subalgebra of LYd

λ,β

Since Ht,c(Γl) ↪→ Ht,c(Γl), we may expect Dnβ,b(Z/dZ) to be isomorphic to a subalgebra of LYd
λ,β . This

is indeed true.

Definition 10.8. Let Ldλ,β be the subalgebra of LYd
λ,β generated by X±i,r,j, Hi,r,j, X

+
0,r,j, X

−
0,r+1,j for 1 ≤

i ≤ n− 1, r ≥ 0, 0 ≤ j ≤ d− 1.

In order to prove theorem 10.3 below, we need to construct a Schur-Weyl functor between Ldλ,β and

Ht,c(Γl). As in [Gu1], we have to compute how X−0,1,j acts on M ⊗C[Sl] (Cn)⊗l for a right Ht,c(Γl)-module

M . For m ∈M , we find that [J(H1)f , X
−
0,f−1](m⊗ v) equals

l∑
k=1

mx−1
k Ykef,k ⊗ E

(k)
1n (v) +

l∑
j,k=1

j 6=k

m[x−1
k ,Yj ]ef−1,kef,j ⊗H(j)

1 E
(k)
1n (v)

=
1

2

l∑
k=1

m(yk + x−1
k ykxk)ef,k ⊗ E(k)

1n (v)

− κ

2

l∑
j,k=1

j 6=k

m

(
d−1∑
i=0

(ζ−ix−1
j + x−1

k )ξ−ik σjkξ
i
k

)
ef,kef,j ⊗H(j)

1 E
(k)
1n (v)

=

l∑
k=1

mykef,k ⊗ E(k)
1n (v) +

1

2

l∑
k=1

m[x−1
k , yk]xkef,k ⊗ E(k)

1n (v)

− κd

2

l∑
j,k=1

j 6=k

mx−1
k σjkef,kef,j ⊗H(j)

1 E
(k)
1n (v)

=

l∑
k=1

mykef,k ⊗ E(k)
1n (v)
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+
1

2

l∑
k=1

m

tx−1
k + κ

l∑
j=1

j 6=k

d−1∑
i=0

x−1
k ξ−ik σjkξ

i
k +

d−1∑
a=1

dcax
−1
k (ea,k − ea−1,k)

 ef,k ⊗ E(k)
1n (v)

− κd

2

l∑
j,k=1

j 6=k

mx−1
k ef,kef,j ⊗

(
E

(j)
11 E

(k)
1n − E

(j)
12 E

(k)
2n

)
(v)

=

l∑
k=1

m(yk +
t

2
x−1
k )ef,k ⊗ E(k)

1n (v) +
d

2

l∑
k=1

mx−1
k (cf − cf+1)ef,k ⊗ E(k)

1n (v)

+
κd

2

l∑
j,k=1

j 6=k

mx−1
k ef,kef,jσjk ⊗ E(k)

1n (v)− κd

2

∑
j 6=k

mx−1
k ef,kef,j ⊗

(
E

(j)
11 E

(k)
1n − E

(j)
12 E

(k)
2n

)
(v)

=

l∑
k=1

m(yk +
t

2
x−1
k )ef,k ⊗ E(k)

1n (v) + κd

l∑
j,k=1

j 6=k

mx−1
k ef,kef,j ⊗ E(j)

12 E
(k)
2n (v)

+
κd

2

l∑
j,k=1

j 6=k

n∑
a=3

mx−1
k ef,kef,j ⊗ E(j)

1a E
(k)
an (v) +

d

2

l∑
k=1

mx−1
k (cf − cf+1)ef,k ⊗ E(k)

1n (v)

We compute that [ν1,f , X
−
0,f−1](m⊗ v) equals

1

2

n∑
i=3

l∑
j,k=1

j 6=k

mx−1
k ef,jef,k ⊗ E(j)

1i E
(k)
in (v) +

n− 2

4

l∑
k=1

mx−1
k ef,k ⊗ E(k)

1n (v)

+

l∑
j,k=1

j 6=k

mx−1
k ef,jef,k ⊗ E(j)

12 E
(k)
2n (v)−

l∑
j,k=1

j 6=k

x−1
k ef,jef,k ⊗H(j)

1 E
(k)
1n (v)

Combining all these computations and using relations (76),(74) along with the assumption that

λ = κd, βf = t
2 +

d(cf−cf+1)
2 − λ(n−2)

4 , we find that X−0,1,f−1(m ⊗ v) =
∑l
k=1mykef,k ⊗ E

(k)
1n =∑l

k=1mef−1,kyk ⊗ E(k)
1n .

We have the following analog of theorem 8.4 in [Gu1].

Theorem 10.2. Suppose that λ = κd and βj = t
2 −

λ(n−2)
4 +

(cj−cj+1)d
2 (where c0 = 0). There exists a

functor SW : Ht,c(Γl) − modR −→ Ldλ,β − modl,intL which is given by SW(M) = M ⊗C[Sl] (Cn)⊗l. This

functor is an equivalence of categories if l + 2 < n.

Proof. That the functor SW is well defined is a consequence of the calculations above concerning the
action of X−0,1,f on Vl. The rest of the proof follows the same lines as the proof of theorem 10.1.

Theorem 10.3. Suppose that λ̃ = − 2λ
d , b̃ξj = − 2

d

∑d−1
k=0 ζ

jk
(
βk − λ

2

)
, b̃ = (λ̃, b̃ξ1 , . . . , b̃ξd−1

) and β̃ =

− 1
d

∑d−1
j=0(2βj − λ) + λ̃ = − 2

d

∑d−1
j=0 βj + 3λ

d . Then the algebras Ldλ,β and Dn
β̃,b̃

(Z/dZ) are isomorphic.

This is a generalization of theorem 10.1 in [Gu2].

Proof. Our strategy is to construct an epimorphism π : Dn
β̃,b̃

(Z/dZ) � Ldλ,β and to use corollary 9.1 to

show that it is injective. We start by observing that we have a homomorphism π : g̃ln(C[Z/dZ]) −→ Ldλ,β
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which allows us to define unambiguously elements Eij(γ), Eij,f ∈ Ldλ,β as images of the corresponding ele-

ments in g̃ln(C[Z/dZ]). In particular, Eij,f = 1
d

∑d−1
k=0 ζ

fkEij(ξ
k), Hi,f = 1

dHi(1) + 1
d

∑d−1
k=1 ζ

fk
(
Eii(ξ

k)−
Ei+1,i+1(ξk)

)
for 1 ≤ i ≤ n− 1 and H0,f = 1

d

∑d−1
k=1 ζ

fk
(
Enn(ξk)− ζkE11(ξk)

)
+ 1

d

(
Enn(1)− E11(1)

)
.

To extend π, we start by setting π
(
En1(u)

)
=
∑d−1
j=0 X

+
0,j, π

(
E1,n−1(v)

)
=
∑d−1
k=0[X−0,1,k, X

−
n−1,k] and

π
(
En2(u)

)
=
∑d−1
j=0 [X+

0,j, X
+
1,j], π

(
E2,n−1(v)

)
=
∑d−1
k=0

[
[X−1,k+1, X

−
0,1,k], X−n−1,k

]
. Then we compute that

[π
(
En2(u)

)
, π
(
E2,n−1(v)

)
] equals

d−1∑
j,k=0

[
[X+

0,j, X
+
1,j],

[
[X−1,k+1, X

−
0,1,k], X−n−1,k

]]
=

d−1∑
k=0

[[
[X+

0,k+1, X
+
1,k+1], [X−1,k+1, X

−
0,1,k]

]
, X−n−1,k

]

=

d−1∑
k=0

[
[X+

0,k+1, X
−
0,1,k], X−n−1,k

]
+
[[
X−1,k+1, [H0,1,k, X

+
1,k+1]

]
, X−n−1,k

]
=

d−1∑
k=0

(
[H0,1,k, X

−
n−1,k] +

[
[X−1,k+1,−X

+
1,1,k+1 + (βk+1 − λ)X+

1,k+1H0,k − βk+1H0,kX
+
1,k+1], X−n−1,k

])
=

d−1∑
k=0

(
X−n−1,1,k + βkH0,kX

−
n−1,k − (βk − λ)X−n−1,kH0,k

)
+

d−1∑
k=0

(
[(λ− βk+1)H1,k+1H0,k + βk+1H0,kH1,k+1, X

−
n−1,k]

)
=

d−1∑
k=0

(
X−n−1,1,k +

(
βk −

λ

2

)
X−n−1,k +

λ

2
S
(
X−n−1,k, H0,k

))
+

d−1∑
k=0

λH1,k+1X
−
n−1,k

(115)

We set π
(
En1(v)

)
= − 1

2

∑d−1
i,j,k=0

[
[X−0,1,i, En1,j], En1,k

]
where the element En1,k is given by En1,k =[[

· · · [X−n−1,k, X
−
n−2,k], · · ·

]
, X−1,k

]
. Then

π
(
En1(v)

)
= −

d−1∑
j=0

([
[X−0,1,j, En1,j+1], En1,j

]
+

1

2

[
[X−0,1,j, En1,j], En1,j

]
+

1

2

[
[X−0,1,j, En1,j+1], En1,j+1

])
(116)

We also set π
(
E1,n−1(u)

)
=
∑d−1
j,k=0

[
E1n,j, [X

+
0,k, E1,n−1,k]

]
where the elements are simply given by

E1,n−1,k =
[
X+

1,k,
[
· · · , [X+

n−3,k, X
+
n−2,k] · · ·

]]
and E1n,j =

[
X+

1,j,
[
· · · , [X+

n−2,j, X
+
n−1,j] · · ·

]]
. Then

π
(
E1,n−1(u)

)
=

d−1∑
k=0

([
E1n,k, [X

+
0,k, E1,n−1,k]

]
+
[
E1n,k−1, [X

+
0,k, E1,n−1,k]

])
(117)

We have to find [π
(
En1(v)

)
, π
(
E1,n−1(u)

)
]. Computing separately the commutator of each pair of

sums in (116) and (117), we find that they are all equal to zero except the following one:

d−1∑
j,k=0

[[
[X−0,1,j, En1,j+1], En1,j

]
,
[
E1n,k−1, [X

+
0,k, E1,n−1,k]

]]
which equals
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d−1∑
j,k=0

[[[
[X−0,1,j, En1,j+1], En1,j

]
, E1n,k−1

]
, [X+

0,k, E1,n−1,k]
]

+

d−1∑
j,k=0

[
E1n,k−1,

[[
[X−0,1,j, [X

+
0,k, E1,n−1,k]], En1,j+1

]
, En1,j

]]

=

d−1∑
j=0

([[
[X−0,1,j, En1,j+1], Hn1,j

]
, [X+

0,j+1, E1,n−1,j+1]
]

+
[[

[X−0,1,j, Hn1,j+1], En1,j

]
, [X+

0,j+2, E1,n−1,j+2]
])

−
d−1∑
j=0

[
E1n,j,

[[
[H0,1,j, E1,n−1,j+1], En1,j+1

]
, En1,j

]]

=

d−1∑
j=0

[
[X−0,1,j, En1,j+1], [X+

0,j+1, E1,n−1,j+1]
]
−
d−1∑
j=0

[
E1n,j,

[[
[H0,1,j, E1,n−1,j+1], En1,j+1

]
, En1,j

]]

=

d−1∑
j=0

([
[−H0,1,j, E1,n−1,j+1], En1,j+1

]
+
[
E1n,j,

[
[[X+

1,1,j+1, E2,n−1,j+1]

− (βj+1 − λ)E1,n−1,j+1H0,j + βj+1H0,jE1,n−1,j+1, En1,j+1], En1,j

]])
=

d−1∑
j=0

([
[X+

1,1,j+1, E2,n−1,j+1], En1,j+1

]
+ [λE1,n−1,j+1H0,j + βj+1[H0,j,

E1,n−1,j+1], En1,j+1] + [E1n,j,−λEn,n−1,j+1En1,j + βj+1[En,n−1,j+1, En1,j]]
)

=

d−1∑
j=0

(
− J(En,n−1)j+1 − λ

[
[ω+

1,j+1, E2,n−1,j+1], En1,j+1

]
+ βj+1En,n−1,j+1

)

+

d−1∑
j=0

(
λEn,n−1,j+1(Hn1,j −H0,j) + λE1,n−1,j+1En1,j+1

)
(118)

Using (115) and (118), we conclude that
[
π
(
En1(v)

)
, π
(
E1,n−1(u)

)]
−
[
π
(
En2(u)

)
, π
(
E2,n−1(v)

)]
equals

−
d−1∑
k=0

(
X−n−1,1,k +

(
βk −

λ

2

)
X−n−1,k +

λ

2
S(X−n−1,k, H0,k)

)

+

d−1∑
k=0

(
−λ

2
S(H1,k+1, X

−
n−1,k) + J(En,n−1)k −

(
βk −

λ

2

)
En,n−1,k

)

− λ

4

d−1∑
k=0

n−2∑
j=3

S(Ej,n−1,k, Enj,k) + S(Hn−1,2,k, En,n−1,k) + S(En,n−1,k, Hn1,k)


+
λ

4

d−1∑
k=0

(
S(En,n−1,k, H1,k) + S(E1,n−1,k, En1,k)− S(En2,k, E2,n−1,k)

)
− λ

2

d−1∑
k=0

(
S(En,n−1,k, Hn1,k−1 −H0,k−1) + S(E1,n−1,k, En1,k)

)

42



= −
d−1∑
k=0

(
2

(
βk −

λ

2

)
En,n−1,k +

λ

2d
(1− ζk)

(
S
(
En,n−1(ξk), E11(ξ−k)

)
+ S

(
En,n−1(ξk), E22(ξ−k)

)))

− λ

2

d−1∑
k=0

n−2∑
j=1

S(Ej,n−1,k, Enj,k) + S(Hn−1,2,k, En,n−1,k) + S(En,n−1,k, Hn1,k)


The last expression is exactly what one obtains by applying π to the right-hand side of equation (35)

(except for the first term) in the case a = n, b = 1, c = n− 1, d = 2 for the algebra Dn
β̃,b̃

(Z/dZ).

In order to verify that π respects relation (36), we now compute that
[
π
(
En1(u)

)
, π
(
E2,n−1(v)

)]
equals

d−1∑
j,k=0

[
X+

0,k,
[
[X−1,j+1, X

−
0,1,j], X

−
n−1,j

]]
=

d−1∑
j=0

[[
X−1,j+1, [X

+
0,j+1, X

−
0,1,j]

]
, X−n−1,j

]

=

d−1∑
j=0

[
[X−1,j+1, H0,1,j], X

−
n−1,j

]
= −

d−1∑
j=0

[X−1,1,j+1 + βj+1X
−
1,j+1H0,j − (βj+1 − λ)H0,jX

−
1,j+1, X

−
n−1,j]

=− λ
d−1∑
j=0

X−n−1,jX
−
1,j+1 =

λ̃

4

d−1∑
i=0

ζiS
(
π
(
En,n−1(ξ−i)

)
, π
(
E21(ξi)

))

The other cases of relation (35) for arbitrary a 6= b 6= c 6= a 6= d 6= c and of relation (36) for arbitrary
a 6= b 6= c 6= d 6= a follow from the two cases above.

Let Ψl : Ldλ,β −→ EndC(Vl) be the algebra map coming from the Ldλ,β-module structure on Vl given

by theorem 10.2. Then one can check that Ψl ◦ π = Φl with Φl as defined at the end of section 9. From
corollary 9.1, we can deduce that π must be injective.
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sous l’action d’un groupe fini, J. Algebra 232 (2000), no. 2, 564–577.

[ATY] S. Ariki, T. Terasoma, H. Yamada, Schur-Weyl reciprocity for the Hecke algebra of (Z/rZ) o Sn,
J. Algebra 178 (1995), no. 2, 374–390.

[BEG] Y. Berest, P. Etingof, V. Ginzburg, Cherednik algebras and differential operators on quasi-
invariants, Duke Math. J. 118 (2003), no. 2, 279–337.

[Bo] D. Boyachenko, Quantization of minimal resolutions of Kleinian singularities, Adv. Math. 211
(2007), no. 1, 244–265.

[CBHo] W. Crawley-Boevey, M.P. Holland, Noncommutative deformations of Kleinian singularities,
Duke Math. J. 92 (1998), no. 3, 605–635.

[Ch1] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141
(1995), no. 1, 191–216.

[Ch2] I. Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319,
Cambridge University Press, Cambridge, 2005. xii+434 pp.

[ChPr1] V. Chari, A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math. 174
(1996), no. 2, 295–326.

43



[ChPr2] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge,
1994. xvi+651 pp.

[De1] C. Dezelée, Generalized graded Hecke algebras of type B and D, Comm. Algebra 34 (2006), no. 6,
2105–2128.

[De2] C. Dezelée, Generalized graded Hecke algebra for complex reflection groups of type G(r, 1, n),
math.RT/0605410.

[Dr1] V. Drinfeld, Degenerate affine Hecke algebras and Yangians, (Russian) Funktsional. Anal. i
Prilozhen. 20 (1986), no. 1, 69–70.

[Dr2] V. Drinfeld, A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl. 36
(1988), no. 2, 212–216.

[DuOp] C. Dunkl, E. Opdam, Dunkl operators for complex reflection groups, Proc. London Math. Soc.
(3) 86 (2003), no. 1, 70–108.

[EGGO] P. Etingof, W.L. Gan, V. Ginzburg, A. Oblomkov, Harish-Chandra homomorphisms and sym-
plectic reflection algebras for wreath-products, Publ. Math. Inst. Hautes tudes Sci. No. 105 (2007),
91–155.

[En] B. Enriquez, PBW and duality theorems for quantum groups and quantum current algebras, J. Lie
Theory 13 (2003), no. 1, 21–64.

[EtGi] P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed
Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

[Fa] M. Farinati, Hochschild duality, localization, and smash products, J. Algebra 284 (2005), no. 1,
415–434.

[FFNR] B. Feigin, M. Finkelberg, A. Negut, L. Rybnikov, Yangians and cohomology rings of Laumon
spaces, arXiv:0812.465 [math.AG].

[GaGi] W.L. Gan, V. Ginzburg, Deformed preprojective algebras and symplectic reflection algebras for
wreath products, J. Algebra 283 (2005), no. 1, 350–363.

[GGOR] V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category O for rational Cherednik
algebras, Invent. Math. 154 (2003), no. 3, 617–651.

[GHL] N. Guay, D. Hernandez, S. Loktev, Double affine Lie algebras and finite groups, to appear in the
Pacific Journal of Mathematics.

[GKV] V. Ginzburg, M. Kapranov, E. Vasserot, Langlands reciprocity for algebraic surfaces, Math. Res.
Lett. 2 (1995), no. 2, 147–160.

[GoSm] I. Gordon, P. Smith, Representations of symplectic reflection algebras and resolutions of defor-
mations of symplectic quotient singularities, Math. Ann. 330 (2004), no. 1, 185–200.

[GoSt] I. Gordon, J.T. Stafford, Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005),
no. 1, 222–274.

[Gu1] N. Guay, Cherednik algebras and Yangians, Int. Math. Res. Not. 2005, no.57, 3551–3593.

[Gu2] N. Guay, Affine Yangians and deformed double current algebras in type A, Adv. Math. 211 (2007),
no. 2, 436–484.

[Gu3] N. Guay, Quantum algebras and quivers, Selecta Math. (N.S.) 14 (2009), no. 3-4, 667–700.

[He1] D. Hernandez, Representations of quantum affinizations and fusion product, Transformation Groups
10 (2005), no. 2, 163–200.

44



[He2] D. Hernandez, Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond.
Math. Soc. (3) 95 (2007), no. 3, 567–608.

[Ka] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a com-
mutative algebra, Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983), J.
Pure Appl. Algebra 34 (1984), no. 2-3, 265–275.

[KaLo] C. Kassel, J.L. Loday, Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier (Grenoble) 32
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