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Abstract

We construct a functor from the category of modules over the trigonometric (resp. rational)
Cherednik algebra of type gll to the category of integrable modules of level l over a Yangian for
the loop algebra sln (resp. over a subalgebra of this loop Yangian) and we establish that it is
an equivalence of categories if l + 2 < n. Finally, we treat the case of the rational Cherednik
algebras of type Al−1.

1 Introduction

Affine Hecke algebras are very important in representation theory and have been studied extensively
over the past few decades, along with their degenerate version introduced in [Dr1] and in [Lu].
About fifteen years ago, I. Cherednik introduced the notion of double affine Hecke algebra [Ch2],
abbreviated DAHA, which he used to prove some important conjectures of I. Macdonald. His
algebra also admits degenerate versions, the trigonometric one and the rational one, which are
called Cherednik algebras.

One of the most important classical results in representation theory is an equivalence, often called
Schur-Weyl duality, between the category of modules over the symmetric group Sl and the category
of modules of level l over the Lie algebra sln for n ≥ l+1. When quantum groups were invented in the
1980’s, it became an interesting problem to generalize the Schur-Weyl correspondence and similar
equivalences were obtained between finite Hecke algebras and quantized enveloping algebras [Ji],
between degenerate affine Hecke algebras and Yangians [Dr1, Ch1], between affine Hecke algebras
and quantized affine Lie algebras [GRV, ChPr1], and between double affine Hecke algebras and
toroidal quantum algebras [VaVa1]. In this paper, we prove a similar equivalence of categories
between the trigonometric (resp. rational) Cherednik algebra associated to the symmetric group
Sl and a (resp. subalgebra L of a) Yangian LY for the loop algebra Lsln = sln ⊗C C[u, u−1]. The
loop Yangians are barely known. They were mentioned briefly in [Va], [VaVa2].(See also [BoLe] for
the ŝl2 case.) The (sub-)algebra on the other side of our equivalence from the rational Cherednik
algebra has never been considered before. By contrast, there has been a recent surge of interest
in the representation theory of Cherednik algebras and their relations to the geometry of Hilbert
schemes, integrable systems and other important mathematical objects. (See [BEG1, GGOR, GoSt]
among others.) Our duality theorem indicates a new route to those questions via a careful study
of LY and L and makes the study of these algebras more relevant and interesting.

On one hand, the rational Cherednik algebra is simpler than the DAHA which, a priori, makes it
look less appealing. On the other hand, there are several interesting features in the rational case
that do not have counterparts (at least for the moment) for the DAHA. We hope that the same
can be said about Yangian-deformed double loop algebras and quantum toroidal algebras, whose
representation theory is still very mysterious. The former have a simpler structure and one can
hope that this will make them easier to study and that it will have some special, interesting features
that do not exist for toroidal quantum algebras.
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The trigonometric (resp. rational) DAHA is generated by two subalgebras, one isomorphic to a
degenerate affine Hecke algebra and the other one isomorphic to the group algebra of an affine Weyl
group (resp. both isomorphic to the smash product of Sl with a polynomial ring). For this reason,
and because of the results mentioned above, we can expect its Schur-Weyl dual to be built from
one copy of the Yangian Y for sln and from one copy of the loop algebra Lsln (resp. two copies of
sln ⊗C C[u]). This is indeed true for LY (resp. L).

An epimorphic image of L, defined in terms of operators acting on a certain space, appeared for
the first time in [BHW]; this was known to P. Etingof and V. Ginzburg. However, the algebra
considered in that paper is not described in a very precise way and no equivalence of categories
is established. One motivation for the present article comes from our desire to find exactly the
relations between the generators of the Schur-Weyl dual of a Cherednik algebra of type gll.

In the next three sections, we define Cherednik algebras and Yangians and explore some of their
basic properties, in particular their connections with double affine Hecke algebras and quantum
toroidal algebras. The fifth section states the main result (theorem 5.2) for the trigonometric
case, which is proved in the following one. After that, we look more closely at the action of certain
elements of LY since this is useful in the last section, which concerns the rational case (theorem 8.1).
Most of our results in the rational case follows from the observation that the rational Cherednik
algebra of type gll is contained in the trigonometric one. Our results are first proved for Cherednik
algebras of type gll, but we are able to obtain similar ones in type Al−1 also. Furthermore, our
equivalence restricts to an equivalence between two categories of BGG-type (theorem 8.3).

Acknowledgments During the preparation of this paper, the author was supported by a Pionier
grant of the Netherlands Organization for Scientific Research (NWO). He warmly thanks E. Opdam
for his invitation to spend the year 2005 at the University of Amsterdam. He also thanks I.
Cherednik, P. Etingof, V. Ginzburg, I. Gordon and T. Nevins for their comments.

2 Hecke algebras and Cherednik algebras

The definitions given in this section could be stated for any Weyl group W . However, in this
paper, we will be concerned only with the symmetric group Sl, so we will restrict our definitions
to the case W = Sl. We set h = Cl. The symmetric group Sl acts on h by permuting the
coordinates. Associated to h are two polynomial algebras: C[h] = Sym(h∗) = C[x1, . . . , xl] and
C[h∗] = Sym(h) = C[y1, . . . , yl], where {x1, . . . , xl} and {y1, . . . , yl} are dual bases of h∗ and h,
respectively. For i 6= j, we set αij = xi − xj , α

∨
ij = yi − yj , R = {αij |1 ≤ i 6= j ≤ l} and

R+ = {αij |1 ≤ i < j ≤ l}. The set Π = {xi − xi+1|1 ≤ i ≤ n − 1} is a basis of simple roots. The
reflection in h with respect to the hyperplane α = 0 is denoted sα, so sα(y) = y − 〈α, y〉α∨, where
〈 , 〉 : h∗ × h → C is the canonical pairing. We set sij = sαij .

The finite Hecke algebra Hq associated to Sl is a deformation of the group algebra C[Sl] and the
affine Hecke algebra H̃q is a deformation of the group algebra of the (extended) affine Weyl group
S̃l = P o Sl where P is the lattice ⊕l

i=1Zxi ⊂ h∗ (so C[S̃l] = C[x±1 , . . . , x±l ] o Sl). The algebra H̃q

admits a degenerate form Hc first introduced by Drinfeld [Dr1] and by Lusztig [Lu].

Definition 2.1. The degenerate affine Hecke algebra Hc of type gll is the algebra generated by the
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polynomial algebra Sym(h) = C[z1, . . . , zl] and the group algebra C[Sl] with the relations

sα · z − sα(z)sα = −c〈α, z〉 ∀z ∈ h,∀α ∈ Π

The double affine Hecke algebra Hq,κ (defined in section 4) introduced by I. Cherednik [Ch2] also
admits degenerate versions: the trigonometric one and the rational one. Recall that the group S̃l

is generated by sα ∀α ∈ R and by the element π = x1s12s23 · · · sl−1,l.

Definition 2.2 (Cherednik). Let t, c ∈ C. The degenerate (trigonometric) double affine Hecke
algebra of type gll is the algebra Ht,c generated by the group algebra of the (extended) affine Weyl
group C[S̃l] and the polynomial algebra C[z1, . . . , zl] = Sym(h) subject to the following relations:

sα · z − sα(z)sα = −c〈α, z〉 ∀z ∈ h,∀α ∈ Π

πzi = zi+1π, 1 ≤ i ≤ l − 1 πzl = (z1 − t)π

Remark 2.1. The subalgebra generated by C[Sl] and the polynomial algebra C[z1, . . . , zl] is iso-
morphic to the degenerate affine Hecke algebra Hc.

Definition 2.3. Let t, c ∈ C. The rational Cherednik algebra Ht,c of type gll is the algebra generated
by C[h], C[h∗] and C[Sl] subject to the following relations:

w · x · w−1 = w(x) w · y · w−1 = w(y) ∀x ∈ h∗, ∀y ∈ h

[y, x] = yx− xy = t〈y, x〉+ c
∑

α∈R+

〈α, y〉〈x, α∨〉sα

Remark 2.2. The rational Cherednik algebra H̃t,c of type Al−1 is the subalgebra of Ht,c generated
by C[xi − xj ] ⊂ C[x1, . . . , xl], by C[yi − yj ] ⊂ C[y1, . . . , yl] and by C[Sl].

The exists a simple relation between Ht,c and Ht,c.

Proposition 2.1 ([Su]). The algebra C[x±1 , . . . , x±l ]⊗C[h] Ht,c is isomorphic to Ht,c.

Before giving a proof of this proposition, we need to introduce elements in Ht,c which will be very
useful later. For 1 ≤ i ≤ l, set Ui = t

2 + xiyi + c
∑

j<i sij and Yi = Ui + c
2

∑
j 6=i sign(j − i)sij =

t
2 + xiyi + c

2

∑
j 6=i sij .

Proposition 2.2. [DuOp],[EtGi]

1. Yi = 1
2(xiyi + yixi).

2. UiUj = UjUi for any i, j.

3. w · Yi · w−1 = Yw(i).

4. The elements Ui, 1 ≤ i ≤ l, and C[Sl] generate a subalgebra of Ht,c isomorphic to the degen-
erate affine Hecke algebra Hc.
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Remark 2.3. The elements Yi are not pairwise commutative if c 6= 0:

[Yj ,Yk] =
c2

4

l∑
i=1

i6=j,k

[sij , sjk].

Proof. The first statement follows from the equality

yixi − xiyi = t + c
l∑

j=1,j 6=i

〈xi − xj , yi〉〈xi, yi − yj〉sij = t + c
l∑

j=1,j 6=i

sij .

The second part is proved in [DuOp]. The third part is obvious, so we prove only the fourth one.
If |k − i| > 1, then sk,k+1Ui = Uisk,k+1, so the non-trivial relations that we have to check involve
si−1,i and si,i+1:

si−1,iUi = (
t

2
+ xi−1yi−1)si−1,i + c

∑
j<i−1

si−1,jsi−1,i + c = Ui−1si−1,i + c

si,i+1Ui = (
t

2
+ xi+1yi+1)si,i+1 + c

∑
j<i+1

si+1,jsi+1,i − c = Ui+1si,i+1 − c

These two equalities, combined with the PBW-property of Ht,c [EtGi] and of Hc, complete the proof
of part 4.

In the proof of the two main theorems, we will need the following identities.

Proposition 2.3. 1. If i 6= j, then [yj , xi] = −csij and [x−1
i , yj ] = −cx−1

i x−1
j sij.

2. [yi, xi] = t + c
∑

k 6=i sij and [x−1
i , yi] = tx−2

i + c
∑

j 6=i x
−1
i x−1

j sij.

3. If i 6= j, then [Yj , xi] = − c
2(xi + xj)sij and [x−1

i ,Yj ] = − c
2(x−1

i + x−1
j )sij.

4. [Yi, xi] = txi + c
2

∑
j 6=i(xi + xj)sij and [x−1

i ,Yi] = tx−1
i + c

2

∑
j 6=i(x

−1
i + x−1

j )sij.

Proof. These are all immediate consequences of the definition of Ht,c.

Proof. (of proposition 2.1. See also [Su].) Because of proposition 2.2, part 4, and the PBW-property
of Ht,c and Ht,c, we only have to check the relation involving π in definition 2.2. First, assume that
i 6= l.

πUi = (x1s12 · · · sl−1,l)(Ui) = x1(Ui+1 − cs1,i+1)s12 · · · sl−1,l

= ([x1,Ui+1] + Ui+1x1 − cx1s1,i+1)s12 · · · sl−1,l

=
(
cxi+1s1,i+1 + c[x1, s1,i+1] + Ui+1x1 − cx1s1,i+1

)
s12 · · · sl−1,l

= (Ui+1)x1s12 · · · sl−1,l = Ui+1π
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If i = l, we obtain:

πUl = x1(U1 + c
l∑

j=2

s1,j)s12 · · · sl−1,l =
(
x1[x1, y1] + cx1

l∑
j=2

s1,j + U1x1

)
s12 · · · sl−1,l

=
(
x1(−t− c

∑
i6=1

si,1) + cx1

l∑
j=2

s1,j + U1x1

)
s12 · · · sl−1,l = (U1 − t)π

Corollary 2.1 (of proposition 2.1). The algebra Ht,c can also be defined as the algebra generated
by the elements x±1 , . . . , x±l , Y1, . . . ,Yl and Sl with the relations

w · xi · w−1 = xw(i) w · Yi · w−1 = Yw(i) [Yj ,Yk] =
c2

4

l∑
i=1

i6=j,k

(sjksik − skjsij)

Yjxi − xiYj = tδijxi +
c

2

∑
α∈R+

〈α, yj〉〈xi, α
∨〉(xisα + sαxi).

3 Finite and loop Yangians

The Yangians of finite type are quantum groups, introduced by V. Drinfeld in [Dr1], which are
quantizations of the enveloping algebra of the polynomial loop algebra g ⊗C C[u] of a semisimple
Lie algebra g. The second definition in [Dr2] is given in terms of a finite Cartan matrix. If we
replace it with a Cartan matrix of affine type, we obtain algebras that we call loop Yangians LYβ,λ.
Let Cn−1 = (cij)1≤i,j≤n−1 (Ĉn−1 = (cij)0≤i,j≤n−1) be a Cartan matrix of finite (resp. affine) type
An−1 (resp. A

(1)
n−1). If n ≥ 3:

Ĉn−1 =



2 −1 0 · · · · · · 0 −1
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
−1 0 · · · · · · 0 −1 2


Definition 3.1. [Dr2], [ChPr2] Let λ ∈ C. The Yangian Yλ associated to Cn−1 is the algebra
generated by X±

i,r,Hi,r, i = 1, . . . n− 1, r ∈ Z≥0, which satisfy the following relations :

[Hi,r,Hj,s] = 0, [Hi,0, X
±
j,s] = ±cijX

±
j,s (1)

[Hi,r+1, X
±
j,s]− [Hi,r, X

±
j,s+1] = ±λ

2
cij(Hi,rX

±
j,s + X±

j,sHi,r) (2)

[X+
i,r, X

−
j,s] = δijHi,r+s [X±

i,r, X
±
j,s] = 0 if 1 < |j − i| < n− 1 (3)
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[X±
i,r+1, X

±
j,s]− [X±

i,r, X
±
j,s+1] = ±λ

2
cij(X±

i,rX
±
j,s + X±

j,sX
±
i,r) (4)[

X±
i,r1

, [X±
i,r2

, X±
j,s]
]
+
[
X±

i,r2
, [X±

i,r1
, X±

j,s]
]

= 0 ∀r1, r2, s ≥ 0 if j − i ≡ ±1 mod n (5)

Remark 3.1. The Yangian Yλ1 is isomorphic to Yλ2 if λ1 6= 0 and λ2 6= 0.

Definition 3.2. Let β, λ ∈ C. The Yangian LYβ,λ associated to Ĉn−1 is the algebra generated by
X±

i,r,Hi,r, i = 0, . . . n−1, r ∈ Z≥0, which satisfy the relations of definition 3.1 for i, j ∈ {0, . . . , n−1}
except that the relations (2),(4) must be modified for i = 0 and j = 1, n − 1 in the following way
when n ≥ 3:

[H1,r+1, X
±
0,s]− [H1,r, X

±
0,s+1] = (β − λ

2
∓ λ

2
)H1,rX

±
0,s + (

λ

2
∓ λ

2
− β)X±

0,sH1,r (6)

[H0,r+1, X
±
1,s]− [H0,r, X

±
1,s+1] = (

λ

2
∓ λ

2
− β)H0,rX

±
1,s + (β − λ

2
∓ λ

2
)X±

1,sH0,r (7)

[H0,r+1, X
±
n−1,s]− [H0,r, X

±
n−1,s+1] = (β − λ

2
∓ λ

2
)H0,rX

±
n−1,s + (

λ

2
∓ λ

2
− β)X±

n−1,sH0,r (8)

[Hn−1,r+1, X
±
0,s]− [Hn−1,r, X

±
0,s+1] = (

λ

2
∓ λ

2
− β)Hn−1,rX

±
0,s + (β − λ

2
∓ λ

2
)X±

0,sHn−1,r (9)

[X±
1,r+1, X

±
0,s]− [X±

1,r, X
±
0,s+1] = (β − λ

2
∓ λ

2
)X±

1,rX
±
0,s + (

λ

2
∓ λ

2
− β)X±

0,sX
±
1,r (10)

[X±
0,r+1, X

±
n−1,s]− [X±

0,r, X
±
n−1,s+1] = (β − λ

2
∓ λ

2
)X±

0,rX
±
n−1,s + (

λ

2
∓ λ

2
− β)X±

n−1,sX
±
0,r (11)

We will also impose the relation
∑n−1

i=0 Hi,0 = 0.

Remark 3.2. We set X±
i = X+

i,0,Hi = Hi,0. If β = λ
2 , the relations defining LYβ,λ are the same

as those in definition 3.1 with i, j ∈ {0, . . . , n− 1}. Note also that the relations (6),(7),(8) and (9)
all follow from (10) and (11) using relation (3); they were added above as a convenient reference
since they will be useful later in our computations. We should also note that LYβ1,λ1

∼= LYβ2,λ2 if
β2 = ηβ1 and λ2 = ηλ1 for some η 6= 0. When no confusion is possible, we will write LY and Y
instead of LYβ,λ and Yλ. Without the relation

∑n−1
i=0 Hi = 0, we obtain the affine Yangian Ŷλ,β.

Let ∆ = {εij , 1 ≤ i 6= j ≤ n} be the root system of type An−1, ∆ ⊂ E = span{εi, i = 1, . . . , n}, εij =
εi − εj . We denote by (·, ·) the non-degenerate bilinear form on E given by (εi, εj) = δij . For
a positive root ε ∈ ∆+, we denote by X±

ε the corresponding standard root vector of sln. If
ε = εij , i < j, then X+

ε = Eij and X−
ε = Eji, where Ers is the matrix with 1 in the (r, s)-entry and

zeros everywhere else. In particular, X+
θ = E1n and X−

θ = En1, where θ is the longest root of sln.
If ε = εi,i+1, then X±

ε = X±
i .

One useful observation is that these two Yangians are generated by X±
i,r,Hi,r, i = 1, . . . n− 1 (resp.

i = 0, . . . , n− 1) with r = 0, 1 only. The other elements are obtained inductively by the formulas:

X±
i,r+1 = ±1

2
[Hi,1, X

±
i,r]−

1
2
(HiX

±
i,r + X±

i,rHi), Hi,r+1 = [X+
i,r, X

−
i,1]. (12)

Furthermore, the subalgebra generated by the elements with r = 0 is a quotient of (actually, is
isomorphic to) the enveloping algebra of the Lie (resp. loop) algebra sln (resp. Lsln = sln ⊗C
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C[u, u−1]). The subalgebra Y 0
λ generated by the elements with i 6= 0 is a quotient of the Yangian

Yλ.

The two subalgebras Y 0
λ and U(Lsln) generate LYβ,λ. Indeed, combining the observations in the

previous two paragraphs, we see that we only have to show that the subalgebra they generate
contains X±

0,1. From the relation (1) in definition 3.2 with i = 1, we know that [H1, X
±
0,1] = ∓X±

0,1,
so, substituting into equation (6), we obtain

[H1,1, X
±
0 ]±X±

0,1 = (β − λ

2
∓ λ

2
)H1X

±
0 + (

λ

2
∓ λ

2
− β)X±

0 H1.

Thus X±
0,1 (hence also H0,1) belongs to the subalgebra of LYβ,λ generated by Y 0

λ and U(Lsln).

For 1 ≤ i ≤ n− 1, set J(X±
i ) = X±

i,1 + λω±i and ω±i = ω±i,1 − ω±i,2 where

ω±i,1 = ±1
4

∑
ε∈∆+

(
[X±

i , X±
ε ]X∓

ε + X∓
ε [X±

i , X±
ε ]
)
, ω±i,2 =

1
4
(X±

i Hi + HiX
±
i )

J(Hi) = Hi,1 + λνi where νi =
1
4

∑
ε∈∆+

(ε, εi,i+1)(X+
ε X−

ε + X−
ε X+

ε )− 1
2
H2

i .

More explicitly, since X+
i = Ei,i+1, X−

i = Ei+1,i and Hi = Eii −Ei+1,i+1 for 1 ≤ i ≤ n− 1, we can
write

ω+
i =

1
4

n∑
j=1

j 6=i,i+1

sign(j − i)(Ej,i+1Eij + EijEj,i+1)−
1
4
(Ei,i+1Hi + HiEi,i+1) (13)

ω−i =
1
4

n∑
j=1

j 6=i,i+1

sign(j − i)(Ei+1,jEji + EjiEi+1,j)−
1
4
(Ei+1,iHi + HiEi+1,i) (14)

It is possible to define elements J(z) ∈ Y for any z ∈ sln in such a way that [J(z1), z2] = J([z1, z2]):
this follows from the isomorphism given in [Dr2] between two different realizations of the Yangian
Yλ: the one given above and the one first given in [Dr1] in terms of generators z, J(z) ∀z ∈ sln (the
J(z)’s satisfy a“deformed” Jacobi identity).

In the proof of our first main theorem, the following algebra automorphism will be very important.

Lemma 3.1. It is possible to define an algebra automorphism ρ of LY by setting

ρ(Hi,r) =
r∑

s=0

(
r
s

)(
λ

2

)r−s

Hi−1,s, ρ(X±
i,r) =

r∑
s=0

(
r
s

)(
λ

2

)r−s

X±
i−1,s for i 6= 0, 1

ρ(Hi,r) =
r∑

s=0

(
r
s

)
βr−sHi−1,s, ρ(X±

i,r) =
r∑

s=0

(
r
s

)
βr−sX±

i−1,s for i = 0, 1

We use the convention that X±
−1,r = X±

n−1,r and H−1,r = Hn−1,r. Note that, in particular, ρ(X±
i ) =

X±
i−1, ρ(Hi) = Hi−1 ∀i and ρ(X±

i,1) = X±
i−1,1 + λ

2X±
i−1, ρ(Hi,1) = Hi−1,1 + λ

2Hi−1 if i 6= 0, 1, whereas
ρ(X±

i,1) = X±
i−1,1 +βX±

i−1, ρ(Hi,1) = Hi−1,1 +βHi−1 if i = 0, 1. The automorphism ρ is very similar
to the automorphism τλ

2
(or τβ) in [ChPr2] followed by a decrement of the first index.
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Proof of lemma 3.1. We have to verify that ρ is indeed an automorphism of LY , that is, that it
respects the defining relations of LY . In the case when i, j 6= 0, 1 in the relations (1)-(5), this
follows from the fact that ρ is the same as the automorphism τλ

2
from [ChPr2] followed by a

decrement of the indices. A short verification shows that ρ preserves the relations (1),(3) and (5)
when i = 0, 1 or j = 0, 1. (In the case of equation (3) and i = j, , one has to use the identity∑

a+b=k

(
r
a

)(
s
b

)
=
(

r + s
k

)
.) Since the relations (6)-(9) follow from (10) and (11) by

applying [·, X∓
?,0], ? = 0, 1, n− 1, there are three cases left that require a more detailed verification.

We will use the identity
(

r
a

)
=
(

r − 1
a

)
+
(

r − 1
a− 1

)
.

Case 1: With i = 2, j = 1 in relation (4), we find that ρ
(
[X±

2,r+1, X
±
1,s]− [X±

2,r, X
±
1,s+1]

)
is equal to

=
r+1∑
a=0

s∑
b=0

(
r + 1

a

)(
s
b

)[(
λ

2

)r+1−a

X±
1,a, β

s−bX±
0,b

]

−
r∑

a=0

s+1∑
b=0

(
r
a

)(
s + 1

b

)[(
λ

2

)r−a

X±
1,a, β

s+1−bX±
0,b

]

=
r+1∑
a=0

s∑
b=0

((
r
a

)
+
(

r
a− 1

))(
s
b

)(
λ

2

)r+1−a

βs−b[X±
1,a, X

±
0,b]

−
r∑

a=0

s+1∑
b=0

(
r
a

)((
s
b

)
+
(

s
b− 1

))(
λ

2

)r−a

βs+1−b[X±
1,a, X

±
0,b]

=
r∑

a=0

s∑
b=0

(
r
a

)(
s
b

)(
λ

2

)r−a

βs−b(
λ

2
− β)[X±

1,a, X
±
0,b]

+
r+1∑
a=0

s∑
b=0

(
r

a− 1

)(
s
b

)(
λ

2

)r−a+1

βs−b[X±
1,a, X

±
0,b]

−
r∑

a=0

s+1∑
b=0

(
r
a

)(
s

b− 1

)(
λ

2

)r−a

βs−b+1[X±
1,a, X

±
0,b]

=
r∑

a=0

s∑
b=0

(
r
a

)(
s
b

)(
λ

2

)r−a

βs−b(
λ

2
− β)[X±

1,a, X
±
0,b]

+
r∑

ã=0

s∑
b=0

(
r
ã

)(
s
b

)(
λ

2

)r−ã

βs−b[X±
1,ã+1, X

±
0,b]

−
r∑

a=0

s∑
b̃=0

(
r
a

)(
s

b̃

)(
λ

2

)r−a

βs−b̃[X±
1,a, X

±
0,b̃+1

]

=
r∑

a=0

s∑
b=0

(
r
a

)(
s
b

)(
λ

2

)r−a

βs−b(
λ

2
− β)[X±

1,a, X
±
0,b]

+
r∑

ã=0

s∑
b̃=0

(
r
ã

)(
s

b̃

)(
λ

2

)r−ã

βs−b̃
(
[X±

1,ã+1, X
±
0,b̃

]− [X±
1,ã, X

±
0,b̃+1

]
)
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=
r∑

ã=0

s∑
b̃=0

(
r
ã

)(
s

b̃

)(
λ

2

)r−ã

βs−b̃(
λ

2
− β)[X±

1,ã, X
±
0,b̃

]

+
r∑

ã=0

s∑
b̃=0

(
r
ã

)(
s

b̃

)(
λ

2

)r−ã

βs−b̃
(
(β − λ

2
∓ λ

2
)X±

1,ãX
±
0,b̃

+ (
λ

2
∓ λ

2
− β)X±

0,b̃
X±

1,ã)
)

=
r∑

ã=0

s∑
b̃=0

(
r
ã

)(
s

b̃

)(
λ

2

)r−ã

βs−b̃

(
∓λ

2

)
(X±

1,ãX
±
0,b̃

+ X±
0,b̃

X±
1,ã)

= ρ

((
∓λ

2

)
(X±

2,rX
±
1,s + X±

1,sX
±
2,r)
)

Case 2: i = 1, j = 0. We have to prove that

ρ
(
[X±

1,r+1, X
±
0,s]− [X±

1,r, X
±
0,s+1]

)
= ρ
(
(β − λ

2
∓ λ

2
)X±

1,rX
±
0,s + (

λ

2
∓ λ

2
− β)X±

0,sX
±
1,r

)
.

This case is analogous to case 1, but a little bit simpler since the term (λ
2 − β) above becomes

(β − β) = 0.

Case 3: i = 0, j = n− 1. We have to show that

ρ
(
[X±

0,r+1, X
±
n−1,s]− [X±

0,r, X
±
n−1,s+1]

)
= ρ
(
(β − λ

2
∓ λ

2
)X±

0,rX
±
n−1,s + (

λ

2
∓ λ

2
− β)X±

n−1,sX
±
0,r

)
.

The computations are again very similar to those of case 1: the main difference is that the factor
(λ

2 − β) gets replaced by (β − λ
2 ).

4 Relations with DAHA’s and toroidal quantum algebras

It is known that the Yangians of finite type can be obtained from quantum loop algebras via a
limiting procedure [Dr3] and that the same is true about the trigonometric Cherednik algebra and
the double affine Hecke algebra (or elliptic Cherednik algebra), see [Ch3] for instance. We will
recall these results and explain how the loop Yangians introduced in section 3 can be obtained
from toroidal quantum algebras.

Definition 4.1 (Cherednik). Let q, κ ∈ C×. The double affine Hecke algebra Hq,κ of type gll
is the unital associative algebra over C with generators T±1

i , X±1
j , Y ±

j for i ∈ {1, . . . , l − 1} and
j ∈ {1, . . . , l} satisfying the following relations:

(Ti + 1)(Ti − q2) = 0, TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |i− j| > 1, X0Y1 = κY1X0, X2Y
−1
1 X−1

2 Y1 = q−2T 2
1

XiXj = XjXi, YiYj = YjYi, TiXiTi = q2Xi+1, T−1
i YiT

−1
i = q−2Yi+1,

XjTi = TiXj , YjTi = TiYj if j 6= i, i + 1

where X0 = X1X2 · · ·Xl.
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Remark 4.1. We set y = 1 in definition 1.1 in [VaVa1].

The trigonometric Cherednik algebra can be viewed as a limit (degenerate) version of the double
affine Hecke algebra. We sketch here a few computations which illustrate this fact. We extend
the scalars from C to C[[h]] and consider the completed algebra Hq,κ[[h]] with q = e

c
2
h, κ = eth.

Setting Yi = e−hUi , the equality X2Y
−1
1 X−1

2 Y1 = q−2T 2
1 becomes X2(1 + hU1)X−1

2 (1 − hU1) =
(1− ch)((chT1 + 1 + ch) + o(h2), where o(h2) is in h2Hq,κ[[h]]. Cancelling the constant term 1 on
both sides, dividing by h and then letting h → 0 gives x2U1x

−1
2 − U1 = cs12, which implies that

[U1, X2] = −cs12x2. (In this limit, the finite Hecke algebra identifies with C[Sl] and T1 with s12.)
This is indeed the relation between U1 and x2 in Ht,c, as can be seen from the third relation in
proposition 2.3 with j = 1, i = 2.

If we make the same substitution in the relation X0Y1 = κY1X0, we obtain X1 · · ·Xl(1−hU1) = (1+
th)(1−hU1)X1 · · ·Xl + o(h2). Subtracting X1 · · ·Xl on both sides, dividing by h and letting h → 0
gives [U1, x1 · · ·xl] = tx1 · · ·xl, which implies that

∑l
k=1 x1 · · ·xk−1[U1, xk]xk+1 · · ·xl = tx1 · · ·xl.

Since [U1, xk] = −cs1kxk for k 6= 1, [U1, x1]x2 · · ·xl − c
∑l

k=2 s1kx2 · · ·xl = tx1 · · ·xl, which leads to
[U1, x1] = tx1+c

∑l
k=2 s1kxk: after some simplifications, we obtain the fourth relation in proposition

2.3.

The rational, trigonometric and elliptic Cherednik algebras of Sl are all isomorphic after comple-
tion: see [Ch3] for a detailed discussion. This implies that, for generic values of the deformation
parameters, these three algebras have equivalent categories of finite dimensional representations.
For modules which are not finite dimensional, we don’t have such an equivalence in general. How-
ever, it is sometimes possible to lift a module over H or H to one over H if the parameters satisfy
certain technical conditions: see [Ch3] section 2.12 for more on this subject.

Definition 4.2. Let q1, q2 ∈ C×. The toroidal quantum algebra Üq1,q2 of type An−1 is the unital
associative algebra over C with generators ei,r, fi,r, ki,rk

−1
i,0 , i ∈ {0, . . . , n − 1}, r ∈ Z which satisfy

the following relations:
[ki,r, kj,s] ∀i, j ∈ {0, . . . , n− 1},∀r, s ∈ Z (15)

ki,0ej,r = q
cij

1 ej,rki,0, ki,0fj,r = q
−cij

1 fj,rki,0, (q1 − q−1
1 )[ei,r, fj,s] = δij(k+

i,r+s − k−i,r+s) (16)

(Here, k±i,r+s = ki,r+s if ±(r + s) ≥ 0 and = 0 otherwise.)

The next three relations hold ∀i, j ∈ {0, . . . , n− 1},∀r, s ∈ Z except for {i, j} = {n− 1, 0}, {0, 1}:

ki,r+1ej,s − q
cij

1 ki,rej,s+1 = q
cij

1 ej,ski,r+1 − ej,s+1ki,r (17)

ei,r+1ej,s − q
cij

1 ei,rej,s+1 = q
cij

1 ej,sei,r+1 − ej,s+1ei,r (18)

{ei,rei,sej,t − (q1 + q−1
1 )ei,rej,tei,s + ej,tei,rei,s}+ {r ↔ s} = 0 if i− j ≡ ±1 mod n− 1 (19)

The same relations hold with ei,r replaced by fi,r and q
cij

1 by q
−cij

1 .

In the cases {i, j} = {n−1, 0}, {0, 1}, we must modify the relations (17)-(19) above in the following
way: we introduce a second parameter q2 in such a way that we obtain an algebra isomorphism Ψ
of Üq1,q2 given by ei,r, fi,r, ki,r 7→ qr

1ei−1,r, q
r
1fi−1,r, q

r
1ki−1,r for 2 ≤ i ≤ n − 1 and ei,r, fi,r, ki,r 7→

10



qr
2ei−1,r, q

r
2fi−1,r, q

r
2ki−1,r if i = 0, 1. (We identify e−1,r with en−1,r, etc.) For instance, relation

(18) for i = 0, j = 1 becomes

q2e0,r+1e1,s − e0,re1,s+1 = q−1
1 q2e1,se0,r+1 − q1e1,s+1e0,r,

and with i = n− 1, j = 0 we have the very similar identity:

q2en−1,r+1e0,s − en−1,re0,s+1 = q−1
1 q2e0,sen−1,r+1 − q1e0,s+1en−1,r.

Remark 4.2. We could have expressed the relations above (and also those for Yangians) using
power series as in [VaVa1]. The definition in [VaVa1] involves a central parameter c which we have
taken to be equal to 1. The subalgebra U̇hor

q1,q2
generated by the elements ei,0, fi,0, k

±1
i,0 , i ∈ {0, . . . n−1}

is a quotient the quantum affine algebra of type Ân−1. The subalgebra U̇ver
q1,q2

generated by the
elements ei,r, fi,r, ki,r, k

−
i,0, i ∈ {1, . . . n− 1}, r ∈ Z is a quotient of the quantum loop algebra of type

Ân−1.

The connection between the representation theory of the quantum affine (resp. toroidal) algebras
and the Yangians of finite (resp. affine) type is less direct than in the case of Hecke algebras.
However, in view of the relation between Ü and LY explained below, which is an extension of a
result of Drinfeld in the finite case, one can often expects that results which are true for quantum
affine (or toroidal) algebras have analogs for Yangians which can be proved using similar arguments.
It is known that the Yangians of finite type and the quantum affine algebras have the same finite
dimensional representation theory: this was proved using geometrical methods in [Va]. More general
equivalences are not known at the moment between these two types of algebras.

It is possible to view the Yangian Yλ as a limit version of the quantum affine algebra U̇q. The same
is true for Ŷλ,β and Üq1,q2 . Let Ü[[h]] be the completed algebra with parameters q1 = e

λ
2
h, q2 = eβh.

Consider the kernel K of the composite map Ü[[h]] h 7→0−→ Üh=0 � U(ŝln) = U̇hor|h=0. Let A be
the C[[h]]-subalgebra of Ü((h)) generated by Ü[[h]] and K

h . Then the quotient A/hA is isomorphic
to Ŷλ,β. To see this, let A1 be the subalgebra of A generated by U̇ver and K∩U̇ver

h . Since U̇ver

is a quotient of the quantum loop algebra, A1/hA1 is a quotient of the Yangian Yλ (see [Dr3]),
that is, we have an epimorphism ζ : Yλ −→ A1/hA1. The automorphism Ψ of Ü[[h]] induces an
automorphism, also denoted Ψ, on A. It is related to the automorphism ρ of Ŷλ,β in the following
way for 2 ≤ i ≤ n:

Ψ(ζ(X±
i,r)) = ζ(ρ(X±

i,r)), Ψ(ζ(Hi,r)) = ζ(ρ(Hi,r))

Ψ2(ζ(X±
1,r)) = ζ(ρ2(X±

1,r)), Ψ2(ζ(H1,r)) = ζ(ρ2(H1,r))

From these relations, one concludes that it is possible to extend ζ to Ŷλ,β by setting ζ(X±
0,r) =

Ψ(ζ(ρ−1(X±
0,r))) and similarly for H0,r. One can show that we have thus obtained an isomorphism.

5 Schur-Weyl duality functor

The Schur-Weyl duality established by M. Varagnolo and E. Vasserot [VaVa1] involves, on one side,
a toroidal quantum algebra and, on the other side, a double affine Hecke algebra for Sl. Theorem
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5.2 establishes a similar type of duality between the trigonometric DAHA Ht,c and the loop Yangian
LYβ,λ, which extends the duality for the Yangian of finite type due to V. Drinfeld [Dr1].

Before stating the more classical results on the theme of Schur-Weyl duality, we have to define the
notion of module of level l over sln and over the quantized enveloping algebra Uqsln. Fix a positive
integer n and set V = Cn.

Definition 5.1. A finite dimensional representation of sln or Uqsln (q not a root of unity) is of
level l if each of its irreducible components is isomorphic to a direct summand of V ⊗l.

Theorem 5.1. [Ji, Dr1, ChPr1] Fix l ≥ 1, n ≥ 2 and assume that q ∈ C× is not a root of unity.
Let A be one of the algebras C[Sl],Hq(Sl), Hc=1(Sl), H̃q(Sl), and let B be the corresponding one (in
the same order) among Usln,Uqsln, Yλ=1(sln),UqLsln. There exists a functor F from the category
of finite dimensional right A-modules to the category of finite dimensional left B-modules which are
of level l as sln-modules in the first and third case (and as Uqsln-modules in the second and fourth
case) which is given by

F(M) = M ⊗C V ⊗l

where C = C[Sl] (first and third case) or C = Hq(Sl) (second and fourth case). Furthermore, this
functor is an equivalence of categories if l ≤ n− 1.

The sln module structure on V ⊗l commutes with the Sl-module structure obtained by simply
permuting the factors in the tensor product. Let M be a right module over Ht,c. Since C[Sl] ⊂ Ht,c,
we can form the tensor product F(M) = M ⊗C[Sl] V ⊗l.

On one hand, since Ht,c contains the degenerate affine Hecke algebra Hc, M can be viewed as a
right module over Hc, so it follows from [Dr1] that F(M) is a module of level l over the Yangian
Yλ of sln with λ = c. On the other hand, Ht,c also contains a copy of the group algebra of the
extended affine Weyl group S̃l, so it follows from [ChPr1] (the case q = 1) that F(M) is also a
module of level l over the loop algebra Lsln. These two module structures can be glued together
to obtain a module over LY . This is the content of our first main theorem. Before stating it, we
need one definition.

Definition 5.2. A module M over LYλ,β (or over Lλ,β) is called integrable if it is the direct sum
of its integral weight spaces under the action of h and if each generator X±

i,r acts locally nilpotently
on M .

Theorem 5.2. Suppose that l ≥ 1, n ≥ 3 and set λ = c, β = t
2 −

nc
4 + c

2 . The functor F : M 7→
M ⊗C[Sl] V ⊗l sends a right Ht,c-module to an integrable LYβ,λ-module of level l (as sln-module).
Furthermore, if l + 2 < n, this functor is an equivalence.

Remark 5.1. This theorem is very similar to the main result of [VaVa1] where Ht,c is replaced
by a double affine Hecke algebra and LYβ,λ is replaced by the toroidal quantum algebra Üq1,q2 (it is
defined slightly differently in op.cit), under the assumption that the parameter q1 is not a root of
unity. However, theorem 5.2 is not an immediate consequence of the DAHA case in op.cit. since,
in general, we don’t have equivalences between categories of modules over H and H or over LY and
Ü. The first part of the proof of theorem 5.2 can be deduced from a proposition in [VaVa1]: this is
explained in detail in the next section. However, the fact that the functor F is essentially surjective
must be given an independent (but similar) proof for the aforementioned reason. The same is true
for the rational case treated in section 8.
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6 Proof of theorem 5.2

The proof of theorem 5.2 consists of two parts. First, we show how to obtain an integrable LYβ,λ-
module structure on F(M), and then we prove that any integrable representation of LYβ,λ of level
l is of the form F(M). If there is no confusion possible for the values of the parameters, we will
write H,H, H,H, LY instead of Hq,κ,Ht,c, Hc,Ht,c, LYβ,λ.

6.1 Proof of theorem 5.2, part 1

Fix m ∈ M , v = vi1⊗· · ·⊗vil ∈ V ⊗l, where {v1, . . . , vn} is the standard basis of Cn and 1 ≤ ij ≤ n.
The subalgebra sln generated by the elements X±

i ,Hi, 1 ≤ i ≤ n − 1, acts on V ⊗l as usual. The
element z ⊗ u± ∈ Lsln acts on F(M) in the following way:

(z ⊗ u±k)(m⊗ v) =
l∑

j=1

mx±k
j ⊗ vi1 ⊗ · · · ⊗ (zvij )⊗ · · · ⊗ vil .

For z ∈ sln, we will write zj(v) for vi1 ⊗ · · · ⊗ (zvij ) ⊗ · ⊗ vil . The elements J(X±
i ), J(Hi) and

X±
i,1,Hi,1, 1 ≤ i ≤ n− 1, act on F(M) in the following way (see [Dr1],[ChPr2]):

J(X±
i )(m⊗ v) =

l∑
j=1

mYj ⊗X±,j
i (v), X±

i,1(m⊗ v) = J(X±
i )(m⊗ v)− λω±i (m⊗ v), (20)

J(Hi)(m⊗ v) =
l∑

j=1

mYj ⊗Hj
i (v), Hi,1(m⊗ v) = J(Hi)(m⊗ v)− λνi(m⊗ v). (21)

The following observation will be very useful: the action of sjk on V ⊗l if given in terms of matrices
by: sjk =

∑n
r,s=1 Ej

rsEk
sr. It is possible to give another, somewhat simpler formula for the action of

X±
k,1 and Hk,1 if we assume that i1 ≤ i2 ≤ . . . ≤ il. We will denote by jk (resp. ̃k) the first (resp.

last) value of j such that ij = k and we set lk = ̃k − jk + 1. We will adopt the following notation:
vj−k+1

= vi1 ⊗ · · · ⊗ vijk+1−1 ⊗ vk ⊗ vijk+1+1 ⊗ · · · vil or vj−k+1
= 0 if ij 6= k + 1 for any 1 ≤ j ≤ l;

vj+
k

= vi1 ⊗ · · · ⊗ vi̃k−1 ⊗ vk+1 ⊗ vi̃k+1 ⊗ · · · ⊗ vil or vj+
k

= 0 if ij 6= k for any 1 ≤ j ≤ l. For
1 ≤ k ≤ n− 1, we have:

X+
k,1(m⊗ v) = m

( ̃k+1∑
d=jk+1

sd,jk+1

)(
Ujk+1

− λ

4
(n− 2k)

)
⊗ vj−k+1

(22)

X−
k,1(m⊗ v) = m

( ̃k∑
d=jk

sd,̃k

)(
U̃k

− λ

4
(n− 2k)

)
⊗ vj+

k
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Hk,1(m⊗ v) =
( ̃k∑

d=jk

sd,jk

)
Ujk

(m⊗ v)−
( ̃k+1∑

d=jk+1

sd,jk+1

)
Ujk+1

(m⊗ v)

−λ

(
n− 2k

4

)
(lk − lk+1)(m⊗ v) + λlk(lk − lk+1 − 1)(m⊗ v)

We prove only the identity for X+
k,1, the other cases being similar. Suppose that i1 ≤ i2 ≤ · · · ≤ il.

We compute:

ω+
k,1(v) =

(n− 2k)
4

̃k+1∑
d=jk+1

Ed
k,k+1(v) +

1
2

̃k+1∑
d=jk+1

l∑
a=1

a 6=jk,...,̃k+1

n∑
j=1

sign(j − k)Ea
kjE

d
j,k+1(v)

=
(n− 2k)

4

̃k+1∑
d=jk+1

sdjk+1
(vj−k+1

) +
1
2

̃k+1∑
d=jk+1

l∑
a=1

a 6=jk,...,̃k+1

sign(a− jk+1)sadE
d
k,k+1(v)

=

 ̃k+1∑
d=jk+1

sdjk+1


n− 2k

4
+

1
2

l∑
a=1

a 6=jk,...,̃k+1

sign(a− jk+1)sajk+1

 (vj−k+1
) (23)

By sdd, we mean simply the identity element in Sl.

ω+
k,2(v) =

1
2

̃k+1∑
d=jk+1

(lk − lk+1 + 1)Ed
k,k+1(v) (24)

Notice that
̃k+1∑

d=jk+1

sdjk+1

̃k∑
a=jk

sajk+1
(vj−k+1

) = lk

̃k+1∑
d=jk+1

Ed
k,k+1(v)

and that
̃k+1∑

d=jk+1

sdjk+1

̃k+1∑
a=jk+1+1

sajk+1
(vj−k+1

) = (lk+1 − 1)
̃k+1∑

d=jk+1

Ed
k,k+1(v)

Putting equalities (20), (23) and (24) together gives us:

X+
k,1(m⊗ v) = m

 ̃k+1∑
d=jk+1

sd,jk+1


Yjk+1

− λ

2

n

2
− k +

l∑
a=1

a 6=jk+1

sign(a− jk+1)sajk+1


⊗ vj−k+1

This is the formula (22) for the action of X+
k,1 on m⊗ v.

Remark 6.1. For j1 ≥ j2, we define elements in Sl by s̃j1,j2 = sj1,j1−1sj1−1,j1−2 · · · sj2+1,j2 and
s̃j2,j1 = sj2,j2+1sj2+1,j2+2 · · · sj1−1,j1. Then, in formula (22), we can replace sd,jk+1

by s̃d,jk+1
in

the +-case and by s̃d,̃k
in the − case: one has to notice that we can make this substitution in our

computations above.
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Following one of the main ideas in [VaVa1], we define a linear automorphism T of M ⊗C[Sl] V
⊗l in

the following way:

T (m⊗ vi1 ⊗ · · · ⊗ vil) = (mx
−δi1,n

1 · · ·x−δil,n

l )⊗ vi1+1 ⊗ · · · ⊗ vil+1,

with the convention that vn+1 = v1. (Here, δi,j is the usual delta function.) We set v+1 =
vi1+1 ⊗ · · · ⊗ vil+1. One can check that T ◦ ϕ(X±

i−1) = ϕ(X±
i ) ◦ T and T ◦ ϕ(Hi−1) = ϕ(Hi) ◦ T for

any 0 ≤ i ≤ n − 1, where ϕ : Y −→ EndC(F(M)) is the algebra map coming from the Y -module
structure on F(M).

Recall the automorphism ρ from section 3. The following lemma will be crucial.

Lemma 6.1. Let M be a module over H. Suppose that λ = c and β = t
2 −

nc
4 + c

2 . For any
2 ≤ i ≤ n− 1 and any r ≥ 0, the following identities between operators on F(M) hold:

ϕ
(
ρ(X±

i,r)
)

= T−1 ◦ ϕ(X±
i,r) ◦ T ϕ

(
ρ(Hi,r)

)
= T−1 ◦ ϕ(Hi,r) ◦ T (25)

ϕ
(
ρ2(X±

1,r)
)

= T−2 ◦ ϕ(X±
1,r) ◦ T 2 ϕ

(
ρ2(H1,r)

)
= T−2 ◦ ϕ(H1,r) ◦ T 2 (26)

There are two ways to prove this lemma. One is to deduce it from proposition 3.4 in [VaVa1]
using the fact that the trigonometric Cherednik algebra is a limit version of the double affine Hecke
algebra. The second one is by direct computations. We will start with the first approach and
afterwards we will give a sketch of the relevant computations.

Proof. We can restrict ourselves to proving lemma 6.1 when M = H. Since the elements X±
i,r,Hi,r

with r = 0, 1 generate LY (see equation (12)), it is enough to prove the lemma for r = 0, 1. First,
we prove relation (25) for X+

i,1 with 2 ≤ i ≤ n − 1. The proof for X−
i,1 is exactly the same and we

omit it, and the proof for Hi,1 follows from either of these two cases using identity (3).

We start with proposition 3.4 in [VaVa1] in the case M = Hq,κ. We choose a v as before and
assume that i1 ≤ i2 ≤ · · · ≤ il. The aforementioned proposition, along with theorem 3.3 in loc.
cit., says that we have the following identities in EndC(H⊗H V ⊗l) for k ∈ {2, . . . , n−1} concerning
the action of q

n
2 ek,1 − ek,0 and q

n
2 ek−1,1 − ek−1,0 on 1⊗ v for 2 ≤ k ≤ n− 1:

q1−lkX−1
jn
· · ·X−1

l

1 +
̃k−1∑
d=jk

Td,jk

(q n
2 (qn−kYjk

)−1 − 1
)
⊗ vj−k +1 = (27)

q1−lk

1 +
̃k−1∑
d=jk

Td,jk

(q n
2 (qn−(k−1)q−1Yjk

)−1 − 1
)
X−1

jn
· · ·X−1

l ⊗ vj−k +1

Here, for d ≥ jk, Td,jk
= TdTd−1 · · ·Tjk

.

Now we extend the base ring by replacing C by C[[h]] and set q = e
ch
2 , κ = eth. We view both

sides of identity (27) as elements of H[[h]]⊗H[[h]] V
⊗l[[h]]. Let us denote by a : H[[h]] ∼−→ H[[h]] an

isomorphism between these two completed algebras as described in [Ch3]. (Such an isomorphism
can be obtained from a study of intertwiners.) In particular, we have a(Yi) = e−hUi and, in the

15



quotient H = H[[h]]/hH[[h]], a(Ti) 7→ si,i+1, a(Xi) 7→ xi. Using a, we can identify H[[h]] ⊗H[[h]]

V ⊗l[[h]] with H[[h]]⊗C[Sl][[h]] V ⊗l[[h]].

After cancelling q1−lk in (27), we apply the isomorphism a and equate the coefficients of h on both
sides. We then obtain

x−1
jn
· · ·x−1

l

1 +
̃k∑

d=jk+1

s̃d,jk

 (Ujk
− c

4
(n− 2k))⊗ vj−k +1 =

1 +
̃k∑

d=jk+1

s̃d,jk

 (Ujk
− c

4
(n− 2k))x−1

jn
· · ·x−1

l ⊗ vj−k +1 (28)

The equation (25), which we want to prove, says that for the case of X+
k,1, 2 ≤ k ≤ n − 1, and

M = H,m = 1: ̃k∑
d=jk

s̃d,jk

(Ujk
− λ

4
(n− 2k + 2)

)
x−1

jn
· · ·x−1

l ⊗ vj−k +1 +
λ

2

 ̃k∑
d=jk

s̃d,jk

x−1
jn
· · ·x−1

l ⊗ vj−k +1 =

x−1
jn
· · ·x−1

l

 ̃k∑
d=jk

s̃d,jk

(Ujk
− λ

4
(n− 2k)

)
⊗ vj−k +1

This is equation (28) since c = λ.

As for equation (26) in the case of X+
1,1 and M = H,m = 1, it says that l∑

d=jn

s̃d,jn

(Ujn −
λ

4
(n− 2n + 2)

)
x−1

jn−1
· · ·x−1

l ⊗ vj−n +2 =

−2β

 l∑
d=jn

s̃d,jn

x−1
jn−1

· · ·x−1
l ⊗ vj−n +2 + x−1

jn−1
· · ·x−1

l

 l∑
d=jn

s̃d,jn

(Ujn −
λ

4
(n− 2)

)
⊗ vj−n +2.

Since β = t
2 −

nλ
4 + λ

2 , this is equivalent to l∑
d=jn

s̃d,jn

 (Ujn + t)x−1
jn−1

· · ·x−1
l ⊗ vj−n +2 = x−1

jn−1
· · ·x−1

l

 l∑
d=jn

s̃d,jn

Ujn ⊗ vj−n +2. (29)

This can also be deduced from proposition 3.4 in [VaVa1] with M = H. Indeed, this proposition
says that we have the following relation concerning the action of e1,1 − e1,0 and of en−1,1 − en−1,0

on 1⊗ v:

q1−l+jnX−1
jn−1

· · ·X−1
l

1 +
l−1∑

d=jn

Td,jn

((qn−1κYjn)−1 − 1
)
⊗ vj−n +2 =

16



q1−l+jn

1 +
l−1∑

d=jn

Td,jn

((qn−(n−1)qn−2Yjn)−1 − 1)X−1
jn−1

· · ·X−1
l ⊗ vj−n +2.

We proceed as previously: we cancel q1−l+jn on both sides, extend the base ring to C[[h]], set
q = e

ch
2 , κ = eth. We then apply the isomorphism a and equate the coefficients of h; this yield

x−1
jn−1

· · ·x−1
l

 l∑
d=jn

s̃d,jn

 (Ujn − t− c(n− 1)
2

)⊗ vj−n +2 =

 l∑
d=jn

s̃d,jn

 (Ujn −
c(n− 1)

2
)x−1

jn−1
· · ·x−1

l ⊗ vj−n +2.

After a simple simplification, we obtain equation (29).

Proof of lemma 6.1 - sketch of alternative approach. To simplify the notation, will not use ϕ in the
proof. (We used it only to state the lemma in a convenient way.) We have to check the equality

(J(X+
i )− λω+

i )
(
T (m⊗ v)

)
= T

(
(J(X+

i−1)− λω+
i−1 +

λ

2
X+

i−1)(m⊗ v)
)
. (30)

With v as before (but without assuming that i1 ≤ i2 ≤ · · · ≤ il), suppose that j1 < · · · < jp are
exactly the values of j for which ij = n. Then T (m ⊗ v) = mx−1

j1
· · ·x−1

jp
⊗ v+1. Set x−1

j1,...,jp
=

x−1
j1
· · ·x−1

jp
.

J(X+
i )
(
T (m⊗ v)

)
=

l∑
k=1

mx−1
j1,...,jp

Yk ⊗ Ek
i,i+1(v+1)

=
p∑

r=1

l∑
k=1

k 6=js∀s

mx−1
j1
· · ·x−1

jr−1
[x−1

jr
,Yk]x−1

jr+1
· · ·x−1

jp
⊗ Ek

i,i+1(v+1) (31)

+
l∑

k=1

mYkx
−1
j1,...,jp

⊗ Ek
i,i+1(v+1) (32)

and
l∑

k=1

mYkx
−1
j1,...,jp

⊗ Ek
i,i+1(v+1) = T

(
J(X+

i−1)(m⊗ v)
)

(33)

Therefore, we must prove that

(31)− λω+
i

(
T (m⊗ v)

)
= −λT

(
ω+

i−1(m⊗ v)
)

+
λ

2
T
(
X+

i−1(m⊗ v)
)

(34)

17



To compute the action of ω+
i on v+1, we distinguish two cases: when Ej,i+1 and Eij act on the

same tensorand, and when they act on different ones.

ω+
i

(
T (m⊗ v)

)
=

n− 2i

4

l∑
k=1

mx−1
j1,...,jp

⊗ Ek
i,i+1(v+1) =

(n− 2i)
4

T

(
l∑

k=1

m⊗ Ek
i−1,i(v)

)
(35)

+
1
2

n∑
j=1

j 6=i,i+1

l∑
k=1

ik=j−1

l∑
d=1
id=i

sign(j − i)mx−1
j1,...,jp

⊗ Ek
i,i+1

(
skd(v+1)

)
(36)

−1
4
mx−1

j1,...,jp
⊗
(
Ei,i+1Hi + HiEi,i+1)(v+1

)
(37)

Doing the same for ω+
i−1, we obtain that ω+

i (T (m⊗v))−T (ω+
i−1(m⊗v))+ 1

2T (X+
i−1(m⊗v)) equals

1
2

l∑
j=1

j 6=i,i+1

l∑
k=1

ik=j−1

l∑
d=1
id=i

sign(j − i)mx−1
j1,...,jp

⊗ Ek
i,i+1(skd

(
v+1)

)
(38)

−T

1
2

n∑
j=1

j 6=i−1,i

l∑
k=1
ik=j

l∑
d=1
id=i

sign(j − i + 1)m⊗ Ek
i−1,i

(
skd(v)

) (39)

Therefore, the equality (34) that we have to prove simplifies to (31) = (38)− (39).

By considering the two different cases: j 6= 1 and j = 1 in (38) (and j 6= n, j = n in (39)), we find
the following expression for (38)− (39), which equals (31) using [x−1

jr
,Yk] = − c

2(x−1
jr

+ x−1
k )skjr :

(38)− (39) = −1
2

l∑
k=1

ik=n

l∑
d=1
id=i

mx−1
j1,...,jp

⊗ Ek
i,i+1

(
skd(v+1)

)
− 1

2
T

 l∑
k=1

ik=n

l∑
d=1
id=i

m⊗ Ek
i−1,i

(
skd(v)

)
We now prove the case i = 1 in lemma 6.1. Suppose that j1, . . . , jp (resp. γ1, . . . , γe) are exactly
the values of j (resp. of γ) such that ij = n (resp. iγ = n− 1).

J(X+
1,0)
(
T 2(m⊗ v)

)
=

p∑
s=1

e∑
u=1

mx−1
j1,...,jp

x−1
γ1
· · ·x−1

γu−1
[x−1

γu
,Yjs ]x

−1
γu+1

· · ·x−1
γe
⊗ Ejs

12(v+2) (40)

+
p∑

s=1

p∑
r=1

mx−1
j1
· · ·x−1

jr−1
[x−1

jr
,Yjs ]x

−1
jr+1

· · ·x−1
jp

x−1
γ1,...,γe

⊗ Ejs
12(v+2)(41)

+
l∑

k=1

mYkx
−1
j1,...,jp

x−1
γ1,...,γe

⊗ Ek
12(v+2)

The last term is equal to T 2
(
J(X+

n−1)(m⊗v)
)
. We can decompose (40) and (41) into several sums

using the relations [x−1
γu

,Yjs ] = − c
2(x−1

γu
+x−1

js
)sγu,js and [x−1

jr
,Yjr ] = tx−1

jr
+ c

2

∑l
k=1

k 6=jr

(x−1
jr

+x−1
k )skjr .
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After some long computations, we obtain:

(40) + (41) = t

p∑
a=1

mx−1
j1,...,jp

x−1
γ1,...,γe

⊗ Eja
12(v+2) (42)

+
c

2

p∑
a=1

l∑
q=1

q 6=jd,γh

mx−1
j1,...,ja−1

x−1
ja

x−1
ja+1,...,jp

x−1
γ1,...,γe

⊗ Eq
12

(
sja,q(v+2)

)
(43)

+
c

2

p∑
a=1

l∑
q=1

q 6=jd,γh

mx−1
j1,...,ja−1

x−1
q x−1

ja+1,...,jp
x−1

γ1,...,γe
⊗ Eq

12

(
sja,q(v+2)

)
(44)

We now focus on ω+
1

(
T 2(m ⊗ v)

)
and T 2

(
ω+

n−1(m ⊗ v)
)
. By considering the cases when E1j , Ej2

(and En−1,j , Ejn) act on the same tensorand and on different ones, we can write:

ω+
1

(
T 2(m⊗ v)

)
− T 2

(
ω+

n−1(m⊗ v)
)

=
1
2

n∑
j=3

l∑
q=1

iq+2=j

p∑
b=1

mx−1
γ1,...,γe

⊗ Eq
12

(
sq,jb

(v+2)
)

(45)

+
1
2
T 2

n−2∑
j=1

l∑
q=1
iq=j

p∑
b=1

m⊗ Eq
n−1,n

(
sq,jb

(v)
) (46)

+
(

n− 2
2

)
T 2
(
En−1,n(m⊗ v)

)
(47)

One can check that (43) = (45) and (46) = −(44). Finally, we get

X+
1,1

(
T 2(m⊗ v)

)
− T 2

(
X+

n−1,1(m⊗ v)
)

= (40) + (41) + (42)− λ(45) + λ(46)− λ(47)

= 2βT 2
(
En−1,n(m⊗ v)

)
.

Using the lemma, we can now define the action of X±
0,1 and of H0,1 on F(M) by setting

X±
0,1(m⊗ v) = T−1

(
X±

1,1

(
T (m⊗ v)

))
− βX±

0 (m⊗ v)

and
H0,1(m⊗ v) = T−1

(
H1,1

(
T (m⊗ v)

))
− βH0(m⊗ v).

Note that lemma 6.1 implies that X±
0,1

(
T (m ⊗ v)

)
= T

(
X±

n−1,1(m ⊗ v) + βX±
n−1(m ⊗ v)

)
and

similarly for H0,1. In other words, and more generally, we set

ϕ(X±
0,r) = T ◦ ϕ

(
ρ(X±

0,r)
)
◦ T−1, ϕ(H0,r) = T ◦ ϕ

(
ρ(H0,r)

)
◦ T−1 ∀r ≥ 0.

We now have to check that this indeed gives F(M) a structure of integrable module over LY .
Choose i, j, k ∈ {0, 1, . . . , n− 1} with k 6= i, k 6= j. We have to verify that ϕ(X±

i,r), ϕ(Hi,r), ϕ(X±
j,s)
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and ϕ(Hj,s) satisfy the defining relations of LY . This is true when k = 0 from theorem 1 of [Dr1].
Using lemma 6.1, we conclude that it is also true for k 6= 0. This means that we have a well-defined
algebra homomorphism ϕ from LY to EndC(F(M)). That F(M) is integrable follows from the
fact that V ⊗l is an integrable sln-module, and that it is of level l follows from theorem 5.1 in the
case of C[Sl] and Usln.

6.2 Proof of theorem 5.2, part 2

For the rest of this section, we assume that l + 2 < n (so, in particular, n ≥ 4). In the second step
of the proof, we have to show that, given an integrable module M̂ of level l over LY , we can find
a module M over H such that F(M) = M̂ . Such an M̂ cannot, in general, be lifted to a module
over Üq1,q2 , so this second step is not an immediate consequence of [VaVa1], although the approach
is similar. Integrable Usln-modules are direct sums of finite dimensional ones, so, by the results of
Drinfeld [Dr1] and Chari-Pressley [ChPr1], we know that there exists modules M1 and M2 over,
respectively, H and C[S̃l], such that M̂ = F(M1) as Y -module and M̂ = F(M2) as Lsln-module.
Since C[Sl] ⊂ H and C[Sl] ⊂ C[S̃l], we have an isomorphism M1 ∼= M2 of Sl-modules, so we can
denote them simply by M . We have to show that M is an H-module. The following will be useful.

Lemma 6.2. If v = vi1 ⊗ · · · ⊗ vil is a generator of V ⊗l as a module over Usln (that is, if ij 6= ik
for any j 6= k), then m⊗ v = 0 =⇒ m = 0.

Fix 1 ≤ j, k ≤ l, j 6= k. We choose v to be the following generator of V ⊗l as Usln-module:
v = vi1 ⊗ vi2 ⊗· · ·⊗ vil where id = d+3 if d < j, d 6= k, id = d+2 if d > j, d 6= k, ij = 2 and ik = 1.
We can express ω−2 as an operator on V ⊗l in the following way:

ω−2 |V ⊗l = −1
2

n∑
d=1

d6=2,3

l∑
r=1

l∑
s=1
s 6=r

sign(2− d)(Er
3dE

s
d2) +

(
n− 4

4

) l∑
r=1

Er
32 −

1
2

l∑
r=1

l∑
s=1
s 6=r

Er
32H

s
2

Therefore, [Ea
n1, ω

−
2 ] = −1

2

∑l
r=1
r 6=a

Er
31E

a
n2− 1

2

∑l
s=1
s 6=a

Ea
31E

s
n2 and applying this to m⊗v with a = j, k

gives

[Ej
n1, ω

−
2 ](m⊗ v) = −1

2
Ek

31E
j
n2(m⊗ v) and [Ek

n1, ω
−
2 ](m⊗ v) = −1

2
Ek

31E
j
n2(m⊗ v).

(X−
2,1X

+
0 −X+

0 X−
2,1)(m⊗ v) =

l∑
r=1

l∑
s=1

(
mxrYs ⊗X−,s

2,0 Er
n1(v)−mYsxr ⊗ Er

n1X
−,s
2,0 (v)

)
−λ[ω−2 , X+

0 ](m⊗ v)

=
l∑

r=1

l∑
s=1

m[xr,Ys]⊗ Es
32E

r
n1(v) + λ

s∑
a=1

mxa ⊗ [Ea
n1, ω

−
2 ](v)

= m[xk,Yj ]⊗ Ej
32E

k
n1(v)− λ

2
mxj ⊗ Ek

31E
j
n2(v)

−λ

2
mxk ⊗ Ek

31E
j
n2(v)

= m
(
[xk,Yj ]−

λ

2
(xj + xk)sjk

)
⊗ ṽ
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where ṽ = Ej
32E

k
n1(v). We know from relation (3) that [X−

2,1, X
+
0 ] = 0, so the last expression is

equal to 0. Since ṽ is a generator of V ⊗l as a Usln-module, it follows, from lemma 6.2 and our
assumption that λ = c, that m

(
[xk,Yj ]− c

2(xj + xk)sjk

)
= 0.

We consider now the relation between xk and Yk. From the definition of ν1:

ν1 =
1
4

n∑
d=3

(E1dEd1 + Ed1E1d) +
1
2
(E12E21 + E21E12)−

1
4

n∑
d=3

(E2dEd2 + Ed2E2d)−
1
2
H2

1

whence, as an operator on V ⊗l, it is equal to

ν1|V ⊗l =
1
2

n∑
d=3

l∑
j=1

l∑
s=1
s 6=j

(Ej
1dE

s
d1 − Ej

2dE
s
d2) +

l∑
j=1

l∑
s=1
s 6=j

Ej
12E

s
21 −

1
2

l∑
j=1

l∑
s=1
s 6=j

Hj
1Hs

1 +
(

n− 2
4

) l∑
j=1

Hj
1 .

Therefore,

[Er
n1, ν1] =

1
2

n−1∑
d=3

l∑
s=1
s 6=r

Er
ndE

s
d1 +

1
2

l∑
s=1
s 6=r

(Hr
0Es

n1 + Er
21E

s
n2) +

l∑
s=1
s 6=r

Er
n2E

s
21 −

l∑
s=1
s 6=r

Er
n1H

s
1 +

(
n− 2

4

)
Er

n1.

Fix k, 1 ≤ k ≤ l. We now choose v to be equal to v = vi1 ⊗ · · · ⊗ vil with id = d + 2 if d < k,
id = d + 1 if d > k and ik = 1. Note that id 6= 2, n, n − 1∀d since l + 1 < n − 1 by assumption.
Applying the previous expression for [Er

n1, ν1] to v, we obtain the following:

[Er
n1, ν1](v) =

1
2

n∑
d=3

Er
ndE

k
d1(v) =

1
2
skrE

k
n1(v) if r 6= k [Ek

n1, ν1](v) =
(

n− 2
4

)
Ek

n1(v). (48)

We need (48) to obtain equation (49) below. Note that Hs
1,0(v) = 0 if s 6= k.

(H1,1X
+
0 −X+

0 H1,1)(m⊗ v) =
l∑

r=1

l∑
s=1

mxrYs ⊗Hs
1,0E

r
n1(v)

−
l∑

s=1

l∑
r=1

mYsxr ⊗ Er
n1H

s
1,0(v)− λ[ν1, X

+
0 ](m⊗ v)

= −mYkxk ⊗ Ek
n1H

k
1,0(v) + λ

l∑
r=1

mxr ⊗ [Er
n1, ν1](v)

= −mYkxk ⊗ Ek
n1(v) +

λ

2

l∑
r=1
r 6=k

mxr ⊗ skrE
k
n1(v)

+λ

(
n− 2

4

)
m⊗ Ek

n1(v)

= −mYkxk ⊗ ṽ +
λ

2

l∑
r=1
r 6=k

mxrskr ⊗ ṽ + λ

(
n− 2

4

)
m⊗ ṽ (49)
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where ṽ = Ek
n1(v). We want to obtain a similar relation with H1,1 replaced by Hn−1,1.

From the definition of νn−1,

νn−1 =
1
4

n−2∑
d=1

(EdnEnd + EndEdn) +
1
2
(En−1,nEn,n−1 + En,n−1En−1,n)

−1
4

n−2∑
d=1

(Ed,n−1En−1,d + En−1,dEd,n−1)−
1
2
H2

n−1

whence, as an operator on V ⊗l, it is equal to

νn−1|V ⊗l =
1
2

n−2∑
d=1

l∑
j=1

l∑
s=1
s 6=j

(Ej
dnEs

nd − Ej
d,n−1E

s
n−1,d) +

l∑
j=1

l∑
s=1
s 6=j

(Ej
n−1,nEs

n,n−1)

−1
2

l∑
j=1

l∑
s=1
s 6=j

Hj
n−1H

s
n−1 −

(
n− 2

4

) l∑
j=1

Hj
n−1.

Therefore,

[Er
n1, νn−1] = −1

2

n−2∑
d=2

l∑
s=1
s 6=r

Er
d1E

s
nd +

1
2

l∑
s=1
s 6=r

(Hr
0Es

n1 − Er
n,n−1E

s
n−1,1)

−
l∑

s=1
s 6=r

Er
n−1,1E

s
n,n−1 −

l∑
s=1
s 6=r

Er
n1H

s
n−1 −

(
n− 2

4

)
Er

n1.

Applying the previous expression for [Er
n1, νn−1] to v, we conclude that [Er

n1, νn−1](v) = 0 if r 6= k
and

[Ek
n1, νn−1](v) = −1

2

n−2∑
d=2

l∑
s=1
s 6=k

Ek
d1E

s
nd(v)−

(
n− 2

4

)
Ek

n1(v) = −1
2

l∑
s=1
s 6=k

sksE
k
n1(v)−

(
n− 2

4

)
Ek

n1(v)

This equation allows us to compute [Hn−1,1, X
+
0 ](m⊗ v):

(Hn−1,1X
+
0 −X+

0 Hn−1,1)(m⊗ v) =
l∑

r,s=1

(
mxrYs ⊗Hs

n−1,0E
r
n1(v)−mYsxr ⊗ Er

n1H
s
n−1,0(v)

)
−λ[νn−1, X0](m⊗ v)

= mxkYk ⊗Hk
n−1,0E

k
n1(v) + λ

l∑
r=1

mxr ⊗ [Er
n1, νn−1](v)

= −mxkYk ⊗ ṽ − λ

2

 l∑
s=1
s 6=k

mxksks +
n− 2

2

⊗ ṽ (50)
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From the relations (1), (6) and (9) in LY , we know that

−X+
0,1 = [H1,1, X

+
0 ] + ((λ− β)H1X

+
0 + βX+

0 H1) (51)

= [Hn−1,1, X
+
0 ] + (βHn−1X

+
0 + (λ− β)X+

0 Hn−1) (52)

Applying these two expressions for −X+
0,1 to m ⊗ v, using equalities (49),(50) and the fact that

H1X
+
0 (v) = 0 and X+

0 Hn−1(v) = 0 because of our choice of v, we obtain:

−mYkxk ⊗ ṽ +
λ

2

l∑
r=1
r 6=k

mxrskr ⊗ ṽ + λ

(
n− 2

4

)
mxk ⊗ ṽ + βX+

0 H1(m⊗ v) =

−mxkYk ⊗ ṽ − λ

2

l∑
s=1
s 6=k

mxksks ⊗ ṽ − λ

(
n− 2

4

)
mxk ⊗ ṽ + βHn−1X

+
0 (m⊗ v)

=⇒ m[xk,Yk]⊗ ṽ +
λ

2

l∑
r=1
r 6=k

m(xr + xk)skr ⊗ ṽ + λ

(
n− 2

2

)
mxk ⊗ ṽ + 2βmxk ⊗ ṽ = 0

Since ṽ is a generator of V ⊗l as a Usln-module, it follows from lemma 6.2 and our assumptions
that 2β + λ(n−2)

2 = t, λ = c that

m
(
[xk,Yk] +

c

2

l∑
r=1
r 6=k

(xr + xk)skr + txk

)
= 0

We proved above that m([xk,Yj ] − c
2(xj + xk)sjk) = 0 if j 6= k. These last two equalities imply

that M is a right module over H.

Therefore, we have shown that the H- and the C[S̃l]-module structure on M can be glued to yield
a module over H. To prove that F is an equivalence, we are left to show that it is fully faithful.
That F is injective on morphisms is true because this is true for the Schur-Weyl duality functor
between C[S̃l] and U(Lsln), so suppose that f : F(M1) −→ F(M2) is a LY -homomorphism. From
the main results of [ChPr1] and [Dr1], f is of the form f(m ⊗ v) = g(m) ⊗ v,∀m ∈ M1, where
g ∈ HomC(M1,M2) is a linear map which is also a homomorphism of right C[S̃l]- and H-modules.
Since H is generated by its two subalgebras C[S̃l] and H, g is even a homomorphism of H-modules.
Therefore, f = F(g) and this completes the proof of theorem 5.2. 2

7 Action of the elements X±
0,1, H0,1

Now that we know that F(M) is a module over LY , it may be interesting to see explicitly how the
elements X±

0,1 and H0,1 act on it. What we will discover will be useful in the next section. We will
assume throughout this section that λ = c, β = t

2 −
nc
4 + c

2 and n ≥ 3.
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7.1 Action of X+
0,1

Equations (51) and (52) yield

X+
0,1 = −1

2
[H1,1 + Hn−1,1, X

+
0 ]− 1

2
(
((λ− β)H1 + βHn−1)X+

0 + X+
0 (βH1 + (λ− β)Hn−1)

)
.

We will use the notation Kr(z) to denote the element z ⊗ ur ∈ Lsln for z ∈ sln; in particular,
K1(En1) = X+

0 and K−1(E1n) = X−
0 . The element Kr(z) maps to the operator in EndC(F(M))

given by Kr(z)(m ⊗ v) =
∑l

k=1 mxr
k ⊗ zk(v). Writing H1,1 as H1,1 = J(H1) − λν1, and similarly

for Hn−1,1, we can express X+
0,1 in the following way. (We will use that [Hn−1 −H1, X

+
0 ] = 0.)

X+
0,1 = −1

2
[J(H1 + Hn−1), X+

0 ]− λ

8

n−1∑
d=3

(
K1(End)Ed1 + Ed1K1(End)

)
+

λ

8

((
K1(E11)−K1(Enn)

)
En1 + En1

(
K1(E11)−K1(Enn)

))
+

λ

4
(H1X

+
0 + X+

0 H1)

−λ

4
(
K1(En2)E21 + E21K1(En2)

)
− λ

8
(
K1(E21)En2 + En2K1(E21)

)
+

λ

8

n−2∑
d=2

(
K1(Ed1)End + EndK1(Ed1)

)
+

λ

8

((
K1(E11)−K1(Enn)

)
En1

+En1

(
K1(E11)−K1(Enn)

))
+

λ

4
(
K1(En−1,1)En,n−1 + En,n−1K1(En−1,1)

)
+

λ

8
(
K1(En,n−1)En−1,1 + En−1,1K1(En,n−1)

)
+

λ

4
(X+

0 Hn−1 + Hn−1X
+
0 )− 1

2
(
((λ− β)H1 + βHn−1)X+

0 + X+
0 (βH1 + (λ− β)Hn−1)

)
= −1

2
[J(H1 + Hn−1), X+

0 ]− λ

8

n−2∑
d=3

(
K1(End)Ed1 + Ed1K1(End)

)
−λ

4
(
K1(En2)E21 + E21K1(En2)

)
+

λ

8

n−2∑
d=3

(
K1(Ed1)End + EndK1(Ed1)

)
+

λ

4

((
K1(E11)−K1(Enn)

)
En1 + En1

(
K1(E11)−K1(Enn)

))
+

λ

4
(
K1(En−1,1)En,n−1 + En,n−1K1(En−1,1)

)
= −1

2
[J(E11 − Enn), X+

0 ] +
1
2
[H2,1 + · · ·Hn−2,1, X

+
0 ] +

λ

2
[ν2 + · · ·+ νn−2, X

+
0 ] (53)

−λ

8

n−2∑
d=2

(
K1(End)Ed1 + Ed1K1(End)

)
+

λ

8

n−1∑
d=3

(
K1(Ed1)End + EndK1(Ed1)

)
−λ

8
(
K1(En2)E21 + E21K1(En2)

)
− λ

4
(
K1(H0)En1 + En1K1(H0)

)
+

λ

8
(
K1(En−1,1)En,n−1 + En,n−1K1(En−1,1)

)

24



=
1
2
[J(Enn − E11), X+

0 ]− λ

8

n−1∑
d=2

(
K1(End)Ed1 + Ed1K1(End)

)
+

λ

8

n−1∑
d=2

(
K1(Ed1)End + EndK1(Ed1)

)
− λ

4
(
K1(H0)En1 + En1K1(H0)

)
= J̃(X+

0 )− λ

8

∑
ε∈∆+

(
[X+

0 , X+
ε ]X−

ε + X−
ε [X+

0 , X+
ε ]
)
− λ

8
(
K1(H0)En1 + En1K1(H0)

)
.

We define J̃(X+
0 ) to be 1

2 [J(H0), X+
0 ]. Set Ỹj = 1

2(xjYj + Yjxj).

J̃(X+
0 )(m⊗ v) =

1
2

l∑
j=1

l∑
k=1
k 6=j

m[xk,Yj ]⊗Hj
0Ek

n1(v) +
1
2

l∑
j=1

m(xjYj + Yjxj)⊗ Ej
n1(v)

=
λ

4

l∑
j=1

l∑
k=1
k 6=j

m(xk + xj)sjk ⊗Hj
0Ek

n1(v) +
l∑

j=1

mỸj ⊗ Ej
n1(v)

=

 l∑
j=1

Ỹj ⊗ Ej
n1 +

λ

8
(
X+

0 H0 + H0X
+
0 + En1K1(H0) + K1(H0)En1

) (m⊗ v)

Set J(X+
0 ) = J̃(X+

0 )− λ
8 (X+

0 H0 + H0X
+
0 + En1K1(H0) + K1(H0)En1), so

X+
0,1 = J(X+

0 )− λ

8

∑
ε∈∆+

(
[X+

0 , X+
ε ]X−

ε + X−
ε [X+

0 , X+
ε ]
)

+
λ

8
(X+

0 H0 + H0X
+
0 )

7.2 Action of X−
0,1

The action of X−
0,1 on F(M) can be expressed in a simple way. Proceeding exactly as for X+

0,1, we
can write

X−
0,1 = J(X−

0 ) +
λ

8

∑
ε∈∆+

(
[X−

0 , X−
ε ]X+

ε + X+
ε [X−

0 , X−
ε ]
)

+
λ

8
(X−

0 H0 + H0X
−
0 ) (54)

where J(X−
0 ) acts on m ⊗ v by J(X−

0 )(m ⊗ v) = 1
2

∑l
j=1 m(x−1

j Yj + Yjx
−1
j ) ⊗ Ej

1n(v). This can
be written in the following form:

1
2

l∑
j=1

m(x−1
j Yj + Yjx

−1
j )⊗ Ej

1n(v) =
1
2

l∑
j=1

m
(
yj +

1
2
(x−1

j yjxj + xjyjx
−1
j )
)
⊗ Ej

1n(v)

=
l∑

j=1

m
(
yj +

1
4
([x−1

j , yj ]xj + xj [yj , x
−1
j ])

)
⊗ Ej

1n(v)
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1
2

l∑
j=1

m(x−1
j Yj + Yjx

−1
j )⊗ Ej

1n(v) =
l∑

j=1

m
(
yj +

c

4
(
∑
k 6=j

x−1
j sjk −

∑
k 6=j

x−1
k sjk)

)
⊗ Ej

1n(v)

=
l∑

j=1

m
(
yj +

c

4

∑
k 6=j

(x−1
j − x−1

k )sjk

)
⊗ Ej

1n(v) (55)

As for the sum
∑

ε∈∆+

(
[X−

0 , X−
ε ]X+

ε + X+
ε [X−

0 , X−
ε ]
)
, it equals

n−1∑
d=2

(
(K−1(E1d)Edn+EdnK−1(E1d)−(K−1(Edn)E1d+E1dK−1(Edn))

)
−K−1(H0)E1n+E1nK−1(H0),

so it acts on m⊗ v in the following way:

∑
ε∈∆+

(
[X−

0 , X−
ε ]X+

ε + X+
ε [X−

0 , X−
ε ]
)
(m⊗ v) = 2

l∑
j,k=1

k 6=j

n−1∑
d=2

mx−1
k ⊗ (Ek

1dE
j
dn − Ek

dnEj
1d)(v)

−2
l∑

j,k=1

k 6=j

mx−1
k ⊗Hk

0 Ej
1n(v)

= 2
l∑

j,k=1

k 6=j

n∑
d=1

m(x−1
k − x−1

j )⊗ Ek
1dE

j
dn(v)

+2
l∑

j,k=1

k 6=j

mx−1
k ⊗ (Ek

1nEj
11 − Ek

1nEj
nn)(m⊗ v)

= −2
l∑

j,k=1

k 6=j

m(x−1
j − x−1

k )sjk ⊗ Ej
1n(v)

−
(
X−

0 H0 + H0X
−
0

)
(m⊗ v) (56)

Combining equations (54),(55) and (56), we conclude that X−
0,1(m⊗v) =

∑l
j=1 myj⊗Ej

1n(v). The
element X−

0,1 will become important in the next section. We will sometimes denote it by Y +
0 .

7.3 Action of H0,1

We use the equality H0,1 = [X+
0,0, X

−
0,1].
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H0,1(m⊗ v) =
l∑

j=1

l∑
k=1
k 6=j

m[yj , xk]⊗ Ek
n1E

j
1n(v) +

l∑
j=1

myjxj ⊗ Ej
nn(v)−

l∑
j=1

mxjyj ⊗ Ej
11(v)

= −c
l∑

j=1

l∑
k=1
k 6=j

msjk ⊗ Ek
n1E

j
1n(v) +

l∑
j=1

myjxj ⊗ Ej
nn(v)−

l∑
j=1

mxjyj ⊗ Ej
11(v)

= −c
l∑

j=1

l∑
k=1
k 6=j

m⊗ Ek
11E

j
nn(v) +

l∑
j=1

mYj ⊗Hj
0(v)

+
l∑

j=1

 t

2
+

c

2

l∑
i=1
i6=j

sij

⊗ Ej
nn(v) +

l∑
j=1

 t

2
+

c

2

l∑
i=1
i6=j

sij

⊗ Ej
11(v)

= −c

l∑
j=1

l∑
k=1

m⊗ Ek
11E

j
nn(v) + J(H0)(m⊗ v) +

(
t

2
− cn

4

)
(E11 + Enn)(m⊗ v)

+
c

4

n∑
d=1

(EndEdn + EdnEnd + E1dEd1 + Ed1E1d)(m⊗ v)− c

2

(
n∑

d=1

Edd

)
(m⊗ v)

=
(
J(H0) +

λ

4

∑
ε∈∆+

(ε, θ)(E+
ε E−

ε + E−
ε E+

ε ) +
λ

2
H2

0 −
λl

2

+
(

β − λ

2

)
(E11 + Enn)

)
(m⊗ v)

It can be proved that the subalgebra of LY generated by Y +
0 and sln is isomorphic to U(sln⊗CC[v]).

(See also proposition 8.1 below.) We introduce the notation Qr(z), r ∈ Z≥0, to denote z ⊗ vr as
an element of this subalgebra; in particular, Q1(E1n) = Y +

0 . There are three types of operators
in EndC(M ⊗C[Sl] V ⊗l) which are of particular interest to us: those coming from the action of
J(z),Kr(z) and of Qr(z). They are related to each other in the following way.

Proposition 7.1 (See also [BHW]). Suppose that a 6= b and c 6= d. Then we have the equality
[Q1(Eab),K1(Ecd)] + [K1(Eab), Q1(Ecd)] = 2

(
δbcJ(Ead)− δdaJ(Ecb)

)
.

Proof. First, we will prove the equality

[Q1(E1n),K1(H0)] + [K1(E1n), Q1(H0)] = 4J(E1n) (57)

[Q1(E1n),K1(H0)] + [K1(E1n), Q1(H0)] =
[
X−

0,1, [X
+
0 , E1n]

]
+

1
2

[[
E1n, [X+

0 , E1n]
]
, [En1, X

−
0,1]
]

= −[H0,1, E1n]− 1
2

[[
H0, [X+

0 , E1n]
]
, X−

0,1

]
− 1

2

[[
E1n, [X+

0 ,H0]
]
, X−

0,1

]
+

1
2

[
En1,

[
E1n, [[X+

0 , X−
0,1], E1n]

]]
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= −[H0,1, E1n] +
[
[E1n, X+

0 ], X−
0,1

]
+

1
2

[
En1,

[
E1n, [H0,1, E1n]

]]
= 2[E1n,H0,1] +

1
2

[
En1,

[
E1n, [H0,1, E1n]

]]
(58)

[H0,1, E1n] =
[
[H0,1, E12], E2n

]
+
[
E12,

[
E23, [· · · [En−2,n−1, [H0,1, En−1,n

]
· · ·
]

= [−X+
1,1 − (βH0X

+
1 + (λ− β)X+

1 H0), E2n]

+
[
E12,

[
E23, [· · · [En−2,n−1,−X+

n−1,1 − ((λ− β)H0X
+
n−1 + βX+

n−1H0)
]
· · ·
]

= [−J(X+
1 ) + λω+

1 − (βH0X
+
1 + (λ− β)X+

1 H0), E2n] +[
E12,

[
E23, [· · · [En−2,n−1,−J(X+

n−1) + λω+
n−1 − ((λ− β)H0X

+
n−1 + βX+

n−1H0)
]
·
]

= −J(E1n)− (βH0E1n + (λ− β)E1nH0) + (βE2nE12 + (λ− β)E12E2n)
+λ[ω+

1 , E2n]− J(E1n) + λ[E1,n−1, ω
+
n−1]

−
[
E12,

[
E23, [· · · [En−2,n−1, ((λ− β)H0X

+
n−1 + βX+

n−1H0)
]
· · ·
]

(59)

The expression
[
E12,

[
E23, [· · · [En−2,n−1, ((λ− β)H0X

+
n−1 + βX+

n−1H0)
]
· · ·
]

is equal to

[E12, (λ− β)H0E2n + βE2nH0] = ((λ− β)E12E2n + βE2nE12) + ((λ− β)H0E1n + βE1nH0) (60)

[E1,n−1, ω
+
n−1] = −1

4

n−2∑
j=2

(EjnE1j + E1jEjn)− 1
4
(
E1n(E11 − En−1,n−1) + (E11 − En−1,n−1)E1n

)
−1

4
(E1nHn−1 + Hn−1E1n)− 1

4
(En−1,nE1,n−1 + E1,n−1En−1,n)

= −1
4

n−1∑
j=2

(EjnE1j + E1jEjn) +
1
4
(E1nH0 + H0E1n) (61)

[ω+
1 , E2n] =

1
4

n−1∑
j=3

(EjnE1j + E1jEjn)− 1
4
(
(E22 − Enn)E1n + E1n(E22 − Enn)

)
−1

4
(E1nH1 + H1E1n) +

1
4
(E12E2n + E2nE12)

=
1
4

n−1∑
j=2

(EjnE1j + E1jEjn) +
1
4
(E1nH0 + H0E1n) (62)
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Therefore, combining equations (59),(61),(62) and (60), we obtain the following simple expression
for [H0,1, E1n]:

[H0,1, E1n] = −2J(E1n)− λ

2
(H0E1n + E1nH0) (63)

Putting together equations (58) and (63) yields equality (57):

[Q(E1n),K1(H0)] + [K1(E1n), Q(H0)] = 4J(E1n) + λ(H0E1n + E1nH0)

−1
2
[En1, [E1n, 2J(E1n) +

λ

2
(H0E1n + E1nH0)]]

= 4J(E1n) + λ(H0E1n + E1nH0)− λ[En1, E
2
1n]

= 4J(E1n)

The bracket of En1 with both sides of equation (57) yields

[K1(En1), Q1(E1n)] + [Q1(En1),K1(E1n)] = 2J(H0) (64)

This proves proposition 7.1 when a = n, b = 1, c = 1, d = n.

Assuming that a 6= 1, n, we apply [Ean, ·] to (64) to get [K1(Ea1), Q1(E1n)]+ [Q1(Ea1),K1(E1n)] =
2J(Ean). If b 6= 1, a, we apply [·, E1b] to the previous equation: this yields [K1(Eab), Q1(E1n)] +
[Q1(Eab),K1(E1n)] = 0. If c 6= 1, n, we use [Ec1, ·] to get

[K1(Eab), Q1(Ecn)] + [Q1(Eab),K1(Ecn)] = 2δbc

(
[K1(Ea1), Q1(E1n)] + [Q1(Ea1),K1(E1n)]

)
= 2δbcJ(Ean)

We now apply [·, End] if b, d 6= n and obtain

[K1(Eab), Q1(Ecd)] + [Q1(Eab),K1(Ecd)]− 2δad

(
[K1(Enb), Q1(Ecn)] + [Q1(Enb),K1(Ecn)]

)
= 2δbcJ(Ead)− 2δbcδadJ(Enn).

Note that, although J(Enn) is not defined, if b = c and a = d, then the right-hand side becomes
2J(Eaa − Enn). It is enough to show that [K1(Enb), Q1(Ecn)] + [Q1(Enb),K1(Ecn)] = −2J(Ecb) +
2δbcJ(Enn). Starting with (64) and assuming that b, c 6= 1, n, we apply [·, E1b] and [Ec1, ·] to get
this last equation. The remaining cases can be handled in a similar manner.

8 Schur-Weyl dual of the rational Cherednik algebra

Our goal in this section is to establish an equivalence of categories for the rational Cherednik
algebra similar to the one given in theorem 5.2 and to identify the Schur-Weyl dual of H with a
subalgebra of LY .
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8.1 Case of type gll

Definition 8.1. The subalgebra of LY generated by X±
i , 1 ≤ i ≤ n− 1, X+

0 and Y +
0 is denoted by

Lβ,λ and called a Yangian deformed double-loop algebra, as suggested in [BHW]. The polynomial
loop algebra generated by X±

i , 1 ≤ i ≤ n− 1 and X+
0 (resp. Y +

0 ) is denoted LX (resp. LY ).

Remark 8.1. The algebra LYβ,λ is the same as the subalgebra generated by z,K1(z), Q1(z),∀z ∈
sln. Furthermore, proposition 7.1 implies that Lβ,λ contains all the elements X±

i,r,Hi,r for 1 ≤
i ≤ n, r ≥ 0 and relation (12) shows that it also contains X+

0,r,∀r ≥ 0 and X−
0,r,∀r ≥ 1. We will

abbreviate Lβ,λ by L.

The computations for the action of X−
0,1 on M ⊗C[Sl] V l and the anti-symmetric role of h and h∗

in the definition of H, along with the last proposition of the previous section, suggest that the
following result is true.

Proposition 8.1. There exists an anti-involution ι of L which interchanges LX and LY and which
is given on the generators by the formulas

ι(X±
i,r) = X∓

i,r if i 6= 0, ι(Hi,r) = Hi,r

ι(X+
0,r) = X−

0,r+1 for r ≥ 0, ι(X−
0,r) = X+

0,r−1 for r ≥ 1

Proof. This can be checked using the relations given in definition 3.2.

Theorem 8.1. Suppose that l ≥ 1, n ≥ 3. Set λ = c and β = t
2 −

cn
4 + c

2 . The functor M 7→
M ⊗C[Sl] V ⊗l sends a right H-module to an integrable left L-module of level l. Furthermore, if
l + 2 < n, this functor is an equivalence.

Proof. As for theorem 5.2, the proof is in two parts. First, it is enough to take M = H and show
that F(M) is a module over L. We can view H⊗C[Sl] C

⊗l as a subspace of H⊗C[Sl] C
⊗l; the later is

a module over L since it is even a module over LY . The subspace F(H) is stable under the action
of the subalgebras LX and LY , so it is a module over the subalgebra of LY generated by LX and
LY , which is exactly L. The fact that F(M) is integrable of level l follows from the same argument
as in the proof of theorem 5.2.

Now let N be an integrable module of level l over L and suppose that l+2 < n. We have to show that
there exists a module M over H such that F(M) = N . We can argue as for the trigonometric case
to conclude that there exists an Sl-module M , which is also a C[h] o W - and a C[h∗] o W -module,
such that F(M) ∼= N . As before, we must show that M is actually a module over H.

Fix 1 ≤ j, k ≤ l, j 6= k. Choose v = vi1 ⊗ · · · ⊗ vil such that ik = 2, ij = n − 1, ir = r + 2 if
r < j, r 6= k, ir = r + 1 if r > j, r 6= k. Set ṽ = Ek

n2E
j
1,n−1(v).

On one hand,(
Q1(E1,n−1)K1(En2)−K1(En2)Q1(E1,n−1)

)
(m⊗ v) =

l∑
s=1

l∑
r=1

mxrys ⊗ Es
1,n−1E

r
n2(v)−

l∑
s=1

l∑
r=1

mysxr ⊗ Er
n2E

s
1,n−1(v) = m(xkyj − yjxk)⊗ ṽ (65)
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On the other hand, Q1(E1,n−1) = [Y +
0 , En,n−1] and K1(En2) = [X+

0 , E12], so:

[Q1(E1,n−1),K1(En2)] =
[
[Y +

0 , En,n−1], [X+
0 , E12]

]
=
[
[X−

0,1, [X
+
0 , E12]], En,n−1

]
=

[[
[X−

0,1, X
+
0 ], X+

1

]
, En,n−1

]
= −

[
[H0,1, X

+
1 ], En,n−1

]
= −[−X+

1,1 − (βH0X
+
1 + (λ− β)X+

1 H0), X−
n−1]

= [βH0X
+
1 + (λ− β)X+

1 H0, X
−
n−1]

= βEn,n−1E12 + (λ− β)E12En,n−1

Therefore,

[Q1(E1,n−1),K1(En2)](m⊗ v) = m⊗ (βEn,n−1E12 + (λ− β)E12En,n−1)(v)

= λm⊗ Ek
12E

j
n,n−1(v) = λmsjk ⊗ ṽ (66)

Equations (65) and (66) imply that m(xkyj − yjxk − λsjk) ⊗ ṽ = 0. From lemma 6.2 and our
assumption that λ = c, we conclude that

m(xkyj − yjxk − csjk) = 0. (67)

Now let v be determined by ik = n− 1, ij = j + 1 if j 6= k. Set v̂ = Ek
n,n−1(v). On one hand,

[K1(En1), Q1(E1,n−1)](m⊗ v) = mykxk ⊗ Ek
n1E

k
1,n−1(v) = mykxk ⊗ v̂ (68)

On the other hand,

[K1(En1), Q1(E1,n−1)] = [X+
0 , [Y +

0 , En,n−1]] = [X+
0 , [X−

0,1, X
−
n−1]]

= [H0,1, X
−
n−1] = X−

n−1,1 + (βH0X
−
n−1 + (λ− β)X−

n−1H0)

= J(X−
n−1)− λω−n−1 + (βH0X

−
n−1 + (λ− β)X−

n−1H0)

where

ω−n−1 = −1
4

n−2∑
d=1

(EndEd,n−1 + Ed,n−1End)−
1
4
(X−

n−1Hn−1 + Hn−1X
−
n−1).

Therefore, we also have:

[K1(En1), Q1(E1,n−1)](m⊗ v) =
(
J(X−

n−1)− λω−n−1 + (βH0X
−
n−1 + (λ− β)X−

n−1H0)
)
(m⊗ v)

= mYk ⊗ Ek
n,n−1(v)− λm⊗ (ω−n−1(v)) + βm⊗Hk

0 Ek
n,n−1(v)

= mYk ⊗ v̂ +
λ

2

n−2∑
d=1

l∑
r=1

l∑
s=1
s 6=d

m⊗ (Es
ndE

r
d,n−1)(v)

+λ

(
n− 2

4

)
m⊗ En,n−1(v) +

λ

4
m⊗ (X−

n−1Hn−1

+Hn−1X
−
n−1)(v) + βm⊗Hk

0 Ek
n,n−1(v)
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[K1(En1), Q1(E1,n−1)](m⊗ v) = mYk ⊗ v̂ +
λ

2

n−2∑
d=1

l∑
j=1

j 6=k

m⊗ (Ej
ndE

k
d,n−1)(v) + λ

(
n− 2

4

)
m⊗ v̂

+
λ

4
m(Ek

n,n−1E
k
n−1,n−1 − Ek

nnEk
n,n−1)(v) + βm⊗ Ek

n,n−1(v)

=
1
2
m(xkyk + ykxk)⊗ v̂ +

λ

2

l∑
j=1

j 6=k

msjk ⊗ v̂

+(
λn

4
− λ

2
+ β)m⊗ v̂ (69)

From the equations (68) and (69) and our hypothesis that β = t
2 −

λn
4 + λ

2 , we deduce the following
equality:

mykxk ⊗ v̂ =
1
2
m(xkyk + ykxk)⊗ v̂ +

λ

2

l∑
j=1

j 6=k

msjk ⊗ v̂ +
t

2
m⊗ v̂

which implies that m
(
ykxk − xkyk − t− λ

∑l
j=1

j 6=k
sjk

)
⊗ v̂ = 0. Since λ = c by assumption and v̂ is

a generator of V ⊗l as Usln-module, we conclude, using again lemma 6.2, that the equality

m
(
ykxk − xkyk − t− c

l∑
j=1

j 6=k

sjk

)
= 0 (70)

must be satisfied. Equations (67) and (70) show that M is a right module over H. Finally, that
F is bijective on the set of morphisms follows from an argument similar to the one used in the
trigonometric case.

8.2 Case of type Al−1

So far, we have considered only Cherednik algebras of type gll. There is at least one major difference
between these and the Cherednik algebras H̃t,c of type Al−1: the latter admit finite dimensional
representations for certain specific values of t 6= 0 and c (see [BEG2],[Go]), whereas the former
don’t have such representations if t 6= 0 because, in this case, they contain a copy of the first Weyl
algebra (which is the subalgebra of Ht,c generated by x1 + . . . + xn and y1 + . . . + yn).

We need to introduce two new algebras.

Definition 8.2. The algebra L′β,λ,t,l is obtained by adjoining to L two generators, ξ and δ, which
satisfy the following relations:

[ξ, z] = 0, [ξ, J(z)] =
t

l
K1(z), [ξ,Q1(z)] =

t

l
z, [ξ,K1(z)] = 0, ∀z ∈ sln

[δ, z] = 0, [δ, J(z)] = − t

l
Q1(z), [δ,Q1(z)] = 0, [δ,K1(z)] = − t

l
z, ∀z ∈ sln, [ξ, δ] =

t

l
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Definition 8.3. We define L̃β,λ,t,l to be the subalgebra of L′β,λ,t,l which is generated by sln, K1(z)−
z · ξ and by Q1(z)− z · δ for all z ∈ sln.

We will write L̃ instead of L̃β,λ,t,l and L′ instead of L′β,λ,t,l in general. We will denote by L̃X the
subalgebra of L̃ (isomorphic to U(sln⊗C C[u])) generated by sln and K̃1(z) = K1(z)−z ·ξ, ∀z ∈ sln,
and by L̃Y the one (also isomorphic to the enveloping algebra of the polynomial loop algebra of
sln) generated by sln and Q̃1(z) = Q1(z)− z · δ,∀z ∈ sln.

Set x̄ = 1
l (x1 + . . . + xl) and ȳ = 1

l (y1 + . . . + yl). Note that xj − x̄ ∈ h∗0 and yj − ȳ ∈ h0, where
h∗0 = span{xi − xj |1 ≤ i 6= j ≤ l} ⊂ h∗ and h0 = span{yi − yj |1 ≤ i 6= j ≤ l} ⊂ h.

Given a module M over H, it is possible to make F(M) into a module over L′ by letting ξ and
δ act on M ⊗C[Sl] V l in the following way: ξ(m ⊗ v) = mx̄ ⊗ v and δ(m ⊗ v) = mȳ ⊗ v. This
follows directly from our choice of relations in definition 8.2. From this we can deduce that, given
a module M over H̃, F(M) can be made into a module over L̃ by letting K̃1(z) and Q̃1(z) act on
M ⊗C[Sl] V l in the following way:

K̃1(z)(m⊗ v) =
l∑

j=1

m(xj − x̄)⊗ zj(v), Q̃1(z)(m⊗ v) =
l∑

j=1

m(yj − ȳ)⊗ zj(v).

Note that this module structure has the following particularity if l+1 ≤ n: choose v = vi1⊗· · ·⊗vil

such that the ik are pairwise distinct and choose 1 ≤ j ≤ n such that j 6= ik for any k, 1 ≤ k ≤ l.
Set z = Ei1i1 + · · ·+ Eilil − lEjj ∈ sln. Then, since

∑l
k=1(xk − x̄) = 0,

K̃1(z)(m⊗ v) =
l∑

k=1

m(xk − x̄)⊗ zk(v) =
l∑

k=1

m(xk − x̄)⊗ Ek
ikik

(v) =
l∑

k=1

m(xk − x̄)⊗ v = 0

Let µ1, . . . , µn be the fundamental weights of the usual Cartan subalgebra of gln. The vector
v = vi1 ⊗ · · · ⊗ vil has weight µi1 + . . . + µil . The observation in this paragraph motivates the
following definition.

Definition 8.4. Suppose that l +1 ≤ n. An integrable module N of level l over L̃ is said to satisfy
condition Cond(l) if the following vanishing condition is satisfied: if η ∈ N is a weight vector
of weight µi1 + . . . + µil for i1, . . . , il ∈ {1, . . . , n}, then K̃1(z)(η) = 0 and Q̃1(z)(η) = 0, where
z = Ei1i1 + . . . + Eilil − lEjj ∈ sln for any choice of j ∈ {1, . . . , n}, j 6= ik∀k.

We can now establish a Schur-Weyl equivalence between H̃ and L̃.

Theorem 8.2. Suppose that l ≥ 2, n ≥ 3. Set λ = c, β = t
2 −

cn
4 + c

2 . The functor F given by
F(M) = M ⊗C[Sl] V l sends a right module over H̃ to an integrable left module over L̃ of level l.
Furthermore, if l + 2 < n, this functor is an equivalence of categories if we restrict ourselves to left
modules over L̃ satisfying condition Cond(l).

Proof. We have already established the first part of the theorem, so suppose that l + 2 < n.
The proof of the equivalence follows exactly the same steps as the proof of theorem 8.1 with one
major difference and a few minor ones. The major one is the following. Let M̃ be an integrable
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left module over L̃ satisfying condition Cond(l). By the Schur-Weyl equivalence between L̃X and
the smash product Sym(h∗) o Sl, we know that there exists a module M1 over Sym(h∗) o Sl

such that F(M1) = M̃ as L̃X -modules and the action of K̃1(z) is given by K̃1(z)(m ⊗ v) =∑l
k=1 mxk⊗zk(v),m ∈ M1. Set z = E11+. . .+Ell−lEnn and v = v1⊗· · ·⊗vl. Since we are assuming

that M̃ satisfies condition Cond(l), we know that, in particular, K̃1(z)(m⊗ v) = 0, so this means
that 0 =

∑l
k=1 mxk ⊗ zk(v) =

∑l
k=1 mxk ⊗ v. Lemma 6.2 now implies that m

(∑l
k=1 xk

)
= 0.

This means that M1 can be viewed as a module over the quotient of Sym(h∗) o Sl by the ideal
generated by x̄: this quotient is isomorphic to Sym(h∗0) o Sl, which is exactly what we needed.
Similarly, we can argue that there exists a module M2 over Sym(h0) o Sl such that F(M2) ∼= M as
modules over L̃Y . We can identify M1 and M2 as modules over sln.

As for the minor differences, one should use x̃i = xi − x̄ and ỹi = yi − ȳ as generators of H̃ and
note that [ỹi, x̃j ] = [yi, xj ]− t

l . The following relations must also be used:

[Q̃1(E1,n−1), K̃1(En2)] = [Q1(E1,n−1),K1(En2)]− En2[Q1(E1,n−1), ξ]
−E1,n−1[δ,K1(En2)] + E1,n−1En2[δ, ξ]

= [Q1(E1,n−1),K1(En2)] +
t

l
En2E1,n−1

[K̃1(En1), Q̃1(E1,n−1)] = [K1(En1), Q1(E1,n−1)]− [En1ξ,Q1(E1,n−1)]
−[K1(En1), E1,n−1δ] + [En1ξ, E1,n−1δ]

= [K1(En1), Q1(E1,n−1)]−Q1(En,n−1)ξ −
t

l
En1E1,n−1

−K1(En,n−1)δ −
t

l
E1,n−1En1 + En,n−1ξδ +

t

l
E1,n−1En1

= [K1(En1), Q1(E1,n−1)]−Q1(En,n−1)ξ −
t

l
En1E1,n−1

−K1(En,n−1)δ + En,n−1ξδ

(x̃kỹk + ỹkx̃k) = (xkyk + ykxk)− (x̄yk + ykx̄)− (xkȳ + ȳxk) + (x̄ȳ + ȳx̄)
= (xkyk + ykxk)− 2x̄yk − [yk, x̄]− 2ȳxk − [xk, ȳ] + 2ȳx̄ + [x̄, ȳ]

= (xkyk + ykxk)− 2x̄yk − 2ȳxk + 2ȳx̄− t

l

8.3 Category O

One important category of modules over Ht,c and H̃t,c (when t 6= 0) is the category O studied in
[GGOR].

Definition 8.5. We define Ot,c (resp. Õt,c) for t 6= 0 to be the category of right modules over Ht,c

(resp. H̃t,c) which are finitely generated over Ht,c (resp. H̃t,c) and locally nilpotent over C[h∗] (resp.
C[h∗0]). We set O = Ot,c and Õ = Õt,c.
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We see from the definition of the L-module structure on F(M) that if M ∈ O then F(M) is locally
nilpotent over the subalgebra A of L generated by Qr(z),∀z ∈ sln,∀r ≥ 1. A similar observation is
true for H̃, the subalgebra Ã being the one generated by Q̃1(z),∀z ∈ sln. This leads us to our last
theorem.

Theorem 8.3. Assume that l + 2 < n, λ = c and β = t
2 −

cn
4 + c

2 . The functor F establishes
an equivalence between the category O (resp. Õ) and the category of finitely generated left modules
over L (resp. L̃) which are locally nilpotent over the subalgebra A (resp. Ã) and integrable of level
l (resp. and satisfy condition Cond(l)).

Proof. We prove this theorem for H, the proof being the same for H̃. If m1, . . . ,mk are generators
of M , then {mi⊗v, 1 ≤ i ≤ k,v = vi1⊗· · ·⊗vil} is a finite set of generators for F(M). To see this,
we can assume that M is generated over C[h] by m1, . . . ,mk. Take an element m⊗v ∈ F(M) with
m = m1x

a1
1 · · ·xal

l . We suppose first that v = v1⊗v2⊗v3⊗· · ·⊗vl and set v′ = v1⊗v3⊗v4⊗· · ·⊗vl+1.
Then

m⊗ v = Kal
(El,l+1) · · ·Ka2(E23)Ka1(H1)(m1 ⊗ v′).

Now we can apply elements of Usln to v1 ⊗ v2 ⊗ · · · ⊗ vl to obtain any other element of V l. The
general case when m =

∑k
j=1 mjpj(x1, . . . , xl)⊗vj , pj(x1, . . . , xl) being a polynomial, follows from

this. Conversely, suppose that N is a finitely generated integrable module over L of level l and
N = F(M). Let {n1, . . . , nk} be a set of generators of N and write ni =

∑ki
j=1 mij ⊗ vij for some

mij ∈ M and some vij ∈ V l. Then {mij |1 ≤ i ≤ k, 1 ≤ j ≤ ki} is a set of generators of M .

Now suppose that N is an integrable left module over L of level l which is locally nilpotent over A.
By theorem 8.1, we know that N = F(M) for a right module M over H. Pick m ∈ M . It is enough
to show that myp

i = 0 for some p ∈ Z>0. Set v = v1 ⊗ · · · ⊗ vi ⊗ vi+2 ⊗ · · · ⊗ vl+1 and choose p so
that Q1(Hi)p(m⊗v) = 0. Then Q1(Hi)(m⊗v) = myi⊗v, so myp

i ⊗v = Q1(Hi)p(m⊗v) = 0 and
lemma 6.2 implies that myp

i = 0.
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