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Abstract

We study the structure of Yangians of affine type and deformed double current algebras, which are
deformations of the enveloping algebras of matrix W1+∞-algebras. We prove that they admit a PBW-
type basis, establish a connection (limit construction) between these two types of algebras and toroidal
quantum algebras, and we give three equivalent definitions of deformed double current algebras. We
construct a Schur-Weyl functor between these algebras and rational Cherednik algebras.

1 Introduction

The Yangians of finite type are quantum groups, introduced by V. Drinfeld in [9], which are quantizations of
the enveloping algebra of the current Lie algebra g[v] of a semisimple Lie algebra g. The second definition of
these Yangians in [10] is given in terms of a finite Cartan matrix and an infinite set of generators. If we replace
it with a Cartan matrix of affine type, we obtain algebras that are called affine Yangians. We will consider
only the type A and Â. In the second case, our definition is more general and depends on two parameters λ, β.
(More precisely, it depends on λ

β viewed as an element of P1(C)). These affine Yangians are deformations

of the enveloping algebra of the universal central extension ŝln[u±1, v] of sln[u±1, v] (= sln ⊗C C[u±1, v]).
We will introduce a class of algebras that we will call deformed double current algebras (DDCA): they are

deformations of the enveloping algebra of the universal central extension ŝln[u, v] of sln[u, v] (= sln⊗CC[u, v]).

One motivation for studying the representation theory of these algebras is that we hope that it will be easier
to understand, using classical methods, than the representation theory of quantum toroidal algebras, which
is still quite mysterious - for some important results, see [16],[28, 29],[18, 19]. In return, we hope that a
better understanding of DDCA will help shed some light on quantum toroidal algebras, not just in type
A: we expect some of our results, in particular theorem 12.1, to admit a generalization to any semisimple
Lie algebra. Another motivation is that we hope to obtain a Γ-twisted version of DDCA, Γ being a finite
subgroup of SL2(C), which may not be possible for quantum toroidal algebras or affine Yangians (as in the
theory of Cherednik algebras and symplectic reflection algebras, see [14]).

In this paper, we focus on the structure of affine Yangians and DDCA, postponing the study of their
representations. Sections 3 and 4 recall all the necessary definitions concerning Yangians and Cherednik
algebras. The next three concern only the affine Yangians Ŷλ,β and its subalgebra Lλ,β considered in [17].
The main theorem about the affine Yangians is the construction in section 7 of a PBW basis, from which
we can derive a few corollaries. Our approach relies on the existence of a PBW basis for Cherednik algebras
and uses the Schur-Weyl functor from [17].

The second half of the paper is devoted to deformed double current algebras. After giving a first definition
in section 8, we construct a Schur-Weyl functor between them and rational Cherednik algebras, which we
use to obtain a PBW basis, mimicking the approach for affine Yangians. We are able to establish that they
are isomorphic to the algebra Lλ,β from [17]. Therefore, specializing the parameter λ to 0 (but with β 6= 0),
we deduce that they are deformations of U(sln(Aβ)), where Aβ is isomorphic to the first Weyl algebra. In
section 12, we explain how they can be viewed as limit forms of affine Yangians. Afterwards, we introduce
another family of algebras which are also deformations of U(ŝln[u, v]) and establish a Schur-Weyl type of
equivalence between them and rational Cherednik algebras. In the last section, we prove that these algebras
are isomorphic to the deformed double current algebras defined previously in section 8.
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of the Ministère français de l’Enseignement supérieur et de la Recherche and would like to thank David
Hernandez and the Laboratoire de Mathématiques de l’Université de Versailles-St-Quentin-en-Yvelines for
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3 Yangians and current algebras

Throughout this article, we will assume that n ≥ 4, unless stated otherwise, and work always over C. Two
reasons explain this restriction: certain definitions have to be modified for sl2 (for instance definition 3.1 and
the one in lemma 3.2) and certain proofs perhaps could be modified for n = 2, 3, but they are more uniform
when n ≥ 4.

Definition 3.1. [9] Let zµ be an orthonormal basis of sln with respect to its standard Killing form (·, ·). The
Yangian Yλ, λ ∈ C, is the algebra generated by elements z, J(z) for z ∈ sln, satisfying the following relations
for z1, z2, z3 ∈ sln:

z1z2 − z2z1 = [z1, z2] (bracket in sln)

J(az1 + bz2) = aJ(z1) + bJ(z2), a, b ∈ C, [z1, J(z2)] = J
(
[z1, z2]

)
[
J(z1), J([z2, z3])

]
+
[
J(z3), J([z1, z2])

]
+
[
J(z2), J([z3, z1])

]
= λ2

∑
σ,µ,ν

(
[z1, zσ], [[z2, zµ], [z3, zν ]]

)
{zσ, zµ, zν}

where {z1, z2, z3} = 1
24

∑
π∈S3

zπ(1)zπ(2)zπ(3).

Let C = (cij)1≤i,j≤n−1 (resp. Ĉ = (cij)0≤i,j≤n−1) be the Cartan matrix of finite (resp. affine) type An−1

(resp. Ân−1).

Ĉ =



2 −1 0 · · · · · · 0 −1
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
−1 0 · · · · · · 0 −1 2


Definition 3.2. [10] Let λ ∈ C. The Yangian Yλ of finite type An−1 can also be defined as the algebra
generated by the elements X±i,r, Hi,r, i = 1, . . . , n− 1, r ∈ Z≥0, which satisfy the following relations :

[Hi,r, Hj,s] = 0, [Hi,0, X
±
j,s] = ±cijX±j,s, [X+

i,r, X
−
j,s] = δijHi,r+s (1)

[Hi,r+1, X
±
j,s]− [Hi,r, X

±
j,s+1] = ±λ

2
cij(Hi,rX

±
j,s +X±j,sHi,r) (2)

[X±i,r+1, X
±
j,s]− [X±i,r, X

±
j,s+1] = ±λ

2
cij(X

±
i,rX

±
j,s +X±j,sX

±
i,r) (3)
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∑
π∈Sm

[
X±i,rπ(1)

,
[
X±i,rπ(2)

, . . . , [X±i,rπ(m)
, X±j,s] . . .

]]
= 0 where m = 1− cij , r1, . . . , rm, s ∈ Z≥0 (4)

We will write X±i and Hi instead of X±i,0 and Hi,0. The set of roots of sln will be denoted ∆ = {αij |1 ≤ i 6=
j ≤ n} with choice of positive roots ∆+ = {αij |1 ≤ i < j ≤ n}. The longest positive root θ equals α1n. The
elementary matrices will be written Eij , so X+

i = Ei,i+1, X
−
i = Ei+1,i, Hi = Eii−Ei+1,i+1 for 1 ≤ i ≤ n−1.

We set Eθ = E1n, E−θ = En1. For α ∈ ∆+, X±α is the standard root vector of weight ±α and Xα = X+
α ; if

α ∈ ∆−, then X±α = X∓−α and Xα = X−−α. We may also write E+
k (resp. E−k ) for Ek,k+1 (resp. Ek+1,k), Eα

for the standard root vector of weight α ∈ ∆, Hθ for Enn − E11 and Hij for Eii − Ejj .

The isomorphism between the two definitions of Yλ is given by the formulas [10]:

J(X±i ) 7→ X±i,1 + λω±i where ω±i = ±1

4

∑
α∈∆+

(
[X±i , X

±
α ]X∓α +X∓α [X±i , X

±
α ]
)
− 1

4
(X±i Hi +HiX

±
i )

and

J(Hi) 7→ Hi,1 + λνi where νi =
1

4

∑
α∈∆+

(α, αi)(X
+
αX

−
α +X−αX

+
α )− 1

2
H2
i .

In view of these formulas, we will need the following notation to shorten certain expressions later: for any
algebra A and a1, a2 ∈ A, we write S(a1, a2) for a1a2 + a2a1.

Definition 3.3. Let λ, β ∈ C. The affine Yangian Ŷβ,λ of type Ân−1 is the algebra generated by X±i,r, Hi,r

for i = 0, . . . , n− 1, r ∈ Z≥0, which satisfy the relations of definition 3.2 for i, j ∈ {0, . . . , n− 1} except that
the relations (2),(3) must be modified for (i, j) = (1, 0) and (i, j) = (0, n− 1) in the following way:

[Hj,r+1, X
±
i,s]− [Hj,r, X

±
i,s+1] =

(
β − λ

2
∓ λ

2

)
X±i,sHj,r +

(
λ

2
∓ λ

2
− β

)
Hj,rX

±
i,s (5)

[Hi,r+1, X
±
j,s]− [Hi,r, X

±
j,s+1] =

(
β − λ

2
∓ λ

2

)
Hi,rX

±
j,s +

(
λ

2
∓ λ

2
− β

)
X±j,sHi,r (6)

[X±i,r+1, X
±
j,s]− [X±i,r, X

±
j,s+1] =

(
β − λ

2
∓ λ

2

)
X±i,rX

±
j,s +

(
λ

2
∓ λ

2
− β

)
X±j,sX

±
i,r (7)

Remark 3.1. It is a direct consequence of the definition of Ŷλ,β that [X±i,r, X
±
j,s] = 0 = [Hi,r, X

±
j,s] if

1 < |j − i| < n− 1. If β = λ
2 , relations (5)- (7) reduce to (2),(3). We should also note that Ŷβ1,λ1

∼= Ŷβ2,λ2

if β2 = γβ1 and λ2 = γλ1 for some γ 6= 0.

In [17], we considered instead the following algebra.

Definition 3.4. The loop Yangian LYλ,β is the quotient of Ŷλ,β by the ideal generated by the central element
H0,0 + . . .+Hn−1,0.

One useful observation is that the Yangian Yλ (resp. Ŷλ,β) is generated by X±i,r, Hi,r, i = 1, . . . , n− 1 (resp.
i = 0, . . . , n− 1) with r = 0, 1 only. The other elements are obtained inductively by the formulas:

X±i,r+1 = ±1

2
[Hi,1, X

±
i,r]−

λ

2
(HiX

±
i,r +X±i,rHi), Hi,r+1 = [X+

i,r, X
−
i,1]. (8)

Furthermore, the subalgebra generated by the elements with r = 0 is isomorphic to the enveloping algebra
of the Lie algebra sln (resp. ŝln[u], the universal central extension of sln[u±1]) and the subalgebra Y 0

λ,β

generated by the elements with i 6= 0 is an epimorphic image of Yλ. (Actually, the PBW theorem proved in

section 7 implies that Y 0
λ,β
∼= Yλ - see corollary 7.1.) Therefore, the affine Yangian Ŷβ,λ contains Yλ and a

copy of U(ŝln[u±1]), which together generate Ŷβ,λ.

In [17], the following lemma was proved.
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Lemma 3.1. It is possible to define an algebra automorphism ρ of Ŷλ,β by setting

ρ(Hi,r) =

r∑
s=0

(
r
s

)(
λ

2

)r−s
Hi−1,s, ρ(X±i,r) =

r∑
s=0

(
r
s

)(
λ

2

)r−s
X±i−1,s for i 6= 0, 1

ρ(Hi,r) =

r∑
s=0

(
r
s

)
βr−sHi−1,s, ρ(X±i,r) =

r∑
s=0

(
r
s

)
βr−sX±i−1,s for i = 0, 1

The following subalgebra of the affine Yangians will also be of interest in view of theorem 8.1 in [17].

Definition 3.5. Let λ, β ∈ C. We define Lλ,β to be the subalgebra of Ŷλ,β generated by the elements
X±i,r, Hi,r, X

+
0,r for 1 ≤ i ≤ n− 1, r ≥ 0 and by X−0,r for r ≥ 1.

We will denote by Kr(z) the element z⊗ur of sln[u±1] ⊂ ŝln[u±1] ⊂ Ŷλ,β . It was noted in [17] that, because

of the involution ι on Lλ,β (see proposition 8.1 in [17]), the subalgebra of Ŷλ,β generated by the elements
X±i,0, Hi,0 for 1 ≤ i ≤ n− 1 and by X−0,1 is isomorphic to U(sln[w]), so we can denote by Qr(z) the element

z ⊗ wr of this copy of sln[w] inside Ŷλ,β . In particular, K1(En1) = X+
0 and Q1(E1n) = X−0,1. We set

K(z) = K1(z),Q(z) = Q1(z).

In this paper, it will be important to have a simpler definition of the Yangians Yλ and Ŷλ,β - see proposition
3.1 below. We start with a series of lemmas.

Lemma 3.2. The Lie algebra sln[v] is isomorphic to the Lie algebra L generated by the elements X±i,r, Hi,r, 1 ≤
i ≤ n− 1, r = 0, 1, with the relations:

[Hi,r, Hj,s] = 0, r, s = 0 or 1 [Hi,0, X
±
j,s] = ±cijX±j,s, s = 0 or 1 (9)

[Hi,1, X
±
j,0] = [Hi,0, X

±
j,1], [X+

i,0, X
−
j,0] = δijHi,0, [X+

i,1, X
−
j,0] = [X+

i,0, X
−
j,1] = δijHi,1 (10)

[X±i,r, X
±
j,s] = 0 if 1 < |i− j| < n− 1, r, s = 0 or 1, [X±i,1, X

±
j,0] = [X±i,0, X

±
j,1] (11)[

X±i,r, [X
±
i,r, X

±
j,s]
]

= 0 if (r, s) = (0, 0), (0, 1) or (1, 0). (12)

For an arbitrary associative algebra A, sln(A) is defined as the derived Lie algebra [gln(A), gln(A)]. If A

is commutative, the kernel of the universal central extension ŝln(A) of sln(A) is isomorphic to Ω1(A)/dA,
the space of 1-form on the affine variety Spec(A) modulo the exact forms - see [21]. As vector spaces,

we can write ŝln(A) ∼= sln(A) ⊕ Ω1(A)/dA and, via this identification, the bracket on ŝln(A) is given by
[z1 ⊗ a1, z2 ⊗ a2] = [z1, z2] ⊗ a1 · a2 + (z1, z2)a2da1 where (·, ·) is the Killing form. We will be interested in
the cases A = C[u, v] and A = C[u±1, v], the case A = C[u±1, v±1] being treated in [25].

We can put a filtration on Ŷλ,β by giving X±i,r, Hi,r degree r. The associated graded ring gr(Ŷλ,β) is

an epimorphic image of U
(
ŝln[u±1, v]

)
. Indeed, if λ = β = 0, Ŷλ,β is exactly the enveloping algebra of

ŝln[u±1, v]: this can be proved in exactly the same way as proposition 3.5 in [25]. This means that we have a

map Ŷλ=0,β=0 −→ U(sln[u±1, v]) which we can restrict to Lλ=0,β=0 −→ U(sln[u±1, v]). Thus we see that the

subalgebra Lλ=0,β=0 is the enveloping algebra of a Lie algebra L̃ which is a central extension of sln[u,w] where

w = u−1v. Therefore, we also have a map ŝln[u,w] −→ L̃. The Lie algebra ŝln[u,w] can be identified with a

Lie subalgebra of ŝln[u±1, v] via sln[u,w] ↪→ sln[u, v],Ω1(C[u,w])/d(C[u,w]) ↪→ Ω1(C[u±1, v])/d(C[u±1, v]),

and, via this embedding, ŝln[u,w] becomes identified with L̃.

Lemma 3.3. The Lie algebra ŝln[u±1, v] is isomorphic to the algebra L̃ generated by X±i,r, Hi,r, 0 ≤ i ≤
n− 1, r = 0, 1 with the same relations as those for L in lemma 3.2 extended to 0 ≤ i, j ≤ n− 1.

Proof. This follows from lemma 3.2 by using the automorphism ρ in the case λ = β = 0.
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Lemma 3.4. [13] The Lie subalgebra b± of ŝln[u±1, v] generated by X±i,r, 0 ≤ i ≤ n− 1, r ≥ 0 is isomorphic
to the Lie algebra generated by these elements and satisfying only the relations

[X±i,r+1, X
±
j,s] = [X±i,r, X

±
j,s+1], ∀ i, j, [X±i,r, X

±
j,s] = 0 if 1 < |i− j| < n− 1 (13)

[X±i,r1 , [X
±
i,r2

, X±j,s]] = 0 if i− j ≡ ±1 mod n. (14)

The Lie algebra ŝln[u±1, v] is graded by giving the generators X±i,r, Hi,r degree r. We have a Lie algebra

monomorphism ŝln[u±1] −→ ŝln[u±1, v] and we can consider the weight space decomposition of ŝln[u±1, v]

with respect to d̂, the Cartan subalgebra of ŝln[u±1]. We denote by Wr
α the space of elements of ŝln[u±1, v]

of degree r and weight α ∈ d̂∗ and set Wα =
∑∞
r=0 Wr

α. One can prove, exactly as in [25], that Wr
α is

one-dimensional if r ≥ 0 and α is a real root and Wr
α = {0} if α 6= 0 and α is not a root of d̂. Consequently,

the kernel Ker of the epimorphism ŝln[u±1, v] � sln ⊗C C[u±1, v] is contained in ⊕k∈ZWkδ.

Lemma 3.5. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra k generated by X±i,r, Hi,r, 1 ≤ i ≤
n − 1, r ≥ 0 and X+

0,r, r ≥ 0, with the relations (1)-(7) in the case λ = β = 0, except those which involve

X−0,r, H0,r, r ≥ 0.

Proof. Let k± be the Lie subalgebra of k generated by X±i,r, r ≥ 0 with 0 ≤ i ≤ n − 1 in the “+” case and

1 ≤ i ≤ n−1 in the “-” case, and let k0 be the abelian Lie subalgebra generated by Hi,r, r ≥ 0, 1 ≤ i ≤ n−1.
It follows from the definition of k that k = k− + k0 + k+ and k+ ∼= b+ according to lemma 3.4. We have a
map f1 : k −→ ŝln[u, v] given by, for 1 ≤ i ≤ n− 1, r ≥ 0:

X+
i,r 7→ Ei,i+1 ⊗ vr, X−i,r 7→ Ei+1,i ⊗ vr, Hi,r 7→ (Eii − Ei+1,i+1)⊗ vr, X+

0,r 7→ En1 ⊗ uvr.

The kernel of the composite π ◦ f1 (where π : ŝln[u, v] −→ sln[u, v]) must be central because of the weight

space decomposition of k+ described above, so there exist also a map f2 : ŝln[u, v] −→ k. Since ŝln[u, v] and k

are perfect Lie algebras and f2◦f1, f1◦f2 are endomorphisms of k and ŝln[u, v], respectively, over the identity
map on sln[u, v], they must be equal to the identity according to the following well-known lemma.

Lemma 3.6. Let π : ĝ � g be a central extension of the Lie algebra g with ĝ perfect. If η : ĝ −→ ĝ is a Lie
endomorphism which induces the identity map on g, then η is the identity.

Lemma 3.7. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra t generated by X±i,r, Hi,r, 1 ≤ i ≤
n − 1, r = 0, 1 and X+

0,r, r = 0, 1 satisfying the relations (9)-(12) for 0 ≤ i ≤ n − 1 except those involving

X−0,r, H0,r, r = 0, 1.

Proof. We know from lemma 3.2 that the generators of t with 1 ≤ i ≤ n−1 generate a Lie subalgebra which
is an epimorphic image of sln[v], so we only have to check the relations in lemma 3.5 which involve X+

0,r. We

have elements X±i,r, Hi,r in t which are the images of X±i ⊗ vr, Hi ⊗ vr ∈ sln[v] under sln[v] −→ t.

Define inductively X+
0,r by X+

0,r = −[Hn−1,1, X
+
0,r−1]. Since [Hn−1,1, X

+
0,0] = [H1,1, X

+
0,0], we also have X+

0,r =

−[H1,1, X
+
0,r−1]. We have to verify the following relations:

1. [X+
0,r, X

−
i,s] = 0 ∀ 1 ≤ i ≤ n− 1,∀ r, s ≥ 0.

2. [X+
i,r, X

+
0,s] = 0 if i 6= 1, n− 1.

3. [X+
i,r+1, X

+
0,s] = [X+

i,r, X
+
0,s+1] if i = 1, n− 1, ∀ r, s ≥ 0.

4. [X+
0,r, X

+
0,s] = 0 ∀ r, s ≥ 0.
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5.
[
X+
i,r1

, [X+
i,r2

, X+
0,s]
]

= 0 if i = 1, n− 1.

1. If 2 ≤ i ≤ n− 2, X−i,s = 1
2s [Hi,1, [Hi,1, · · · , [Hi,1, X−i,0] · · · ]] and X−1,s = [H2,1, [H2,1, . . . , [H2,1, X

−
1,0] . . .]], X−n−1,s =

[Hn−2,1, [Hn−2,1, . . . , [Hn−2,1, X
−
n−1,0] . . .]].

Then [X+
0,0, X

−
i,s] = 0 since [Hi,1, X

+
0,0] for 2 ≤ i ≤ n− 2. The general case follows by induction on r.

2. The proof is the same as for (1), with X+
i,r = 1

2r [Hi,1, [Hi,1, . . . , [Hi,1, X
+
i,0] . . .]] (r times).

3. We use induction on r and prove it only for i = n− 1. Let us assume that the equality is true when r = 0
and for arbitrary s. Suppose that r ≥ 1.

[X+
n−1,r+1, X

+
0,s] =

1

2

[
[Hn−1,1, X

+
n−1,r], X

+
0,s

]
=

1

2

[
[Hn−1,1, X

+
0,s], X

+
n−1,r

]
+

1

2

[
Hn−1,1, [X

+
n−1,r, X

+
0,s]
]

= −1

2
[X+

0,s+1, X
+
n−1,r] +

1

2

[
Hn−1,1, [X

+
n−1,r−1, X

+
0,s+1]

]
=

1

2
[X+
n−1,r, X

+
0,s+1] + [X+

n−1,r, X
+
0,s+1]− 1

2
[X+
n−1,r−1, X

+
0,s+2] = [X+

n−1,r, X
+
0,s+1]

We are left to prove (3) when r = 0, s ≥ 0. We use induction on s and the identity X+
0,s+1 = −[H1,1, X

+
0,s].

Then we obtain

[X+
n−1,0, X

+
0,s+1] = −

[
H1,1, [X

+
n−1,0, X

+
0,s]
]

= −
[
H1,1, [X

+
n−1,1, X

+
0,s−1]

]
= [X+

n−1,1, X
+
0,s].

4. We proceed by induction on r + s. (By assumption, (4) holds for r + s = 0, 1.)

[X+
0,r, X

+
0,s] = −

[
[X+

0,r, Hn−1,1], X+
0,s−1

]
−
[
Hn−1,1, [X

+
0,r, X

+
0,s−1]

]
= −[X+

0,r+1, X
+
0,s−1].

Thus, [X+
0,r+1, X

+
0,s−1] = [X+

0,r−1, X
+
0,s+1]. If r+s is even, we get [X+

0,r+s, X
+
0,0] = [X+

0,0, X
+
0,s+r], so [X+

0,r+s, X
+
0,0] = 0

and [X+
0,r, X

+
0,s] = 0.

If r+ s is odd, we use (1) and (4) to deduce that [Hn−1,2, X
+
0,s−2] = −X+

0,s. Proceeding by induction on r+ s,
we obtain

[X+
0,r, X

+
0,s] = −

[
[X+

0,r, Hn−1,2], X0,s−2

]
−
[
Hn−1,2, [X

+
0,r, X

+
0,s−2]

]
= −[X+

0,r+2, X
+
0,s−2].

Therefore, supposing, without loss of generality, that r is odd and s is even, we obtain

[X+
0,r, X

+
0,s] = [X+

0,r+s, X
+
0,0] = −[X+

0,r+s−2, X
+
0,2] = [X0,r+s−3, X

+
0,3] = [X+

0,0, X
+
0,r+s].

Therefore, [X+
0,r+s, X

+
0,0] = 0 = [X+

0,r, X
+
0,s].

5. We write [X+
n−1,r1

, [X+
n−1,r2

, X+
0,s]] = [X+

n−1,0, [X
+
n−1,0, X

+
0,r1+r2+s]] using (4) and express X+

0,r1+r2+s as

X+
0,r1+r2+s = (−1)r1+r2+s[H1,1, [H1,1, . . . , [H1,1, X

+
0,0] . . .]] (H1,1 appears r1+r2+s times). Then [X+

n−1,0, H1,1] = 0
and the result follows from the case r1 = r2 = s = 0. The case i = 1 is identical.

We recall the following theorem established in [21].

Theorem 3.1. [21] Let A be an associative algebra over C. The universal central extension ŝln(A) of sln(A)
is the Lie algebra generated by elements Fij(a), 1 ≤ i 6= j ≤ n, a ∈ A, satisfying the following relations:

Fij(t1a1 + t2a2) = t1Fij(a1) + t2Fij(a2) t1, t2 ∈ C, a1, a2 ∈ A (15)

[Fij(a), Fjk(b)] = Fik(ab) if i 6= j 6= k 6= i (16)

[Fij(a), Fkl(b)] = 0 if i 6= j 6= k 6= l 6= i (17)
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We would like to give an equivalent definition of ŝln(C[u, v]). This will be useful in section 13.

Lemma 3.8. The universal central extension ŝln[u, v] can be defined as the Lie algebra S generated by
elements Kij(u), Qij(v) and Pij(w) with the following relations : there are Lie algebra homomorphisms
sln[u], sln[v], sln[w] −→ S, Eij ⊗ u,Eij ⊗ v,Eij ⊗w 7→ Kij(u), Qij(v), Pij(w), and we also have the relations

[Kij(u), Qjk(v)] = Pik(w) if i 6= j 6= k 6= i (18)

[Kij(u), Qkl(v)] = 0 = [Pij(w),Kkl(u)] = [Pij(w), Qkl(v)] if i 6= j 6= k 6= l 6= i (19)

Proof. We have a map S −→ ŝln[u, v] sending Kij(u) 7→ Fij(u), Qij(v) 7→ Fij(v), Pij(w) 7→ Fij(uv) in the

notation of theorem 3.1. On the other hand, ŝln[u, v] is isomorphic to the Lie algebra t (in lemma 3.7) and
we have a map t −→ S given by

X+
i,r 7→ Qi,i+1(vr), X−i,r 7→ Qi+1,i(v

r), Hi,r 7→ [Qi,i+1(vr), Qi+1,i(1)], r = 0, 1, 1 ≤ i ≤ n

X+
0,0 7→ Kn1(u), X+

0,1 7→ Pn1(w)

The composite of this map with S −→ ŝln[u, v] is the identify. Therefore, t −→ S is injective. From the
definitions, it is also surjective, hence an isomorphism.

We can now give two simpler definitions of the Yangians Yλ and Ŷλ,β .

Proposition 3.1. The Yangian Yλ (resp. Ŷλ,β) can be defined as the algebra Ỹλ (resp. Ỹλ,β) generated by
elements X±i,r, Hi,r, 1 ≤ i ≤ n − 1, r = 0, 1 (resp. 0 ≤ i ≤ n − 1) satisfying the same set of relations as in
definition 3.2 (resp. 3.3), except that r and s only take values in {0, 1}: more precisely, in relation (4), we
have r1 = r2 = r, (r, s) = (0, 0), (0, 1), (1, 0), whereas r = s = 0 in relations (2),(3) (resp. also in (5),(6),(7))
and r + s = 0, 1 in the rightmost relation in (1). As for [Hi,r, Hj,s] = 0, it must hold for r, s = 0 or 1.

Proof. We have an epimorphism Ỹλ � Yλ. Considering the associated graded map and using lemma 3.2, we
obtain a sequence of three maps U(sln[v]) � gr(Ỹλ) � gr(Yλ). The PBW property of Yλ (proved in [22])

says that the composite is an isomorphism. Therefore, gr(Ỹλ) � gr(Yλ) is injective and Ỹλ is isomorphic to
Yλ. The statement for the affine Yangian follows immediately from the finite case using the automorphism
ρ.

Another simpler definition of Yλ, which is also valid in the A1 case, was given in [23]. His definition follows
directly from the one given in proposition 3.1 (when n ≥ 4). Showing this amounts to proving that the

relation [Hi,1, [X
+
i,1, X

−
i,1]] = 0 holds in Ỹλ.

Later, we will also need a simpler definition of the Yangian Yλ which is closer to definition 3.1.

Lemma 3.9. The Yangian Yλ is isomorphic to the algebra Y λ generated by elements X
±
i , Hi for 1 ≤ i ≤ n−1

and by X
+,±
0 which satisfy the following relations: the elements with i 6= 0 satisfy the Serre relations for sln

and those with i = 0 satisfy:

[X
+

1 , [X
+

1 , X
+,−
0 ]] = 0 = [X

+,−
0 , [X

+,−
0 , X

+

1 ]] and the same with X
+

n−1, X
+,+

0 instead of X
+

1 , X
+,−
0 (20)

X
+,+

0 −X+,−
0 =

λ

2

∑
1≤i 6=j≤n−1

(
[En1, Eij ]Eji + Eji[En1, Eij ]

)
(21)

[X
+,±
0 , X

±
i ] = 0 = [X

+,±
0 , X

−
i ], i = 2, . . . , n− 2 (22)
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Proof. Starting from definition 3.1 of Yλ, we choose α1, . . . , αn−2, αn1 as a basis of simple roots for ∆ and
apply the Drinfeld isomorphism to J(En1) - see the formulas after definition 3.2. We obtain an element
of Yλ which we denote by X+,−

0 and which satisfies relations (20). The element X+,+
0 is defined similarly,

choosing this time α2, . . . , αn−1, αn1 as a basis of simple roots. Relations (21) and (22) follows from the
Drinfeld isomorphism.

The elements X±i , Hi, X
+,±
0 generate Yλ, so we have an epimorphism Y λ � Yλ. There are filtrations on both

algebras (X+,±
0 , X

+,±
0 are given degree 1) and, therefore, associated graded maps U(sln[v]) � gr(Y λ) �

gr(Yλ). The composite is an isomorphism because of the PBW property of Yλ [22]. Therefore, Y λ
∼−→ Yλ.

We can simplify even more the definitions of Yλ and Ŷλ,β given in proposition 3.1.

Lemma 3.10. The relations [X±i,1, [X
±
i , X

±
j ]]+[X±i , [X

±
i,1, X

±
j ]] = 0 and [X±i , [X

±
i , X

±
j,1]] = 0 in Ŷλ,β follow

from the relations (2)-(3),(5)-(7) with r = s = 0, (4) with r1 = r2 = s = 0 and the second relation in (1)
with s = 0 or 1.

Proof. We prove it in the + case with i = 1, j = 0, the other cases being similar. We apply [H2,1, ·] to
[X+

1 , [X
+
1 , X

+
0 ]] = 0 and obtain

−
[
X+

1,1, [X
+
1 , X

+
0 ]
]
−
[
X+

1 , [X
+
1,1, X

+
0 ]
]
− λ

2

[
S(H2, X

+
1 ), [X+

1 , X
+
0 ]
]
− λ

2

[
X+

1 , [S(H2, X
+
1 ), X+

0 ]
]

= 0.

This simplifies to [X+
1,1, [X

+
1 , X

+
0 ]] + [X+

1 , [X
+
1,1, X

+
0 ]] = 0. To obtain the relation [X+

1 , [X
+
1 , X

+
0,1]] = 0, we

apply instead [Hn−1,1, ·].

Lemma 3.11. The relation [X±i,1, [X
±
i,1, X

±
i−1]] = 0 follows from the other relations in proposition 3.1. (The

same is true for X±i,1, X
±
i+1.)

Proof. We prove [X+
0,1, [X

+
0,1, X

+
n−1]] = 0 only. From lemma 3.10, we know that

[
[X+

0 , X
+
n−1,1], X+

n−1

]
+[

[X+
0 , X

+
n−1], X+

n−1,1

]
= 0, so, applying [·, X−n−1], we obtain[

[X+
0 , Hn−1,1], X+

n−1

]
+
[
[X+

0 , Hn−1], X+
n−1,1

]
+
[
[X+

0 , X
+
n−1,1], Hn−1

]
+
[
[X+

0 , X
+
n−1], Hn−1,1

]
= 0,

hence [[X+
0 , Hn−1,1], X+

n−1]+[[X+
0 , X

+
n−1], Hn−1,1] = 0 and 2[[X+

0 , Hn−1,1], X+
n−1]+[X+

0 , [X
+
n−1, Hn−1,1]] = 0.

Writing [X+
n−1, Hn−1,1] = −2X+

n−1,1 − λ(X+
n−1Hn−1 +Hn−1X

+
n−1), we conclude that

[
[X+

0 , Hn−1,1], X+
n−1

]
= [X+

0 , X
+
n−1,1] +

λ

2
[X+

0 , X
+
n−1Hn−1 +Hn−1X

+
n−1]

We also need that
[
[X+

0 , H1,1], [X+
0 , X

+
n−1,1]

]
=
[
X+

0 ,
[
[X+

0 , H1,1], X+
n−1,1]

]]
=
[
X+

0 ,
[
[X+

0 , X
+
n−1,1], H1,1

]]
=[

[X+
0 , X

+
n−1,1], [X+

0 , H1,1]
]
. Comparing the first and last terms yields [[X+

0 , H1,1], [X+
0 , X

+
n−1,1]] = 0. There-

fore, [X+
0,1, [X

+
0,1, X

+
n−1]] equals

=
[
[X+

0 , H1,1],
[
[X+

0 , Hn−1,1], X+
n−1

]]
−
[
βX+

0 H1 + (λ− β)H1X
+
0 ,
[
[X+

0 , Hn−1,1], X+
n−1

]]
−
[
[X+

0 , H1,1], [(λ− β)X+
0 Hn−1 + βHn−1X

+
0 , X

+
n−1]

]
+
[
βX+

0 H1 + (λ− β)H1X
+
0 , [(λ− β)X+

0 Hn−1 + βHn−1X
+
0 , X

+
n−1]

]
which simplifies to

= −λ
2

(
S
([

[X+
0 , H1,1], X+

n−1

]
, X+

0

)
+ S

([
H1, [[X

+
0 , H1,1], X+

n−1]
]
, X+

0

))
(23)

−λ
2

(
S
(
H1,

[
X+

0 , [[X
+
0 , H1,1], X+

n−1]
]))

+
λ2

4

[
S(H1, X

+
0 ), S

(
[X+

0 , X
+
n−1], H1

)]
(24)
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The terms (23) cancel each other. Since

[X+
0 , [[X

+
0 , H1,1], X+

n−1]] = [[X+
0 , H1,1], [X+

0 , X
+
n−1]] = [X+

0 , [H1,1, [X
+
0 , X

+
n−1]]]

= [X+
0 , [[H1,1, X

+
0 ], X+

n−1]] = 0,

by comparing the first and last term, we see that the first expression in (24) is zero. Thus, [X+
0,1, [X

+
0,1, X

+
n−1]]

equals

=
λ2

4

(
X+

0

[
H1, [X

+
0 , X

+
n−1]

]
H1 + [X+

0 , X
+
n−1][X+

0 , H1]H1

)
+
λ2

4

(
[X+

0 , H1]H1[X+
0 , X

+
n−1]

+H1X
+
0

[
H1, [X

+
0 , X

+
n−1]

])
+
λ2

4

(
S
(
[H1, [X

+
0 , X

+
n−1]]X+

0 , H1

)
+ S

(
[X+

0 , X
+
n−1], H1[X+

0 , H1]
))

=
λ2

4

[
[X+

0 , X
+
n−1]H1, X

+
0

]
+
λ2

4

[
X+

0 , H1[X+
0 , X

+
n−1]

]
= 0

4 Cherednik algebras and Schur-Weyl duality

The definitions given in this section could be stated for any Weyl group W . However, in this paper, we will
be concerned only with the symmetric group Sl, so we will restrict our definitions to this case. We set h = Cl.
The symmetric group Sl acts on h by permuting the coordinates; associated to h are two polynomial algebras:
C[h] = Sym(h∗) = C[x1, . . . , xl] and C[h∗] = Sym(h) = C[y1, . . . , yl], where {x1, . . . , xl} and {y1, . . . , yl} are
dual bases of h∗ and h, respectively. For i 6= j, we set εij = xi−xj , ε∨ij = yi− yj , R = {εij |1 ≤ i 6= j ≤ l} and
R+ = {εij |1 ≤ i < j ≤ l}. The set S = {xi − xi+1|1 ≤ i ≤ l − 1} is a basis of simple roots. The reflection in
h with respect to the hyperplane ε = 0 (ε ∈ h∗) is denoted sε. Let 〈 , 〉 : h∗ × h→ C be the canonical pairing
and set sij = sεij .

Definition 4.1. [9] Let {u1, . . . , ul} be a basis of h. The degenerate affine Hecke algebra Hc(Sl) of type gll
is the algebra generated by the polynomial algebra C[u1, . . . , ul] and the group algebra C[Sl] with the relations

sε · u− sε(u) · sε = −c〈ε, u〉 ∀u ∈ h,∀ε ∈ S

The double affine Hecke algebra H introduced by I. Cherednik [5] admits degenerate versions: the trigono-

metric one and the rational one. The extended affine Weyl group is Ŝl = P o Sl where P is the lattice
⊕li=1Zxi ⊂ h∗, so its group algebra is C[Ŝl] = C[X±1

1 , . . . , X±1
l ]oSl. The group Ŝl is generated by sε ∀ε ∈ R

and by the element ℘ = x1s12s23 · · · sl−1,l.

Definition 4.2 (Cherednik). Let t, c ∈ C. The degenerate (trigonometric) double affine Hecke algebra of

type gll is the algebra Ht,c(Sl) generated by the group algebra of the extended affine Weyl group C[Ŝl] and
the polynomial algebra C[u1, . . . , ul] = Sym(h) subject to the following relations:

sε · u− sε(u) · sε = −c〈ε, u〉 ∀u ∈ h,∀ε ∈ S

℘ui = ui+1℘, 1 ≤ i ≤ l − 1, ℘ul = (u1 − t)℘

The rational version of the double affine Hecke algebra has been studied quite intensively in the past few
years (see, for example, [1],[15]) and is usually referred to as the rational Cherednik algebra.

Definition 4.3. Let t, c ∈ C. The rational Cherednik algebra Ht,c(Sl) of type gll is the algebra generated by
C[h],C[h∗] and C[Sl] subject to the following relations:

w · x · w−1 = w(x), w · y · w−1 = w(y), ∀x ∈ h∗, ∀y ∈ h

[y, x] = yx− xy = t〈y, x〉+ c
∑
ε∈R+

〈ε, y〉〈x, ε∨〉sε
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The elements Yi = 1
2 (xiyi + yixi) will be important later.

Proposition 4.1. The algebra Ht,c(Sl) can be defined as the algebra generated by elements X±1
1 , . . . , X±1

l ,
Y1, . . . ,Yl and Sl with the relations

w ·Xi · w−1 = Xw(i), w · Yi · w−1 = Yw(i), [Yj ,Yk] =
c2

4

l∑
i=1

i 6=j,k

(sjksik − skjsij)

YjXi −XiYj = tδijXi +
c

2

∑
ε∈R+

〈ε, yj〉〈xi, ε∨〉(Xisε + sεXi).

There exists an isomorphism Ht,c(Sl)
∼−→ C[x±1

1 , . . . , x±1
l ] ⊗C[h] Ht,c(Sl) which sends Yi to Yi and X±1

i to

x±1
i . We want to explain another connection between Ht,c(Sl) and Ht,c(Sl) which is true for Cherednik

algebras attached to any Weyl group. We can filter Ht,c(Sl) by giving Yj degree 1 and X±1
j , σ ∈ Sl degree

0. Let Ht,c(Sl) be the C[h]-subalgebra of Ht,c(Sl)⊗C C[h] generated by X±1
k , hYj , σ ∈ Sl, 1 ≤ j, k ≤ l. This

is the Rees ring of Ht,c(Sl) and Ht,c(Sl)/hHt,c(Sl) ∼= gr(Ht,c(Sl))
∼←− C[X±1

1 , . . . , X±1
l ,Y1, . . . ,Yl] o Sl.

Consider the composite

Ht,c(Sl) � Ht,c(Sl)/hHt,c(Sl)
∼−→ C[X±1

1 , . . . , X±1
l ,Y1, . . . ,Yl] o Sl � C[Y1, . . . ,Yl] o Sl,

where the last map is obtained by setting Xk = 1, 1 ≤ k ≤ l. Let K be the kernel of this composite and let
At,c(Sl) be the C[h]-subalgebra of Ht,c(Sl)⊗C C[h, h−1] generated by Ht,c(Sl) and K

h . The following lemma
is already known to others.

Lemma 4.1. The algebra At,c(Sl)/hAt,c(Sl) is isomorphic to Ht,c(Sl).

Definition 4.4 (Cherednik). Let q, κ ∈ C×. The double affine Hecke algebra Hq,κ(Sl) of type gll is the unital
associative algebra over C with generators T±1

i , X±1
j , Y ±j for i ∈ {1, . . . , l − 1} and j ∈ {1, . . . , l} satisfying

the following relations:
(Ti + 1)(Ti − q2) = 0, TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |i− j| > 1, X0Y1 = κY1X0, X2Y
−1
1 X−1

2 Y1 = q−2T 2
1

XiXj = XjXi, YiYj = YjYi, TiXiTi = q2Xi+1, T−1
i YiT

−1
i = q−2Yi+1,

XjTi = TiXj , YjTi = TiYj if j 6= i, i+ 1

where X0 = X1X2 · · ·Xl.

The trigonometric Cherednik algebra can be viewed as a limit (degenerate) version of the double affine
Hecke algebra (or elliptic Cherednik algebra). This is explained in [6]. It was proved by I. Cherednik that
the double affine Hecke algebra and its trigonometric degeneration are isomorphic after completion. His
proof relied on his theory of intertwiners. Here, we present a simpler construction of Ht,c(Sl) starting from

Hq,κ(Sl). The following lemma can be deduced from Cherednik’s result that Hq,κ(Sl)[[h]]
∼−→ Ht,c(Sl)[[h]],

but it is also possible to give a more elementary proof.

Lemma 4.2. Set q = e
c
2h,κ = eth. Let B be the C[[h]]-subalgebra of H(Sl)[[h]] ⊗C[[h]] C((h)) generated by

w ∈W,X±1
j ,

Y ±1
j −1

h , 1 ≤ j ≤ l. Then B/hB is isomorphic to Ht,c(Sl).

The Schur-Weyl duality established by M. Varagnolo and E. Vasserot [27] involves, on one side, a toroidal
quantum algebra (a quantized version of the enveloping algebra of the universal central extension of the
double loop algebra sln[u±1, v±]) and, on the other side, a double affine Hecke algebra for Sl. Theorem 4.2
(established in [17]) provides a similar type of duality between the trigonometric Cherednik algebra Ht,c(Sl)

and the loop Yangian LYλ,β (or Ŷλ,β), which extends the duality for the Yangian of finite type due to V.
Drinfeld [9].

Before stating the more classical results on the theme of Schur-Weyl duality, we have to define the notion of
module of level l over sln. Set V = Cn.
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Definition 4.5. A finite dimensional representation of sln is of level l if each of its irreducible components
is isomorphic to a direct summand of V ⊗l.

Theorem 4.1. [7, 9] Fix l ≥ 1, n ≥ 2. Let A be one of the algebras C[Sl], Hc(Sl), and let B be the
corresponding one among Usln, Yλ. There exists a functor F , which is given by F(M) = M ⊗C[Sl] V

⊗l, from
the category of finite dimensional right A-modules to the category of finite dimensional left B-modules which
are of level l as sln-modules. Furthermore, this functor is an equivalence of categories if l ≤ n− 1.

Definition 4.6. A module M over Ŷλ,β is called integrable if it is the direct sum of its integral weight spaces
under the action of d̂ and if each generator X±i,r acts locally nilpotently on M .

The following theorem was the principal result in [17]. It is analogous to the main theorem in [27].

Theorem 4.2. Suppose that l ≥ 1, n ≥ 3 and set λ = c, β = t
2 −

nc
4 + c

2 . The functor F : M 7→M ⊗C[Sl] V
⊗l

sends a right Ht,c(Sl)-module to an integrable left Ŷλ,β-module of level l (as sln-module) with trivial central

charge. Furthermore, if l+ 2 < n, this functor is an equivalence. The same is true if Ht,c(Sl) and Ŷλ,β are
replaced by Ht,c(Sl) and Lλ,β.

5 From quantum toroidal algebras to affine Yangians

The following definition is slightly different from the one used in [27].

Definition 5.1. Let q1, q2 ∈ C×. The toroidal quantum algebra Uq1,q2 of type An−1 is the unital associative
algebra over C with generators ei,r, fi,r, ki,r, k

−1
i,0 , i ∈ {0, . . . , n−1}, r ∈ Z, which satisfy the following relations:

[ki,r, kj,s] = 0 ∀i, j ∈ {0, . . . , n− 1},∀r, s ∈ Z (25)

ki,0ej,r = q
cij
1 ej,rki,0, ki,0fj,r = q

−cij
1 fj,rki,0, (q1 − q−1

1 )[ei,r, fj,s] = δij(k
+
i,r+s − k

−
i,r+s) (26)

(Here, k±i,r+s = ki,r+s if ±(r + s) ≥ 0 and = 0 otherwise.)

The next three relations hold ∀i, j ∈ {0, . . . , n− 1},∀r, s ∈ Z except for (i, j) = (n− 1, 0), (0, 1):

ki,r+1ej,s − q
cij
1 ki,rej,s+1 = q

cij
1 ej,ski,r+1 − ej,s+1ki,r (27)

ei,r+1ej,s − q
cij
1 ei,rej,s+1 = q

cij
1 ej,sei,r+1 − ej,s+1ei,r (28)

{ei,r1ei,r2ej,s − (q1 + q−1
1 )ei,r1ej,sei,r2 + ej,sei,r1ei,r2}+ {r1 ↔ r2} = 0 if i− j ≡ ±1 mod n− 1 (29)

The relations (27)-(29) hold with ei,r replaced by fi,r and q
cij
1 by q

−cij
1 .

In the cases (i, j) = (n− 1, 0), (0, 1), we must modify the relations (27)-(29) above in the following way: we
introduce a second parameter q2 in such a way that we obtain an algebra isomorphism Ψ of Uq1,q2 given by
ei,r, fi,r, ki,r 7→ qr1ei−1,r, q

r
1fi−1,r, q

r
1ki−1,r for 2 ≤ i ≤ n− 1 and ei,r, fi,r, ki,r 7→ qr2ei−1,r, q

r
2fi−1,r, q

r
2ki−1,r if

i = 0, 1. (We identify e−1,r with en−1,r, etc.) For instance, relation (28) for i = 0, j = 1 becomes

q2e0,r+1e1,s − e0,re1,s+1 = q−1
1 q2e1,se0,r+1 − q1e1,s+1e0,r,

and with i = n− 1, j = 0 we have a very similar identity:

q2en−1,r+1e0,s − en−1,re0,s+1 = q−1
1 q2e0,sen−1,r+1 − q1e0,s+1en−1,r.

The algebra Uq1,q2 can also be defined using pairwise commuting elements h̃i,r, 0 ≤ i ≤ n − 1, r ∈ Z \ {0},
instead of the ki,r, r 6= 0. They are related to the ki,r via the following equality of power series:

∑
r≥0

k±i,ru
±r = k±i,0 exp

±(q1 − q−1
1 )

∑
s≥1

h̃i,su
±s

 .
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They satisfy the relations [h̃i,r, ej,s] = 1
r
q
rcij
1 −q

−rcij
1

q1−q−1
1

ej,r+s, [h̃i,r, fj,s] = − 1
r
q
rcij
1 −q

−rcij
1

q1−q−1
1

fj,r+s, except when

(i, j) = (n− 1, 0), (0, 1), in which case they have to be slightly modified.

It is possible to view the Yangian Yλ as a limit version of the quantum affine algebra U̇q [11]. The same is true

for Ŷλ,β and Uq1,q2 . Let U[[h]] be the completed algebra over C[[h]] with parameters q1 = e
λ
2 h, q2 = eβh and

ki,0 = exp(hλ2 h̃i,0), where h̃i,0 satisfies: [h̃i,0, ej,r] = cijej,r, [h̃i,0, fj,r] = −cijfj,r. Let U̇ver be the subalgebra

of Uq1,q2 generated by the elements ei,r, fi,r, ki,r, k
−1
i,0 with i 6= 0 and let U̇hor be the one generated by the

elements with r = 0. Consider the kernel K of the map U[[h]] −→ U(ŝln) which is the composite of the map

obtained by setting h = 0 and the one sending Uh=0 to U(ŝln) = U̇horh=0. Let A be the C[[h]]-subalgebra of
U[[h]]⊗C[[h]] C((h)) generated by U[[h]] and K

h .

Proposition 5.1. The quotient A/hA is isomorphic to Ŷλ,β.

Proof. To see this, let A be the subalgebra of A generated by U̇ver and K∩U̇ver
h . Since U̇ver is a quotient

of the quantum loop algebra U̇q1 , A/hA is a quotient of the Yangian Yλ (see [11]), that is, we have an
epimorphism ζ : Yλ −→ A/hA. The automorphism Ψ of U[[h]] induces an automorphism, also denoted Ψ,

on A. It is related to the automorphism ρ of Ŷλ,β in the following way for 2 ≤ i ≤ n− 1:

Ψ(ζ(X±i,r)) = ζ(ρ(X±i,r)), Ψ(ζ(Hi,r)) = ζ(ρ(Hi,r))

Ψ2(ζ(X±1,r)) = ζ(ρ2(X±1,r)), Ψ2(ζ(H1,r)) = ζ(ρ2(H1,r))

From these relations, one sees that it is possible to extend ζ to Ŷλ,β by setting ζ(X±0,r) = Ψ(ζ(ρ−1(X±0,r)))

and similarly for H0,r. This extension ζ : Ŷλ,β −→ A/hA is surjective and we are left to show that it is
injective.

The Schur-Weyl duality functor constructed in [27] can be extended to U[[h]] and H[[h]]. Applying it to H[[h]]
as a right module over itself, we obtain an algebra homomorphism Φ : U[[h]] −→ EndC

(
(H ⊗H V ⊗l)[[h]]

)
.

We can extend it to U⊗C[[h]] C((h)) and restrict it to A, which yields Φ : A −→ EndC
(
(H⊗H V ⊗l)[[h]]⊗C[[h]]

C((h))
)
. It is known (see [6]) that H[[h]] is isomorphic to H[[h]] (see section 4 for the values of q, κ, t, c);

using such an isomorphism or lemma 4.2, we see that Φ descends to Φ : A/hA −→ EndC(H ⊗C[Sl] V
⊗l).

The composite Φ ◦ ζ is exactly the map υ obtained by applying the Schur-Weyl functor to H viewed as
a right module over itself. From corollary 7.2, we know that, given X ∈ Ŷλ,β with X not a multiple of

H0,0 + · · ·+Hn−1,0, there exists l� 0 such that Φ ◦ ζ(X) 6= 0. This implies that ζ : Ŷλ,β −→ A/hA is also
injective, hence an isomorphism when β 6= nλ

4 + λ
2 . It then follows that it must be an isomorphism for any

λ, β.

6 Specialization at λ = 0 of Ŷλ,β and Lλ,β

We can obtain results analogous to theorem 13.1 in [28]. In this section, we will assume that β 6= 0.

Definition 6.1. Let s̃ln,β be the complex Lie algebra generated by the elements x±i,r, hi,r where i = 0, 1, . . . , n−
1 and r ∈ Z≥0 and defined by the relations:

[hi,r, hj,s] = 0, [hi,r, x
±
j,s] = ±cijx±j,r+s if i 6= 0 or i = r = 0

[x+
i,r, x

−
j,s] = δijhi,r+s, [x±i,r+1, x

±
j,s] = [x±i,r, x

±
j,s+1] except if (i, j) = (1, 0) or (0, n− 1)

[x±i,r, x
±
j,s] = 0 if 1 < |i− j| < n− 1
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∑
π∈Sm

[
x±i,rπ(1)

,
[
x±i,rπ(2)

, . . . , [x±i,rπ(m)
, x±j,s]

]]
= 0 where m = 1− cij , r1, . . . , rm, s ∈ Z≥0

The next two relations hold if (i, j) = (1, 0) and (i, j) = (0, n− 1).

[x±i,r+1, x
±
j,s]− [x±i,r, x

±
j,s+1] = β[x±i,r, x

±
j,s]

[h±i,r+1, x
±
j,s]− [h±i,r, x

±
j,s+1] = β[h±i,r, x

±
j,s].

Definition 6.2. Let sln,β be the Lie subalgebra of s̃ln,β generated by the elements x±i,r, hi,r where r ∈ Z≥0 if

i 6= 0, x+
0,r, r ≥ 0 and x−0,r, r ≥ 1.

The algebra Ŷλ=0β (resp. Lλ=0,β) is the universal enveloping algebra of the Lie algebra s̃ln,β (resp. sln,β).

Definition 6.3. We denote by Aβ (resp. Aβ) the algebra generated by the elements X,X−1 and ∂ (resp. x
and d) which satisfy the relation ∂ ·X −X · ∂ = 2βX (resp. d · x− x · d = 2β).

Remark 6.1. If β1 6= 0 and β2 6= 0, the algebras Aβ1
and Aβ2

(resp. Aβ1
and Aβ2

) are isomorphic. When
β = 1

2 , Aβ (resp. Aβ) is exactly the ring of algebraic differential operators on C× (resp. on the affine line C).

We have an embedding Aβ ↪→ Aβ given by x 7→ X and d 7→ (∂+β)X−1; moreover C[x, x−1]⊗C[x]Aβ
∼−→ Aβ.

The Lie algebra sln(Aβ) is defined as the subspace of matrices in gln(Aβ) with trace in [Aβ ,Aβ ], so we have
the decomposition:

sln(C)⊗C Aβ + d([Aβ ,Aβ ])
∼−→ sln(Aβ)

where d([Aβ ,Aβ ]) is the subspace of gln(Aβ) of diagonal matrices with coefficients in [Aβ ,Aβ ]. All of
this holds when Aβ is replaced by Aβ . Note that [Aβ ,Aβ ] = Aβ if β 6= 0, which follows from the easier
observation that Aβ = [Aβ ,Aβ ]. The embedding Aβ ↪→ Aβ induces sln(Aβ) ↪→ sln(Aβ).

Our main results in this section are the next two propositions.

Proposition 6.1 ([28]). The Lie algebra s̃ln,β is isomorphic to the universal central extension of sln(Aβ).
Its center is spanned by h0 + . . .+ hn−1.

Proposition 6.2. The Lie algebra sln,β is isomorphic to sln(Aβ).

Remark 6.2. When β = 1
2 , the universal central extension of sln(Aβ) is sometimes called the matrix W1+∞-

algebra. The Lie algebra sln(Aβ) has no non-trivial central extension since the first cyclic homology group
HC1(Aβ) is trivial. This is a consequence of a result in [21] which states that H2(sln(A);C) ∼= HC1(A) for
an arbitrary associative C-algebra A and the fact that the kernel of the universal central extension of sln(A)
is H2(sln(A);C) [30]. On the other hand, it is known that dimCHC1(Aβ) = 1.

Proposition 6.1 can be proved using theorem 13.1 in [28] and the connection given in section 5 between

Uq1,q2 and Ŷλ,β . We could also give a direct proof which would be very similar to the proof of that theorem.
Explicitly, an isomorphism τ is given by:

hi,r 7→ (−1)r(Eii − Ei+1,i+1)⊗ ∂r, x+
i,r 7→ (−1)rEi,i+1 ⊗ ∂r, x−i,r 7→ (−1)rEi+1,i ⊗ ∂r for i 6= 0

τ(x+
0,r) 7→ (−1)rE−θ ⊗X(∂ + β)r, τ(x−0,r) 7→ (−1)rEθ ⊗ (∂ + β)rX−1

τ(h0,r) 7→ Enn ⊗ (β − ∂)r − (−1)rE11 ⊗ (β + ∂)r.

Proof of proposition 6.2. Since τ(x−0,1) = −E1n ⊗ (∂ + β)rX−1, we see that τ(sln,β) ⊂ sln(Aβ). (See remark
6.1.) That we have an equality can be checked as in the proof in [28] of theorem 6.1. Furthermore, ker(τ) ∩
sln,β = {0} according to proposition 6.1, so τ |sln,β is an isomorphism.
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7 PBW bases for affine Yangians

The Poincaré-Birkhoff-Witt decomposition of the enveloping algebra of a Lie algebra provides a nice vector
space basis and is of fundamental importance in Lie theory. In this section, we obtain a similar result for
Ŷλ,β and, consequently, for Lλ,β . For Yangians of finite type, the existence of such a basis was proved in

[22]. In this section, we fix λ, β ∈ C, set c = λ, t = 2β + nλ
2 − λ and abbreviate Ŷλ,β , Lλ,β ,Ht,c(Sl),Ht,c(Sl)

by Ŷ, L,H,H, respectively.

We recall that we can define a filtration on Ŷ and L in the following way: we give X±j,r and Hj,r degree

r and define Fi(Ŷ) as the linear span of the monomials in these generators of total degree ≤ i. We set

Fi(L) = L∩Fi(Ŷ). We can filter H by giving X±1
i , w ∈ Sl degree 0 and Yj degree 1. This induces a filtration

on Vl = H⊗C[Sl] V
⊗l, the elements of V ⊗l having degree 0.

We need to fix some notation concerning the root system of ŝln[u±1]. We denote by ∆ = {αij |1 ≤ i 6=
j ≤ n} ⊂ d∗ the root system of sln with choice of simple roots Π = {αi = αi,i+1, 1 ≤ i ≤ n − 1} and by

∆̂ ⊂ d∗⊕Cδ the root system of type Ân−1, which is given by ∆̂ = ∆̂re∪ ∆̂im, the set of real roots ∆̂re being

{α+ sδ|α ∈ ∆, s ∈ Z} and the set of imaginary roots ∆̂im = {sδ|s ∈ Z \ {0}} (see the notation in [20]). The

set of positive roots is ∆̂+ = {α = α + sδ|α ∈ ∆, s ∈ Z>0 or s = 0, α ∈ ∆+} ∪ {sδ|s ∈ Z>0}. The standard

root vector of ŝln[u±1] corresponding to αij + sδ is Eij ⊗ us and {Hi ⊗ us|1 ≤ i ≤ n − 1, s 6= 0} is a basis

of the root space of ŝl[u±1]n for the imaginary root sδ. The simple roots for ∆̂ are Π̂ = {α0, α1, . . . , αn−1}
where α0 = −α1n + δ.

Let α = αi1 +αi2 + . . .+αip = α+ sδ ∈ ∆̂re,+ = ∆̂re ∩ ∆̂+, αij ∈ Π̂, α ∈ ∆, be a decomposition of a positive

real root α into a sum of simple roots such that X±α = [X±i1 , [X
±
i2
, · · · , [X±ip−1

, X±ip ] · · · ]] is a (non-zero) root

vector of ŝln[u±1] of weight ±α. Writing r = r1 + . . .+ rp as a sum of non-negative integers, we set

X±α,r =
[
X±i1,r1 ,

[
X±i2,r2 , · · · , [X

±
ip−1,rp−1

, X±ip,rp ] · · ·
]]
, H±α,r = ±[X±α,r, X

∓
α,0] if α ∈ ∆+ (30)

We may also write Xα,r for X+
α,r if α ∈ ∆̂+ and set Xα,r = X−−α,r if α ∈ ∆̂−.

One important property of the module structure on Vl is contained in the following two lemmas.

Lemma 7.1. Let h ⊗ v ∈ Fd(Vl),h ∈ Fd(H),v ∈ V ⊗l. For 1 ≤ i ≤ n − 1, X±i,r(h ⊗ v) =
∑l
k=1 hYrk ⊗

X
±(k)
i (v) + κ where κ ∈ Fd+r−1(Vl) - similarly for H±i,r with X

±(k)
i replaced by H

(k)
i . We have also

X±0,r(h⊗v) =
∑l
k=1 hYrkX

±1
k ⊗E

(k)
∓θ (v) + κ where κ ∈ Fd+r−1(Vl), and the same for H0,r with E∓θ replace

by Hθ, but without X±1
k .

Proof. We proceed by induction on r. First, assume that i 6= 0. The statement of the lemma is clearly true
for r = 0, 1 (see the definition of F in [17]). For the inductive step, we use equation (8).

X±i,r+1(h⊗ v) = ±1

2

l∑
k=1

[J(Hi),Yrk ⊗X
±(k)
i ](h⊗ v) + κ = ±1

2

l∑
j,k=1

[Yj ⊗H(j)
i ,Yrk ⊗X

±(k)
i ](h⊗ v) + κ

= ±1

2

l∑
k=1

hYr+1
k ⊗ [Hi, X

±
i ](k)(v) + κ′ =

l∑
k=1

hYr+1
k ⊗X±(k)

i (v) + κ′

where κ, κ′ ∈ Fr+d(Vl).

We consider now the case i = 0. The lemma is true if r = 0 and also if r = 1 (see section 7 in [17]). We use
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again induction, relation (8) and the fact that (H0,1 − J(Hθ))(h⊗ v) ∈ Fd(Vl) - see [17].

X±0,r+1(h⊗ v) = ±1

2

l∑
k=1

[J(Hθ),YrkX±1
k ⊗ E

(k)
∓θ ](h⊗ v) + κ

= ±1

2

l∑
k=1

hYrkX±1
k Yk ⊗ (HθE∓θ)

(k)(v)∓ 1

2

l∑
k=1

hYkYrkX±1
k ⊗ (E∓θHθ)

(k)(v) + κ′

=

l∑
k=1

hYr+1
k X±1

k ⊗ E
(k)
∓θ (v) + κ′′ where κ′′ ∈ Fr+d(Vl)

since hYrk [X±1
k ,Yk]⊗ (HθE∓θ)

(k)(v) ∈ Fr+d(Vl). The result for Hi,r follows from Hi,r = [X+
i,r, X

−
i ].

Lemma 7.2. Let h⊗ v ∈ Fd(Vl),h ∈ Fd(H), v ∈ V⊗l and α ∈ ∆̂re,+. If α = α + sδ, then X±α,r(h⊗ v) =∑l
k=1 hYrkX

±s
k ⊗X

±(k)
α (v) + κ where κ ∈ Fd+r−1(Vl) - similarly for H±α,r (if α ∈ ∆+) with X±α replaced by

Hα.

Proof. We use induction on p (see equation (30)), the case p = 1 being the content of lemma 7.1. We prove
the case s = 0 first. Set X±α̃ = [X±i2 , [X

±
i3
, · · · , [X±ip−1

, X±ip ]] · · · ]. For certain κ, κ′, κ′′ ∈ Fd+r−1(Vl),

X±α,r(h⊗ v) =

l∑
k=1

[X±i1,r1 ,Y
r−r1
k ⊗X±(k)

α̃ ](h⊗ v) + κ

=

l∑
k=1

hYrk ⊗ [X
±(k)
i1

, X
±(k)
α̃ ](v) +

l∑
k=1

h[Yr−r1k ,Yr1k ]⊗X±(k)
α̃ X

±(k)
i1

(v) + κ′

=

l∑
k=1

hYrk ⊗X±(k)
α (h⊗ v) + κ′′

We consider now the case s > 0. We will assume that i1 = 0, the case i1 6= 0 being similar. As above, we
write [X±i2 , [X

±
i3
, · · · , [X±ip−1

, X±ip ]] · · · ] = X±α̃ where α̃ = α̃ + (s − 1)δ, so that α = α̃ + α0 = α̃ + (−θ) + sδ

and α̃ ∈ ∆+. With this notation, we have X±α = [E∓θ, X
±
α̃

].

X±α,r(h⊗ v) =

l∑
k=1

[Yr1k X
±1
k ⊗ E

(k)
∓θ ,Y

r−r1
k X

±(s−1)
k ⊗X±(k)

α̃
](h⊗ v) + κ′

=

l∑
k=1

hYrkX±sk ⊗ (E∓θX
±
α̃

)(k)(v)−
l∑

k=1

hYrkX±sk ⊗ (X±
α̃
E∓θ)

(k)(v) + κ′′

=

l∑
k=1

hYrkX±sk ⊗X
±(k)
α (v) + κ′′

The result for H±α,r follows immediately.

We need to construct elements in Ŷ which specialize to central elements of ŝln[u±1, v] when λ = β = 0.

Recall that the center of ŝln[u±1, v] is isomorphic to Ω1(C[u±1, v])/d(C[u±1, v]). A basis for this space is
{usvrdu|s ∈ Z, r ≥ 1} ∪ {u−1du}.
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It is possible to define elements Jr(z) ∈ Yλ (with J1(z) = J(z)) for any r ≥ 1 with the following properties:
Jr(E

±
i ) − X±i,r ∈ Fr−1(Yλ) and they act on F(H) by Jr(z)(h ⊗ v) =

∑
k=1 hYrk ⊗ z(k)(v) + κ where

κ ∈ Fr+d−2(Vl) if h ∈ Fd(H).

For r ≥ 1, s 6= 0, 1 ≤ i ≤ n − 1, set Ci,r,s = 1
2 [Ks(Hi), Jr(Hi)]. For h ∈ Fd(H), there exists an element

κ ∈ Fd+r−2(Vl) such that:

Ci,r,s(h⊗ v) =
1

2

l∑
k=1

h[Yrk , Xs
k]⊗ (Eii + Ei+1,i+1)(k)(v) +

1

2

∑
j 6=k

h[Yrj , Xs
k]⊗H(j)

i H
(k)
i (v) + κ

=
1

2

l∑
k=1

s−1∑
a=0

r−1∑
b=0

hYbkXa
k [Yk, Xk]Xs−a−1

k Yr−b−1
k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
1

2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hYbjXa
k [Yj , Xk]Xs−a−1

k Yr−b−1
j ⊗H(k)

i H
(j)
i (v) + κ

=
trs

2

l∑
k=1

hYr−1
k Xs

k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
c

4

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hYbkXa
k (Xk +Xj)X

s−a−1
j Yr−b−1

j ⊗

(
n∑
d=1

(E
(k)
di E

(j)
id + E

(k)
d,i+1E

(j)
i+1,d)

)
(v)

− c
4

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hYr−b−1
k Xa

k (Xk +Xj)X
s−a−1
j Ybj ⊗ (E

(j)
ii E

(k)
ii + E

(j)
i+1,i+1E

(k)
i+1,i+1

−E(j)
i,i+1E

(k)
i+1,i − E

(j)
i+1,iE

(k)
i,i+1)(v) + κ′ where κ′ ∈ Fd+r−2(Vl)

=
trs

2

l∑
k=1

hYr−1
k Xs

k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
c

8

s−1∑
a=0

r−1∑
b=0

( n∑
d=1,d6=i,i+1

(
S(Xαid+(s−a−1)δ,r−b−1, Xαdi+(a+1)δ,b) + S(Xαid+(s−a)δ,r−b−1, Xαdi+aδ,b)(31)

+S(Xαi+1,d+(s−a−1)δ,r−b−1, Xαd,i+1+(a+1)δ,b) + S(Xαi+1,d+(s−a)δ,r−b−1, Xαd,i+1+aδ,b)
)

(32)

+4S(Xαi+1,i+(a+1)δ,r−b−1, Xαi,i+1+(s−a−1)δ,b) + 4S(Xαi+1,i+(s−a)δ,b, Xαi,i+1+aδ,r−b−1)
)

(h⊗ v) (33)

− c
4

l∑
k=1

s−1∑
a=0

r−1∑
b=0

hYr−1
k Xs

k ⊗
( n∑

d=1

d 6=i,i+1

(Edd + Eii + Edd + Ei+1,i+1) + 4Eii + 4Ei+1,i+1

)(k)

(v) + κ′′

where κ′′ ∈ Fd+r−2(Vl).

Set Ci,r,s = Ci,r,s − (31)′ − (32)′ − (33)′ where (33)′ is the expression on line (33) without h⊗ v, etc., and
set Cr,s =

∑n
i=1 Ci,r,s. (When i = n,Ed,i+1 = Ed1, etc.) The element Cr,s acts on Vl by

Cr,s(h⊗ v) = rs(t− cn)

l∑
k=1

hYr−1
k Xs

k ⊗ v + κ where κ ∈ Fd+r−2(Vl).

We still have to define elements Cr,0 which correspond to u−1vrdu ∈ ŝln[u±1, v] when λ = β = 0. We would

like to define elements J̃r(z) ∈ Fr(Ŷ) for z ∈ sln which act on Vl in the following way: (h ∈ Fd(H))

J̃r(z)(h⊗ v) =
1

2

l∑
j=1

hS(Xj ,Yrj )⊗ z(j)(v) + κ
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where κ ∈ Fd+r−2(Vl). When r = 0, J̃r(z) = K1(z). For r = 1, see section 7 in [17]. Let us assume that
r ≥ 1 in the following series of computations leading to the definition of Cr,0.

Consider the element 1
2 [Jr(Hde),K1(Ede)] ∈ Ŷ where Hde = Edd − Eee. Then 1

2 [Jr(Hde),K1(Ede)](h ⊗ v)
is equal to: (h ∈ Fd(H))

=
1

2

l∑
j=1

l∑
k=1

k 6=j

h[Xk,Yrj ]⊗H(j)
de E

(k)
de (v) +

1

2

l∑
j=1

hS(Xj ,Yrj )⊗ E(j)
de (v) + κ, κ ∈ Fd+r−2(Vl)

=
1

2

∑
j 6=k

r−1∑
a=0

hYaj [Xk,Yj ]Yr−a−1
j ⊗H(j)

de E
(k)
de (v) +

1

2

l∑
j=1

hS(Xj ,Yrj )⊗ E(j)
de (v) + κ

=
λ

4

∑
j 6=k

r−1∑
a=0

h

((
S(Yaj , Xj)

2

)
Yr−a−1
k + Yaj

(
S(Xk,Yr−1−a

k )

2

))
⊗ (E

(j)
dd E

(k)
de − E

(j)
de E

(k)
ee )(v)

+
1

2

l∑
j=1

hS(Xj ,Yrj )⊗ E(j)
de (v) + κ′ where κ′ ∈ Fd+r−2(Vl)

=
1

2

l∑
j=1

hS(Xj ,Yrj )⊗ E(j)
de (v) +

λ

8

r−1∑
a=0

(
S(Jr−a−1(Ede), J̃a(Hde))

+S(Ja(Hde), J̃r−a−1(Ede))
)
(h⊗ v) + κ′′

Set

J̃r(Ede) =
1

2
[Jr(Hde),K1(Ede)]−

λ

8

r−1∑
a=0

(
S(Jr−a−1(Ede), J̃a(Hde)) + S(Ja(Hde), J̃r−a−1(Ede))

)
and Ci,r,0 = [J̃r(Hi),K−1(Hi)] where J̃r(Hi) = [Ei,i+1, J̃r(Ei+1,i)]. Then

Ci,r,0(h⊗ v) =
1

2

l∑
k=1

h

(
X−1
k

(
S(Xk,Yrk)

2

)
−
(
S(Xk,Yrk)

2

)
X−1
k

)
⊗ (Eii + Ei+1,i+1)(k)(v)

+
∑
j 6=k

h

[
X−1
k ,

S(Xj ,Yrj )

2

]
⊗H(j)

i H
(k)
i (v) + κ where κ ∈ Fd+r−2(Vl)

=
1

4

l∑
k=1

h
(
[X−1

k ,Yrk ]Xk −Xk[Yrk , X−1
k ]
)
⊗ (Eii + Ei+1,i+1)(k)(v)

+
1

2

∑
j 6=k

h

[
X−1
k ,

S(Xj ,Yrj )

2

]
⊗H(j)

i H
(k)
i (v) + κ

=
1

4

l∑
k=1

r−1∑
a=0

hS
(
Yak
(
tX−1

k +
c

2

∑
j 6=k

(X−1
k +X−1

j )sjk
)
Yr−a−1
k , Xk

)
⊗ (Eii + Ei+1,i+1)(k)(v)

− c
8

∑
j 6=k

r−1∑
a=0

hS(Xj ,Yaj (X−1
k +X−1

j )sjkYr−a−1
j )⊗H(j)

i H
(k)
i (v) + κ

=
tr

2

l∑
k=1

hYr−1
k ⊗ (Eii + Ei+1,i+1)(k)(v) +

c

8

l∑
k=1

r−1∑
a=0

∑
j 6=k

h
(
Yak (X−1

k +X−1
j )Yr−a−1

j Xj

+XkYak (X−1
k +X−1

j )Yr−a−1
j

)
⊗

(
n∑
d=1

(
E

(k)
di E

(j)
id + E

(j)
d,i+1E

(k)
i+1,d

))
(v)
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− c
8

∑
j 6=k

r−1∑
a=0

h
(
XjYaj (X−1

k +X−1
j )Yr−a−1

k + Yaj (X−1
k +X−1

j )Yr−a−1
k Xk

)
⊗

(
E

(j)
ii E

(k)
ii + E

(j)
i+1,i+1E

(k)
i+1,i+1 − E

(j)
i,i+1E

(k)
i+1,i − E

(j)
i+1,iE

(k)
i,i+1

)
(v) + κ′, κ′ ∈ Fd+r−2(Vl)

=
tr

2

l∑
k=1

hYr−1
k ⊗ (Eii + Ei+1,i+1)(k)(v) +

c

8

∑
j 6=k

r−1∑
a=0

h(YakX−1
k Y

r−a−1
j Xj + 2YakYr−a−1

j

+YakXkYr−1−a
j X−1

j )⊗

 n∑
d=1,d6=i

E
(k)
di E

(j)
id +

n∑
d=1,d 6=i+1

E
(j)
d,i+1E

(k)
i+1,d

 (v)

+
c

8

∑
j 6=k

r−1∑
a=0

h(YakXkYr−a−1
j X−1

j + 2YakYr−a−1
j + YakX−1

k Y
r−a−1
j Xj)⊗ (E

(j)
i+1,iE

(k)
i,i+1

+E
(j)
i,i+1E

(k)
i+1,i)(v) + κ′′

=
tr

2

l∑
k=1

hYr−1
k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
c

16

r−1∑
a=0

( n∑
d=1

d6=i,i+1

(
S(Xαid−δ,r−1−a, Xαdi+δ,a) + 2S(Xαdi,a, Xαid,r−a−1) (34)

+S(Xαid+δ,r−a−1, Xαdi−δ,a) + S(Xαi+1,d−δ,r−1−a, Xαd,i+1+δ,a) + 2S(Xαi+1,d,r−a−1, Xαd,i+1,a) (35)

+S(Xαi+1,d+δ,r−a−1, Xαd,i+1−δ,a)
)

+ 4
(
S(Xαi+1,i−δ,r−1−a, Xαi,i+1+δ,a) (36)

+2S(Xαi+1,i,r−a−1, Xαi,i+1,a) + S(Xαi+1,i+δ,r−a−1, Xαi,i+1−δ,a)
))

(h⊗ v) (37)

−cr
4

l∑
k=1

hYr−1
k ⊗

 n∑
d=1

d6=i,i+1

(Edd + Eii) +

n∑
d=1

d6=i,i+1

(Edd + Ei+1,i+1) + 4Eii + 4Ei+1,i+1


(k)

(v) + κ′′′

Set Ci,r,0 = Ci,r,0− (34)′− (35)′− (36)′− (37)′ where (37)′ is the expression on line (37) but without h⊗v,
set Cr,0 =

∑n
i=1 Ci,r,0 and C0,0 = H0 +H1 + . . .+Hn−1. The element Cr,0 acts on Vl by

Cr,0(h⊗ v) = r(t− cn)

l∑
k=1

hYr−1
k ⊗ v + κ where κ ∈ Fd+r−2(Vl),h ∈ Fd(H).

We now have all the elements that we need to construct a PBW basis for Ŷ. Set B = {X±α,r, H±i,s,r, Hi,0,r|α ∈
∆̂re,+, r ∈ Z≥0, s ∈ Z>0, 1 ≤ i ≤ n− 1}∪{Cr,s|r ∈ Z≥1, s ∈ Z \ {0} or s = 0, r ≥ 0} where H±i,s,r = H±αi+sδ,r.

We need a total ordering on the set B. For instance, we could choose the following one: X−α1,r1
< H−α2,r2

<

Hj,0,r5 < H+
α3,r3

< X+
α4,r4

< Cr,s for any αi ∈ ∆̂+, i = 1, . . . , 4, ri ∈ Z≥0, i = 1, . . . , 5, (r, s) ∈ Z≥1 ×Z \ {0} ∪
Z≥0 × {0}; X±α1,r1

< X±α2,r2
, H±α1,r1

< H±α2,r2
, Cr1,s1 < Cr2,s2 , Hj1,0,r1 < Hj2,0,r2 if r1 < r2 or if r1 = r2 and

α1 < α2, s1 < s2, j1 < j2, respectively. Set BLY = B \ {C0,0}.

Theorem 7.1. The set of ordered monomials in the elements of B (resp. BLY ) is a vector space basis of

Ŷλ,β (resp. LYλ,β).

Proof. The monomials in B span Ŷ since gr(Ŷ) is an epimorphic image of U(ŝln[u±1, v]), so we have to
prove that they are linearly independent.
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We prove the theorem for LY first. Suppose that we have a relation of the form∑
d∈S1

∑
r∈S2(d),I∈S3(d)

f∈S4(d)

c(d, r, I, f)X−
A,rX,−

·H−
I,rH,−

·HJ,rH ·H+
K,rH,+

·X+
B,rX,+

·CrC ,sC = 0 (38)

where S1, S2(d), S3(d), S4(d) are finite sets and

X−
A,rX,−

= (X−
α1,rX,−1

)f
X,−
1 · · · (X−

αd
X,−

,rX,−
dX,−

)f
X,−
dX,− , H−

I,rH−
= (H−

i1,r
H,−
1

)f
H,−
1 · · · (H−

i
dH,− ,r

H,−
dH,−

)f
H,−
dH,−

CrC ,sC = (CrC1 ,sC1 )f
C
1 · · · (CrC

dC
,sC
dC

)f
C
dC , HJ = (Hj1,0,rH1

)f
H
1 · · · (HjdH ,0,r

H
dH

)f
H
dH

X+
B,rX,+

= (X+

β1,rX,+1

)f
X,+
1 · · · (X+

βd
X,+

,rX,+
dX,+

)f
X,+

dX,+ , H+

K,rH+ = (H+

k1,r
H,+
1

)f
H,+
1 · · · (H+

k
dH,+

,rH,+
dH,+

)f
H,+

dH,+

and
d = (dX,−, dH,−, dH , dH,+, dX,+, dC) ∈ S1 ⊂ Z×6

≥0

r = (rX,−, rH,−, rH , rH,+, rX,+, rC , sC), I = (A, I, J,K,B), f = (fX,−, fH,−, fH , fH,+, fX,+, fC)

S2(d) ⊂ Z×d
X,−

≥0 × Z×d
H,−

≥0 × Z×d
H

≥0 × Z×d
H,+

≥0 × Z×d
X,+

≥0 × (Z≥1 × Z)
×dC

,

S3(d) ⊂ (∆̂+)×d
X,−
× ([n− 1]× Z>0)×d

H,−
× [n− 1]×d

H

× ([n− 1]× Z>0)×d
H,+

× (∆̂+)×d
X,+

and
S4(d) ⊂ Z×d

X,−

≥0 × Z×d
H,−

≥0 × · · · × Z×d
X,+

≥0 × Z×d
C

≥0

A = {α1, . . . , αd
X,−}, I = {i1, . . . , idH,−}, ip = (ip, s

H,−
p ) ∈ [n − 1] × Z>0, B = {β1, . . . , βd

X,+}, J =

{j1, . . . , jdH},K = {k1, . . . , kdH,+}, kp = (kp, s
H,+
p ) ∈ [n − 1] × Z>0 and [n − 1] = {1, . . . , n − 1}. We

fix a particular choice ď, ř, Ǐ, f̌ , of these index sets such that c(ď, ř, Ǐ, f̌) 6= 0 and the corresponding monomial

M̌ = X−
Ǎ,řX,−

·H−
Ǐ,řH,−

·HJ̌,řH ·H
+
Ǩ,řH,+

·X+
B̌,řX,+

·CřC ,šC

in (38) has the following properties:

1. It has maximum value for
∑dX,−

g=1 fX,−g rX,−g +
∑dH,−

g=1 fX,−g rH,−g +
∑dH

g=1 f
H
g r

H
g +

∑dH,+

g=1 fH,+g rH,+g +∑dX,+

g=1 fX,+g rX,+g +
∑dC

g=1 f
C
g r

C
g ;

2. and, among these, it has maximum value for δX,+ =
∑dX,+

g=1 fX,+g ;

3. and, among these, it has maximum value for δX,− =
∑dX,−

g=1 fX,−g ;

4. and, among these, it has maximum value for δH,+ =
∑dH,+

g=1 fH,+g ;

5. and, among these, it has maximum value for δH,− =
∑dH,−

g=1 fH,−g ;

6. and, among these, it has maximum value for δH =
∑dH

g=1 f
H
g ;

7. and, among these, it has maximum value for δC =
∑dC

g=1 f
C
g .

Set δ̂X,− = δ̌X,−, δ̂H,− = δ̂X,−+δ̌H,−, δ̂H = δ̂H,−+δ̌H , δ̂H,+ = δ̂H+δ̌H,+, δ̂X,+ = δ̂H,++δ̌X,+, δ̂C = δ̂X,++δ̌C .
Consider the module Vl with l ≥ δ̂C . We choose vl = v1 ⊗ · · · ⊗ vl, ṽl = ṽ1 ⊗ · · · ⊗ ṽl ∈ (Cn)⊗l to be the
following elements:

If α̌g = α̌g + šAg δ with α̌g = αpgqg ∈ ∆ and šAg ∈ Z≥0, 1 ≤ pg 6= qg ≤ n, we set vν = vpg , ṽ
ν = vqg for

f̌X,−1 + . . .+ f̌X,−g−1 < ν ≤ f̌X,−1 + . . .+ f̌X,−g .
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Set vν = v1 + . . .+ vn, ṽ
ν = vı̌g − vı̌g+1 for δ̂X,− + f̌H,−1 + . . .+ f̌H,−g−1 < ν ≤ δ̂X,− + f̌H,−1 + . . .+ f̌H,−g .

Set vν = v1 + . . .+ vn, ṽ
ν = v̌

g
− v̌

g
+1 for δ̂H,− + f̌H1 + . . .+ f̌Hg−1 < ν ≤ δ̂H,− + f̌H1 + . . .+ f̌Hg .

Set vν = v1 + . . .+ vn, ṽ
ν = vǩg

− vǩg+1 for δ̂H + f̌H,+1 + . . .+ f̌H,+g−1 < ν ≤ δ̂H + f̌H,+1 + . . .+ f̌H,+g .

If β̌g = β̌g+ šBg δ with β̌g = αpgqg ∈ ∆ and šBg ∈ Z≥0, we set vν = vqg , ṽ
ν = vpg for δ̂H,+ + f̌X,+1 + . . .+ f̌X,+g−1 <

ν ≤ δ̂H,+ + f̌X,+1 + . . .+ f̌X,+g . For ν > δ̂X,+, we set vν = ṽν = v1 + v2 + . . .+ vn.

Below, we will consider the basis of (Cn)⊗l given by the elements of the form v̆ = v̆1 ⊗ · · · ⊗ v̆l where v̆ν ∈
{v1, . . . , vn} if 1 ≤ ν ≤ δ̂X,− or if δ̂H,+ < ν ≤ δ̂X,+, and v̆ν ∈ {v1−v2, v2−v3, . . . , vn−1−vn, v1 +v2 +. . .+vn}
if δ̂X,− < ν ≤ δ̂H,+ or if δ̂X,+ < ν ≤ l.

Because of our assumption,∑
d∈S1

∑
r∈S2(d),I∈S3(d)

f∈S4(d)

c(d, r, I, f)X−
A,rX,−

·H−
I,rH,−

·HJ,rH ·H+
K,rH,+

·X+
B,rX,+

·CrC ,sC (1⊗ vl) = 0. (39)

Set

ξX,−Y =

ďX,−∏
g=1

f̌X,−1 +...+f̌X,−g∏
ν=f̌X,−1 +...+f̌X,−g−1 +1

Y ř
X,−
g
ν , ξX,−X =

ďX,−∏
g=1

f̌X,−1 +...+f̌X,−g∏
ν=f̌X,−1 +...+f̌X,−g−1 +1

X
šAg
ν

ξH,−Y =

ďH,−∏
g=1

δ̂X,−+f̌H,−1 +...+f̌H,−g∏
ν=δ̂X,−+f̌H,−1 +...+f̌H,−g−1 +1

Y ř
H,−
g
ν , ξH,−X =

ďH,−∏
g=1

δ̂X,−+f̌H,−1 +...+f̌H,−g∏
ν=δ̂X,−+f̌H,−1 +...+f̌H,−g−1 +1

X
šH,−g
ν

ξHY =

ďH∏
g=1

δ̂H,−+f̌H1 +...+f̌Hg∏
ν=δ̂H,−+fH1 +...+fHg−1+1

Y ř
H
g
ν

ξH,+Y =

ďH,+∏
g=1

δ̂H+f̌H,+1 +...+f̌H,+g∏
ν=δ̂H+f̌H,+1 +...+f̌H,+g−1 +1

Y ř
H,+
g
ν , ξH,+X =

ďH,+∏
g=1

δ̂H+f̌H,+1 +...+f̌H,+g∏
ν=δ̂H+f̌H,+1 +...+f̌H,+g−1 +1

X
šH,+g
ν

ξX,+Y =

ďX,+∏
g=1

δ̂H,++f̌X,+1 +...+f̌X,+g∏
ν=δ̂H,++f̌X,+1 +...+f̌X,+g−1 +1

Y ř
X,+
g
ν , ξX,+X =

ďX,+∏
g=1

δ̂H,++f̌X,+1 +...+f̌X,+g∏
ν=δ̂H,++f̌X,+1 +...+f̌X,+g−1 +1

X
šBg
ν

ξCY =

ďC∏
g=1

δ̂X,++f̌C1 +...+f̌Cg∏
ν=δ̂X,++f̌C1 +...+f̌Cg−1+1

Y ř
C
g
ν , ξCX =

ďC∏
g=1

δ̂X,++f̌C1 +...+f̌Cg∏
ν=δ̂X,++f̌C1 +...+f̌Cg−1+1

X
šCg
ν

Set ξY = ξCY ξ
X,+
Y ξH,+Y ξHY ξ

H,−
Y ξX,−Y and ξX = ξCXξ

X,+
X ξH,+X ξH,−X ξX,−X and consider the coefficient of ξYξX⊗ṽ on

the left-hand side of equality (39). Applying our particular choice of monomial M̌ to 1⊗v and writing down
the element of Vl thus obtained as a sum of basis elements of the type m(Y1, . . . ,Yl)m(X±1

1 , . . . , X±1
l )⊗ v̆,

where m(Y1, . . . ,Yl) and m(X±1
1 , . . . , X±1

l ) are monomials, we see that, in M̌(1⊗ v), the element ξYξX ⊗ ṽ
appears with coefficient equal to ǎc(ď, ř, Ǐ, f̌)lě where ǎ is a non-zero scalar (which can be expressed in terms
of t, c, n and the different values of ř, š, f̌) and ě is equal to the multiplicity of C1,0 in M̌. (Here, we use our
assumption that t 6= cn.) Moreover, the only other monomials in (38) which can produce a non-zero scalar
multiple of ξYξX ⊗ ṽl when applied to 1⊗ vl must differ from M̌ only by the multiplicity of C1,0.

Now choose any l1 > l. We can apply the left-hand side of (38) to 1 ⊗ vl1 and expand the elements of
Vl as a sum of basis vectors as above. The element ξYξX ⊗ ṽl1 will appear in M̌(1 ⊗ v) with coefficient
equal to ǎc(ď, ř, Ǐ, f̌)lě1. Therefore, we can view the coefficient of ξYξX ⊗ ṽl in (39) as a polynomial in l.
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Since this polynomial must be zero for infinitely many values of l because of the vanishing of (39), it must
vanish identically, hence c(ď, ř, Ǐ, f̌) = 0. We can repeat this argument to conclude that all the coefficients
in relation (38) are zero.

We must now extend our proof from LY to Ŷ. We will follow some of the ideas in [3]. We need to consider

a completion of Ŷ. For k ≥ 0, we denote by Yk the span of all monomials of the form given in (38) with
max{max(A),max(H,−),max(H,+),max(B),max(C)} ≥ k, where max(A) = max{sAg , g = 1, . . . , dX,−},
max(H,±) = max{sH,±g , g = 1, . . . , dH,±}, max(B) = max{sBg , g = 1, . . . , dX,+}, max(C) = max{sCg , g =

1, . . . , dC}. We let Y be the completion of Ŷ with respect to the system of neighborhoods of 0 given by the
Yk’s.

We can define an algebra homomorphism ∆ from Ŷ to the completed tensor product Y⊗̂Y in the following
way. It is the usual coproduct on U(ŝln[u±1]) ⊂ Ŷ and, for 1 ≤ i ≤ n− 1,

∆(Hi,1) = Hi,1 ⊗ 1 + 1⊗Hi,1 + λHi ⊗Hi + λ
∑
α∈∆+

∑
s≥1

(α, αi)(Eαu
−s)⊗ (E−αu

s)

−λ
∑
α∈∆+

∑
s≥0

(α, αi)(E−αu
−s)⊗ (Eαu

s)

∆(X+
i,1) = X+

i,1 ⊗ 1 + 1⊗X+
i,1 + λ

∑
α∈∆+

∑
s≥0

(
[E+
i , E−α]u−s

)
⊗ (Eαu

s)

−λ
∑
α∈∆+

∑
s≥1

(Eαu
−s)⊗

(
[E+
i , E−α]us

)

∆(X−i,1) = X−i,1 ⊗ 1 + 1⊗X−i,1 + λ
∑
s≥0

(Ei+1,iu
−s)⊗ (Hiu

s)− λ
∑
s≥1

(Hiu
−s)⊗ (Ei+1,iu

s)

+λ
∑
α∈∆+

∑
s≥0

(
[E−i , E−α]u−s

)
⊗ (Eαu

s)− λ
∑
α∈∆+

∑
s≥1

(Eαu
−s)⊗

(
[E−i , E−α]us

)

The automorphism ρ of Ŷ can be extended to an automorphism of Y⊗̂Y which we denote by ρ. The maps
∆ and ρ, ρ are related in the following way :

ρ(∆(X±i,r)) = ∆(ρ(X±i,r)), ρ(∆(Hi,r)) = ∆(ρ(Hi,r)) for i 6= 0, 1, r = 0, 1 (40)

ρ2(∆(X±1,r)) = ∆(ρ2(X±1,r)), ρ2(∆(H1,r)) = ∆(ρ2(H1,r)) for r = 0, 1 (41)

It is possible to extend ∆ to all of Ŷ by setting

∆(X±0,r) = ρ−1
(

∆
(
ρ(X±0,r)

))
, ∆(H±0,r) = ρ−1

(
∆
(
ρ(H0,r)

))
for r = 0, 1.

We also need to construct a representation E of Y on which the central element C0,0 acts by a non-zero

scalar. We denote by U(ĝln[s±1]) the completion of U(ĝln[s±1]) with respect to the topology defined by

the system neighborhoods of zero similar to the one for Ŷ. We can define an algebra homomorphism
ev : Ŷ −→ U(ĝln[s±1]) in the following way: for 1 ≤ i ≤ n− 1, it is given by

ev(Hi,1) = Hi +
λ

2

∑
k<i

S(Eki, Eik) + λ
∑
k 6=i

∑
s≥1

(Ekiu
s) · (Eiku−s)

−λ
2

∑
k<i+1

S(Ek,i+1, Ei+1,k)− λ
∑
k 6=i+1

∑
s≥1

(Ek,i+1u
s) · (Ei+1,ku

−s)

+λ
∑
s≥0

(Eiiu
s) · (Eiiu−s)− λ

∑
s≥0

(Ei+1,i+1u
s) · (Ei+1,i+1u

−s)− λ

2
(E2

ii − E2
i+1,i+1 −H2

i )
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The formula for ev(X±i,1) can be deduced from this one. The map ev is related to ρ in the same way as ∆ in

the equalities (40), (41) and can be extended similarly to all of Ŷ.

Given a representation E of U(ĝln[s±1]), we can pull it back to Y via ev and get a representation which we
denote also by E.

Starting with a relation similar to (38), but this time with monomials including powers of C0,0, we can apply
the same argument as above to prove that the monomials are linearly independent, using the coproduct ∆
to turn E ⊗Vl into a representation of Ŷ with E suitably chosen and with non-trivial central charge.

We have thus proved that, if β 6= nλ
4 + λ

2 , then U(ŝln[u±1, v])
∼−→ gr(Ŷ). It follows that this must be true

for all values of λ, β ∈ C by upper-semicontinuity, which completes the proof of theorem 7.1.

Corollary 7.1. Fix j ∈ {0, . . . , n − 1}. The elements X±i,r, Hi,r with i 6= j, r ∈ Z≥0 generate a subalgebra

Y jλ,β of Ŷλ,β (or of LYλ,β) isomorphic to Yλ.

Proof. Using the automorphism ρ, we can reduce to the case j = 0. The proof of theorem 7.1 implies that
Y 0
λ,β has a PBW basis exactly like the basis for Yλ constructed in [22]. Therefore, the natural map Yλ � Y 0

λ,β

must be an isomorphism.

The main ingredient in the proof of theorem 7.1 can be stated explicitly in the following way. (The next
corollary, in the case of Yangians of finite type, has been known for a long time [4].)

Corollary 7.2. Suppose that β 6= nλ
4 + λ

2 . Let Φl : LY −→ EndC(Vl) be the LY -module structure map of
Vl. Given X ∈ LY,X 6= 0, there exists an l� 0 such that Φl(X) 6= 0.

Corollary 7.3. The canonical maps U(ŝln[u±1, v]) −→ gr(Ŷ) and U(ŝln[t1, t2]) −→ gr(L) where t1 = u, t2 =
u−1v are isomorphisms.

As a consequence of corollary 7.2, we can prove that L (and therefore Ŷ) contains infinitely many copies
of Yλ. This is in accordance with the following observation made in [14]. Let γ1, γ2,∈ C; we have an
algebra embedding ι : Hc −→ Ht,c(Sl) that sends ũi = ui + c

2

∑
j 6=i sign(j − i)sij to ũi = γ1xi + γ2yi + Yi

and Hc ⊃ C[Sl]
∼−→ C[Sl] ⊂ Ht,c(Sl). (In [14], Yi is replaced by Ui and ũi by ui.) Consider the elements

χ±i = γ1K(X±i ) + γ2Q(X±i ) + J(X±i ),Hi = γ1K(Hi) + γ2Q(Hi) + J(Hi), i = 1, . . . , n − 1, of L. Set
Vl = H ⊗C[Sl] V

⊗l. Since the subalgebra of H generated by z̃1, . . . , z̃l and Sl is isomorphic to Hc, we are led
to assert the following proposition. (It was also suggested in [2].)

Proposition 7.1. The subalgebra Y γ1,γ2 of L generated by X±i , Hi, χ
±
i and by Hi for 1 ≤ i ≤ n − 1. is

isomorphic to Yλ.

Proof. Let Ψl(z) ∈ EndC(Vl) be given by Ψl(z)(h ⊗ v) =
∑l
k=1 hũk ⊗ z(k)(v),∀z ∈ sln. We know from

theorem 1 in [9] and the observation from [14] recalled in the previous paragraph that we have an algebra
homomorphism ψl : Yλ −→ EndC(Vl) given by ψl(z) = z and ψl(J(z)) = Ψl(z). An analog of corollary 7.2
holds for ψl.

We know that Vl is a module over L and that, if we denote by ϕl : L −→ EndC(Vl) the algebra structure
map, then ϕl(χ

±
i ) = ψl(J(X±i )) and ϕl(Hi) = ψl(J(Hi)). Corollary 7.2 allows us to conclude the proof.

8 Deformed double current algebras in type A

In section 5, we explained how affine Yangians are related to quantum toroidal algebras. Starting with the
affine Yangians and applying similar ideas, we arrive at a new class of algebras that we call deformed double
current algebras (of type A), as explained in section 12.
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Definition 8.1. Let λ, β ∈ C. We defined Dλ,β to be the algebra generated by elements X±i,0,X
±
i,1,Hi,0,Hi,1

for 1 ≤ i ≤ n− 1 and by X+
0,0,X

+,+
0,1 ,X+,−

0,1 , which satisfy the following relations:

(A) The elements with i 6= 0 satisfy those in definition 3.2 of U(sln[v]) and those with r = 0 satisfy the Serre
relations for U(sln[u]), so we have homomorphisms U(sln[u]) −→ Dλ,β ,U(sln[v]) −→ Dλ,β and elements
Eij ,Ks(Eij),Qr(Eij) ∈ Dλ,β corresponding to the elementary matrices in sln and to Eij ⊗ us, Eij ⊗ vr,
respectively.

(B) We have [Hi,0,X
+,±
0,1 ] = ci0X

+,±
0,1 for i 6= 0. The elements with i = 0 satisfy the following relations among

themselves:

[X+,+
0,1 ,X+

0,0] = 2λE−θX
+
0,0, [X+,+

0,1 , E−θ] = λE2
−θ and the same with X+,−

0,1 instead of X+,+
0,1 (42)

X+,+
0,1 − X+,−

0,1 =
λ

2

∑
1≤i 6=j≤n−1

S([E−θ, Eij ], Eji) (43)

(C) When k = 2, . . . , n− 2, we have

[X+
0,0,X

±
k,0] = 0 = [X+,±

0,1 ,X±k,0], [X+,+
0,1 ,X+

k,1] = −λ
2

∑
2≤i≤n−1

S([En1, E1i], [X
+
k,1, Ei1]) (44)

[X+
0,0,X

±
k,1] =

λ

4

∑
1≤i6=j≤n

S([En1, Eij ], [Eji, E
±
k ]) (45)

[
X+
k,r, [X

+
k,r,X

+
0,0]
]

= 0 =
[
X+

0,0, [X
+
0,0,X

+
k,r]
]

for r = 0, 1 (46)[
X+,±

0,1 , [X+,±
0,1 ,X+

k,0]
]

= 0 =
[
X+
k,0, [X

+
k,0,X

+,±
0,1 ]

]
(47)

(D) We have some more complicated relations in the cases i = 0, j = n− 1 and i = 0, j = 1.

[X+
0,0,X

−
n−1,1] = −λEn,n−1En1, [X+,+

0,1 , X−n−1,0] = 0, [X+
0,0,X

−
1,1] = −λEn1E21, [X+,−

0,1 , X−1,0] = 0 (48)

[X+
n−1,1,X

+
0,0]− [X+

n−1,0,X
+,−
0,1 ] = (β − λ)E−θX

+
n−1,0 − βX

+
n−1,0E−θ (49)

[X+
1,1,X

+
0,0]− [X+

1,0,X
+,+
0,1 ] = (β − λ)X+

1,0E−θ − βE−θX
+
1,0 (50)[

X+,+
0,1 , [X+,+

0,1 ,X+
n−1,0]

]
=
[
X+
n−1,0, [X

+
n−1,0,X

+,+
0,1 ]

]
= 0 =

[
X+,−

0,1 , [X+,−
0,1 ,X+

1,0]
]

=
[
X+

1,0, [X
+
1,0,X

+,−
0,1 ]

]
(51)[

X+
1,1, [X

+
1,1,X

+
0,0]
]

= 2λ[E−θ,X
+
1,0]X+

1,1,
[
X+
n−1,1, [X

+
n−1,1,X

+
0,0]
]

= 2λX+
n−1,1[X+

n−1,0, E−θ] (52)[
X+

0,0, [X
+
0,0,X

+
1,1]
]

= −2λ[E−θ,X
+
1,0]X+

0,0,
[
X+

0,0, [X
+
0,0,X

+
n−1,1]

]
= 2λ[X+

n−1, E−θ]X
+
0,0 (53)

Remark 8.1. We set X±i = X±i,0,Hi = Hi,0. The elements X±i with i 6= 0 and X±,+0,1 (or X±,−0,1 ) generate
a subalgebra of Dλ,β which is a quotient of the Yangian Yλ, see lemma 3.9. (The main theorem of section
10shows that it is isomorphic to Yλ.) In particular, we can define elements J(z) as the images of J(z) under

Yλ −→ Dλ,β. The algebra Dλ=0,β=0 is the enveloping algebra of ŝln[u, v]: see lemma 3.7.

9 Schur-Weyl functor for Dλ,β

Since Dλ,β is isomorphic to Lλ,β as proved in section 11, we have a Schur-Weyl functor F relating Ht,c(Sl)-
modules to Dλ,β-modules. In this section, we simply give the formulas for F.

We define elements ω+,±
0 by

ω+,±
0 = ∓1

4

n−1∑
j=2

(EnjEj1 + Ej1Enj)−
1

4
(En1Hθ +HθEn1)
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and note that ω+,−
0 = [En−1,1, ω

−
n−1] and ω+,+

0 = [ω−1 , En2].

Fix t, c ∈ C and set λ = c, β = t
2−

nc
4 + c

2 . Let M be a rightmodule over Ht,c(Sl) and set F(M) = M⊗C[Sl]V
⊗l.

We let the elements X±i,r,Hi,r for 1 ≤ i ≤ n− 1, r = 0, 1 act on F(M) in the following way:

X±i,r(m⊗ v) =

l∑
j=1

myrj ⊗ E
±,(j)
i (v), Hi,r(m⊗ v) =

l∑
j=1

myrj ⊗H
(j)
i (v)

It is easy to see that the relations in definition 8.1 involving the elements with i, j 6= 0 are all satisfied. We
now set

X+
0 (m⊗ v) =

l∑
k=1

mxk ⊗ E(k)
−θ (v),X+,±

0,1 (m⊗ v) =

l∑
j=1

mYj ⊗ E(j)
−θ(v)− λω+,±

0 (m⊗ v)

Theorem 9.1. These formulas give M ⊗C[Sl] V
⊗l a structure of left module over Dλ,β. Thus we have a

functor F : Ht,c(Sl)−modR −→ Dλ,β −modL.

Proof. We leave it to the reader to check that all the relations in definition 8.1 are satisfied.

10 PBW bases of deformed double current algebras

We would like to prove that Dλ,β has a basis of PBW type, following the same approach as in section 7. We
fix λ, β, t, c such that c = λ, t = 2β − c+ nc

2 and abbreviate Ht,c(Sl) by H, Dλ,β by D. For 1 ≤ i ≤ n− 1, we

set X±i,r = 1
2r [Hi,1, [Hi,1, · · · , [Hi,1,X±i ] · · · ]] where Hi,1 appears r times. In this section, we will need elements

X+
0,r which we define inductively by X+

0,r = 1
2 [X+

0,r−1,Hn−1,1 + H1,1], r ≥ 1.

We consider the following “set of roots” for the Lie algebra sln[u]: ∆̆ = ∆̆re ∪ ∆̆im is the subset of ∆̂

given by ∆̆re = {α = α + sδ|α ∈ ∆, s ∈ Z≥0} and ∆̆im = {sδ|s ∈ Z>0}. We set ∆̆+ = ∆̆ ∩ ∆̂+,

∆̆− = ∆̆ ∩ ∆̂− = {α ∈ ∆−} and Π̆ = Π̂.

Let α = αi1 + αi2 + . . . + αip = α + sδ ∈ ∆̆re,+, αij ∈ Π̆, α ∈ ∆, s ≥ 0, be a decomposition of a positive

real root α into a sum of simple roots such that X±α = [X±i1 , [X
±
i2
, · · · , [X±ip−1

, X±ip ] · · · ]] is a (non-zero) root

vector of sln[u] of weight ±α = α + sδ, α ∈ ∆, s ≥ 0. (If s > 0, X−α is not defined.) Writing r as a sum of
non-negative integers r = r1 + . . .+ rp, we set

X±α,r =
[
X±i1,r1 ,

[
X±i2,r2 , · · · , [X

±
ip−1,rp−1

,X±ip,rp ] · · ·
]]
, Hα,r = [X+

α,r,X
−
α,0] if α ∈ ∆+ and s > 0. (54)

Using the filtration on H obtained by giving x ∈ h∗, σ ∈ Sl degree 0 and y ∈ h degree 1, we obtain a filtration
F•(V

l) on Vl. There is a filtration on Dλ,β obtained by giving X±i,r,Hi,r degree r for r = 0, 1. We now prove
a series of lemmas which are analogous to, but simpler than, those in the proof of the PBW property of
affine Yangians.

Lemma 10.1. Let h⊗ v ∈ Fd(Vl), h ∈ Fd(H),v ∈ V ⊗l. We have X+
0,r(h⊗ v) =

∑l
k=1 hy

r
kxk ⊗ E

(k)
n1 (v) + κ

where κ ∈ Fd+r−1(Vl).

Proof. We proceed by induction on r, the lemma being true for r = 0, 1.

24



X+
0,r(h⊗ v) =

1

2

∑
j 6=k

h[yj , y
r−1
k xk]⊗ E(k)

n1 (H1 +Hn−1)(j)(v)

+
1

2

l∑
k=1

h(yky
r−1
k xk + yr−1

k xkyk)⊗ E(k)
n1 (v) + κ

=

l∑
k=1

hyrkxk ⊗ E
(k)
n1 (v) + κ′.

Lemma 10.2. If α = α+sδ with s > 0, then X+
α,r(h⊗v) =

∑l
k=1 hy

r
kx

s
k⊗E

(k)
α (v)+κ where κ ∈ Fd+r−1(Vl)

- similarly for Hα,r if α ∈ ∆+ with Eα replaced by Hij if α = αij.

Proof. We use induction on p (see equation (54)). We need only consider the case i1 = 0. We write α̃ = α−α0

and α̃ = α̃+ (s− 1)δ, so that α = α̃+ α0 = α̃+ (−θ) + sδ and α̃ ∈ ∆+ ∪ {0}. With this notation, we have
Eα = [En1, Eα̃]. We find that:

X+
α,r(h⊗ v) =

l∑
k=1

[X+
0,r1

, yr−r1k xs−1
k ⊗ E(k)

α̃
](h⊗ v) + κ

=

(
l∑

k=1

hyr−r1k xs−1
k yr1k xk ⊗ (En1Eα̃)(k)(v)−

l∑
k=1

hyr1k xky
r−r1
k xs−1

k ⊗ (Eα̃En1)(k)(v)

)
+ κ′

=

l∑
k=1

hyrkx
s
k ⊗ [En1, Eα̃](k)(v) + κ′′ =

l∑
k=1

hyrkx
s
k ⊗ E

(k)
α (v) + κ′′

The result for Hα,r follows immediately.

We now have to define elements Cr,s which, when λ = β = 0, span the center of ŝln[u, v]. We proceed as in
section 7. Recall that this center is isomorphic to Ω1(C[u, v])/d(C[u, v]) ∼= {us−1vrdu|r, s ≥ 1}.

For r, s ≥ 1, 1 ≤ i ≤ n−1, set Ci,r,s = 1
2 [Ks(Hi), Hi,r] and set Cn,r,s = 1

2 [Ks(Hθ),Qr(Hθ)]. Then Ci,r,s(h⊗v)
is equal to:

1

2

l∑
k=1

h[yrk, x
s
k]⊗(Eii + Ei+1,i+1)(k)(v) +

1

2

∑
j 6=k

h[yrj , x
s
k]⊗H(k)

i H
(j)
i (v)

=
1

2

l∑
k=1

s−1∑
a=0

r−1∑
b=0

hybkx
a
k[yk, xk]xs−a−1

k yr−b−1
k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
1

2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hybjx
a
k[yj , xk]xs−a−1

k yr−b−1
j ⊗H(k)

i H
(j)
i (v)

=
1

2

l∑
k=1

s−1∑
a=0

r−1∑
b=0

hybkx
a
k

t+ c
∑
j 6=k

sjk

xs−a−1
k yr−b−1

k ⊗ (Eii + Ei+1,i+1)(k)(v)

− c

2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hybjx
a
ksjkx

s−a−1
k yr−b−1

j ⊗H(k)
i H

(j)
i (v)
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=
trs

2

l∑
k=1

hyr−1
k xs−1

k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
c

2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hybkx
a
kx

s−a−1
j yr−b−1

j ⊗

(
n∑
d=1

(E
(j)
id E

(k)
di + E

(j)
i+1,dE

(k)
d,i+1)

)
(v)

− c
2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hybjx
a
kx

s−a−1
j yr−b−1

k ⊗ (E
(k)
ii E

(j)
ii + E

(k)
i+1,i+1E

(j)
i+1,i+1 − E

(k)
i,i+1E

(j)
i+1,i − E

(k)
i+1,iE

(j)
i,i+1)(v)

+κ where κ ∈ Fd+r−2(Vl)

=
trs

2

l∑
k=1

hyr−1
k xs−1

k ⊗ (Eii + Ei+1,i+1)(k)(v)

+
c

2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hybkx
a
ky
r−b−1
j xs−a−1

j ⊗

 n∑
d=1,d6=i

E
(j)
id E

(k)
di +

n∑
d=1,d6=i+1

E
(j)
i+1,dE

(k)
d,i+1

 (v)

+
c

2

∑
j 6=k

s−1∑
a=0

r−1∑
b=0

hybjx
s−a−1
j yr−b−1

k xak ⊗ (E
(k)
i,i+1E

(j)
i+1,i + E

(k)
i+1,iE

(j)
i,i+1)(v) + κ′

=
trs

2

l∑
k=1

hyr−1
k xs−1

k ⊗ (Eii + Ei+1,i+1)(k)(v) (55)

+
c

4

s−1∑
a=0

r−1∑
b=0

( n∑
d=1,d6=i,i+1

(
S(Xαid+(s−a−1)δ,r−b−1,Xαdi+aδ,b) (56)

+S(Xαi+1,d+(s−a−1)δ,r−b−1,Xαd,i+1+aδ,b)
)

+ 2S(Xαi+1,i+aδ,r−b−1,Xαi,i+1+(s−a−1)δ,b)
)

(h⊗ v) (57)

−crs
4

l∑
k=1

hyr−1
k xs−1

k ⊗
( n∑

d=1

d6=i,i+1

2Edd + (n+ 2)Eii + (n+ 2)Ei+1,i+1

)(k)

(v) + κ′′ (58)

where κ′′ ∈ Fd+r−2(Vl). Set Ci,r,s = Ci,r,s − (56)′ − (57)′, where (57)′ is the expression on line (57) but
without h⊗ v, and set Cr,s =

∑n
i=1 Ci,r,s. (When i = n,Ed,i+1 = Ed1.) The element Cr,s acts on Vl by

Cr,s(h⊗ v) = rs(t− cn)

l∑
k=1

hyr−1
k xs−1

k ⊗ v + κ where κ ∈ Fd+r−2(Vl).

Set B = {X±α,r,Hi,s,r|α ∈ ∆̆, r, s ∈ Z≥0, 1 ≤ i ≤ n − 1} ∪ {Cr,s|r, s ∈ Z≥1} where Hi,s,r = Hαi+sδ,r. We can
put a total ordering on the set B as for B and we have the following analogue of theorem 7.1.

Theorem 10.1. The set of ordered monomials in the elements of B forms a vector space basis of D.

Proof. The proof is very similar to the case of affine Yangians . First, we assume that β 6= nλ
4 + λ

2 . As a
vector space, Vl ∼= C[y1, . . . , yl] ⊗C C[x1, . . . , xl] ⊗C V

⊗l, which follows from the PBW property of H - see

[14]. We have an epimorphism U(ŝln[u, v]) � gr(Dλ,β). Therefore, monomials in the elements of B span D,
so the main difficulty is to prove that they are linearly independent.

Suppose that we have a relation of the form (S1, S2(d), S3(d), S4(d) are finite sets)∑
d∈S1

∑
r∈S2(d),I∈S3(d)

f∈S4(d)

c(d, r, I, f)X−A,r− · HJ,rH · X
+
B,r+ · CrC ,sC = 0 (59)

where
X−A,r− = (X−

α1,r−1
)f
−
1 · · · (X−

αd− ,r−
d−

)f
−
d− , HJ,rH = (Hj1,rH1 )f

H
1 · · · (HjdH ,rHdH )f

H
dH
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X+
B,r+ = (X+

β1,r+1
)f

+
1 · · · (X+

βd+ ,r+
d+

)f
+

d+ , CrC ,sC = (CrC1 ,sC1 )f
C
1 · · · (CrC

dC
,sC
dC

)f
C
dC

and

d = (d−, dH , d+, dC) ∈ S1 ⊂ Z×4
≥0, I = (A, J,B) ∈ S3(d) ⊂ (∆+)×d

−
× ([n− 1]× Z≥0)×d

H

× (∆̂+)×d
+

,

r = (r−, rH , r+, rC , sC) ∈ S2(d) ⊂ Z×d
−

≥0 × Z×d
H

≥0 × Z×d
+

≥0 × (Z≥1 × Z≥1)×d
C

S4(d) ⊂ Z×d
−

≥0 × Z×d
H

≥0 × Z×d
+

≥0 × Z×d
C

≥0 , f = (f−, fH , f+, fC)

and A = {α1, . . . , αd
−}, J = {j1, . . . , jdH}, ji = (j

i
, s0
i ) ∈ [n − 1] × Z≥0, B = {β1, . . . , βd

+}, [n − 1] =
{1, . . . , n− 1}.

We fix a particular choice ď, ř, Ǐ, f̌ of these index sets such that c(ď, ř, Ǐ, f̌) 6= 0 and the corresponding
monomial

M̌ = X−
Ǎ,ř−

· HJ̌,řH · X
+
B̌,ř+

· CřC ,šC

in (59) has the following properties:

1. It has maximum value for
∑d−

g=1 f
−
g r
−
g +

∑dH

g=1 f
H
g r

H
g +

∑d+

g=1 f
+
g r

+
g +

∑dC

g=1 f
C
g (rCg − 1);

2. and, among these, it has maximum value for δ+ =
∑d+

g=1 f
+
g ;

3. and, among these, it has maximum value for δ− =
∑d−

g=1 f
−
g ;

4. and, among these, it has maximum value for δH =
∑dH

g=1 f
H
g ;

5. and, among these, it has maximum value for δC =
∑dC

g=1 f
C
g .

Set δ̂− = δ̌−, δ̂H = δ̂− + δ̌H , δ̂+ = δ̂H + δ̌+, δ̂C = δ̂+ + δ̌C . Consider the module Vl for l ≥ δ̂C . We choose
vl = v1 ⊗ · · · ⊗ vl, ṽl = ṽ1 ⊗ · · · ⊗ ṽl ∈ (Cn)⊗l to be the following elements:

If α̌g = α̌g with α̌g = αpgqg ∈ ∆+, set vν = vpg , ṽ
ν = vqg for f̌−1 + . . .+ f̌−g−1 < ν ≤ f̌−1 + . . .+ f̌−g .

Set vν = v1 + . . .+ vn, ṽ
ν = v̌

g
− v̌

g
+1 for δ̂− + f̌H1 + . . .+ f̌Hg−1 < ν ≤ δ̂− + f̌H1 + . . .+ f̌Hg .

If β̌g = β̌g + šgδ with β̌g = αpgqg ∈ ∆ and šg ∈ Z≥0, we set vν = vqg , ṽ
ν = vpg for δ̂H + f̌+

1 + . . . + f̌+
g−1 <

ν ≤ δ̂H + f̌+
1 + . . .+ f̌+

g .

For ν > δ̂+, we set vν = ṽν = v1 + v2 + . . .+ vn.

Below, we will consider the basis of (Cn)⊗l given by the elements v̆ = v̆1 ⊗ · · · ⊗ v̆l where v̆ν ∈ {v1, . . . , vn}
if 1 ≤ ν ≤ δ̂− or if δ̂H < ν ≤ δ̂+, and v̆ν ∈ {v1− v2, v2− v3, . . . , vn−1− vn, v1 + v2 + . . .+ vn} if δ̂− < ν ≤ δ̂H
or if δ̂+ < ν ≤ l. In particular, the elements vl, ṽl above belong to this basis.

Because of our assumption,∑
d∈S1

∑
r∈S2(d),I∈S3(d)

f∈S4(d)

c(d, r, I, f)X−A,r− · HJ,rH · X
+
B,r+ · CrC ,sC (1⊗ vl) = 0 (60)

Set

E−y =

ď−∏
g=1

f̌−1 +...+f̌−g∏
ν=f̌−1 +...+f̌−g−1+1

y
ř−g
ν , EHy =

ďH∏
g=1

δ̂−+f̌H1 +...+f̌Hg∏
ν=δ̂−+f̌H1 +...+f̌Hg−1+1

y
řHg
ν , EHx =

ďH∏
g=1

δ̂−+f̌H1 +...+f̌Hg∏
ν=δ̂−+f̌H1 +...+f̌Hg−1+1

x
šHg
ν
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E+
y =

ď+∏
g=1

δ̂H+f̌+
1 +...+f̌+

g∏
ν=δ̂H+f̌+

1 +...+f̌+
g−1+1

y
ř+g
ν , E+

x =

ď+∏
g=1

δ̂H+f̌+
1 +...+f̌+

g∏
ν=δ̂H+f̌+

1 +...+f̌+
g−1+1

x
š+g
ν

ECy =

ďC∏
g=1

δ̂++f̌C1 +...+f̌Cg∏
ν=δ̂++f̌C1 +...+f̌Cg−1+1

y
řCg −1
ν , ECx =

ďC∏
g=1

δ̂++f̌C1 +...+f̌Cg∏
ν=δ̂++f̌C1 +...+f̌Cg−1+1

x
šCg −1
ν

Set Ey = E−y E
H
y E+

y E
C
y ,Ex = EHx E+

x E
C
x and consider the coefficient of EyEx ⊗ ṽl on the left-hand side of

equality (60). Applying our particular choice of monomial M̌ to 1⊗ vl and writing down the element of Vl

thus obtained as a sum of basis elements of the type m(y1, . . . , yl)m(x1, . . . , xl)⊗ v̆, where m(y1, . . . , yl) and
m(x1, . . . , xl) are monomials, we see that, in M̌(1⊗v), the element EyEx⊗ ṽl appears with coefficient equal
to ǎc(ď, ř, Ǐ, f̌)lě where ǎ is a non-zero scalar (which can be expressed in terms of t, c, n and the different
values of ř, š, f̌) and ě is equal to the multiplicity of C1,1 in M̌. (Here, we use our assumption that t 6= cn.)
Moreover, the only other monomials in (59) which can produce a non-zero scalar multiple of EyEx⊗ ṽl must
differ from M̌ only by the multiplicity of C1,1. The rest of the proof is exactly the same as for the proof of
theorem 7.1.

The main idea in the proof of theorem 10.1 is the content of our first corollary.

Corollary 10.1. Assume that β 6= nλ
4 + λ

2 . Let Pl : D −→ EndC(Vl) be the D-module structure map of Vl.
Given X ∈ D, X 6= 0, there exists an l� 0 such that Pl(X) 6= 0.

Corollary 10.2. We have an isomorphism U(ŝln[u, v])
∼−→ gr(D).

As a corollary of the proof of theorem 10.1, we can show that D contains infinitely many copies of the
Yangian Yλ. This is also a consequence of theorem 11.1 and proposition 7.1.

11 Isomorphism between Dλ,β and Lλ,β

We would like to define an algebra homomorphism f : Dλ,β −→ Lλ,β by the formulas:

f(X±i,0) = X±i,0, i = 1, . . . , n− 1, f(X+
0 ) = X+

0

f(X+,−
0,1 ) = [X−n−1,1, En−1,1]− 2λω+,−

0 , f(X+,+
0,1 ) = [En2, X

−
1,1]− 2λω+,+

0

f(X+
i,1) =

[
Ei1, [X

−
0,1, En,i+1]

]
, f(X−i,1) =

[
Ei+1,1, [X

−
0,1, Eni]

]
for i = 2, . . . , n− 2

f(X+
1,1) = [X−0,1, En2], f(X−1,1) = [E21, [X

−
0,1, En1]]

f(X+
n−1,1) = [En−1,1, X

−
0,1], f(X−n−1,1) =

[
[En1, X

−
0,1], En,n−1

]
Remark 11.1. In the proof of theorem 11.1 below, the following observation will be very useful. Writing
X−n−1,1 = J(En,n−1)− λω−n−1, we find that

f(X+,−
0,1 ) = J(En1)− λ

4

n−1∑
j=2

S(Enj , Ej1) +
λ

4
S(En1, Hθ)

Similarly, one can check that

f(X+,+
0,1 ) = J(En1) +

λ

4

n−1∑
j=2

S(Enj , Ej1) +
λ

4
S(En1, Hθ).

For an interpretation of these formulas, see the proof of lemma 3.9.
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Theorem 11.1. The map f extends to a well-defined algebra isomorphism Dλ,β
∼−→ Lλ,β.

Proof. We have to check that relations (42)-(53) are satisfied.

[f(X+,+
0,1 ), f(X+

0 )] =
[
[En2, X

−
1,1]− 2λω+,+

0 , X+
0

]
= −2λ[ω+,+

0 , X+
0 ] = 2λEn1X

+
0 = 2λf(En1)f(X+

0 ).

The rest of (42)-(43) is easy to verify and so are the first two relations in (44).

For k = 2, . . . , n− 2,

[f(X+,+
0,1 ), f(X+

k,1)] =
[
[En2, X

−
1,1],

[
Ek1, [X

−
0,1, En,k+1]

]]
− 2λ[ω+,+

0 , f(X+
k,1)]

=
[[

[En2, X
−
1,1], Ek1

]
, [X−0,1, En,k+1]

]
+
[
Ek1,

[
[[En2, X

−
1,1], X−0,1], En,k+1

]]
(61)

−2λ[ω+,+
0 , f(X+

k,1)] (62)

We compute the second term in (61):[
Ek1,

[
[[En2, X

−
1,1], X−0,1], En,k+1

]]
=

[
Ek1,

[
[[En2, X

−
0,1], X−1,1], En,k+1

]]
+
[
Ek1,

[
[En2, [X

−
1,1, X

−
0,1]], En,k+1

]]
=

[
Ek1,

[
[[En2, X

−
0,1], En,k+1], X−1,1

]]
+
[[
En2, [Ek1, [X

−
1,1, X

−
0,1]]

]
, En,k+1

]
(63)

The first term is zero since
[
[En2, X

−
0,1], En,k+1

]
= 0.

As for the term on line (63), we can write:[
Ek1, [X

−
1,1, X

−
0,1]
]

=
[
Ek1, [E21, X

−
0,2]
]

+
λ

2
[Ek1, S(X−1 , X

−
0,1)] =

λ

2
S
(
X−1 , [Ek1, X

−
0,1]
)

since [
Ek1, [E21, X

−
0,2]
]

=
[[
Ek2, [E21, X

−
0,2]
]
, E21

]
=
[
[Ek1, X

−
0,2], E21

]
=
[
Ek1, [X

−
0,2, E21]

]
,

which implies that [Ek1, [E21, X
−
0,2]] = 0. Thus, (63) simplifies to[

Ek1,
[
[[En2, X

−
1,1], X−0,1], En,k+1

]]
=
λ

2

(
En1

[
[Xk1, X

−
0,1], En,k+1

]
+
[
[Xk1, X

−
0,1], En,k+1

]
En1

)
and (61)+(62) becomes

[f(X+,+
0,1 ), f(X+

k,1)] = −λ
[[

[En2, ω
−
1 ], Ek1

]
, [X−0,1, En,k+1]

]
− 2λ[ω+,+

0 , f(X+
k,1)]

+
λ

2

(
En1

[
[Xk1, X

−
0,1], En,k+1

]
+
[
[Xk1, X

−
0,1], En,k+1

]
En1

)
= −λQ(En,k+1)Ek1 − λEn1Q(Ek,k+1) + λQ(En,k+1)Ek1 − λEn,k+1Q(Ek1)

+λEn1Q(Ek,k+1)

= −λEn,k+1Q(Ek1) = −λf(En,k+1)f
(
[X+
k,1, Ek+1,1]

)
This proves that the third equality in (44) holds.

[f(X+
0 ), f(X+

k,1)] =
[
X+

0 ,
[
Ek1, [X

−
0,1, En,k+1]

]]
=
[
Ek1, [H0,1, En,k+1]

]
= [Ek1, [[H0,1, En,n−1], En−1,k+1]] = [Ek1, [X

−
n−1,1 +

λ

2
S(X−n−1, H0), En−1,k+1]]

= −λ
[
Ek1, [ω

−
n−1, En−1,k+1]

]
− λ

2
S(Ek1, En,k+1) = −λ

2
S(f(Ek1), f(En,k+1)) (64)
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This proves equation (45) in the + case and (46) follows from this one: the non-trivial case is the equality
[f(X+

k,1), [f(X+
k,1), f(X+

0 )]] = 0, which is a consequence of (64) and the fact that the subalgebra LY of L is

isomorphic to U(sln[s]). (This is explained in [17]; LY is defined as the subalgebra of L generated by X−0,1
and by X±i,r, Hi,r, 1 ≤ i ≤ n− 1, r ≥ 0.)

[f(X+
0 ), f(X−n−1,1)] =

[
X+

0 ,
[
[En1, X

−
0,1], En,n−1

]]
=
[
[En1, H0,1], En,n−1

]
=
[
En1, [H0,1, En,n−1]

]
=

[
En1, X

−
n−1,1 +

λ

2
S(H0, X

−
n−1)

]
= −λEn,n−1En1 = −λf(X−n−1)f(En1)

[f(X+
0 ), f(X−1,1)] =

[
X+

0 ,
[
E21, [X

−
0,1, En1]

]]
=
[
E21, [H0,1, En1]

]
=
[
[E21, H0,1], En1

]
= −

[
X−1,1 +

λ

2
S(X−1 , H0), En1

]
= −λEn1E21 = −λf(En1)f(X−1 )

We have just proved that the first and third relations in (48) are satisfied. The other two can be easily
checked.

The expression [f(X+
n−1,1), f(X+

0 )]− [f(X+
n−1), f(X+,−

0,1 )] is equal to

=
[
[En−1,1, X

−
0,1], X+

0

]
−
[
X+
n−1, [X

−
n−1,1, En−1,1]− 2λω+,−

0

]
= −

[
En−1,2, [E21, H0,1]

]
− J(En−1,1) + λ[En−1,n, ω

+,−
0 ]

= [En−1,2, X
−
1,1] + βEn−1,1H0 + (λ− β)H0En−1,1 − J(En−1,1) + λ[En−1,n, ω

+,−
0 ]

= −λ[En−1,2, ω
−
1 ]− βEn−1,1 + λH0En−1,1 + λ[En−1,n, ω

+,−
0 ]

= −λ
2
S(En−1,n, En1)− λ

2
S(En−1,1, H0)− βEn−1,1

+
λ

2
(H0En−1,1 + En−1,1H0) +

λ

2
[H0, En−1,1]

= −λ
2

(En−1,nEn1 + En1En−1,n)− βEn−1,1 +
λ

2
En−1,1

= −λEn1En−1,n − βEn−1,1

This proves that relation (49) is satisfied. The proof for (50) is identical. As for the relations in (51), they
follow immediately from remark 11.1.

Now we check (52) for X+
1,1:[

f(X+
1,1), [f(X+

1,1), f(X+
0 )]
]

=
[
[X−0,1, En2],

[
[X−0,1, En2], X+

0

]]
−
[
[X−0,1, En2], [H0,1, En2]

]
= −

[[
[X−0,1, En2], H0,1

]
, En2

]
=
[[

[[X−0,1, X
−
n−1], H0,1], En−1,2

]
, En2

]
(65)

We know that [X−0,1, [X
−
0,1, X

−
n−1]] = 0 in Lλ,β , so applying [X+

0,0, ·] to it yields 2[H0,1, [X
−
0,1, X

−
n−1]] −

[[H0,1, X
−
0,1], X−n−1] = 0, hence 2

[
H0,1, [X

−
0,1, X

−
n−1]

]
+ 2[X−0,2, X

−
n−1] + λ[S(H0, X

−
0,1), X−n−1] = 0. From this

equation, we get[[
[X−0,1, X

−
n−1], H0,1

]
, En−1,2

]
=

λ

2

[
[S(H0, X

−
0,1), X−n−1], En−1,2

]
+ [X−0,2, En2]

=
λ

2
[S(H0, X

−
0,1), En2] + [X−0,2, En2]

Using this in equation (65) and the fact that [[X−0,2, X
−
n−1], X−n−1] = 0 gives

[f(X+
1,1), [f(X+

1,1), f(X+
0 )]] = λS

(
[H0, En2], [X−0,1, En2]

)
= 2λf(En2)f(X+

1,1).
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This proves the first relation in (52); the second one can be established in a similar manner.

Let us now consider (53) in the case of X+
1,1:[

f(X+
0 ), [f(X+

0 ), f(X+
1,1)]

]
=

[
X+

0 ,
[
X+

0 , [X
−
0,1, En2]

]]
=
[
X+

0 ,
[
[H0,1, En,n−1], En−1,2

]]
=

[[
X+

0 , X
−
n−1,1 +

λ

2
S(H0, X

−
n−1)

]
, En−1,2

]
= −λ[S(X+

0 , X
−
n−1), En−1,2] = −2λf

(
[En1,X

+
1 ]
)
f(X+

0 )

In conclusion, f is a well defined algebra homomorphism. Since L is generated by X±i,0, 0 ≤ i ≤ n − 1 and

X−0,1, the map f is surjective. It respects the filtrations on D and L, so it induces an algebra homomorphism
gr(f) : gr(D) −→ gr(L), which must be an isomorphism because of the PBW property of both algebras.
Therefore, f is injective.

12 From affine Yangians to deformed double current algebras

As explained in section 5, affine Yangians can be viewed as limit forms of quantum toroidal algebras. In
this section, we want to explain how to obtain deformed double current algebras from affine Yangians via a
similar procedure.

We fix λ, β. Let us start with Ŷ and its usual filtration. Let R̃ be the subring of Ŷ ⊗C C[h] generated by

hrX±i,r, h
rHi,r, 0 ≤ i ≤ n− 1, r ≥ 0. Set R̂ = R̃/hR̃, so R̂ ∼= gr(Ŷ) ∼= U(ŝln[u±1, v]). Thus, we have a map

R̂ � U(sln[u±1, v]).

Consider the composite R̃ � R̂ � U(sln[u±1, v]) � U(sln[v]), where the last map is obtained by setting

u = 1. Let K be its kernel. Let R be the C[h]-subalgebra of Ŷ ⊗C[h] C[h, h−1] generated by R̃ and K
h .

Theorem 12.1. The algebra R/hR is isomorphic to the deformed double current algebra D.

Proof. Our strategy is to define a surjective map ϕ : D −→ R/hR explicitly by the formulas below and then
to show that it is injective by using the functor F and corollary 10.1.

Set X±i,r = hrX±i,r and Hi,r = hrHi,r. The map ϕ is defined in terms of the generators of D in the following

way. For 1 ≤ i ≤ n− 1, r = 0, 1, we set ϕ(X±i,r) = X±i,r, ϕ(Hi,r) = Hi,r and set

ϕ(X+
0 ) =

X+
0,0 − E−θ

h
, ϕ(X+,−

0,1 ) =
X+

0,1 − [X−n−1,1, En−1,1]

h
, ϕ(X+,+

0,1 ) =
X+

0,1 − [En2,X
−
1,1]

h

We must show that ϕ extends to an algebra homomorphism on all of D. It is not difficult to see that ϕ
yields algebra maps U(sln[u]),U(sln[v]) −→ R/hR. The relations involving Hi,0 for i 6= 0 are easy to check.
In the following computations, the expressions on the right-hand side belong to R/hR: we first treat them

as elements of Ŷ ⊗C C[h, h−1] and, after simplification, we consider their images in the quotient R/hR.

[
ϕ(X+,+

0,1 ), ϕ(X+
0 )
]

=
1

h

[
X+

0,1 − [En2, X
−
1,1], X+

0 − En1

]
=

1

h

(
[X+

0,1, X
+
0 ]−

[
En2, [X

−
1,1, X

+
0 ]
]
− [X+

0,1, En1] +
[
[En2, X

−
1,1], En1

])
=

1

h

(
λ(X+

0 )2 +
[
[En2, X

−
1,1], En1

])
=
λ

h

(
(X+

0 )2 − λ
[
[En2, ω

−
1 ], En1

])
=

λ

h

(
(X+

0 )2 − E2
n1

)
= λ

(X+
0 − En1)

h
(X+

0 + En1) = 2λϕ(X+
0 )ϕ(En1)
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since X+
0 ≡ En1 in R/hR. The other relation in (42) is easier.

ϕ(X+,+
0,1 )− ϕ(X+,−

0,1 ) = [X−n−1,1, En−1,1]− [En2, X
−
1,1] = λ[En2, ω

−
1 ]− λ[ω−n−1, En−1,1]

=
λ

2

n−1∑
j=2

(EnjEj1 + Ej1Enj)

The first two relations in (44) are not difficult to obtain, and for the third one we just have to compute
λ[[En2, ω

+
k ], hX−1,1]. As for (45), we simply use [X+

0 , X
+
k,1] = 0 and compute [En1, ω

±
k ]. Using (44) and (45),

relations (46) and (47) are easy to obtain.

The first relation in (48) says that
[
X+

0 −En1

h ,X−n−1,1

]
= −[En1, X

−
n−1,1] = λ[En1, ω

−
n−1] = −λEn,n−1En1 and

the other ones are as simple. We now turn to relations (49)-(53).

We find that [ϕ(X+
n−1,1), ϕ(X+

0 )]− [ϕ(X+
n−1), ϕ(X+,−

0,1 )] equals

= [X+
n−1,1, X

+
0 − En1]−

[
En−1,n, X

+
0,1 − [X−n−1,1, En−1,1]

]
= (β − λ)X+

0 X
+
n−1 − βX

+
n−1X

+
0 − [X+

n−1,1, En1] +
[
En−1,n, [X

−
n−1,1, En−1,1]

]
= (β − λ)X+

0 X
+
n−1 − βX

+
n−1X

+
0 −

[
[X+

n−1,1, En,n−1], En−1,1

]
+
[
[En−1,n, X

−
n−1,1], En−1,1

]
= (β − λ)ϕ(En1)ϕ(X+

n−1)− βϕ(X+
n−1)ϕ(En1)

The equality corresponding to (50) via ϕ can be checked following the same steps. We now turn to relation
(52) with [ϕ(X+

n−1,1), [ϕ(X+
n−1,1), ϕ(X+

0 )]] and find that it is equal to

=
[
X+
n−1,1, [X

+
n−1,1, X

+
0 − En1]

]
= −h

[
X+
n−1,1, [X

+
n−1,1, En1]

]
= −h

[
X+
n−1,1,

[
[X+

n−1,1, En,n−1], En−1,1

]]
= −h

[
X+
n−1,1, [Hn−1,1, En−1,1]

]
= −h

[
X+
n−1,1,

[
X−n−2,1 +

λ

2
S(Hn−1, X

−
n−2), En−2,1

]]
= −λh

2
[X+

n−1,1, S(Hn−1, En−1,1)] = λhS(X+
n−1,1, En−1,1) = 2λϕ(X+

n−1,1)ϕ(En−1,1)

In a similar way, one can check that [ϕ(X+
1,1), [ϕ(X+

1,1), ϕ(X+
0 )]] = 2λϕ(En2)ϕ(X+

1,1). The second and fourth

relations in (51) can be deduced without difficulty from the defining relations of Ŷ. The first relation in (51)
is a bit more complicated to check.

[
ϕ(X+,+

0,1 ), [ϕ(X+,+
0,1 ), ϕ(X+

n−1)]
]

=
[
ϕ(X+,+

0,1 ),
1

h

[
X+

0,1 − [En2, X
−
1,1], X+

n−1

]]
=

1

h2

[
X+

0,1 − [En2, X
−
1,1], [X+

0,1, X
+
n−1] + [En−1,2, X

−
1,1]
]

= 0 (66)

The vanishing of the expression on the last line requires some explanations. From the definition of Ŷ, we
know that [X+

0,1, [X
+
0,1, X

+
n−1]] = 0 and [X+

0,1, [En−1,2, X
−
1,1]] = 0 since [X+

0,1, X
−
1,1] = 0, [X+

0,1, En−1,2] = 0.

Moreover, [[En2, X
−
1,1], X−1,1] = 0 since [[X−2 , X

−
1,1], X−1,1] = 0. It is also the case that [[En2, X

−
1,1], En−1,2] = 0:

indeed, if n > 4 (the case n = 4 is simpler) :[
[En2, X

−
1,1], En−1,2

]
=
[[
En3, [E32, X

−
1,1]
]
, En−1,2

]
=
[
En3,

[
[E32, X

−
1,1], En−1,2

]]

32



and [
[E32, X

−
1,1], En−1,2

]
=

[
E32, [X

−
1,1, En−1,2]

]
=
[
E32,

[
En−1,3, [X

−
1,1, E32]

]]
= −

[
En−1,2, [X

−
1,1, E32]

]
= −

[
[E32, X

−
1,1], En−1,2

]
Comparing the first and last term, we conclude that [[E32, X

−
1,1], En−1,2] = 0, hence [[En2, X

−
1,1], En−1,2] = 0.

To prove equality (66), we are left to check that [[En2, X
−
1,1], [X+

0,1, X
+
n−1]] = 0. From the relations in Ŷ, we

have [En2, X
+
0,1] = [X−1,1, X

+
0,1] = 0. Moreover, [X+

0,1, [[En2, X
−
1,1], X+

n−1]] = −[X+
0,1, [En−1,2, X

−
1,1]] = 0 since

[X+
0,1, En−1,2] = [X+

0,1, X
−
1,1] = 0. This proves (66). The proof of the equality [ϕ(X+,−

0,1 ), [ϕ(X+,−
0,1 ), ϕ(X+

1 )]] = 0
is analogous.

We are left to verify the relations in (53) and we do it only for the second one.[
ϕ(X+

0 ), [ϕ(X+
0 ), ϕ(X+

n−1,1)]
]

=
[
ϕ(X+

0 ), [X+
0 − En1, X

+
n−1,1]

]
=

1

h

([
X+

0 , [X
+
0 , X

+
n−1,1]

]
− 2
[
X+

0 , [En1, X
+
n−1,1]

]
+
[
En1, [En1, X

+
n−1,1]

])
The first term is equal to 0. Writing X+

n−1,1 = J(En−1,n) − λω+
n−1, we find that

[
En1, [En1, X

+
n−1,1]

]
=

−2λEn1En−1,1.

As for the term [X+
0 , [En1, X

+
n−1,1]], which equals [En1, [X

+
0 , X

+
n−1,1]], we find that[

X+
0 , [En1, X

+
n−1,1]

]
=

[
En1, [X

+
0,1, X

+
n−1]− ((β − λ)X+

0 X
+
n−1 − βX

+
n−1X

+
0 )
]

= [En−1,1, X
+
0,1] + (β − λ)X+

0 En−1,1 − βEn−1,1X
+
0 = −λX+

0 En−1,1

Therefore,

[ϕ(X+
0 ), [ϕ(X+

0 ), ϕ(X+
n−1,1)]] =

2λ

h
(X+

0 − En1)En−1,1 = 2λϕ(X+
0 )ϕ(En−1,1).

Proof that ϕ is surjective: The kernel K ⊂ R̃ is generated by hrCi,r,s, by the elements Ξ+
r = X+

0,r −
[X−n−1,r, En−1,1],Ξ−r = X−0,r − [E1,n−1,X

+
n−1,r] and by ad(X±i1 ) ◦ ad(X±i2 ) ◦ . . . ◦ ad(X±ip)(Ξ±r ) for any 0 ≤

i1, . . . , ip ≤ n− 1, p ≥ 1. Therefore, we have to show that hr−1Ci,r,s and
Ξ±r
h (viewed as elements of R/hR)

belong to the image of ϕ.

If s 6= 0, r ≥ 1, we write hr−1Ci,r,s = 1
2h [Ks(Hi), h

rJr(Hi)] = 1
2h [Ks(Hi) − Hi, h

rJr(Hi)]. We know

that hrJr(Hi),
Ks(Hi)−Hi

h ∈ Image(ϕ), hence hr−1Ci,r,s ∈ Image(ϕ). If s = 0, r ≥ 0, then hr−1Ci,r,s =
1
h [hrJ̃r(Hi),K−1(Hi)] = 1

h [hrJ̃r(Hi),K−1(Hi) −Hi] + [hr−1J̃r(Hi), Hi]. We claim that hrJ̃r(Hi) is in the

image of ϕ. Indeed, in R/hR, hrJ̃r(Ei+1,i) = 1
2 [hrJr(Hi),K1(Ei+1,i)] since the difference J̃r(Ei,i+1) −

1
2 [Jr(Hi),K1(Ei,i+1)] ∈ Fr−1(Ŷ); so hrJ̃r(Hi) = −[hr[Ei,i+1, Jr(Hi)],K1(Ei+1,i)] + 1

2 [hrJr(Hi),K1(Hi)] =
−[hr[Ei,i+1, Jr(Hi)], Ei+1,i] + 1

2 [hrJr(Hi), Hi] since K1(Ei+1,i) = Ei+1,i,K1(Hi) = Hi in R/hR. The last

two terms are in the image of ϕ, hence so is hrJ̃(Hi). To conclude that hr−1Ci,r,s is in Image(ϕ), we have

to see that [hr−1J̃r(Hi), Hi] ∈ Image(ϕ) also. We write, in R/hR,

[hr−1J̃r(Hi), Hi] =
[
[Ei,i+1, h

r−1J̃r(Ei+1,i)], Hi

]
=

hr−1

2

[[
Ei,i+1, [Jr(Hi), Ei+1,i]

]
, Hi

]
+[[

Ei,i+1, h
r−1(J̃r(Ei+1,i)−

1

2
[Jr(Hi), Ei+1,i])

]
, Hi

]
=

[[
Ei,i+1, h

r−1(J̃r(Ei+1,i)−
1

2
[Jr(Hi),K1(Ei+1,i)])

]
, Hi

]
(67)

By definition of J̃r(Ei+1,i), the difference J̃r(Ei+1,i) − 1
2 [Jr(Hi),K1(Ei+1,i)] is in Fr−1(Ŷ). Therefore, the

expression on line (67) is in the image of ϕ, thus so is [hr−1J̃r(Hi), Hi], which completes the proof that
hr−1Ci,r,s ∈ Image(ϕ).
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We proceed by induction to prove our claim about
Ξ+
r

h . Since Ξ+
r = hr

(
X+

0,r − [X−n−1,r, En−1,1]
)
,

[Hn−1,1,
Ξ+
r

h
] = hr

[
Hn−1,1, X

+
0,r − [X−n−1,r, En−1,1]

]
= −hr

(
X+

0,r+1 + (λ− β)X+
0,rHn−1 + βHn−1X

+
0,r − [2X−n−1,r+1, En−1,1]

−λ[S(X−n−1,r, Hn−1), En−1,1] +
[
X−n−1,r, [Hn−1,1, En−1,1]

])
= −hr+1

(X+
0,r+1 − [X−n−1,r+1, En−1,1])

h
− hr

(
(λ− β)X+

0,rHn−1 + βHn−1X
+
0,r

)
(68)

+λhr[S(X−n−1,r, Hn−1), En−1,1]− hr
(
[X−n−1,r, [Hn−1,1, En−1,1]]− [X−n−1,r+1, En−1,1]

)
(69)

The second term in (68) and the first term in (69) are in the image of ϕ and so is [Hn−1,1,
Ξ+
r

h ] by induction.

The expression in parentheses on line (69) is in Fr(Yλ) ⊂ Fr(Ŷ), so the whole expression in (69) is in R̃

and, consequently, belongs to the image of ϕ. In conclusion, hr(X+
0,r+1 − [X−n−1,r+1, En−1,1]) =

Ξ+
r+1

h is in
the image of ϕ.

Proof that ϕ is injective: Let c = λ, t = 2β − λ + nλ
2 . We can extend the map Φl : Ŷλ,β −→ EndC(Vl)

to Ŷλ,β ⊗C C[h, h−1] by replacing Ht,c with Ht,c ⊗C C[h, h−1]. The algebra map thus obtained restricts to
R −→ EndC(A ⊗C[Sl] V

⊗l), which factors through al : R/hR −→ EndC(Vl) according to lemma 4.1. The

composite al ◦ ϕ is exactly the map D −→ EndC(Vl) coming from the D-module structure on Vl given in
section 9.

Corollary 10.1 says that, given X ∈ D, X 6= 0 and β 6= nλ
4 + λ

2 , there exists some l� 0 such that al◦ϕ(X) 6= 0,

hence ϕ is injective also if β 6= nλ
4 + λ

2 . It then follows that ϕ must be an isomorphism for all value of λ, β.

13 Another family of deformed double current algebras

Lemma 3.8 suggests to consider a possible different definition of deformed double current algebras. Compu-
tations involving the Schur-Weyl functor lead to the following definition.

Definition 13.1. Let λ, β ∈ C. We define Dλ,β to be the algebra generated by elements z,K(z),Q(z),P(z)
with z ∈ sln, which satisfy the following relations: the elements z1,K(z2)∀z1, z2 ∈ sln, satisfy the relations
for U(sln[u]) so that we have a map U(sln[u]) −→ Dλ,β given by z ⊗ u 7→ K(z), and similarly for z1,Q(z2)
and U(sln[v]). The elements z1,P(z2) satisfy the relations of the Yangians of finite type An−1 as given in
definition 3.1 with J(z) replaced by P(z). If a 6= b = c 6= d 6= a or a 6= b 6= c 6= d = a (so if [Eab, Ecd] 6= 0
but Ecd 6= Eba

1), then

[K(Eab),Q(Ecd)] = P([Eab, Ecd]) +

(
β − λ

2

)
(δbcEad + δadEcb) +

λ

4
(δad + δbc)S(Eab, Ecd)

+
λ

4

∑
1≤i6=j≤n

S
(
[Eab, Eij ], [Eji, Ecd]

)
(70)

If [Eab, Ecd] = 0, then
[K(Eab),Q(Ecd)] = −λEadEcb (71)

[Q(Eab),P(Ecd)] =
λ

2

(
Q(Ead)Ecb + Q(Ecb)Ead

)
(72)

[K(Eab),P(Ecd)] = −λ
2

(
K(Ead)Ecb + K(Ecb)Ead

)
(73)

1An error here in the published version has been found by Valerio Toledano Laredo and Yaping Yang. They have also
pointed out that relations (70) and (71) can be combined into one single relation by modifying slightly (70).
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Remark 13.1. In the case Ecd 6= Eba and [Eba, Ecd] = 0, applying [·, Eba] to (70) or (71) yields an expression
for [K(Hab),Q(Ecd)]:

[K(Hab),Q(Ecd)] = P([Hab, Ecd]) +

(
β − λ

2

)
(δadEca − δbcEbd) +

λ

4

∑
i6=j

(αij , αab)S(Eij , [Eji, Ecd])

(72), (73) follow from this. Indeed, assuming that [Eab, Ecd] = 0 and that a, b, c, d are all distinct, we apply
[Q(Eab), ·] to the expression for [K(Hbc),Q(Ecd)] and for [K(Hac),Q(Ecd)] to deduce (72). If a, b, c, d are not
all distinct, we choose e 6= a, b, c, d and write Ecd = [Ece, Eed] so that [Eab, Ece] = 0 = [Eab, Eed]. If, say,
b = d, a 6= c, then

[K(Eab),P(Ecd)] =
[
K(Eab), [P(Ece), Eed]

]
= −λ

2

[
K(Eab)Ecb + K(Ecb)Eae, Eed

]
= −λ

2

(
K(Ead)Ecb + K(Ecb)Ead

)
Proposition 13.1. We can define an automorphism of Dλ,β by K(z) 7→ −Q(z),Q(z) 7→ K(z),P(z) 7→
−P(z), z 7→ z, ∀z ∈ sln, and an anti-involution by K(z) 7→ Q(zt),Q(z) 7→ K(zt),P(z) 7→ P(zt), z 7→ zt, ∀z ∈
sln where zt is the transpose of z.

Proof. This is straightforward to verify.

This should be compared with the involutions on Ht,c(Sl) described in [15].

The following proposition is an immediate consequence of lemma 3.8.

Proposition 13.2. We have an isomorphism Dλ=0,β=0
∼−→ U(ŝln[u, v]).

Corollary 13.1 (See proposition 7.1 in [17]). The following relation holds in Dλ,β :

[K(Eab),Q(Ebc)] + [Q(Eab),K(Ebc)] = 2P(Eac) if a 6= b 6= c 6= a.

Proof. This follows immediately from relation (70).

14 Schur-Weyl duality for D

There exist a duality of Schur-Weyl type between Ht,c(Sl) and Dλ,β . The proof of this fact below is simpler
than the one given in [17] since we do not have to prove it first for affine Yangians.

Theorem 14.1. Suppose that λ = c, β = t
2 −

nc
4 + c

2 . The functor F : M 7→ M ⊗C[Sl] V
⊗l sends a right

Ht,c(Sl)-module to an integrable left Dλ,β-module of level l (as sln-module). Furthermore, if l + 2 < n, this
functor is an equivalence.

Proof. Suppose that c = λ and β = t
2 −

nc
4 + c

2 . We would like to let K(z),Q(z),P(z) act on M ⊗C[Sl] V
⊗l

in the following way:

K(z)(m⊗ v) =

l∑
k=1

mxk ⊗ z(k)(v), Q(z)(m⊗ v) =

l∑
k=1

myk ⊗ z(k)(v), P(z)(m⊗ v) =

l∑
k=1

mYk ⊗ z(k)(v).
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Assuming that a 6= b = c 6= d 6= a or a 6= b 6= c 6= d = a, we find that [K(Eab),Q(Ecd)](m⊗ v) is equal to

=
∑
j 6=k

m[yj , xk]⊗ E(k)
ab E

(j)
cd (v) + δbc

l∑
j=1

myjxj ⊗ E(j)
ad (v)− δad

l∑
j=1

mxjyj ⊗ E(j)
cb (v)

= −c
∑
j 6=k

msjk ⊗ E(k)
ab E

(j)
cd (v) +

l∑
j=1

mYj ⊗ (δbcEad − δadEcb)(j)(v)

−δbc
2

l∑
j=1

m[xj , yj ]⊗ E(j)
ad (v) +

δad
2

l∑
j=1

m[yj , xj ]⊗ E(j)
cb (v)

= P
(
[Eab, Ecd]

)
(m⊗ v) +

t

2
(δbcEab + δadEcd)(m⊗ v)− c

∑
j 6=k

msjk ⊗ E(k)
ab E

(j)
cd (v)

+
c

2

∑
j 6=k

msjk ⊗ (δbcE
(j)
ad + δadE

(j)
cb )(v)

= P
(
[Eab, Ecd]

)
(m⊗ v) +

t

2
(δbcEad + δadEcb)(m⊗ v)− c

∑
j 6=k

m⊗ E(k)
cb E

(j)
ad (v)

+
c

2
δbc
∑
j 6=k

n∑
e=1

m⊗ E(k)
ae E

(j)
ed (v) +

c

2
δad
∑
j 6=k

n∑
e=1

m⊗ E(k)
ce E

(j)
eb (v)

= P
(
[Eab, Ecd]

)
(m⊗ v) +

(
t

2
− cn

4

)
(δbcEad + δadEcb)(m⊗ v)− c

∑
j 6=k

m⊗ E(k)
cb E

(j)
ad (v)

+
c

4
δbc

n∑
e=1

S(Eae, Eed)(m⊗ v) +
c

4
δad

n∑
e=1

S(Ece, Eeb)(m⊗ v)

=
(
P
(
[Eab, Ecd]

)
+

(
β − λ

2

)
(δbcEad + δadEcb) +

λ

4
(δbc + δad)S(Eab, Ecd)

+
λ

4
(δbc + δad)

∑
1≤i 6=j≤n

S
(
[Eab, Eij ], [Eji, Ecd]

))
(m⊗ v)

Now let N be an integrable left module of level l over Dλ,β and suppose that l + 2 < n. We have to
show that there exists a module M over H such that F(M) = N . From the Schur-Weyl duality between
C[w1, . . . , wl] o Sl and U(sln[u]), we know that there exist modules M1,M2 over C[x1, . . . , xl] o Sl and
C[y1, . . . , yl] o Sl, respectively, such that F(M1) ∼= N (resp. F(M2) ∼= N) as U(sln[u])-module (resp. as
U(sln[v])-module). Since they must be isomorphic as Sl-modules, we can denote them simply by M . We
must show that M is actually a module over Ht,c. We proceed exactly as in [17], so we will need the following
lemma.

Lemma 14.1. If v = vi1 ⊗ · · · ⊗ vil and ij 6= ik for any j 6= k, then m⊗ v = 0 =⇒ m = 0.

Fix 1 ≤ j, k ≤ l, j 6= k. Choose v = vi1 ⊗ · · · ⊗ vil such that ik = 2, ij = n − 1, ir = r + 2 if r < j, r 6= k,

ir = r + 1 if r > j, r 6= k. Set ṽ = E
(k)
n2 E

(j)
1,n−1(v). On one hand,(

Q(E1,n−1)K(En2)− K(En2)Q(E1,n−1)
)
(m⊗ v) =

l∑
s=1

l∑
r=1

mxrys ⊗ E(s)
1,n−1E

(r)
n2 (v)−

l∑
s=1

l∑
r=1

mysxr ⊗ E(r)
n2 E

(s)
1,n−1(v) = m(xkyj − yjxk)⊗ ṽ (74)

Using relation (71) for Eab = E1,n−1 and Ecd = En2, we find that [Q(E1,n−1),K(En2)] = λE12En,n−1, so

[Q(E1,n−1),K(En2)](m⊗v) = λm⊗E(k)
12 E

(j)
n,n−1(v) = λmsjk⊗ṽ. Therefore, we conclude that m(xkyj−yjxk−

λsjk)⊗ ṽ = 0. From lemma 14.1 and our assumption that λ = c, we deduce that m(xkyj − yjxk− csjk) = 0.
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We use equation (70) in the case Eab = En1, Ecd = E1,n−1 and vice-versa. It implies that

[K(En1),Q(E1,n−1)]− [Q(En1),K(E1,n−1)] = (2β − λ)En,n−1 +
λ

2

n−2∑
d=2

S(End, Ed,n−1) +
λ

2
S(En1, E1,n−1)

+
λ

2
S(H0, En,n−1) +

λ

2
S
(
En,n−1, (En−1,n−1 − E11)

)
Now fix k and let v be determined by ik = n − 1, ij = j + 1 if j 6= k. Set v̂ = E

(k)
n,n−1(v). Applying both

sides of the previous equality to m⊗ v, we deduce that

m(ykxk − xkyk)⊗ v̂ = (2β − λ)m⊗ En,n−1(v) +
λ(n+ 1)

2
m⊗ En,n−1(v) + λ

∑
j 6=k

n−2∑
d=2

m⊗ E(j)
ndE

(k)
d,n−1(v)

=⇒ m[yk, xk]⊗ v̂ =

(
2β − λ+

λn

2
+
λ

2

)
m⊗ v̂ + λ

∑
j 6=k

msjk ⊗ v̂

Lemma 14.1 and the assumption 2β − λ+ λn
2 + λ

2 = t imply that [yk, xk] = t+ c
∑
j 6=k sjk.

15 Equivalence of definitions 8.1 and 13.1

Theorem 15.1. The algebras Dλ,β and Dλ,β are isomorphic.

Proof. We define a surjective map f : D −→ D by setting f(X±i ) = E±i , f(X±i,1) = Q(E±i ) for 1 ≤ i ≤ n− 1,

f(X±0 ) = K(E∓θ), f(X+,±
0,1 ) = P(E−θ) − λω+,±

0 . We have to verify that all the relations in definition 8.1 are
satisfied. We give details only in the “+” case.

The relation [P(En1),K(En1)] = λEn1K(En1) implies [f(X+,+
0,1 ), f(X+

0 )] = 2λf(En1)f(X+
0 ); [P(En1), En1] = 0

leads to [f(X+,−
0,1 ), f(En1)] = λf(E2

n1). Relation (43) follows from the definition of ω+,±
0 and (44) is a

consequence of (72) and the definition of ω+,+
0 . As for (45),(46), they follow from (71), whereas (47) is a

consequence of remark 11.1. The same is true for the second and fourth relations in (48), whereas the first
and third relations follow from (71).

The relation [f(X+
n−1,1), f(X+

0 )] − [f(X+
n−1,0), f(X+,−

0,1 )] = (β − λ)f(En1)f(En−1,n) − βf(En−1,n)f(En1) is
equivalent to

⇔ [Q(En−1,n),K(En1)] = [En−1,n,P(En1)]− λ[En−1,n, ω
+,−
0 ] + (β − λ)En1En−1,n − βEn−1,nEn1

⇔ [Q(En−1,n),K(En1)] = P(En−1,1)−
(
β − λ

2

)
En−1,1 −

λ

4
S(En−1,n, En1)

−λ
4

∑
1≤i6=j≤n

S([En−1,n, Eij ], [Eji, En1])

The last equality is indeed satisfied in D. Relation (50) can be checked similarly.

We can verify that [f(X+,−
0,1 ), [f(X+,−

0,1 ), f(X+
1 )]] = 0 = [f(X+

1 ), [f(X+
1 ), f(X+,−

0,1 )]] (and similarly with X±1
replaced by X±n−1 and X±,−0,1 par X±,+0,1 ) by using remark 11.1.

The relation [f(X+
n−1,1), [f(X+

n−1,1), f(X+
0 )]] = 2λf(X+

n−1,1)f(En−1,1) is equivalent to

⇔
[
Q(En−1,n), [Q(En−1,n),K(En1)]

]
= 2λQ(En−1,n)En−1,1

⇔ [Q(En−1,n),P(En−1,1)] =
λ

2
Q(En−1,n)En−1,1 +

λ

2
Q(En−1,1)En−1,n
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which is again true in D. The other relation in (52) can be verified similarly.

Finally, we verify (53), so we compute that
[
f(X+

0 ), [f(X+
0 ), f(X+

n−1,1)]
]

equals

=
[
K(En1), [K(En1),Q(En−1,n)]

]
= −

[
K(En1),P(En−1,1)− λ

4
S(En1,K(En−1,1)) +

λ

2
S(K(En1), En−1,1) +

λ

4
S(En−1,1,K(En1))

]
= 2λK(En1)En−1,1 = 2λf(En−1,1)f(X+

0 )

The first equality in (53) can be verified similarly. That f is an isomorphism is a consequence of corollary
10.1.
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