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Abstract

We construct a functor from the category of modules over the trigonometric (resp. rational)
Cherednik algebra of type gl; to the category of integrable modules of level I over a Yangian for
the loop algebra sl,, (resp. over a subalgebra of this loop Yangian) and we establish that it is
an equivalence of categories if I + 2 < n. Finally, we treat the case of the rational Cherednik
algebras of type A;_1.

1 Introduction

Affine Hecke algebras are very important in representation theory and have been studied extensively
over the past few decades, along with their degenerate version introduced in [Drl] and in [Lu].
About fifteen years ago, I. Cherednik introduced the notion of double affine Hecke algebra [Ch2],
abbreviated DAHA, which he used to prove some important conjectures of I. Macdonald. His
algebra also admits degenerate versions, the trigonometric one and the rational one, which are
called Cherednik algebras.

One of the most important classical results in representation theory is an equivalence, often called
Schur-Weyl duality, between the category of modules over the symmetric group .5; and the category
of modules of level [ over the Lie algebra sl,, for n > [+1. When quantum groups were invented in the
1980’s, it became an interesting problem to generalize the Schur-Weyl correspondence and similar
equivalences were obtained between finite Hecke algebras and quantized enveloping algebras [Ji],
between degenerate affine Hecke algebras and Yangians [Drl, Chl], between affine Hecke algebras
and quantized affine Lie algebras [GRV, ChPrl], and between double affine Hecke algebras and
toroidal quantum algebras [VaVal]. In this paper, we prove a similar equivalence of categories
between the trigonometric (resp. rational) Cherednik algebra associated to the symmetric group
S; and a (resp. subalgebra L of a) Yangian LY for the loop algebra Lsl, = s, ®c Clu,u~']. The
loop Yangians are barely known. They were mentioned briefly in [Va], [VaVa2].(See also [BoLe] for
the sl case.) The (sub-)algebra on the other side of our equivalence from the rational Cherednik
algebra has never been considered before. By contrast, there has been a recent surge of interest
in the representation theory of Cherednik algebras and their relations to the geometry of Hilbert
schemes, integrable systems and other important mathematical objects. (See [BEG1, GGOR, GoSt]
among others.) Our duality theorem indicates a new route to those questions via a careful study
of LY and LL and makes the study of these algebras more relevant and interesting.

On one hand, the rational Cherednik algebra is simpler than the DAHA which, a priori, makes it
look less appealing. On the other hand, there are several interesting features in the rational case
that do not have counterparts (at least for the moment) for the DAHA. We hope that the same
can be said about Yangian-deformed double loop algebras and quantum toroidal algebras, whose
representation theory is still very mysterious. The former have a simpler structure and one can
hope that this will make them easier to study and that it will have some special, interesting features
that do not exist for toroidal quantum algebras.



The trigonometric (resp. rational) DAHA is generated by two subalgebras, one isomorphic to a
degenerate affine Hecke algebra and the other one isomorphic to the group algebra of an affine Weyl
group (resp. both isomorphic to the smash product of S; with a polynomial ring). For this reason,
and because of the results mentioned above, we can expect its Schur-Weyl dual to be built from
one copy of the Yangian Y for sl,, and from one copy of the loop algebra Lsl,, (resp. two copies of
slp, ®c Clu]). This is indeed true for LY (resp. L).

An epimorphic image of L., defined in terms of operators acting on a certain space, appeared for
the first time in [BHW]; this was known to P. Etingof and V. Ginzburg. However, the algebra
considered in that paper is not described in a very precise way and no equivalence of categories
is established. Omne motivation for the present article comes from our desire to find exactly the
relations between the generators of the Schur-Weyl dual of a Cherednik algebra of type gl;.

In the next three sections, we define Cherednik algebras and Yangians and explore some of their
basic properties, in particular their connections with double affine Hecke algebras and quantum
toroidal algebras. The fifth section states the main result (theorem 5.2) for the trigonometric
case, which is proved in the following one. After that, we look more closely at the action of certain
elements of LY since this is useful in the last section, which concerns the rational case (theorem 8.1).
Most of our results in the rational case follows from the observation that the rational Cherednik
algebra of type gl; is contained in the trigonometric one. Our results are first proved for Cherednik
algebras of type gl;, but we are able to obtain similar ones in type A;_;1 also. Furthermore, our
equivalence restricts to an equivalence between two categories of BGG-type (theorem 8.3).
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2 Hecke algebras and Cherednik algebras

The definitions given in this section could be stated for any Weyl group W. However, in this
paper, we will be concerned only with the symmetric group S;, so we will restrict our definitions
to the case W = S;. We set h = C!. The symmetric group S; acts on h by permuting the

coordinates. Associated to h are two polynomial algebras: C[h] = Sym(h*) = Clzy,..., 2] and
Clb*] = Sym(h) = Cly1,...,y], where {z1,...,2;} and {y1,...,y;} are dual bases of h* and b,
respectively. For ¢ # j, we set oy = z; — xj,ozivj =y — vy, R = {a|l < i # j <1} and

Rt = {a;j|1 <i<j <I}. Theset Il = {x; — zi+1]1 <i < n — 1} is a basis of simple roots. The
reflection in b with respect to the hyperplane o = 0 is denoted s4, 50 s4(y) = y — (o, y)a’, where
(,):b" x b — Cis the canonical pairing. We set s;; = sq,;

The finite Hecke algebra H, associated to S; is a deformation of the group algebra C[S] and the
affine Hecke algebra 7'~{q is a deformation of the group algebra of the (extended) affine Weyl group
S; = P x S; where P is the lattice ®t_,Zx; C h* (s0 C[S)] = Clz, ... ,:L‘li] x S;). The algebra 7'~lq
admits a degenerate form H. first introduced by Drinfeld [Drl] and by Lusztig [Lu].

Definition 2.1. The degenerate affine Hecke algebra H. of type gl; is the algebra generated by the



polynomial algebra Sym(h) = Clz1, ..., 2] and the group algebra C[S;| with the relations

Sa -2 — Sa(2)sq = —cla, z) Vz € h,Va eIl

The double affine Hecke algebra H, ., (defined in section 4) introduced by I. Cherednik [Ch2] also
admits degenerate versions: the trigonometric one and the rational one. Recall that the group S;
is generated by s, Va € R and by the element m = x1512523 - - 5;_1.

Definition 2.2 (Cherednik). Let t,c € C. The degenerate (trigonometric) double affine Hecke
algebra of type gl; is the algebra Hy . generated by the group algebra of the (extended) affine Weyl
group C[S;] and the polynomial algebra C|z1, ...,z = Sym(h) subject to the following relations:

Sa 2 — Sa(2)sq = —cla,z) Vz € h,Va ell
7wz =zipm, 1<i<l—1 @z =(z1—1t)7

Remark 2.1. The subalgebra generated by C[S;] and the polynomial algebra Clz1,...,z] is iso-
morphic to the degenerate affine Hecke algebra He.

Definition 2.3. Lett,c € C. The rational Cherednik algebra Hy . of type gl; is the algebra generated
by C[b], Clb*] and C[S;] subject to the following relations:

w-zr-wl=w) w-y-wl=wly) Vreh* Vyeh

[y,$] =Yyr — Y = t<y7x> +c Z <Oé,y><$, av>8a
acRt

Remark 2.2. The rational Cherednik algebra ﬁt,c of type A;_1 is the subalgebra of Hy . generated
by Clw; — x5] C Clxy, ..., x], by Cly; —y;] C Clyy, ..., u] and by C[S]].

The exists a simple relation between H; . and Hy ..

Proposition 2.1 ([Su]). The algebra C[z5, ... ,xli] ®cy) Ht,c is isomorphic to Hy .

Before giving a proof of this proposition, we need to introduce elements in H; . which will be very
useful later. For 1 <4 <, set UY; = % + ziy; + CZj<i sij and V; = U; + 5 Z#i sign(j —i)si; =
% + x;y; + % Zj# Sij-

Proposition 2.2. [DuOp/,[EtGi]

1. Vi = 3(@ayi + yixi).
2. Ul = U;U; for any i, 7.
3w Y- wl = w(i) -

4. The elements U;,1 < i <1, and C[S]] generate a subalgebra of Hy . isomorphic to the degen-
erate affine Hecke algebra He.



Remark 2.3. The elements ); are not pairwise commutative if ¢ # 0:

9
V), Vil = CZ > lsigs sinl-

i=1
i#5,k

Proof. The first statement follows from the equality

I I
yiri — iy = t+c Y (wi—xpyi Ty —ysg =t+c Y sij.
J=lj# J=1,5#i

The second part is proved in [DuOp]. The third part is obvious, so we prove only the fourth one.
If |k —i| > 1, then sy p11U; = U;sg g+1, so the non-trivial relations that we have to check involve
Si—1; and 8; j41:

t
Si—1,:U; = (5 + i 1Yi—1)Si—14 + € E 8i-1,j8i—1; +c=U;_15i-1;+¢
j<i—1
t
3i,i+1ui = (5 + $i+1yi+1)5i,i+1 +c E Si+1,58i+1,4 — C = ui+15i,i+1 —C

j<it+1
These two equalities, combined with the PBW-property of H; . [EtGi] and of H., complete the proof
of part 4. ]

In the proof of the two main theorems, we will need the following identities.

Proposition 2.3. 1. Ifi # j, then [y;, ;] = —csij and [z; ', y;] = —cm;lxjflsij.

2. lyi, il =t + ¢y s and [z Lyl =to;? + Cd it x;lx;lsij.

3. If i # j, then [V, 2] = —S(2; + x5)si; and [x;, V)] = —5(z] +:U Dsij.

4' [yza xz] txz + 2]761(1'1 + $])Sz] and [ yz] - 1 + 52]7&1(1'1_1 + -Tj_l)szj
Proof. These are all immediate consequences of the definition of Hy .. O

Proof. (of proposition 2.1. See also [Su].) Because of proposition 2.2, part 4, and the PBW-property
of Hy . and Hy ., we only have to check the relation involving 7 in definition 2.2. First, assume that

i1
Uy = (w1812 s1-10)(Ui) = 21(Uip1 — es1,441)512 -+ S1-1,1
(1, Uip1] +Uip121 — cx181,41)S12 - S1—1,1

(
(cxitrsiir1 + o, s1ip1] + U1 @1 — cxis141)s12 -+ S1-1y
= (Uipr)z1512- 8110 = Ui



If i = [, we obtain:

! !
= xi1(U+ CZ s1j)s12 - si—1y = (z1[z1, 1] + can Z s1;+Uiz1)si2- - si—1y
=2 =2
!
= (l‘l(—t — Cz S@l) + CI1 Z 51,5 + ulﬂil)slz e Sl—l,l = (ul — t)ﬂ'

i#1 j=2
O
Corollary 2.1 (of proposition 2.1). The algebra H; . can also be defined as the algebra generated
by the elements xli, ces ,:L'li, Vi,..., Y and S; with the relations
2
Wi w T =n we Yo wT = Vuu VWi = i > (sjksik — SkjSij)
ik

c
Vivi — x;V; = toijm; + ) Z (o, y;) (i, @) (@isa + sai).

a€RT

3 Finite and loop Yangians

The Yangians of finite type are quantum groups, introduced by V. Drinfeld in [Drl], which are
quantizations of the enveloping algebra of the polynomial loop algebra g ®c C[u] of a semisimple
Lie algebra g. The second definition in [Dr2] is given in terms of a finite Cartan matrix. If we
replace it with a Cartan matrix of affine type, we obtain algebras that we call loop Yangians LY} ).

~

Let Cp—1 = (cij)1<ij<n—1 (Cn—1 = (¢ij)o<ij<n—1) be a Cartan matrix of finite (resp. affine) type
Ap—1 (resp. Agll_)l). Ifn>3:

2 -1 0 0 -1

-1 2 -1 0 0

o -1 2 -1 0 0
én—l -

0 0o -1 2 -1 0

0 o -1 2 -1

-1 0 0o -1 2

Definition 3.1. [Dr2], [ChPr2] Let A\ € C. The Yangian Y\ associated to Cy_1 is the algebra
generated by Xfr, H;,,i=1,...n—1,r € Z>o, which satisfy the following relations :

[Hip, Hys] =0, [Hio, X;) = +ei X7, (1)
A
[Hipi1, X)) = [Hip, X5 ] = igcij(Hi,rst + X Hiy) (2)

(X X =0ijHi s (X5

1,17 ],s] 1,17

4 . ..
X l=01<]j—i<n-1 (3)
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A

[Xz r+1’Xi] [Xzir?X]is—‘rl] i§cij(Xi%eri,s +X]i,st%r) (4)
(X5 X5, X)) + (X5, (X X)) =0 Wy ra, s > 0 if j —i = £1 mod n (5)

Remark 3.1. The Yangian Y), is isomorphic to Yy, if A1 # 0 and Ay # 0.

Definition 3.2. Let 3, A € C. The Yangian LYj )\ associated to 6’,1,1 is the algebra generated by
Xzir, H;,,i=0,...n—1,1 € Z>o, which satisfy the relations of definition 3.1 fori,j € {0,...,n—1}

except that the relations (2),(4) must be modified for i = 0 and j = 1,n — 1 in the following way
when n > 3:

A A A
[H17T+17X(:)%s} - [Hlﬂ"’ Xélfs—‘rl] = (6 5 §)H177’X(:)|,:s + (5 + 5 - ﬁ)ngsHL”‘ (6)
A A A A
[HO r+1’X } [HO T X1i3+1] (5 5 5)H07“ + (ﬂ - 5 + §)X1i,sH0,T (7)
A A A A
[H07T+17X7:1t—1,5] [HO an 1s+1] (5 9 §)H0 rXiE 1,s + (5 +5 2 5)Xf 15H0,r (8)
A A A A
[Hn—141, Xgy) = [Hn-1,05 X o] = (5 5~ B)H, -1, X5, + (B - 5 F §)Xoi,anfl,r (9)
+ + + oyt A At ot A_A + v+
(X7 r+17Xo,s] (X7 X0 s+1] (8- 5 + §)X1 +Xo,s T (5 + 57 ﬂ)Xo,le,r (10)
A A A
[Xét'r‘-l—l’X'r:Lt 1 5] [X(:)l,:NX’r:Lt 1 s—i—l] (6 Y :F §)X077‘X;Lt (2 + 5 - /8> Xétr (11)

We will also impose the relation Z HzO 0.

Remark 3.2. We set Xl-i = XjO,Hi =H;o. If B = %, the relations defining LY ) are the same
as those in definition 3.1 with i,j € {0,...,n—1}. Note also that the relations (6),(7),(8) and (9)
all follow from (10) and (11) using relation (3); they were added above as a convenient reference
since they will be useful later in our computations. We should also note that LYy, », = LY, x, if
B2 = nP1 and Ay = nAy for some n # 0. When no confusion is possible, we will write LY and Y
instead of LY » and Y. Without the relation Z:‘L:_ol H; =0, we obtain the affine Yangian }/;,\75.

Let A = {€;;,1 <i # j < n} be the root system of type A,_1, A C E =span{e;,i =1,...,n}, € =
€; — €j. We denote by (-,-) the non-degenerate bilinear form on E given by (e;,€;) = d;;. For
a positive root € € A", we denote by XF the corresponding standard root vector of sl,. If
€ = €;,1 < j, then X = E;; and X_ = Ej;, where E, is the matrix with 1 in the (7, s)-entry and
zeros everywhere else. In particular, Xa = 1, and X, = Ep, where 0 is the longest root of sl;,.
If € =€ i4+1, then Xi XjE

One useful observation is that these two Yangians are generated by X i Higpyi=1,...n—1 (resp.

i=0,...,n—1) with » = 0,1 only. The other elements are obtained 1nduct1vely by the formulas:

1 1

4 5

X: 5

TR Hi717Xi:f:r] - Hle:f:r + X::THZ% Hi,T-f—l [X X ] (12)

ZT’

Furthermore, the subalgebra generated by the elements with » = 0 is a quotient of (actually, is
isomorphic to) the enveloping algebra of the Lie (resp. loop) algebra sl, (resp. Lsl, = sl, ®c



Clu,u~1]). The subalgebra Yf generated by the elements with ¢ # 0 is a quotient of the Yangian
Y.

The two subalgebras Y/\0 and U(Lsl,) generate LY . Indeed, combining the observations in the
previous two paragraphs, we see that we only have to show that the subalgebra they generate
contains ngl. From the relation (1) in definition 3.2 with i = 1, we know that [Hy, X§ 0= IFXO 1>
so, substituting into equation (6), we obtain

A A A A
[Hy1, X] =+ Xgi = (8- 5T §)H1X3E + (5 T5- 8)X; H.
Thus XS%I (hence also Hy 1) belongs to the subalgebra of LYj ) generated by Y\ and U(Lsl,,).
For 1 <i<n—1,set J(X}) = X5 + M and wf wil - wliz where

wi = i4 (XS XEAXT + XT (X5, XT), o)y = 1(X;EI]Q-+Hi)(ii)
eEAT

1 1
J(H;) = H;1 + A\v; where v; = 1 Z (6, €iiv)(XIX + X7 X)) - §Hi2.

eEAT
More explicitly, since X;r =FE;i1, X; =Ejj1,and Hy = B — B4 for 1 <i<n—1, we can
write
N S T 1
Wit =17 > sign(j —i)(Ejir1Eij + EijEji) — 7 BiirHi+ HiBiii1) (13)
g;Zz:zlJrl
S U 1
wi =7 > sign(j — i) (Bi1;Eji + EjiBiga 5) — 1 Bivvilli + HiBi i) (14)
j=1

JALi+1

It is possible to define elements J(z) € Y for any z € sl,, in such a way that [J(21), z2] = J([z1, 22]):
this follows from the isomorphism given in [Dr2] between two different realizations of the Yangian
Y): the one given above and the one first given in [Drl] in terms of generators z, J(z) Vz € sl,, (the
J(z)’s satisfy a“deformed” Jacobi identity).

In the proof of our first main theorem, the following algebra automorphism will be very important.

Lemma 3.1. It is possible to define an algebra automorphism p of LY by setting

p(Hir) = Z ( 2 ) (;) ) Hi 1, P(Xfr) = Z ( Z ) (;) ) ijc15 fori#0,1

s=0 s=0
T r T
p(Hiz) = ( 5 ) B Hi s p(X5) =) ( > BEXE,, fori=0,1
s=0 s=0

We use the convention that X% = =XF, and H_y, = Hy_,. Note that, in particular, p(XF) =
XE |, p(H;) = H;_1 Vi and p(Xf) X +3X5p (Hi,l) = H;_11+ 3H;_1 if i # 0,1, whereas
p(Xf ) = XjE 11 —i—ﬁXZ LP(Hi1) = Hi—11+ BH;—1 if i = 0,1. The automorphism p is very similar

to the automorphlsm 7x (or 73) in [ChPr2] followed by a decrement of the first index.
2



Proof of lemma 3.1. We have to verify that p is indeed an automorphism of LY, that is, that it

respects the defining relations of LY. In the case when 4,j # 0,1 in the relations (1)-(5), this

follows from the fact that p is the same as the automorphism 7, from [ChPr2] followed by a
2

decrement of the indices. A short verification shows that p preserves the relations (1),(3) and (5)
when ¢ = 0,1 or j = 0,1. (In the case of equation (3) and ¢ = j, , one has to use the identity

Zaer:k( " ) < Z > = < T—]L_S )) Since the relations (6)-(9) follow from (10) and (11) by

a
applying [-, X%F o,?=10,1,n—1, there are three cases left that require a more detailed verification.

Wewillusetheidentity<Z>=<T;1>+<Z:1 )

Case 1: With ¢ = 2,5 =1 in relation (4), we find that p([X;TH,Xf%S] — [Xfr, Xffsﬂ]) is equal to

-SR]

a=0 b=0

)
_;)g%( )(° 1)[) mﬂSHon*,b]
) GGG
¢

$(
)+ (1)) Q)
A

r+l1—a
s—by =+
la76 ‘Xbb

—+

(

a=0 b=0

r s+1
a=0 b=

)
)
(

;
- zfzo() ) (3) B - st
Ee AT
A -
- X )(Q(;)ﬁb(; 9T, X
SR ()
(1) (3) ()
T -
+g5§< (3 (G) a5 )



ES(D())
SR G) e G e -
- () (3) ()0 () et

Case 2: i = 1,7 = 0. We have to prove that

A A A A
p([Xf’r—l—l’Xg?s] - [Xil,:r’ngs—&—l]) - P((ﬁ - 5 + 5) i:rX(:)l,:s + (5 + 5 - ﬁ) (sti:r)

This case is analogous to case 1, but a little bit simpler since the term (% — (3) above becomes

(B—p5)=0.
Case 3: i =0,7 =n — 1. We have to show that

A A A A
] - [X(;l,:r’ X7:zt—1,s+1]) = p((ﬁ - 5 + §)X(:)|,:7’X7:Lt—1,s + (7 +35 ﬁ)X'r:zt—l,sX(:f'r)‘

+ +
p([Xo 41, X 279

n—1,s

The computations are again very similar to those of case 1: the main difference is that the factor
(% — () gets replaced by (8 — %) ,

4 Relations with DAHA’s and toroidal quantum algebras

It is known that the Yangians of finite type can be obtained from quantum loop algebras via a
limiting procedure [Dr3] and that the same is true about the trigonometric Cherednik algebra and
the double affine Hecke algebra (or elliptic Cherednik algebra), see [Ch3] for instance. We will
recall these results and explain how the loop Yangians introduced in section 3 can be obtained
from toroidal quantum algebras.

Definition 4.1 (Cherednik). Let g,k € C*. The double affine Hecke algebra Hy . of type gl
is the unital associative algebra over C with generators Tiﬂ,X;d,in forie {1,....,1—1} and
j €{1,...,1} satisfying the following relations:

(T, + 1)(T; — ¢*) =0, TiTinT; = Ty TiTi
Ty =TT, if |i — j| > 1, XoY1 = kY1Xo, Xo¥; 'X;'V) = ¢ 277
XiXj = X;X;, YiY; =YY, TX/T;=qXipr, T,'YT ' =q 7Y,
X;T, = T,X;, YT, =T,Y; if j #i,i + 1
where Xg = X1 X9+ X].



Remark 4.1. We set y = 1 in definition 1.1 in [VaVal].

The trigonometric Cherednik algebra can be viewed as a limit (degenerate) version of the double
affine Hecke algebra. We sketch here a few computations which illustrate this fact. We extend
the scalars from C to C[[h]] and consider the completed algebra H, .[[h]] with ¢ = e2" x = P
Setting Y; = e the equality X2Y1_1X2_1Y1 = q_2T12 becomes Xa(1 + hul)Xz_l(l — hlhy) =
(1 — ch)((chTy + 1 + ch) + o(h?), where o(h?) is in h?H, .[[h]]. Cancelling the constant term 1 on
both sides, dividing by h and then letting h — 0 gives wolfjx5 L U1 = cs19, which implies that
(U, Xo] = —cs1awe. (In this limit, the finite Hecke algebra identifies with C[S;] and T} with si2.)
This is indeed the relation between U and x2 in H; ., as can be seen from the third relation in
proposition 2.3 with j = 1,7 = 2.

If we make the same substitution in the relation XoY; = kY7 Xg, we obtain X --- X;(1—hif;) = (1+
th)(1—hthy) X1 - - - X; +o(h?). Subtracting X --- X; on both sides, dividing by h and letting h — 0
gives [Uy,z1---xy] = txy---x;, which implies that Zggzl X1 T [Ur, T Ty o = tay -y
Since [Uy, x| = —csypxy for k # 1, Uy, x| - xp — 622:2 S1kT2 -+ - x; = txy - - - 27, which leads to
Uy, x1] = tx1+c 2222 s1kTk: after some simplifications, we obtain the fourth relation in proposition
2.3.

The rational, trigonometric and elliptic Cherednik algebras of S; are all isomorphic after comple-
tion: see [Ch3] for a detailed discussion. This implies that, for generic values of the deformation
parameters, these three algebras have equivalent categories of finite dimensional representations.
For modules which are not finite dimensional, we don’t have such an equivalence in general. How-
ever, it is sometimes possible to lift a module over H or H to one over H if the parameters satisfy
certain technical conditions: see [Ch3] section 2.12 for more on this subject.

Definition 4.2. Let q1,q2 € C*. The toroidal quantum algebra I"thqQ of type A,_1 is the unital

associative algebra over C with generators e; ., fz-,r,kmki_’ol,i € {0,...,n—1},r € Z which satisfy
the following relations:

(ki kjs] Vi, j€{0,...,n—1},Vr,s € Z (15)

kioeir = a1 ejrkios kiofir = a1 " firkios (@ —ay leir fis) = 0ij (kg = kipy)  (16)

(Here, k- Eiyts if £(r +5) >0 and = 0 otherwise.)

,r+s

The next three relations hold Vi, j € {0,...,n — 1},Vr,s € Z except for {i,j} = {n —1,0},{0,1}:
kirs1€js — @1 Kigejst1 = 41° €jskirt1 — €jsy1kip (17)

€irt1€j,s — q” €irCjstl = q;” €j,5Cirt1 — €js+1€ir (18)
-1 o .
{eireiseir — (1 +q1 " )eirejieis +ejieireist+{r—s}=0ifi—j==+1 modn—1 (19)

—cCyj

The same relations hold with e;, replaced by f;, and qf“ by q,

In the cases {i,j} = {n—1,0},{0,1}, we must modify the relations (17)-(19) above in the following
way: we introduce a second parameter gz in such a way that we obtain an algebra isomorphism ¥

0qul,q2 giwen by €;r, fir,kir — qi€i—1r,q] fic1,r, @1 ki1 for 2 < i <n—1 and e;,, fir, kiy —
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ahei—1r, ¢ fic1r, Ghkic1y if i = 0,1. (We identify e_1, with en—1,, etc.) For instance, relation
(18) for i =0,j =1 becomes

-1
q2€0,r+1€1,s — €0,r€1,s+1 = 41 ¢2€1,5€0,r+1 — q1€1,5+1€0,r,

and with it =n — 1,7 = 0 we have the very similar identity:

—1
q2€n—1,r+1€0,s — €n—1,r€0,5+1 = 41 G2€0,s€n—1,r+1 — 41€0,5+1€n—1,r-

Remark 4.2. We could have expressed the relations above (and also those for Yangians) using
power series as in [VaVal]. The definition in [VaVal] involves a central pammeter ¢ which we have
taken to be equal to 1. The subalgebra Uh"r generated by the elements €; 0, fi0, k; 0 ,i€{0,...n—1}

s a quotient the quantum affine algebra of type An,l. The subalgebra U“er genemted by the
elements €; r, fir, Kir, kig.i€ {1,...n—1},r € Z is a quotient of the quantum loop algebra of type

o~

An_1.

The connection between the representation theory of the quantum affine (resp. toroidal) algebras
and the Yangians of finite (resp. affine) type is less direct than in the case of Hecke algebras.
However, in view of the relation between U and LY explained below, which is an extension of a
result of Drinfeld in the finite case, one can often expects that results which are true for quantum
affine (or toroidal) algebras have analogs for Yangians which can be proved using similar arguments.
It is known that the Yangians of finite type and the quantum affine algebras have the same finite
dimensional representation theory: this was proved using geometrical methods in [Va]. More general
equivalences are not known at the moment between these two types of algebras.

It is possible to view the Yangian Y) as a limit version of the quantum affine algebra U The same
is true for Yy 5 and Uy, 4. Let U[[h]] be the completed algebra with parameters ¢; = e 3h ,qo = e

Consider the kernel K of the composite map U[[h]] P20 Gy — U(sl,) = UMr|,_y. Let A be

the C[[h]]-subalgebra of U((h)) generated by UJ[[h]] and [h( . Then the quotient A/hA is isomorphic

to 1/;,\ - To see this, let Al be the subalgebra of A generated by Uve" and KHUWT. Since Uver
is a quotient of the quantum loop algebra, A'/hAl is a quotient of the Yanglan Yy (see [Dr3]),
that is, we have an epimorphism ¢ : Yy — Al!/hA'. The automorphism ¥ of U[[h]] induces an
automorphism, also denoted ¥, on A. It is related to the automorphism p of YAﬁ in the following
way for 2 <i <n:

(X)) = (X)), W(C(Hip)) = C(p(Hip))
V2(C(XE)) = C(*(XT,), UP(C(Hyy)) = C(p*(Hay))

From these relations, one concludes that it is possible to extend ¢ to }Aﬁﬁ by setting ¢ (ngr) =
V(¢ (p_l(ngr))) and similarly for Hy,. One can show that we have thus obtained an isomorphism.

5 Schur-Weyl duality functor

The Schur-Weyl duality established by M. Varagnolo and E. Vasserot [VaVal] involves, on one side,
a toroidal quantum algebra and, on the other side, a double affine Hecke algebra for S;. Theorem
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5.2 establishes a similar type of duality between the trigonometric DAHA H; . and the loop Yangian
LYpg \, which extends the duality for the Yangian of finite type due to V. Drinfeld [Dr1].

Before stating the more classical results on the theme of Schur-Weyl duality, we have to define the
notion of module of level [ over sl,, and over the quantized enveloping algebra ,sl,. Fix a positive
integer n and set V = C".

Definition 5.1. A finite dimensional representation of sb,, or Uysl, (g not a root of unity) is of
level 1 if each of its irreducible components is isomorphic to a direct summand of V.

Theorem 5.1. [Ji, Dr1, ChPri] Fixl > 1,n > 2 and assume that q € C* is not a root of unity.
Let A be one of the algebras C[Si], Hq(S1), He=1(S1), Hq(S1), and let B be the corresponding one (in
the same order) among Usl,, 8Uysl,, Yr=1(sl,), Uy Lsl,. There exists a functor F from the category
of finite dimensional right A-modules to the category of finite dimensional left B-modules which are
of level | as sl,-modules in the first and third case (and as H4sl,-modules in the second and fourth
case) which is given by

F(M)=M@c V®

where C = C[S]] (first and third case) or C = H4(S;) (second and fourth case). Furthermore, this
functor is an equivalence of categories if | <n — 1.

The sl, module structure on V® commutes with the Sj-module structure obtained by simply
permuting the factors in the tensor product. Let M be a right module over H; .. Since C[S;] C Hy .,
we can form the tensor product F(M) = M ®¢(g, V.

On one hand, since H; . contains the degenerate affine Hecke algebra H., M can be viewed as a
right module over He, so it follows from [Drl] that F(M) is a module of level I over the Yangian
Y\ of sl, with A = ¢. On the other hand, H; . also contains a copy of the group algebra of the
extended affine Weyl group Sj, so it follows from [ChPrl] (the case ¢ = 1) that F(M) is also a
module of level [ over the loop algebra Lsl,. These two module structures can be glued together
to obtain a module over LY. This is the content of our first main theorem. Before stating it, we
need one definition.

Definition 5.2. A module M over LYy g (or over 1Ly g) is called integrable if it is the direct sum
of its integral weight spaces under the action of h and if each generator Xfr acts locally nilpotently
on M.

Theorem 5.2. Suppose that | > 1,n > 3 and set A = ¢, = % — % + 5. The functor F : M —
M ®cig V@ sends a right H; .-module to an integrable LY x-module of level | (as sl,-module).
Furthermore, if | + 2 < n, this functor is an equivalence.

Remark 5.1. This theorem is very similar to the main result of [VaVal] where Hy. is replaced
by a double affine Hecke algebra and LY3 ) is replaced by the toroidal quantum algebra U'qth (it is
defined slightly differently in op.cit), under the assumption that the parameter q is not a root of
unity. However, theorem 5.2 is not an immediate consequence of the DAHA case in op.cit. since,
in general, we don’t have equivalences between categories of modules over H and H or over LY and
U. The first part of the proof of theorem 5.2 can be deduced from a proposition in [VaVal]: this is
explained in detail in the next section. However, the fact that the functor F is essentially surjective
must be given an independent (but similar) proof for the aforementioned reason. The same is true
for the rational case treated in section 8.

12



6 Proof of theorem 5.2

The proof of theorem 5.2 consists of two parts. First, we show how to obtain an integrable LYj )-
module structure on F(M), and then we prove that any integrable representation of LY} y of level
[ is of the form F(M). If there is no confusion possible for the values of the parameters, we will
write H, H,H, H, LY instead of Hy ., Hy ¢, He, Hy o, LY 3 5.

6.1 Proof of theorem 5.2, part 1

Fixm e M, v =v;,® --®uv;, € V® where {v1,...,v,} is the standard basis of C"* and 1 < ij < n.
The subalgebra sl,, generated by the elements Xii, H;,1 <i<n-—1,acts on V® as usual. The
element z ® u* € Lsl, acts on F(M) in the following way:

!
(z @ uF)(m @ v) :mej:k@)vil ® - ® (2v) ® - vy
j=1

For z € sl,,, we will write 27(v) for v;, ® -+ ® (2v5;) ® - ® v5;. The elements J(XF), J(H;) and
Xfl, H;1,1<i<n-—1,act on F(M) in the following way (see [Drl],[ChPr2]):

l
J(XF)(mav) = Z mY; @ X5 (v), X;(m @v)=J(XH)mev) - Iwf(mav), (20)
j=1

l
JH)mev)=> mY;@Hl(v), Hii(m@v)=JH)mev)-mav). (21)
j=1

The following observation will be very useful: the action of s;; on V@ if given in terms of matrices
by: sji = Zf =1 EﬂsEET. It is possible to give another, somewhat simpler formula for the action of
X,;%l and Hy,; if we assume that iy <o < ... <. We will denote by ji (resp. ji) the first (resp.
last) value of j such that i; = k and we set [, = ji — jr + 1. We will adopt the following notation:
Vo, = Ui ® QUi @V Vg, @ v, or Vie, = Oifi; #k+1forany 1 < j <1
Vir = U ® @i 4 ®Uky1 Vi, @ Qv OF Vir = 0if ¢; # k for any 1 < j < [. For
1 <k<n-—1, we have:

Jk+1

Xl::l(m ®v) = m( Z Sd,jkﬂ) (ujk+1 - %(n - Qk)) @V, (22)

- Jk41
d=jr+1

Jk
_ A
Xeq(m@v) =m( § saj) (Us, — Z(n —2k)) ® Vit
d=j

13



Jk Jk+1
Hk,l(m ®v) = ( Z dejk)ujk (m®v) - ( Z deijrl)uij—l(m ® V)
d=j, d=jr+1

_A (n —42k:> (I — 1) (m @ V) + Mi(ly =l — D(m @ v)

We prove only the identity for X ,j 1> the other cases being similar. Suppose that iy <ip < --- <.
We compute:

’I’L 2/€ ]k+1 ]k+1 n
- . . d
W;;FJ(V) = Z Ek g1V + 5 Z Z ngn(g - k)ElCchEj,k-i—l(V)
=l d T4t a?'é]ka 1]k+1 =t
Jk+1 Jk+1
(n — 2k) . : d
- T4 Z Sdjisr (V I +1 Z Z sign(a — ]k+1)5adEk,k+1(V)
d:jk+1 d =Jk+1 a=1
a;é.]k7"'7.7k+1
Jk+1 l
n—2k 1 . .
= Z Sdjg+1 T4 + 9 Z sign(a — ]k+1)8ajk+1 (ijjrl) (23)
d=j a=1
. a#jm---ik-&-l
By $44, we mean simply the identity element in 5.
Jk+1
1 d
wia(v) = 3 > (k= bt T DEL (V) (24)
d=jr41
Notice that
Jhk+1 Jk Jhk+1
Z Sdjrt1 Z Sajr i1 V]k+1 =l Z Ek k+1
d=jr4+1 a=Jjk d=jr4+1
and that ) ) )
Jk+1 Jk+1 Jk+1
d
Do st D S (Ve )= (ki = 1) D B (v)
d=jr11 a=jr11+1 d=jk4+1
Putting equalities (20), (23) and (24) together gives us:
Jk41 \ A n l
X]::l (m & V) =m Z deijrl yjIH—l - 5 5 - k + Z Sign(a - jk+1)3ajk+1 jkj—kl
4=kt a;jzl;l

This is the formula (22) for the action of X;', on m ® v.

Remark 6.1. For ji > ja, we define elements in S; by sj, j, = Sj j1—15j1—1,j1—2 " Sja+1,j2 and
Sipt = Sjajat18jatljat2 Sji—1,41- Then, in formula (22), we can replace sqj, ,, by Sdjpq N
the *-case and by $4, in the ~ case: one has to notice that we can make this substitution in our
computations above.
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Following one of the main ideas in [VaVal], we define a linear automorphism 7' of M ®¢g,) V® in
the following way:
—0i1,n —8i;n
T(m®uviy @+ ®@vy) = (may " a ") @ Vi1 @ -+ @ Vg,

with the convention that v,41 = vi. (Here, J;; is the usual delta function.) We set vi; =
Vi 41 ® - @ v, 41. One can check that T o p(XE ) = p(XE) o T and T o p(H;_1) = p(H;) o T for
any 0 <i <mn—1, where ¢ : Y — End¢(F(M)) is the algebra map coming from the Y-module
structure on F(M).

Recall the automorphism p from section 3. The following lemma will be crucial.

Lemma 6.1. Let M be a module over H. Suppose that A\ = ¢ and § = % -+ 5. For any
2<i<n-—1and any r > 0, the following identities between operators on F(M) hold:

P(p(X5) =T op(X) 0T w(p(Hip)) =T " o p(Hiy)o T (25)

0(P*(XT,) =T 20 p(Xi,) o T? @(p*(Hyy)) =T %o p(Hy,)o T (26)

There are two ways to prove this lemma. One is to deduce it from proposition 3.4 in [VaVal]
using the fact that the trigonometric Cherednik algebra is a limit version of the double affine Hecke
algebra. The second one is by direct computations. We will start with the first approach and
afterwards we will give a sketch of the relevant computations.

Proof. We can restrict ourselves to proving lemma 6.1 when M = H. Since the elements Xfr, ir
with 7 = 0,1 generate LY (see equation (12)), it is enough to prove the lemma for » = 0, 1. First,
we prove relation (25) for X,:rl with 2 <é <n — 1. The proof for X, is exactly the same and we
omit it, and the proof for H;; follows from either of these two cases using identity (3).

We start with proposition 3.4 in [VaVal] in the case M = Hy,. We choose a v as before and
assume that i1 < i9 < --- < ¢;. The aforementioned proposition, along with theorem 3.3 in loc.
cit., says that we have the following identities in End¢(H®y V®!) for k € {2,...,n— 1} concerning
the action of q%e;ﬂ — e o and q%ek_m —ep—joonl@vior2<k<n-1

Jr—1
ql—lkale .. lel 1 + Td,]k (q?(qn—kyjk)—l — ]_) ® V]k—+1 = (27)
d=j
Je—1
¢ LY Tag | (a2 (" ) T - )X X ey
d=ji,

Here, for d > jk, Td,jk = Tde,1 s ,Tjk

Now we extend the base ring by replacing C by C|[[h]] and set ¢ = e?,k = et". We view both
sides of identity (27) as elements of HI[[h]] @yny V' [[h]]. Let us denote by a : H[[h]] — H][[h]] an
isomorphism between these two completed algebras as described in [Ch3]. (Such an isomorphism
can be obtained from a study of intertwiners.) In particular, we have a(Y;) = e~ and, in the
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quotient H = HI[[h]]/RH[[A]], a(T;) = sii+1,0(X;) — z;. Using a, we can identify H[[h]] @]
VEI[R]] with H[[R]] @cis;jiay V' [[2].

After cancelling ¢!~ in (27), we apply the isomorphism a and equate the coefficients of k on both
sides. We then obtain

Jk
-1 -1 ~ c
Ty 1+ E Sd,ji, (Z/{J — Z(n - Qk)) & Vj,;-i—l =
d=jr+1

Jk
~ C _ _
1+ Y Sag, | W, — i 2k))a;! - a @ v (28)
d=ji+1

The equation (25), which we want to prove, says that for the case of X,jl,Q <k<n-1, and
M=Hm=1:

Jk Jk
~ A -1 —~1 A ~ -1 -1
> Sag | Uy = =2k 4 2)a; e a @V S D Sag @yl @V =
d=j d=jk

Jk
A
1 1 ~
T Z Sd,ji, (u]k - Z('fl — Qk)) & vj,;—}-l
d=j

This is equation (28) since ¢ = \.

As for equation (26) in the case of Xffl and M = H, m =1, it says that

l
- A _ _
> Sag. | Uy, — n—2n+ 2))aj o OV, =
d=jn

l l

A

~ -1 -1 -1 -1 ~

=20\ Y Sag. |25l @ v et Y Sag | U - 1 =2) @V,
d=jn d=jn

8

Since g = % — ”4—>‘ + %, this is equivalent to

! !
~ 1 1 o1 1 ~ ,
D Sag. | W+t at @ v =t e Y B, | U @V (29)
d:jn d:jn

This can also be deduced from proposition 3.4 in [VaVal] with M = H. Indeed, this proposition
says that we have the following relation concerning the action of e; 1 —e19 and of e,—1,1 — ep—10
on 1®v:

-1
qllean:Ll,l .. .Xl_1 1+ Z Taj, ((q"ilkann)*l — 1) @V
d=jn

Jmt2 T
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-1

g 1+ Z T4, ((qn_(n_l)qn_zyjn)_l - 1)X];1,1 X e Viri2

We proceed as previously: we cancel ¢'~“+7» on both sides, extend the base ring to C[[h]], set
ch

g=-¢ez2,k =e" We then apply the isomorphism a and equate the coefficients of h; this yield

!

-1 —1 ~ c(n — 1)

Ljy "1 st,jn (u'n_t_42 )OOV, =
d=jn

l c(n—1)
- — 1 -1
d=jn
After a simple simplification, we obtain equation (29). O

Proof of lemma 6.1 - sketch of alternative approach. To simplify the notation, will not use ¢ in the
proof. (We used it only to state the lemma in a convenient way.) We have to check the equality

() = ) (T(m © ) = (X))~ Xy + 2K )(m @ v). (30)

With v as before (but without assuming that i1 < is < --- < 4;), suppose that j; < --- < Jp are
exactly the values of j for which i; = n. Then T'(m ® v) = maz -x; ® vii. Set x;ll L=

1 1 a -Jp
le T x.jp :
!
JXO(Tmev) = > mai Ve ® Bl (Vi)
k=1
p l
= D> D mayt L e ag @ Bl (vi) - (81)
r=1 k=1
k#jsVs
!
+y mdya;! @ Efa(vi) (32)
k=1
and l
-1 k _ +
Z mykle,...,jp ® Eii1(ver) = T(‘](Xi—l)(m ® V)) (33)
k=1
Therefore, we must prove that
A
(31) = M (T(m @ v)) = =AT(w  (m®@V)) + §T(X;[1(m ®v)) (34)
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To compute the action of wf on vy1, we distinguish two cases: when Fj; 1 and E;; act on the
same tensorand, and when they act on different ones.

o
n— 21 _ n — 2@
S (Tmev) = 5= Y magl @ Elin(va) - (2 meE >> (35)

+ Z Z Z sign(j — i)yma! 5 @ Efi i (ska(var)) (36)
k=1 d=1

j;ﬁzz—i—llk =j—1ig=t

1
—4mxﬁf @ (Biini Hi + HiBj 1) (V1) (37)

Doing the same for w; |, we obtain that w (T(m®v))—T(wi | (mM®V))+iT(XF | (m®V)) equals

l
1
F XX S sl 6 B ua(e) )
k=1 =

=1 =
j;é i+1ig=j— lzd z

% Z ZZSIgH]—Z+ 1)ym @ EF. 1,i(8%a(v)) (39)

=1 k=1 d=1
j;éz 1,0 ip=7 iq=t

Therefore, the equality (34) that we have to prove simplifies to (31) = (38) — (39).

By considering the two different cases: j # 1 and j = 1 in (38) (and j#mn,j=mnin (39)), we find
the following expression for (38) — (39), which equals (31) using [z L = (iL'j_Tl + ;) s, 0

l

l l
1
Z mx]_ll]p ® E§i+1 (Skd(v+1)) - §T § : E m ® Ezk—l,i (Skd(V))
d=1
tq=1

k=1 d=1
=N 14=1

l
(38) — (39) = —% >

=N 1q=

We now prove the case ¢ = 1 in lemma 6.1. Suppose that ji,...,jp (resp. 71,...,7) are exactly
the values of j (resp. of ) such that i; = n (resp. iy =n —1).

J(Xf)(T*(m @ v)) Zmevﬁ, el e Vel et @ Bly(via) (40)
s=1 u=1
+Zme capt e Vgt el @ Bl (vie)(41)
s=1r=1

—1 k
+ Z mykx]l -Jp '71) Ve ® E12(V+2)

The last term is equal to T2 (J(X,"_;)(m®v)). We can decompose (40) and (41) into several sums

using the relations [z}, V;,] = —%(x;j%—xj: )Su,js and [z LY, = tm71+ S iz} (x j:l—i—xlzl)skjr.
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After some long computations, we obtain:

(40) + (41) = thw T, © El3(vyo) (42)
C P !
Y D e T T P © Basha(va2) (49
a= q=
Wﬁjdﬁh
c p
52 Z vl omtapk anl @ Bl (sie(vie)  (44)
o=t q#]dm,

We now focus on w; (T2(m ® V)) and T2( T (me v)) By considering the cases when FE1;, Ejo
(and Ep_1j, Ejn) act on the same tensorand and on different ones, we can write:

n l

o (T2 o) =Ty mev) = 530 3 Yomar! @ By (sg,(ve)) ()

j=3  q¢=1 b=1

iqg+2=]
n—2 1 D
sz@)En 1n SQJb(V)) (46)
j=1 q= 1 b=1
ig=
n—2 9
+{—= )T (Ep—1n(mev)) (47)

One can check that (43) = (45) and (46) = —(44). Finally, we get
XH(T*mev)) —T*(X,71 1 (m®v)) = (40)+ (41) + (42) — A(45) + A(46) — A(47)
2372 (En_lm(m ® v))

Using the lemma, we can now define the action of ngl and of Hy 1 on F(M) by setting

Xafl(m @v)=T"1 (Xfl (T(m® V))) — BXE(mev)

and
Hoi(m®@v)=T"" (Hl,l (T(m® V))) — BHy(m @ v).

Note that lemma 6.1 implies that ngl (T(m®v)) = T(Xn 11(m®v) + BXE (m® v)) and
similarly for Hp 1. In other words, and more generally, we set

p(X5,) =T op(p(X,) o T, @(Hoy) =T op(p(Ho,)) o T Vr > 0.

We now have to check that this indeed gives F (M) a structure of integrable module over LY.
Choose i, j,k € {0,1,...,n— 1} with k # i,k # j. We have to verify that gp(Xij;), w(Hi ), @(in’s)
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and ¢(Hj ) satisfy the defining relations of LY. This is true when k = 0 from theorem 1 of [Drl].
Using lemma 6.1, we conclude that it is also true for k £ 0. This means that we have a well-defined
algebra homomorphism ¢ from LY to Endc(F(M)). That F(M) is integrable follows from the
fact that V® is an integrable sl,-module, and that it is of level [ follows from theorem 5.1 in the
case of C[S;] and Usl,,.

6.2 Proof of theorem 5.2, part 2

For the rest of this section, we assume that [ +2 < n (so, in particular n > 4). In the second step
of the proof, we have to show that, given an integrable module M of level I over LY, we can find
a module M over H such that F(M) = M. Such an M cannot, in general, be lifted to a module
over Uql’qg, so this second step is not an immediate consequence of [VaVal], although the approach
is similar. Integrable Usl,-modules are direct sums of finite dimensional ones, so, by the results of
Drinfeld [Drl] and Chari-Pressley [ChPrl] we know that there exists modules M Land M? over,
respectively, H and C[S)], such that M=F (M*') as Y-module and M = F(M %) as Lsl,-module.
Since C[$)] C H and C[S)] C C[S)], we have an isomorphism M* 2 M2 of S;-modules, so we can
denote them simply by M. We have to show that M is an H-module. The following will be useful.

Lemma 6.2. If v=v;, ® - - ®uv;, is a generator of Ve as a module over Usl,, (that is, if i # ik
forany j #k), then m®@v=0=— m =0.

Fix 1 < j,k < I,j # k. We choose v to be the following generator of V& as isl,-module:

V=10 ®V;, @---Qu;, where ig =d+3ifd < j,d#k,ig=d+2ifd> j,d#k,i; =2 and i;, = 1.
We can express w, as an operator on V@ in the following way:

n l l
wy |yer = *% Z ZZsign(Q —d)(E3Eq) + ( ) Z 32 *ZZE:QHz

d=1 r=1 s=1 r=1 s=1
d#2,3 SFET s#T
Therefore, [E%), w5 ] = —% Zl,.:l E3 Efy — % lezl E$, E; 5 and applying this to m® v with a = 5,k
r#a s#a

gives

- 1 ; B 1 A
(B, wyl(m@v) = —§E§1E£2(m ®v) and [EspWQ J(m®v) = —§E§1E7]12(m ®Vv).

(X5, X§ — XFX5)(mev) = Z Z (ma, Vs ® X5 5 By (v) — mYsay @ Epy X, 5(v))
r=1 s=1
_A[wga X(TKTI’L b2y V)

l l s
= Z Z mlzy, Vs] ® B3 Epy (v) + A Z mra @ [Eny,wy (V)
a=1

r=1s=1

: Y A

= mlry, V)] ® B} EN (v) — 5L ® E5 Ely(v)
A ,

Mk ® E:]’flEyjlz(V)

= e V)) — a4 m)s) ©F
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where v = E§2Eﬁl(v). We know from relation (3) that [X, 1, X1 =0, so the last expression is
equal to 0. Since V is a generator of V® as a Usl,-module, it follows, from lemma 6.2 and our
assumption that A = ¢, that m([zg, V;] — §(z; + zx)sjk) = 0.

We consider now the relation between x; and V.. From the definition of v:

n n

1 1 1 1
v= g > (ErgEq1 + Eq1 Erg) + o (Br2Bon + B Ba) — > (B2Faz + Ba2Fag) — §H12
d=3 d=3

whence, as an operator on V®, it is equal to

R ' 1ol oo\ L
v = 3 303 S L ~ Bl + 0 B - 5t + (U52) ot

= = =1 j 1 s=1 j 1 s=1 j:1

J S#] S#]
Therefore,
1 n—1 1 _9

(B 1] = B ZZETdEdl +3 Z (HoEpy + By By Z b — Z niHT + <4> ni-

d=3 ;7:61’ s;ér s;ér s;ér

Fix k, 1 < k < 1. We now choose v to be equal to v =7v;; ® ---®v;, with ig =d+2if d <k,
ig=d+1if d > k and i, = 1. Note that ig # 2,n,n — 1Vd since [ + 1 < n — 1 by assumption.
Applying the previous expression for [E,, ;] to v, we obtain the following:

n—2

. ZE’”dEdl — B0 it £k Bhnlm) = (“72) B, (9

We need (48) to obtain equation (49) below. Note that H{(v) = 0if s # k.

l

!
(Hip Xy — XgHi)(mev) = Z merys ® Hi B}, (v)
r=1 s=1
ol

- Z Zmysxr ® Ep HY o(v) = Alw, X(ﬂ(m ®V)
s=1r=1

!
= —mhxEp @ Eﬁlﬂﬁo(v) +A Z mz, @ [E),,v1](V)
r=1

l
A
= —mYer ® Bl (v) + 5 > ma, @ spEr (V)
r=1
r#k
n—2 k
+A o /me By (v)

!
~ A - n—2 ~
= —mykxk®v+§ E_l MLy Spr @V + A (4) mev (49)
2k
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where v = EF

", (v). We want to obtain a similar relation with Hj ; replaced by Hy_1 1.

From the definition of v,,_1,

n—2

1 1
Up—1 = 4 (EanEnd + EnaEan) + §(En—1,nEn,n—1 + E”v"_lE”_lvn)
d=1
12 1
4 Z Ein1En14+ En14FBqn-1) — gHrzz—l

whence, as an operator on V®, it is equal to
l l

177,—2 l l .
VTL*1|V®1 = 5 ZZE(jin 751d dn 1 Z—l,d)+ZZ(EgL—l,n ;;L,n—l)
= =
A PN
XS - () S
j=1 s=1 j=1
s#j
Therefore,
1n72 l 1 l
[Enisvn—1] = _izzEglEfzd"i_iZ(Hg ml— EnnEn_1)
= 2
: n—2
e Y () e
oZr oZr

Applying the previous expression for [E];, v,—1] to v, we conclude that [E) |, v,_1](v) =01if r # k
and

n—2 1 l
Pl ral) = 5 32 S Fh ) — (M) B = 5 s - (157) B
”

d 2 s=1 =
s#k s#k
This equation allows us to compute [H,—1,1, X ](m ® v):

l
(Hn—l,lxaL - X(;an—l,l)(m ®v) = Z (mxrys n—-1.0En 1(v) = mYszr ®E£1H}SL—1,0(V))

r,s=1

—A[Vn—1, Xo](m @ Vv)

l
r=1

l
- A n ~
= —mzTpVr QV — 5 E_l ML Sks + S RV (50)
s2k
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From the relations (1), (6) and (9) in LY, we know that
—Xg1 = [Hi Xg]+ (A= B HXJ + BX Hy) (51)
= [Hpo12, X1+ (BHa 1 X§ + (A= B) X Hp1) (52)

Applying these two expressions for —X({ ; to m ® v, using equalities (49),(50) and the fact that
Hy X[ (v) =0 and X H,—1(v) = 0 because of our choice of v, we obtain:

l
-~ A - n—2 ~
_mykq:k(@v—}—gg mxrskr®v+)\<4> mxk®v—|—ﬁXarH1(m®v):
r=1
r#£k

l

A _ -2 -
—MxpVE @V — 5 E MIESEs DV — A <n4> mxr @V + ﬂHn_lXaL(m ® V)
1

S
s#k

n—2

!
A _ ~ _
:>m[xk,yk]®v+§g m(wr—kxk)skr@v—i—)\( >mxk®v+26mwk®v:0

r=1
r#£k

Since Vv is a generator of V® as a Usl,-module, it follows from lemma 6.2 and our assumptions
that 26 + 22 — ¢ X = ¢ that

l
C
m([wk, yk] + 5 ;(IET + x)Skr + t:Bk) =0
rk

We proved above that m([zg,V;] — §(z; + x1)sjx) = 0 if j # k. These last two equalities imply
that M is a right module over H.

Therefore, we have shown that the H- and the (C[gl]—module structure on M can be glued to yield
a module over H. To prove that F is an equivalence, we are left to show that it is fully faithful.
That F is injective on morphisms is true because this is true for the Schur-Weyl duality functor
between C[S;] and LU(Lsl,,), so suppose that f : F(M;) — F(Ma) is a LY -homomorphism. From
the main results of [ChPrl] and [Drl], f is of the form f(m ® v) = g(m) ® v,Vm € M, where
g € Homg(Mi, M3) is a linear map which is also a homomorphism of right C[SN'l]— and H-modules.
Since H is generated by its two subalgebras C[S;] and H, g is even a homomorphism of H-modules.
Therefore, f = F(g) and this completes the proof of theorem 5.2. O

7 Action of the elements X(fl, Hy,

Now that we know that F(M) is a module over LY, it may be interesting to see explicitly how the

elements Xoi1 and Hp 1 act on it. What we will discover will be useful in the next section. We will
t nc

assume throughout this section that A =¢, 8 =5 — ¢ + 5 and n > 3.
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7.1 Action of X({l
Equations (51) and (52) yield

1
Xo=—-3

S+ Hoy X3 = 5 (= 8y + BH, 1) XE + X (BH + (= )Hy).

We will use the notation K,(z) to denote the element z ® u” € Lsl, for z € sl,; in particular,
Ki(En) = X; and K_1(E1,) = X; . The element K,(z) maps to the operator in Endc(F(M))
given by K,(z)(m®v) = 2221 may, @ 2F(v). Writing Hy1 as Hy1 = J(Hy) — Avq, and similarly
for H,—11, we can express X(Il in the following way. (We will use that [H,—; — Hy, XS’] =0.)

|
—

1 A <
Xo, = _i[J(Hl + Hy1), X — 3 (K1(Endg)Ea1 + Eqt K1(Eng))

3

I

(K1(E11) — Ki(Enp)) Ent + En (K1(En) — Kl(Enn))> + E(HlXar + Xq Hy)
Ki(En2)En + En K1 (Ep2)) — %(Kl(E21)En2 + En2K1(E21))

+
> > 00>

/N

—

+
3
&

(K1(Ea1)Eng + EnaK1(Eq)) + g((Kl(Ell) — K1(Epn)) En

I

2

w1 (K1(En) — Kl(Enn))) + A

1 (K1(En-11)Enn-1+ Enn-1K1(En-1,1))

(Kl (En,n—l)En—l,l + En—LlKl (En,n—l))

(X Hor + ot X3) — 5 (A~ B)Hy + BH )X+ X (B + (A~ )Ho))

n—

+
Dj

+
w\'—* »Myoo\y

[\

A
—>[J(Hy + Hp1), XO+]_§

(K1(Ena)Ea1 + Eq1 K1(Ena))
d=3
A
— 2 (K1 (En2)Ea1 + En K1 (Epa)) + 5 Z (K1(Ea1)Ena + EnaK1(Ear))

8
d=3

(K1 (B11) = K1 (Bn)) Bt + Bt (K1 (B11) = Ka(Bun)) )

/N

+

I
00\>00\> 00\>/ w\»—wMy»My »My
=
&|
=
=
|
tij
25

5

(K1(En-1,1)Enn-1+ Enpn-1K1(En-11))

1 A
+*[H21+"'Hn—21,X6r]+§[V2+"'+l/n—2aX8L] (53)

2 (K1(Bng) Bt + Eay K1 (Ena)) + % Z (K1(Eq1)Ena + EnaK1(Ea))
d=2

A
— = (K1(En2)E21 + E21K1(En2))
(

-4 (K1(Ho)En1 + En1K1(Ho))

En11)Enn-1+ Enpn1Ki(En-11))

+
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i
L

1
= i[J(Enn - Ell)aXa_] -

ool >

(K1(Ena)Ea1 + Eqi K1(Ena))
2

I

A (K1 (Hg)Enl + Eanl (HO))

A
—|—§ Z (Kl(Edl)End + EndKl(Edl)) - Z

d
= J(X{) —g Z (X, XX + X7 [Xg, X)) - %(KI(HO)EVLI + En1 K1 (Hy)).

ec AT

We define j(Xar) to be 3[J(Ho), Xy ]. Set 37j = 2(2; ) + Yjz;).

l ! !
- 1 , 1 .
JXHmev) = 52 > m[wk,yj]®H3E§1(V)+§§ m(z;Y; + Vjxj) @ ), (v)
=1

~
o~

!
> mlak + z5)s, @ HYEg (v) + ) mY; @ E;y(v)
=1

A
1+3 (Xg Ho + Ho Xy + En1K1(Ho) + K1(Ho)En) | (m®v)

|
&
&
I

Set J(X¢) = J(X§) — $(X¢ Ho + HoXy + EniK1(Ho) + K1(Ho)En1), so

A _ _ A
ec AT

7.2 Action of X,

The action of Xoq on F (M) can be expressed in a simple way. Proceeding exactly as for X@f 1, we
can write

_ _ A o o Ao _
Xo,l :J(Xo)+§ Z ([Xo s Xe ]Xj+Xe+[Xo » Xe ]) +§(X0 Ho + HoXy') (54)

eEAT

where J(X) acts on m ® v by J(X;)(m®@v) = %Zé-:l m(:zzjflyj + ijj*l) ® E{n(v) This can
be written in the following form:

l
_ _ < 1 1 B ,
m(z; Y+ Yz ) @ By, (v) = 5 > m(y;+ 5 @5 iy + 2y t)) © B, (v)

l
=1 j=1

N =

J

l
= Sl + g wiles + gl 7)) @ B ()



[
me; Yy + Ve ) O B, (v) = Y om(y+ 1w s — D aptsi)) @ B, (v)

N | =

J=1 j=1 k#y k#j
l
c _
= Zm(yj"‘zz(le_% )Sak)®E (v) (55)
j=1 k#j

As for the sum Y a4 ([Xg, X)X 4+ XF[X, X)), it equals

i
L

(K-1(E1q) Ean+Eqn K _1(E1q) —(K_1(Ean) Era+ E1aK -1 (Eay))) —K_1(Ho) E1n+E1n K_1(Hp),
2

Y
Il

so it acts on m ® v in the following way:

N7 (1Xy XX + XXy X ) mev) = 230> mayt @ (BYE], — ES BL)(v)
eeAt ]'I,CI;Z; d=2
J

—2me ® HYE ()
J,k=1

ki

l n

— 9 Z Zm(xk - e EYE) (v)

jk=1d=1
k#]

7,k=1

k;éj

= _22 )Sjk®E (v)

[y
—(Xg Ho+ Ho X ) (m®v) (56)

Combining equations (54),(55) and (56), we conclude that X, (m®v) = 22:1 my; ®E{n(v). The
element X, will become important in the next section. We will sometimes denote it by Y0+.

7.3 Action of H,

We use the equality Hy 1 = [X(;me(il]-
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l l
Hoamav) = Y3 mlypan] © BB () + Y mupes & Fi(v) — 3 megy © By(v)

j=1k ; j=1 J=1
l ! !
= —cZstjk@)ESlEln +Zmy]xJ®E me]y](@EH( )
7j=1 k=1 j=1 7j=1
k#j
U
Y e B LW+ Y Y Hw
j= 11];7&1 7=1
J
Ly o ‘ U P
+Z §+2ZSU ®E%n(v)+z §+§ZSM ® By (v)
j:l =1 ]:1 =1
i#£j i#]
L t cn
= - ENE} J(H ~——)(En+E
S-S om e BB ) + U m e ) + (5T ) (B + B )
¢ ¢ [
+1 Z(EndEdn + EgnEng + E1qaFEq1 + EdlEld)(m ® V) — 5 (Z Edd) (m ® V)
d=1 d=1
A A Al
_ + +
- (J(HO)+Z > (OB B + ECED) + SHE - 5

eEAT

+ (g _ ;‘) (E11 + Enn)> (m®v)

It can be proved that the subalgebra of LY generated by Y;" and sl,, is isomorphic to 4(sl, ®c C[v]).
(See also proposition 8.1 below.) We introduce the notation @Q,(z),r € Zxg, to denote z ® v" as
an element of this subalgebra; in particular, Q1(F1,) = Y0+. There are three types of operators
in Endc(M ®cjg V@) which are of particular interest to us: those coming from the action of
J(z), K, (z) and of Q,(z). They are related to each other in the following way.

Proposition 7.1 (See also [BHW]). Suppose that a # b and ¢ # d. Then we have the equality
[Q1(Eab), K1(Ecq)] + [K1(Eab), Q1(Eed)] = 2(0pcJ (Ead) — 6da (Eeb))-

Proof. First, we will prove the equality

[Q1(E1n), K1(Ho)] + [K1(E1n), Q1(Ho)| = 47 (E1,) (57)

Q1 (B, K (Ho)) + [ (Bun), @a(Ho)) = (X, 1 Bual] + 5 [[Buos (X Bl (B, X

= —[Hoy, E1n) — —[[Hg, IXJ, Bl Xojl} —%“Eln, [XJ,HO]],X&J

b [Ba, (B (557 X5, Bu |

27



[Ho1, B =

_ 1
= _[H0,17 Eln] + [[E1n7 X(—)l—]a X0,1:| + 5 |:En1) [E1n7 [HO,la Eln]]]

1
= 2[E1n, Ho1] + 3 [Enl, [E1n, [Ho i, Eln]” (58)

[[Ho,1, E12), Eon] + {En, [Eas, [+ [Bn—2m—1, [Ho1, En—1n] -~ }

[=X01 = (BHOX[" + (A = B) X[ Ho), Eay)]

+[E12, [Bos, [+ [Ba—op—1, =Xy — (A= B)HoX,,_y + BX,7_1 Ho)] - }

[=J (X)) + Ao — (BHo X, + (A = ) X{ Ho), Ean] +

[Eu, [Bas, [+ [En2n-1, —J (X)) + Aoy = (A= B)HoX, | + X, Ho)] - }
—J(E1n) — (BHoE1n + (A = B)E1nHo) + (BE2nEr2 + (A — B)E12E2,)

+Awi, Ean] — J(E1n) + AB1n-1,w, ]

— [E127 [Eas, [+ [Bn—om—1, (A = B)Ho X, + BX,"_ Hp)] -- ] (59)

The expression |:E12, [E23, [ [Bn—2n-1, (A= B)Ho X" | + ﬂX;f_lHo)] . } is equal to

[Er2, (A — B)HoEsy, + BE2Hol = (A — B)Er2E2, + BE2nE12) + (A — 8)HoE, + BE1,Hp) (60)

[El,n—law:{fﬂ

[wf_v EZn] =

12 1
- _Z (Eanlj + Elejn) - E(Eln(Ell - En—l,n—l) + (Ell - En—l,n—l)Eln)
=2
1 1
_Z(Elanfl + anlEln) - Z(Enfl,nEl,nfl + El,nflEnfl,n)
1 1
= ~1 (Eanlj + Elejn) + X(ElnHO + HoEhy) (61)
=2
1 1
1 (EjnErj + E1jEj) — 1 ((Ba2 — Enn)E1p + E1n(E22 — Enp))
=3
1 1
_Z(Elnﬂl + H1Eyy,) + 1(E12E2n + Eo, Er2)
1 1
= Z (Eanlj + Elejn) + Z(ElnHO + HOEln) (62)
=2
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Therefore, combining equations (59),(61),(62) and (60), we obtain the following simple expression
fOl" [H()71, Eln]:

A
[Ho,1, E1p] = —2J(E1n) — §(H0E1n + EqnHp) (63)

Putting together equations (58) and (63) yields equality (57):
[Q(E1n), K1(Ho)] + [K1(Ew), Q(Ho)] = 4J(Ew) + A(HoEwn + E1nHo)
1 A
_i[Enlv [En, 2J (B1n) + §(H0E1n + E1nHo)l|

= 4J(E1n) + MHoB1n + EinHo) — MEn1, Ef, ]
= 4J(E1)
The bracket of E,; with both sides of equation (57) yields
[K1(En1), Q1(E1)] + [Q1(En1), Ki(E1n)] = 2J(Ho) (64)

This proves proposition 7.1 when a =n,b=1,c=1,d =n.

Assuming that a # 1,n, we apply [Eqn, ] to (64) to get [Ki1(Eq1), Q1(E1n)] +[Q1(Ea), K1(E1)]

+

2J(Ean). If b # 1,a, we apply [-, E1p] to the previous equation: this yields [K1(Eqp), Q1(E1y)]
[Q1(Eaw), K1(E1,)] = 0. If ¢ # 1,n, we use [E., | to get
[K1(Ea), Q1(Een)] + [Q1(Eab), K1(Een)] = 264 ([K1(Ea1), Q1(E1n)] + [Q1(Ea1), K1(E1n)])

= 20pcd (Eqgn)

We now apply [+, Enq] if b,d # n and obtain

[K1(Eab), Q1(Ecq)] + [Q1(Eab), K1(Eeq)] — 20ad([K1(Enb), Q1(Een)] + [Q1(Enp), K1 (Een)))

= 25bCJ(Ead) - 25bc(5ad=](Enn)-

Note that, although J(E,,) is not defined, if b = ¢ and a = d, then the right-hand side becomes
2J(Eaq — Enp). It is enough to show that [K1(Epnp), Q1(Een)] + [Q1(En), K1(Een)] = —2J(Ew) +
20pcd (Epy). Starting with (64) and assuming that b,c # 1,n, we apply [-, F1p] and [E.1, -] to get
this last equation. The remaining cases can be handled in a similar manner. O

8 Schur-Weyl dual of the rational Cherednik algebra

Our goal in this section is to establish an equivalence of categories for the rational Cherednik
algebra similar to the one given in theorem 5.2 and to identify the Schur-Weyl dual of H with a
subalgebra of LY.
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8.1 Case of type gl

Definition 8.1. The subalgebra of LY generated by Xii, 1<i:<n— 1,X6r and YOJr 1s denoted by
Lgx and called a Yangian deformed double-loop algebra, as suggested in [BHW]. The polynomial
loop algebra generated by Xl-i, 1<i<n-—1and X; (resp. Yy") is denoted Lx (resp. Ly).

Remark 8.1. The algebra LYp ) is the same as the subalgebra generated by z, K1(z), Q1(2),Vz €
sl,. Furthermore, proposition 7.1 implies that LLg ) contains all the elements Xiir,Hi’r for 1 <

i < n,r >0 and relation (12) shows that it also contains X&T,Vr >0 and X&T,Vr > 1. We will
abbreviate g 5 by L.

The computations for the action of Xy, on M ®c(g)] V! and the anti-symmetric role of h and h*
in the definition of H, along with the last proposition of the previous section, suggest that the
following result is true.

Proposition 8.1. There exists an anti-involution ¢ of I which interchanges Lx and Ly and which
s given on the gemerators by the formulas

UX5) =X ifi #0, o(Hiy) = Hiy

L(XS:T) = Xo,r11 forr >0, L(X&T) = ngr_l forr>1

Proof. This can be checked using the relations given in definition 3.2. O

Theorem 8.1. Suppose thatl > 1,n > 3. Set A = c and f = % -G +5. The functor M
M ®c(sy) Ve sends a right H-module to an integrable left L-module of level . Furthermore, if
I+ 2 < n, this functor is an equivalence.

Proof. As for theorem 5.2, the proof is in two parts. First, it is enough to take M = H and show
that F (M) is a module over L. We can view H®¢(g,) C®' as a subspace of H®¢(g,) C®'; the later is
a module over LL since it is even a module over LY. The subspace F(H) is stable under the action
of the subalgebras Lx and Ly, so it is a module over the subalgebra of LY generated by Lx and
Ly, which is exactly L. The fact that F(M) is integrable of level [ follows from the same argument
as in the proof of theorem 5.2.

Now let N be an integrable module of level [ over I and suppose that [+2 < n. We have to show that
there exists a module M over H such that (M) = N. We can argue as for the trigonometric case
to conclude that there exists an S;-module M, which is also a C[h] x W- and a C[h*] x W-module,
such that F(M) = N. As before, we must show that M is actually a module over H.

Fix 1 < j,k < 1,j # k. Choose v = v;; ® --- ® v;, such that iy, = 2,i; =n -1, 4, = r+2if
r<jr#k i,=r+1ifr>jr#k. Set?:EﬁzE{mfl(v).

On one hand,

(Q1(Ern—1)K1(En2) — K1(En2)Q1(E1p-1))(m®v) =
1o 1o

D> mays @ B 1 Blp(v) = > > mysa, @ EjpB,_(v) = m(zpy; — yiak) @V (65)

s=1r=1 s=1r=1
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On the other hand, Ql(El,n—l) = [YE)+7En,n—1] and Kl(Eng) = [XS_,Elz], SO

[Q1(E1n1), Ki(En2)] = [[Yoh, Ennl, [Xg, Er2]] = [[Xo1, (X Brall, Enpn1)
_ { XOI,X+ X7, Enn,l] = —[[Ho1, X{], Enn1]
= —[=X{ = (BHoX{ + (A = B)X{ Ho), X, 4]
= [ﬁHonr + (A= B)X{ Ho, X, 4]
BEpn—1E12+ (A= B)E12En n—1

Therefore,
(Q1(E1n-1), Ki(Ep2))(m®@v) = m® (BE,n-1FE12+ (A= B)E12E n—1)(V)

— Mm@ ELE (V)= msj ©V (66)

n,n—1

Equations (65) and (66) imply that m(zry; — y;zr — Asjr) ® v = 0. From lemma 6.2 and our
assumption that A = ¢, we conclude that

m(xry; — yjer — csji) = 0. (67)

Now let v be determined by i, =n —1,4; =7+ 1if j # k. Set v = Eﬁ’n_l(v). On one hand,
[K1(Bn1), Q1(B1n-1)[(m @ v) = myrar @ By B, (V) = mypag @V (68)
On the other hand,

[K1(En1), Q(Ern-1)] = [Xg, Y5 Ban1l] = X5 [Xo1, X, 1]
= [Hop, X, 1] =X, 1, + (BHoX, 1 + (A= B8)X,_1Ho)
= J(Xn 1) )\wn 1+ (,BH()Xn 1+ ()\ ﬁ)X H())

where
12 1
W;_l = _Z ;(EndEdm—l + Ed,n—lEnd) - Z(Xg_lanl + anlX;_l)-
Therefore, we also have:
[K1(En), Qu(E1n-D)l(mev) = (J(X,_ 1) Mo,y + (BHoX,,  + (A= B)X,_Hp))(m@v)
= myk@ nn 1( )_)‘m®( ( ))—’_ﬁm@HOES,nfl(V)
n—2 1
= MY, QV+ = Z Z Z m® ( ndEg,nfl)(v)
d 1r=1 s=1
s#d

4
+H, 1 X, 1)(v)+ Bm® HEEE ,_((v)

-2 A
+A <n4) me Epp1(v)+-m® (X, _Hp1
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K1(Bn), QUEL-)I(m@ V) = mYp@V+ 3 % me (BB, )(v) +A ( 1 ) mev
d=1 j=1
7k
A
+7m(E’7§,n—1E7]§—1,n—1 - EﬁnEs,n—lx") + ﬁm ® E1]§7n—1(v)
4
1 A
= im(q;kyk + yprr) @V + 5 Z ms;g & v
j=1
7k
+(

e +B)m eV

n A ~
-3 (69)

From the equations (68) and (69) and our hypothesis that § = % — % + %, we deduce the following

equality:
m ®V L ( + )®A+Azl: ®A+t ®V
T @V =-—m(x x V+ =) Msjp@vV+-mev
YrTk B kYk T YTk 9 £ 1 ik 5
-
J#k
which implies that m(ykxk —ZTryp —t— A Eljzl sjk) ® Vv = 0. Since A = ¢ by assumption and Vv is
7k
a generator of V® as Usl,-module, we conclude, using again lemma 6.2, that the equality
l
m(yrtr — Tpyr —t — CZ sjk) =0 (70)
i=1
7k
must be satisfied. Equations (67) and (70) show that M is a right module over H. Finally, that

F is bijective on the set of morphisms follows from an argument similar to the one used in the
trigonometric case. O

8.2 Case of type A;_;

So far, we have considered only Cherednik algebras of type gl;. There is at least one major difference
between these and the Cherednik algebras H; . of type A;_1: the latter admit finite dimensional
representations for certain specific values of ¢ # 0 and ¢ (see [BEG2],[Go]), whereas the former
don’t have such representations if ¢ # 0 because, in this case, they contain a copy of the first Weyl
algebra (which is the subalgebra of H; . generated by 1 + ...+, and y1 + ... + yn).

We need to introduce two new algebras.

Definition 8.2. The algebra ]L/’B’)\’t?l s obtained by adjoining to L two generators, & and §, which
satisfy the following relations:

[5,2] = 07 [ga J(Z)] = %Kl(z)v [5,@1(2)] = ;27 [£7K1(z)] = 07 Vz € 5[n

6,2] =0, [5,J(z)] = —%Ql(z), 6,01(2)] =0, [5,K1(2)] = —§z, Wz esly, [¢,6] = %
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Definition 8.3. We define ]E@AM to be the subalgebra of]L’B’/\’tJ which is generated by sb,,, Ki(z)—
z-& and by Q1(z) — z- 9 for all z € sl,.

We will write L instead of IE@ At and L' instead of L’ﬁ vty in general. We will denote by Lx the

subalgebra of L (isomorphic to 8(sl, @c Clu])) generated by sl, and Ky (z) = K1 (z) — 2-£,Vz € sy,
and by Ly the one (also isomorphic to the enveloping algebra of the polynomial loop algebra of
sl,) generated by sl, and Q1(z) = Q1(z) — z-9,Vz € sl,.

Set z = (14 ...+ ) and § = +(y1 + ... +y). Note that z; — z € b} and y; — § € ho, where
b5 = span{z: — x;]1 <i# j <1} C b* and by = span{y; — y;|1 <i#j <1} C b,

Given a module M over H, it is possible to make F(M) into a module over L' by letting & and
d act on M ®c[gy] V! in the following way: £(m ® v) = mZ ® v and §(m ® v) = my @ v. This
follows directly from our choice of relations in definition 8.2. From this we can deduce that, given
a module M over H, F(M) can be made into a module over L by letting K;(z) and Q1(z) act on
M ®cjs)) V! in the following way:

l l

Ki(z)(m@v) =) m(z;-2) @2 (v), Qiz)mev)=> mly -7 (V)

J=1 J=1

Note that this module structure has the following particularity if {+1 < n: choose v = v;; ®- - - ®uj,
such that the i; are pairwise distinct and choose 1 < j < n such that j # i for any k, 1 < k <.
Set z = Ei1i1 + -+ Eim — lEjj € sl,. Then, since 22:1 (.%'k — .CT?) =0,

I !
Ki(z)(m®v) mek—x ®z mek—x <§§>Ef“k”c mek—x v=20
k=1 k=1

Let p1,...,pun be the fundamental weights of the usual Cartan subalgebra of gl,. The vector
v = v; ®--- ®wv;, has weight p;, + ... 4+ p;,. The observation in this paragraph motivates the
following definition.

Definition 8.4. Suppose that [+ 1 < n. An integrable module N of level | over L is said to satisfy
condition Cond(l) if the following vanishing condition is satisfied: if n € N is a weight vector
of weight p;, + ...+ g, for iy, ..., i € {1,...,n}, then Ki(2)(n) = 0 and Q1(2)(n) = 0, where
z2=FEyi + ...+ Eii, — lEjj € sly, for any choice of j € {1,...,n},j # iVk.

We can now establish a Schur-Weyl equivalence between H and L.

Theorem 8.2. Suppose that | > 2,n > 3. Set A = ¢, = 5 — G + 5. The functor F given by

F(M) = M ®¢(g; V! sends a right module over H to an mtegmble left module over L of level 1.
Furthermore, if I +2 < n, this functor is an equivalence of categories if we restrict ourselves to left
modules over L satisfying condition Cond(1).

Proof. We have already established the first part of the theorem, so suppose that [ + 2 < n.
The proof of the equivalence follows exactly the same steps as the proof of theorem 8.1 with one
major difference and a few minor ones. The major one is the following. Let M be an integrable
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left module over L satisfying condition Cond(l). By the Schur-Weyl equivalence between Lx and
the smash product Sym(f)*) x S;, we know that there exists a module M; over Sym(h*) x 5
such that F(M;) = M as Ly-modules and the action of Ki(z) is given by Ki(z)(m ® v) =
22:1 mxk®zk(v), m € My. Set z = E11+.. .+ Ey—IFE,, and v = 11®- - -Qu;. Since we are assuming
that M satisfies condition Cond(l), we know that, in particular, K1 (z)(m ® v) = 0, so this means
that 0 = 22:1 mzy ® 28 (v) = 2221 mzp ® v. Lemma 6.2 now implies that m (Eizl xk> = 0.
This means that M; can be viewed as a module over the quotient of Sym(h*) x S; by the ideal
generated by z: this quotient is isomorphic to Sym(hg) x S;, which is exactly what we needed.
Similarly, we can argue that there exists a module My over Sym(ho) x S; such that F(My) = M as
modules over Ey. We can identify M7 and Ms as modules over sl,,.

As for the minor differences, one should use z; = z; — T and ¥y; = y; — § as generators of H and
note that [y;, ;] = [yi, z;] — 7. The following relations must also be used:

[Q1(E1n1), f(l(Enz)] = [Q1(Ei1n-1), Ki(En2)] — En2[Q1(E1n-1),¢&]
—FE1 1[0, K1(En2)] + E1n—1En2[6, ]

t
= [Q1(Ein-1), Ki(En2)] + iEanl,nq

[K1(En1), Q1(E1n-1)] = [Ki(En), Q1(E1n-1)] = [En, Q1(E1n-1)]
—[K1(En1), E1p—10] + [Eni&, B jp—19]

= [Ki(En),Qi(Ein-1)] — Q1(Enn- 1)5—%
ZEl,nflEnl + En n,1§5 + ;El nflEnl
= [Ki(En),Qi(Ein-1)] — Q1(Enn- 1)5—*E 1B n—1

_Kl( n,n—l)(S + En,n—1§5

11 n—1

_Kl (En,nfl)(s -

(Teyr + k) = (Teyr + yrrr) — (Tyr + yeT) — (2xY + yoi) + (Y + y2)
= (zryk + Yrzr) — 2ZYk — Yk, T) — 202k — [T, §) + 297 + [T, 7]

B B I
= (TeYr + YpTr) — 2Ty — 2Tk + 29T — 7

8.3 Category O
One important category of modules over H; . and ﬁt,c (when ¢ # 0) is the category O studied in
[GGOR].

Definition 8.5. We define O (resp. (515,@) fort # 0 to be the category of right modules over Hy .
(resp. Hic) which are finitely generated over Hy . (resp. Hic) and locally nilpotent over Clh*] (resp.
Clhgl). We set O = O and O = Oy .
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We see from the definition of the L-module structure on F (M) that if M € O then F (M) is locally
nilpotent over the subalgebra A of L. generated by Q,(2),Vz € sl,,,Vr > 1. A similar observation is
true for H, the subalgebra A being the one generated by Ql( ),Vz € sl,,. This leads us to our last
theorem.

Theorem 8.3. Assume that [ +2 <n, A =c and 3 = 5 — F + 5. The functor F establishes
an equivalence between the category O (resp. (9) and the category of finitely generated left modules

over L (resp. IL) which are locally nilpotent over the subalgebra A (resp. A) and integrable of level
l (resp. and satisfy condition Cond(l)).

Proof. We prove this theorem for H, the proof being the same for H. If mi,..., Mg are generators
of M, then {m;®v,1 <i<k,v=1v;®: - -®Qu;} is a finite set of generators for F(M). To see this,
we can assume that M is generated over C[h] by mq, ..., my. Take an element m®@v € F(M) with
m = myxy"-- -x?’. We suppose first that v = 11 @v2Qv3®- - -@u; and set v/ = 11 QU3Q@u4®- - -Qupy 1.
Then

mev = KQZ(EH+1) < Ko, (E23)Ka1 (Hy)(m ® V/).

Now we can apply elements of isl, to v; ® vy ® --- ® v; to obtain any other element of V!. The

general case when m = Z§:1 mjp;(x1,...,21) @ vy, pj(x1,...,2;) being a polynomial, follows from
this. Conversely, suppose that N is a finitely generated integrable module over L of level | and
N = F(M). Let {ni,...,n;} be a set of generators of N and write n; = Zf;l mi; ® v;; for some

m;; € M and some v;; € Vi, Then {m;;|1 <i <k,1<j <k} is aset of generators of M.

Now suppose that N is an integrable left module over L of level [ which is locally nilpotent over A.
By theorem 8.1, we know that N = F(M) for a right module M over H. Pick m € M. It is enough
to show that myp =0 for some p € Z~g. Set v=01 Q- Qv; ® Vj42 @ --- ® v;41 and choose p so
that Q1(H;)?(m®v) =0. Then Q1(H;)(m®v) =my; ®v, somy! @ v = Ql( )P(m®v) =0 and
lemma 6.2 implies that my, = 0. O
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