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Abstract

We study the structure of Yangians of affine type and deformed double current algebras, which are
deformations of the enveloping algebras of matrix Wii.c-algebras. We prove that they admit a PBW-
type basis, establish a connection (limit construction) between these two types of algebras and toroidal
quantum algebras, and we give three equivalent definitions of deformed double current algebras. We
construct a Schur-Weyl functor between these algebras and rational Cherednik algebras.

1 Introduction

The Yangians of finite type are quantum groups, introduced by V. Drinfeld in [9], which are quantizations of
the enveloping algebra of the current Lie algebra g[v] of a semisimple Lie algebra g. The second definition of
these Yangians in [10] is given in terms of a finite Cartan matrix and an infinite set of generators. If we replace
it with a Cartan matrix of affine type, we obtain algebras that are called affine Yangians. We will consider
only the type A and A. In the second case, our definition is more general and depends on two parameters \, 5.

(More precisely, it depends on % viewed as an element of P*(C)). These affine Yangians are deformations

of the enveloping algebra of the universal central extension sl, [u®! o] of sl,[u*!,v] (= sl, @c Clu*t,v]).
We will introduce a class of algebras that we will call deformed double current algebras (DDCA): they are
deformations of the enveloping algebra of the universal central extension s, [u, v] of s0,, [u, v] (= sl,, @cC[u, v]).

One motivation for studying the representation theory of these algebras is that we hope that it will be easier
to understand, using classical methods, than the representation theory of quantum toroidal algebras, which
is still quite mysterious - for some important results, see [16],[28, 29],[18, 19]. In return, we hope that a
better understanding of DDCA will help shed some light on quantum toroidal algebras, not just in type
A: we expect some of our results, in particular theorem 12.1, to admit a generalization to any semisimple
Lie algebra. Another motivation is that we hope to obtain a I'-twisted version of DDCA, T" being a finite
subgroup of SLs(C), which may not be possible for quantum toroidal algebras or affine Yangians (as in the
theory of Cherednik algebras and symplectic reflection algebras, see [14]).

In this paper, we focus on the structure of affine Yangians and DDCA, postponing the study of their
representations. Sections 3 and 4 recall all the necessary definitions concerning Yangians and Cherednik
algebras. The next three concern only the affine Yangians Y g and its subalgebra Ly s considered in [17].
The main theorem about the affine Yangians is the construction in section 7 of a PBW basis, from which
we can derive a few corollaries. Our approach relies on the existence of a PBW basis for Cherednik algebras
and uses the Schur-Weyl functor from [17].

The second half of the paper is devoted to deformed double current algebras. After giving a first definition
in section 8, we construct a Schur-Weyl functor between them and rational Cherednik algebras, which we
use to obtain a PBW basis, mimicking the approach for affine Yangians. We are able to establish that they
are isomorphic to the algebra Ly g from [17]. Therefore, specializing the parameter A to 0 (but with 8 # 0),
we deduce that they are deformations of U(sl,,(Ag)), where Ag is isomorphic to the first Weyl algebra. In
section 12, we explain how they can be viewed as limit forms of affine Yangians. Afterwards, we introduce
another family of algebras which are also deformations of I(sl,[u,v]) and establish a Schur-Weyl type of
equivalence between them and rational Cherednik algebras. In the last section, we prove that these algebras
are isomorphic to the deformed double current algebras defined previously in section 8.
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3 Yangians and current algebras

Throughout this article, we will assume that n > 4, unless stated otherwise, and work always over C. Two
reasons explain this restriction: certain definitions have to be modified for sly (for instance definition 3.1 and
the one in lemma 3.2) and certain proofs perhaps could be modified for n = 2, 3, but they are more uniform
when n > 4.

Definition 3.1. [9] Let z,, be an orthonormal basis of sl,, with respect to its standard Killing form (-,-). The
Yangian Yy, A € C, is the algebra generated by elements z, J(z) for z € sl,,, satisfying the following relations
for z1, 29,23 € sl

2129 — 2921 = |21, 29| (bracket in sl,)

J(az1 4 bzg) = aJ(z1) + bJ(22), a,b € C, [21,J(22)] = J([21, 22])

[J(Zl)7 J([22723D} + [J(Z3)7 J([Zl7z2])] + [J(ZQ)7 J([Z?nzl])] = )‘2 Z ([21720}7 [[ZQVZML [Z37ZV]]){2072H72V}

g,V
1
where {21, 22,23} = 54 Zwesg Ar(1)#7(2)#7(3) "

~

Let C = (¢ij)i<i,j<n—1 (resp. C = (¢ij)o<i,j<n—1) be the Cartan matrix of finite (resp. affine) type A, _;
(resp. Ap—1).

2 -1 0 0 -1

-1 2 -1 0 0

0 -1 2 -1 0 0
é =

0 o -1 2 -1 0

0 0o -1 2 -1

-1 0 0 -1 2

Definition 3.2. [10] Let A E C. The Yangian Yy of finite type A,_1 can also be defined as the algebra
generated by the elements X:- H;,i=1,...,n—1, r € Z>o, which satisfy the following relations :

Z’l"7

[Hi,raHj,s] = 07 [Hi,Oa X]:Es] = :l:cin;'Ega [Xj—yv y ] = 513H1 r+s (1)
A

[HZT+1,X sl — [HZT»X]:tq+1] +5 C”(H”,Xi +XiH r) (2)
A

X XGa] = XG5 Xi] = £50 (X XG5 + XG5XT0) 3)



Z [Xi [Xi L xE Xi]...]}:0wherem:1—cij,r1,...,rm,seZZO (4)

4T (1) 4, (2) Ll r(m) ) “ 0,8
TESm

We will write Xii and H; instead of Xfo and H; . The set of roots of sl,, will be denoted A = {a;;|1 < i #
J < n} with choice of positive roots AT = {a;;|1 <4 < j < n}. The longest positive root 6 equals ay,,. The
elementary matrices will be written f;lij7 SO XZ+ = Ly 41, Xz_ = Ei+17i’ Hz = Eii — Ei-l—l,i—i—l for 1 < ) <n-— 1.
We set g = F1p, E_g = E,1. For a € AT, Xojf is the standard root vector of weight +« and X, = X[; if
a € A7, then X = XT_and X, = X_,. We may also write E,‘: (resp. Ey ) for Ej 41 (resp. Exp1k), Eao
for the standard root vector of weight o € A, Hy for E,,, — F1; and H;; for Ey; — Ejj;.

The isomorphism between the two definitions of Y) is given by the formulas [10]:

1

1
J(XF) = X7 + M where wi = £ > O(IXF XEXT + XTIXF, XT) 4(Xin + H; XF)

acAt
and 1 1
J(H;) = Hiy + Av; where v; = - S (o) (XIXT + X X)) - §H§.

acAt

In view of these formulas, we will need the following notation to shorten certain expressions later: for any
algebra A and ai,as € A, we write S(a1,aq) for aias + aza;.

Definition 3.3. Let \,3 € C. The affine Yangian ?5)\ of type A\n,l is the algebra generated by Xij;, i
fori=0,...,n—1,1r € Z>o, which satisfy the relations of definition 3.2 fori,j € {0,...,n — 1} except that
the relations (2),(8) must be modified for (i,7) = (1,0) and (i,5) = (0,n — 1) in the following way:

A A A A

(Hirer XE] = Hin K] = (8- 5 73 ) X+ (375 - 8) i, X )
A A A A

[Hii, X55) = [Hi, Xipp1] = (5 -5 F 2) Hi X, + (2 3 5) X Hi, (6)
A A A A

Ko X=Xl = (- g7 3) Ko X0+ (3rg 8) xix @

Remark 3.1. [t is a direct consequence of the definition of ?Aﬁ that [XfT,X;:S] =0= [HM,X;ES] if

I<|j—i<n-1. 1Ifp= %, relations (5)- (7) reduce to (2),(3). We should also note that ?519\1 = ?627)\2
if Ba = vB1 and Aoy =y for some v # 0.

In [17], we considered instead the following algebra.
Definition 3.4. The loop Yangian LY) g is the quotient of\?Aﬁ by the ideal generated by the central element
H070 + ...+ anLO-

One useful observation is that the Yangian Y) (resp. ?A,B) is generated by Xt Hiri=1,...,n—1 (resp.

7,77

1=0,...,n—1) with r = 0,1 only. The other elements are obtained inductively by the formulas:
1 A _
Xip = £5[Hin, X5 = SOHXG + X[ H), Hipyn = (X5, X0, (8)

Furthermore, the subalgebra generated by the elements with r = 0 is isomorphic to the enveloping algebra
of the Lie algebra sl, (resp. sl,[u], the universal central extension of sl,[u*!]) and the subalgebra Yfﬁ
generated by the elements with ¢ # 0 is an epimorphic image of Y. (Actually, the PBW theorem proved in
section 7 implies that Y/\O, 5 = Y - see corollary 7.1.) Therefore, the affine Yangian ?5’ » contains Yy and a

copy of $(sl, [u*1]), which together gencrate Y 5.

In [17], the following lemma was proved.



Lemma 3.1. It is possible to define an algebra automorphism p of ?)\7[3 by setting

o)=Y (1)(3) Hore otx - 3 (1)(3) . dorizon

s=0 s=0

T T

p(Hip) = ( i ) B Hivs, (X)) =) ( . ) BTXE fori=0,1

s=0 s=0

The following subalgebra of the affine Yangians will also be of interest in view of theorem 8.1 in [17].

Definition 3.5. Let A\, € C. We define Ly g to be the subalgebra of ?)\”3 generated by the elements
X+ Hi,r,XS:T for1<i<n—1,>0 and by Xo_ﬂ, forr>1.

We will denote by K,.(z) the element z®@u" of sl,[u*!] C sl,[u*!] C 3?,\”3. It was noted in [17] that, because
of the involution ¢ on Ly g (see proposition 8.1 in [17]), the subalgebra of Y g generated by the elements
Xfo, H;g for 1 <i<mn—1and by X, is isomorphic to {(sl,[w]), so we can denote by Q,(z) the element

2z ® w" of this copy of sl,[w] inside ?)\ﬁg. In particular, K;(E,1) = Xy and Qi(E1,) = Xg,1. We set
K(z) =Ki(2),Q(z) = Q1(2).

In this paper, it will be important to have a simpler definition of the Yangians Y and Y A,3 - see proposition
3.1 below. We start with a series of lemmas.

Lemma 3.2. The Lie algebra s\, [v] is isomorphic to the Lie algebra L generated by the elements Xl-i_r7 H; 1<
i<n—1,r=0,1, with the relations:

M, Hjs]=0,7,8=0o0rl [Hi,o,st] = :I:cinfs, s=0orl 9)

[ 1, X 0] = [Hio, X55], X0, X 0] = GiHio, (K70, X5 0] = [0, X51] = 65Hi (10)
X X =0df1<|i—jl<n—1rs=0o0rl, [X,X]=[%X"] (11)
(X5, X5, X5, ]] = 00if (r,s) = (0,0),(0,1) or (1,0). (12)

For an arbitrary associative algebra A, sl,,(A) is defined as the derived Lie algebra [gl,(A), gl,(A4)]. If A
is commutative, the kernel of the universal central extension s, (A) of sl,(A) is isomorphic to Q'(A)/dA,
the space of 1-form on the affine variety Spec(A) modulo the exact forms - see [21]. As vector spaces,
we can write g[n(A) = 50,(A) ® QY (A)/dA and, via this identification, the bracket on g[n(A) is given by
[21 ® a1, 29 ® as] = [21,22] ® a1 - as + (21, 22)azda; where (-,-) is the Killing form. We will be interested in
the cases A = C[u,v] and A = C[uT!,v], the case A = C[u™!, v*!] being treated in [25].

+

@,

We can put a filtration on \7)\,5 by giving X, H;, degree r. The associated graded ring gr(?xﬁﬂ) is

an epimorphic image of il(g[n [uil,v]). Indeed, if A = g = 0, SA{'A,B is exactly the enveloping algebra of
sl, [u®!, v]: this can be proved in exactly the same way as proposition 3.5 in [25]. This means that we have a
map ?,\2075:0 — U(sl, [uFt, v]) which we can restrict to Ly—g g—o — U(sl,[uT!,v]). Thus we see that the
subalgebra Ly—g, g—¢ is the enveloping algebra of a Lie algebra L which is a central extension of sl [u, w] where
w = u~tv. Therefore, we also have a map sA[n [u, w] — L. The Lie algebra f/y\[n [u, w] can be identified with a
Lie subalgebra of sl, [uil,/\v] via sl [u, w] < s, [u,v], Q*(Clu, w])/d(C[u, w]) < Q*(CluTt, v])/d(C[ut!,v]),

and, via this embedding, s, [u, w] becomes identified with L.

Lemma 3.3. The Lie algebra f?[n[uil,v] is tsomorphic to the algebra L generated by XfT,HZ—’T,O <3<
n— 1,7 = 0,1 with the same relations as those for L in lemma 3.2 extended to 0 < i,7 <n —1.
Proof. This follows from lemma 3.2 by using the automorphism p in the case A = 5 = 0. O



Lemma 3.4. [13] The Lie subalgebra b* of;[n [u*!,v] generated by Xl ,0<i<n—1,r>0 is isomorphic
to the Lie algebra generated by these elements and satzsfymg only the relations

[er+1’Xi] [Xzir’st+1] Vivjv [Xzir’Xi]_OZf1<‘Z_j‘<n_l (13)
+ + + 11 _ cp o s
[X; R [X; TZ,ijs]] =01ifi—j==x1modn. (14)

The Lie algebra ;[n [ut! v] is graded by giving the generators X H; , degree r. We have a Lie algebra

7,7
monomorphism s, [u*!] — sl, [u®! v] and we can consider the weight space decomposition of sl, [u*!, v]
with respect to 0, the Cartan subalgebra of sl,[u®!]. We denote by W, the space of elements of sl, [u*', v]
of degree r and weight o € ?* and set W, = > 2 W.L. One can prove, exactly as in L25], that W7 is
one-dimensional if 7 > 0 and « is a real root and W, = {0} if a # 0 and « is not a root of 9. Consequently,

the kernel Ker of the epimorphism sA[n [u®!, v] = sl, @c Clu*!,v] is contained in GpezWhs.

Lemma 3.5. The Lie algebra 5[ [u,v] is isomorphic to the Lie algebra € generated by XZ i1 < i <
n—1,r>0 and Xo,w” > 0, with the relations (1)-(7) in the case A = 8 = 0, except those which involve
X()j,«,HO,r; r Z 0.

Proof. Let £ be the Lie subalgebra of € generated by Xir r >0 with 0 <i<n—11in the “+” case and
1 <i<n-—1inthe “” case, and let £ be the abelian Lie subalgebra generated by H; ,,r > 0,1 <i <n—1.
It follows from the definition of ¢ that ¢ = ¢~ + % + ¢* and " = b™ according to lemma 3.4. We have a
map fi : £ —s sl, [u,v] given by, for 1 <i<mn—1,7 >0:

Xi—t—r — Ei,i-‘rl X ’UT7 ijr — Ei+17i ® ’UT, Hi,r — (E” — Ei+1,i+1) X UT7 XS:T — Enl X wv”.

The kernel of the composite 7 o f; (where  : sl [u,v] — sl [u, v]) must be central because of the weight
space decomposition of €+ described above, so there exist also a map f : sl,, [u,v] — €. Since sl,, [u,v] and €
are perfect Lie algebras and fso f1, fi o fo are endomorphisms of £ and EA[n [u, v], respectively, over the identity
map on sl,[u, v], they must be equal to the identity according to the following well-known lemma. O

Lemma 3.6. Let m:g — g be a central extension of the Lie algebra g with g perfect. If n: g — @ is a Lie
endomorphism which induces the identity map on g, then n is the identity.

Lemma 3.7. The Lie algebra 5[ [u,v] is isomorphic to the Lie algebra t generated by X”, Hi,1 <0 <
n—1,r=0,1 and Xa'ﬂ,,r = 0,1 satisfying the relations (9)-(12) for 0 < i < n — 1 except those involving
X Hoym = 0, 1.

Proof. We know from lemma 3.2 that the generators of t with 1 < i < n —1 generate a Lie subalgebra which
is an epimorphic image of sl [v], so we only have to check the relations in lemma 3.5 which involve XS: - We

have elements XZ - Hi p in t which are the images of XijE ®v", H; @ v" € sl,[v] under sl,[v] — t.

Define inductively Xg . by X§, = —[Hn_1,1,X{,_4]- Since [H,_11,X] ] = [H11,%X{], we also have X, =
—[H1,1,X5,_1]. We have to verify the following relations:

L X5, %, ]=0V1<i<n—1,Vrs>0.
2. X, X5 ) =0ifi#1,n—1

3' [Xz r+1’xars] [X+

17“7

Xgspa) ifi=1,n—1,Vrs>0.

4. X3, X3, ]=0Vrs>0.



5. XX, X =0ifi=1,n—1.

1,717 1,127

1. If 2 S ) S n — 27X'Zs = 2*1.;[Hi,1; [Hi,I; ety [Hi71,X;0] . ]] and Xl_,s = [Hg,l7 [H271, ey [H2717X1_,O] .. ']]7X7_L—1,s =
Hp-21, Hn-21,- -5 Ho2,1,X, 1 o] -+ ]]-
Then [X&O, X; | = 0 since [H; 1, Xaio] for 2 <i <n — 2. The general case follows by induction on r.

2. The proof is the same as for (1), with X} = 5-[H; 1, [Hi1, ..., [Hi1, X;fo] ...]] (r times).

3. We use induction on r and prove it only for ¢ = n — 1. Let us assume that the equality is true when r = 0
and for arbitrary s. Suppose that r > 1.

1 1 1
[ij_fl,rJrl? X'E)‘—,S} = 5 HH”—Ll? Xr_‘;fl,rL X(_)‘—,s] - 5 [[Hn—Ll? Xa:s}’ X'jz_fl,r] + 5 [Hn—l,h [X’r_tfl,’l’" XE)F,S”
1 1
= _i[xas+1’ Xifl,r] + 5 [Hn*Ll? [qu,rqv Xas+1]]

1 1
= g[x'rtfl,r’xa:erl] + [XZA,T»XSF,SH] - i[xzfl,r717xajs+2] = [Xifl,r7xajs+1]

We are left to prove (3) when r = 0,s > 0. We use induction on s and the identity XS“,SH = —[Hthas].
Then we obtain

[X:L_—l,o,X(J)r,sH] = —[H1,1, [X:L_—l,o:XaL,s” = _[Hl,h [Xz—l,lvxa_,s—l]] = [Xr—t—l,hxas]'

4. We proceed by induction on r + s. (By assumption, (4) holds for r + s =10,1.)
[XS_,N XE"):S] - [[Xa_,w H"L—l,l]? Xa_,s—l] - [H"l—l,l’ [XS_,W Xa_,s—l]] = _[Xa_,r-&-l’ Xa_,s—l]'

Thus, [X&Hl, X({Sfl} = [X&Pl, X6r75+1]' If r+s is even, we get [XSF’MS, XSCO] = [X&O, X&HTL SO [XSF’HS, XSCO] =0
and [x({r,xgﬁs] =0.

If 7 + s is odd, we use (1) and (4) to deduce that [H,_1,2,X§ , o] = —X{ . Proceeding by induction on r + s,
we obtain

[XS_,M Xa—,s] == [[XS:W Hn—1,2]7 X073—2] - [HH—LQ’ [XS_,W Xa_,s—Z]] = 7[X3_,r+2’ XS_,S—Q]'
Therefore, supposing, without loss of generality, that r is odd and s is even, we obtain
[Xg_,7'7 XE)‘F,S] = [X(-)i_,r-i-s?Xa_,O] - _[XE)’—,T'-FS—Q’XS—,Q] = [XO,T+S—37X(—)~_,3} = [Xa_,oa Xg_,r—&-s]'

Therefore, [X7, 4. X{ ol = 0= [X5,. X5 ).

5. We write [X} ., [X:[_LTQ,XSTS]] = [X:{_LO, (Xt 10, X0 4ryts)] using (4) and express X(J)r?r1+r2+s as
X&Tﬁrﬁs = (=1)"*"2tS[Hy 4, [Hyq,. .., [Hi, X&O] ...]] (H1,1 appears r1+r2+s times). Then [XZ?LO,HM] =0
and the result follows from the case r; = ry = s = 0. The case 7 = 1 is identical. O

We recall the following theorem established in [21].

Theorem 3.1. [21] Let A be an associative algebra over C. The universal central extension sl,(A) of sl,(A)
is the Lie algebra generated by elements F;(a),1 < i # j <n,a € A, satisfying the following relations:

Fij(tiay + taaz) = t1Fyj(ar) + t2Fyj(az) t1,t2 € C,a1,a2 € A (15)
[Fij(a), Fjr(b)] = Fir(ab) if i # j # k #1 (16)
[Fij(@), ()] =0 if i # j # k # 1 # (17)



We would like to give an equivalent definition of sl, (C[u,v]). This will be useful in section 13.

Lemma 3.8. The universal central extension ;[n [u,v] can be defined as the Lie algebra & generated by
elements K;j(u),Qi;(v) and Pi;(w) with the following relations : there are Lie algebra homomorphisms
sl [u], s, [v], 80, [w] — 6, E;; @ u, Eij @ v, By @ w — K;(u), Qi (v), Pij(w), and we also have the relations

[Kij(u), Qjr(v)] = Pi(w) if i #j #k#1i (18)
[Kij(u), Qri(v)] = 0 = [Pij(w), Ky (u)] = [P (w), Qu(v)] if i #j#k#1#i (19)

Proof. We have a map & — ;[n[u, v] sending K;;(u) — Fj;(u), Qi;(v) = Fij(v), Pij(w) — Fjj(uv) in the
notation of theorem 3.1. On the other hand, sl,,[u, v] is isomorphic to the Lie algebra t (in lemma 3.7) and
we have a map t — & given by

X5 Qi (V1) X Qigri(v"), Hip = [Qiiy1(v7), Qiv1i(1)], r=10,1,1<i<n
Xo+,o — Knl(u), X(J)r,l — P (’U))

The composite of this map with & — sl,, [u,v] is the identify. Therefore, t — & is injective. From the
definitions, it is also surjective, hence an isomorphism. O

We can now give two simpler definitions of the Yangians Y, and ?A, 8-

Proposition 3.1. The Yangian Yy (resp. 3?,\)5) can be defined as the algebra Y (resp. ?A,B) generated by
elements Xitr,Hi,,., 1<i<n-—1,7r=0,1 (resp. 0 <i <n—1) satisfying the same set of relations as in
definition 3.2 (resp. 3.3), except that r and s only take values in {0,1}: more precisely, in relation (4), we
have ry =rq =1, (r,s) = (0,0),(0,1), (1,0), whereas r = s = 0 in relations (2),(3) (resp. also in (5),(6),(7))

and r+s = 0,1 in the rightmost relation in (1). As for [H;,,H; ] =0, it must hold for r,s =0 or 1.

Proof. We have an epimorphism Yy = Y. Considering the associated graded map and using lemma 3.2, we
obtain a sequence of three maps LU(sl,[v]) — gr(Yy) — gr(Yy). The PBW property of Yy (proved in [22])
says that the composite is an isomorphism. Therefore, gr(Y)) — gr(Y)) is injective and Y}, is isomorphic to

Y. The statement for the affine Yangian follows immediately from the finite case using the automorphism
P O

Another simpler definition of Yy, which is also valid in the A; case, was given in [23]. His definition follows
directly from the one given in proposition 3.1 (when n > 4). Showing this amounts to proving that the
relation [H; 1, [X;fl, X; 1]l = 0 holds in Y).

Later, we will also need a simpler definition of the Yangian Y) which is closer to definition 3.1.

Lemma 3.9. The Yangian Yy is isomorphic to the algebra Y s generated by elements Y;t, H; forl1 <i<n—1

and by Y;’i which satisfy the following relations: the elements with © # 0 satisfy the Serre relations for sl
and those with i = 0 satisfy:

[Y;r, [Yf,yar’i]] =0= [YOJr’i, [YOJr’i,Yf]] and the same with YI_DYJ’JF instead onf,YJﬁ (20)
-
XO _XO = 5 Z ([EnhEij]Eji +E32[En17Ez]) (21)
1<istj<n—1
X5 X =0=Xe5 X, ],i=2...,n—2 (22)



Proof. Starting from definition 3.1 of Y, we choose aq,...,a,_2,a,1 as a basis of simple roots for A and
apply the Drinfeld isomorphism to J(E,;) - see the formulas after definition 3.2. We obtain an element
of Y\ which we denote by Xar '~ and which satisfies relations (20). The element XO+ "+ is defined similarly,
choosing this time aq,...,a,_1,a,1 as a basis of simple roots. Relations (21) and (22) follows from the
Drinfeld isomorphism.

The elements X ii, H;, Xgr o+ generate Yy, so we have an epimorphism Y, — Y. There are filtrations on both
algebras (X, + X, * are given degree 1) and, therefore, associated graded maps $(sl,[v]) — gr(Y,) —
gr(Yy). The composite is an isomorphism because of the PBW property of Yy [22]. Therefore, Yy — Yy. O

We can simplify even more the definitions of Y, and Y A3 given in proposition 3.1.

Lemma 3.10. The relations [Xzil, (X, Xi]]—&—[Xi [Xfl,Xi]] =0 and [XE, [XE, Xi 1] =01n Y, 3 follow
from the relations (2)-(3),(5)-(7) withr = s =0, (4) withry =1y = s = 0 and the second relation in (1)
with s =0 or 1.

Proof. We prove it in the + case with ¢ = 1,5 = 0, the other cases being similar. We apply [Ha21,] to
(X, [X;F, X1 = 0 and obtain

A A
XX ] — X X X - 3 S X7 [ XT] - 3 (X7 (8. X7), X = 0.

This simplifies to [Xi"}, [X7", X ] + [X], [X]"}, X{]] = 0. To obtain the relation [X;", [X;", X{,]] = 0, we
apply instead [Hy—1,1,]- O

Lemma 3.11. The relation [XZ 15 [Xzil,Xi 1] = 0 follows from the other relations in proposition 3.1. (The
same is true for Xfl,Xfil.)

Proof. We prove [Xg,[Xq,, X7 |]] = 0 only. From lemma 3.10, we know that [[Xg, X", ], X" ,] +
[[Xo X0, X, 1] =0, so, applying [, X, ,], we obtain

[[X(;F’anl,l]’xvj—l] + [[X(;F’anlLXrer—l,l} + [[X(;F’ij—l,l]anfl} + [[X(;F’ij—l]aHn*Ll} =0,

hence [[Xo, Ho—1,1), X1+ [[Xg s Xg 1], Hoo1,1] = 0 and 2{[Xq", Hy—1,1], X1 ]+ (X (X y, Hom14]] = 0.
Writing [X,7 ,, Hy—11] = —2X7'1’_171 —MNX, Hyo1+ Hy_1X,7 ), we conclude that

n—1» n—1

A

[[XS_7HH—171]7X:71] = [XS_,X;;LJ [XS_,X+ Hn—l +Hn_1X:’L_71]

We also need that [[X;", Hy1], [X¢", X,fy1]) = [0 [1XG Hial. ;0] = [Xd (X XG0 1] Bl | =
(X4, X,‘f_lyl], [X(, Hi1]]. Comparing the first and last terms yields [X, Hy 1], [XJ,X:_M]] = 0. There-
fore, [Xo+,17 [ngl, er

1] equals

=[x Hual, [IXG Hooaal, X0 | = [BXG Hy+ = B) X [IXG Haoal, X
- [[X(;r’ Hl,l]’ [()‘ - IB)X0+HTL71 + BanIXJ; XTJLr_lu
+[BXG Hy+ (A= B HI X, [(A = B) X Hyor + BH, 1 X, X,F ]

which simplifies to
= %(S([[Xo CH) X XS ) + S([H X Hal X)X ) (23)

[S(HleJ)7S([X(—)‘raX:’L_fl]aHl)} (24)

2
73(5(1{1, (X X Haal X)) ) + %



The terms (23) cancel each other. Since
[Xo [1Xe Hual, X)) = [1Xg, Hual [Xg, X)) = [Xo [Ha, (X X))
= [X¢, [[Hi, X, X0 =0,

by comparing the first and last term, we see that the first expression in (24) is zero. Thus, [X0+,1’ [Xafl, X1
equals

= A2(Xo [H, (X3 X o+ (XS X IXG HhH ) + A2([X0,HﬂHl[X0J< ]

)\2
+H X [H (X X)) + 5 (SO X XX B + (X X Hy X Hi)))

A2 A2
= 4 [[X(T’X ]H17X0+} + Z[XJ’Hl[X(;raXrJ[—IH =0

4 Cherednik algebras and Schur-Weyl duality

The definitions given in this section could be stated for any Weyl group W. However, in this paper, we will
be concerned only with the symmetric group S, so we will restrict our definitions to this case. We set h = CL.
The symmetric group S; acts on h by permuting the coordinates; associated to h are two polynomial algebras:
C[p] = Sym(h*) = Clz1, ...,z and C[h*] = Sym(h) = Cly1, ..., w], where {z1,...,2;} and {y1,...,y} are
dual bases of h* and b, respectively. For i # j, we set €;; = x; —xj,€; = yi —y;j, R = {€;[1 < i # j <1} and
Rt ={e;]1 <i<j<I}. Theset S ={z; — x;41|1 <i <[1—1} is a basis of simple roots. The reflection in
b with respect to the hyperplane e = 0 (e € h*) is denoted s.. Let (, ) : h* x h — C be the canonical pairing
and set s;; = s, -

Definition 4.1. [9] Let {uy,...,w;} be a basis of §. The degenerate affine Hecke algebra H.(S;) of type gl
is the algebra generated by the polynomial algebra Cluy, ..., w;] and the group algebra C[S;] with the relations

Se U — Sc(u) - e = —cle,u) Yu € h,Ve e S

The double affine Hecke algebra H introduced by I. Cherednik [5] admits degenerate versions: the trigono-
metrlc one and the rational one. The extended affine Weyl group is Sl = P xS, where P is the lattice

@®l_,Zx; C b*, so its group algebra is (C[Sl] Clxt, ... Xil} x S;. The group S is generated by s, Ve € R
and by the element p = x1512823 - 51-1,-

Definition 4.2 (Cherednik). Let t,c € C. The degenerate (trigonometric) double affine Hecke algebra of
type gl; is the algebra H, .(S;) generated by the group algebra of the extended affine Weyl group C[S;] and
the polynomial algebra Cluy, . ..,u;] = Sym(h) subject to the following relations:

Se U — Sc(u) - e = —cle,u) Yu € h,Vee S
PU; = Ui+16, lgigl—l, pulz(ul—t)p
The rational version of the double affine Hecke algebra has been studied quite intensively in the past few

years (see, for example, [1],[15]) and is usually referred to as the rational Cherednik algebra.

Definition 4.3. Let t,c € C. The rational Cherednik algebra Hy .(Si) of type gl; is the algebra generated by
C[b], C[h*] and C[S;] subject to the following relations:

w-z-w P =wr), w-y-wl=wly), Vrech*, Vych

[yvx] =yYr -y = t<y,x> +c Z <€7y><x’6v>86
eERT



The elements Y; = 3 (z;y; + y;x;) will be important later.

Proposition 4.1. The algebra H; .(S;) can be defined as the algebra generated by elements Xlil, e ,Xlil,
Vi,...,Y; and S; with the relations

o

_ _ c
w- X w = Xy, w-Viow =V, [V, ] = T Z (SjkSik — SkjSij)
ik
c
iji — Xiyj = téini + 5 Z <€,yj><l‘i, €v>()(1‘86 + Sexi).
eeERT

There exists an isomorphism H; .(5;) = (C[a:lil, e ,:clil] ®c[p) He,e(S1) which sends V; to Y; and XijEl to
xiil. We want to explain another connection between H, .(S;) and H, .(S;) which is true for Cherednik

algebras attached to any Weyl group. We can filter H; .(S;) by giving V; degree 1 and Xjﬂ7 o € S; degree
0. Let $..(S;) be the C[h]-subalgebra of H; .(S;) ®c C[h] generated by X,:C'ﬂ7 hYj, o€ 5,1 <j,k <l This
is the Rees ring of H; .(S)) and $;.(51)/h$:.(S1) = gr(H; (S))) +— (C[Xlil,...,Xlil,yl,...,yl] x 5.
Consider the composite

91,e(S1) = 90.6(5)/h$4,6(S) —= CIXFL ., XFL V1, D] % S — C, ..., V) % S,

where the last map is obtained by setting X, = 1,1 < k <. Let K be the kernel of this composite and let
A, .(S)) be the C[h]-subalgebra of H; .(S;) ®c C[h, h~!] generated by $; .(S;) and % The following lemma
is already known to others.

Lemma 4.1. The algebra Ay o(S1)/hA+c(S1) is isomorphic to Hy (S)).
Definition 4.4 (Cherednik). Let ¢,k € C*. The double affine Hecke algebra H, ,,(S;) of type gl; is the unital
associative algebra over C with generators Tiil,XJil, in forie{l,...;1—1} and j € {1,...,1} satisfying
the following relations:
(T; + 1)(Ti = ¢*) =0, TTinTi = T TiTia
TT; =TT if li— j| > 1, XoYi = sY1Xo, Xo¥y 'X5'Vi=q °T7
XiX;=X;X;, VY5 =YY, TXiTi=q¢ X1, T, YT ' =q Yo,
X;T; =T, X5, Y;T; =TY; if j #d,i+ 1
where Xg = X1 X0+ X|.

The trigonometric Cherednik algebra can be viewed as a limit (degenerate) version of the double affine
Hecke algebra (or elliptic Cherednik algebra). This is explained in [6]. It was proved by I. Cherednik that
the double affine Hecke algebra and its trigonometric degeneration are isomorphic after completion. His
proof relied on his theory of intertwiners. Here, we present a simpler construction of H, .(S;) starting from
H, ..(S;). The following lemma can be deduced from Cherednik’s result that H, . (S;)[[R]] — He .(S)[[A]],
but it is also possible to give a more elementary proof.

Lemma 4.2. Set ¢ = e2",x = e'". Let B be the C[[h]]-subalgebra of H(S;)[[h]] @c(n C((h)) generated by

+1_
wE VV,Xjﬂ7 Y " 1,1 <j<l. Then B/hB is isomorphic to H, .(S;).

The Schur-Weyl duality established by M. Varagnolo and E. Vasserot [27] involves, on one side, a toroidal
quantum algebra (a quantized version of the enveloping algebra of the universal central extension of the
double loop algebra s, [u*™!, v*]) and, on the other side, a double affine Hecke algebra for S;. Theorem 4.2
(established in [17]) provides a similar type of duality between the trigonometric Cherednik algebra Hy .(S;)
and the loop Yangian LY) 3 (or ?A,B>v which extends the duality for the Yangian of finite type due to V.
Drinfeld [9].

Before stating the more classical results on the theme of Schur-Weyl duality, we have to define the notion of
module of level [ over sl,,. Set V = C".
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Definition 4.5. A finite dimensional representation of sl, is of level | if each of its irreducible components
is isomorphic to a direct summand of V&',

Theorem 4.1. [7, 9] Fix | > 1,n > 2. Let A be one of the algebras C[S;],H.(S;), and let B be the
corresponding one among Usl,,Yy. There exists a functor F, which is given by F(M) = M ®cs,) Vel from
the category of finite dimensional right A-modules to the category of finite dimensional left B-modules which
are of level | as sl,-modules. Furthermore, this functor is an equivalence of categories if | <n — 1.

Definition 4.6. A module M over YA 8 1s called integrable if it is the direct sum of its integral weight spaces

under the action OfD and if each generator XZ .. acts locally nilpotently on M.

The following theorem was the principal result in [17]. It is analogous to the main theorem in [27].

Theorem 4.2. Suppose thatl > 1,n > 3 and set A = ¢, = 5 —"F + 5. The functor ¥ : M — M Qcs,] el
sends a right Hy .(S;)-module to an integrable left Y,\ﬁ-module of level | (as sl,-module) with trivial central

charge. Furthermore, if | +2 < n, this functor is an equivalence. The same is true if Hy o(S;) and ?A,ﬂ are
replaced by Hy o(S1) and Ly g.

5 From quantum toroidal algebras to affine Yangians

The following definition is slightly different from the one used in [27].

Definition 5.1. Let q1,q2 € C*. The toroidal quantum algebra Uy, 4, of type An_1 is the unital associative
algebra over C with generators e; », fi r, ki r, k;_ol,i € {0,...,n—1},r € Z, which satisfy the following relations:

(ki kijs) =0Vi,j €{0,...,n—1},Vr,s € Z (25)
kioejr = 417 €jnkio, kiofir = a1 finkio, (a0 —ar Dleir, fisl = (ks —kips) (26)
(Here, kz s = Kirys if £(r+5) >0 and = 0 otherwise.)
The next three relations hold Vi,j € {0,...,n — 1},Yr,s € Z except for (i,7) = (n —1,0),(0,1):
kirs1€js — @17 kirejon1 = 417 € skirt1 — €551k (27)
€ir4+1€j5.s — qf“ €ir€js+1 = qf“ €5,5€ir4+1 — €5,5s4+1€i 1 (28)
{€iri€irais = (01 47 )eim€)sCin + €jsCiCin} +{r &2 2} =0 ifi —j =+l modn—1  (29)
The relations (27)-(29) hold with e; . replaced by f;, and ¢;” by q; .

In the cases (i,7) = (n —1,0),(0, 1), we must modify the relations (27)-(29) above in the following way: we
introduce a second parameter gz in such a way that we obtain an algebra isomorphism ¥ of Uy, 4, given by
Cirs firs Kip = @i €ic1,mq] fic1,0, QT Ric1,r for 2 <i <n—1 and ey, fir, kip — @5€i—1,0, @5 fim1,r @5 Ki—1,r if
i=0,1. (We identify e_1 , with e,_1,, etc.) For instance, relation (28) fori=0,j =1 becomes

-1
q2€0,r+1€1,s — €0,r€1,s+1 — 41 (42€1 s€0,r+1 — 1€1,5+1€0,r,

and with t =n — 1,5 = 0 we have a very similar identity:

-1
42€n—1,r+1€0,s — €En—1,r€0,5+1 — 41 42€0,5€n—1,7+1 — 41€0,54+1€n—1,r-

The algebra Uy, 4, can also be defined using pairwise commuting elements }L'm, 0<i<n-1,r€Z\{0},
instead of the k; ., # 0. They are related to the k; , via the following equality of power series:

Zki ok 0exp :I:(ql—q1 Zh,gu

r>0 s>1

11



Cij ~

~ reij =T TCij _—Teij
They satisty the relations [h; ,, e, 5] = %%Gj,ws, [P, fi,s) = —%%fwﬂ, except when
1—4; 1—4q,

(i,4) = (n —1,0),(0,1), in which case they have to be slightly modified.

It is possible to view the Yangian Yy as a limit version of the quantum affine algebra U, [11]. The same is true
for ?Aﬂ and Uy, 4,. Let U[[h]] be the completed algebra over C[[h]] with parameters ¢; = e2h gy = e and
kio = exp(h—;‘ﬁi7o), where ﬁi,o satisfies: [l~zi,0, €jr] = Cij€jr [7114,0, fir] = —cijfjr Let Uve" be the subalgebra
of Uy, .4, generated by the elements €; ., fir, ki r, k;ol with i # 0 and let U be the one generated by the
elements with » = 0. Consider the kernel K of the map U[[h]] — M(;In) which is the composite of the map

obtained by setting h = 0 and the one sending Uj,—¢ to il(;[n) =U Jror. Let A be the C[[h]]-subalgebra of
U[[R]] ®c(ny C((h)) generated by U[[A]] and .

Proposition 5.1. The quotient A/hA is isomorphic to ?A_ﬂ,

Proof. To see this, let A be the subalgebra of A generated by U"¢" and %ﬂr Since UY¢" is a quotient

of the quantum loop algebra U,,, A/hA is a quotient of the Yangian Yy (see [11]), that is, we have an
epimorphism ¢ : Yy — A/hA. The automorphism ¥ of U[[h]] induces an automorphism, also denoted ¥,

on A. It is related to the automorphism p of Y g in the following way for 2 <i <n — 1:
V(CXE)) = C(p(XE)), W(C(Hir)) = C(p(Hiy)

VA(C(XT,)) = C(PH(XT,)), PP(C(Hy) = C(p°(Hur))

From these relations, one sees that it is possible to extend ¢ to ?A,g by setting C(ngr) = \IJ(C(p’l(ngT)))

and similarly for Hy,. This extension ¢ : \A{,\ﬁ — A/hA is surjective and we are left to show that it is
injective.

The Schur-Weyl duality functor constructed in [27] can be extended to U[[h]] and H][[A]]. Applying it to H[[R]]
as a right module over itself, we obtain an algebra homomorphism ® : U[[h]] — End¢ ((H @3 V®')[[h]]).
We can extend it to U®c(gs) C((h)) and restrict it to A, which yields ® : A — Endc ((H & V&) [[h]] @]
C((h))). It is known (see [6]) that H[[h]] is isomorphic to H[[h]] (see section 4 for the values of g, k, t,c);
using such an isomorphism or lemma 4.2, we see that ® descends to ® : A/hA — End¢(H ®¢s,) V).
The composite ® o ¢ is exactly the map v obtained by applying the Schur-Weyl functor to H viewed as
a right module over itself. From corollary 7.2, we know that, given X € Y, g with X not a multiple of
Hoo+ -+ H,—1,0, there exists [ > 0 such that ® o ((X) # 0. This implies that ¢ : ?A,g — A/hA is also
injective, hence an isomorphism when g # "T)‘ + % It then follows that it must be an isomorphism for any
A, B. O

6 Specialization at A = 0 of }Aﬁ,ﬁ and L) 3

We can obtain results analogous to theorem 13.1 in [28]. In this section, we will assume that 8 # 0.

Definition 6.1. Let ;[nﬁ be the complex Lie algebra generated by the elements s hir wheret=0,1,...,n—

1 and r € Z>¢ and defined by the relations: ’

iy hjs] =0, [hip, a7, = Fegal, , if i #0 ori=r=0

[mxwx;s] = 6ijhi’7’+57 [x?,:r—i-hm;%s} = [xgl,:r’x;%s+1] emcept Zf (Z,]) = (170) or (0,71 - 1)
+ , o
[xi7r,xj7s] =0ifl<li—-jl<n-—1

12



4r(1)? L7 ra(2)? Ll r(m)? IS

Z {xi [mi ...,[xi zt ]H:O where m =1 —¢;;,7r1,...,"m, s € Lxo
TESm

The next two relations hold if (i,7) = (1,0) and (¢,5) = (0,n — 1).

+ + + + + +
[%,rﬂ»%,s] - [%‘,m%,sﬂ] = 5[%,7«’%,3}
+ + + 4+ + o+
[hi,r+17mj,s} - [hi,r7xj,s+1] = B[hi,wxj,s]'

+
7,77

Definition 6.2. Let 57[””3 be the Lie subalgebra of;[nﬁ generated by the elements x
1#£0, xa"r,r >0 and zq,,r > 1.

hiy where r € Zq if

The algebra ?Azoﬁ (resp. Lx=o,3) is the universal enveloping algebra of the Lie algebra 5~[n,5 (resp. sl ).

Definition 6.3. We denote by Ag (resp. Ag) the algebra generated by the elements X, X ' and 9 (resp.
and d) which satisfy the relation 8- X — X -0 = 20X (resp. d-x—x-d=28).

Remark 6.1. If 8; # 0 and B2 # 0, the algebras Ag, and Ag, (resp. Ag, and Ag,) are isomorphic. When
B =3, Ag (resp. Ag) is exactly the ring of algebraic differential operators on C* (resp. on the affine line C).

We have an embedding Ag — Ag given by x +— X and d — (0+3)X ~1; moreover C[Lx_l]@c[m] Az = Ag.

The Lie algebra sl,,(Ag) is defined as the subspace of matrices in gl,,(Ag) with trace in [Ag, Ag], so we have
the decomposition:
5 (C) @c Ag +([Ag, Agl) — sl (Ap)

where d([Ag, Ag]) is the subspace of gl,,(Ag) of diagonal matrices with coefficients in [Ag, Ag]. All of
this holds when Ap is replaced by Ag. Note that [Ag, Ag] = Ag if § # 0, which follows from the easier
observation that Ag = [Ag, Ag]. The embedding Ag < Ag induces sl,,(Ag) < sl,,(Ag).

Our main results in this section are the next two propositions.

Proposition 6.1 ([28]). The Lie algebra sl,, g is isomorphic to the universal central extension of sl,(Ag).
Its center is spanned by hg + ...+ hp_1.

Proposition 6.2. The Lie algebra sl,, g is isomorphic to sl,(Ag).

Remark 6.2. When g = %, the universal central extension of sl, (Ag) is sometimes called the matric Wi oo -
algebra. The Lie algebra sl,(Ag) has no non-trivial central extension since the first cyclic homology group
HC4(Ag) is trivial. This is a consequence of a result in [21] which states that Ha(sl,(A); C) = HC1(A) for
an arbitrary associative C-algebra A and the fact that the kernel of the universal central extension of sl,(A)
is Ha(sl,(A); C) [30]. On the other hand, it is known that dimcHC(Ag) = 1.

Proposition 6.1 can be proved using theorem 13.1 in [28] and the connection given in section 5 between
Uq, 4. and Y g. We could also give a direct proof which would be very similar to the proof of that theorem.
Explicitly, an isomorphism 7 is given by:

hiﬂn —> (71)T(E” — Ei-‘,—l,i—&-l) ® 6T, :E+ —> (71)TE1'7¢+1 X 8T, ZL‘;T — (71)TE1'+171‘ ® 0" for 4 % 0

T(xd,) = (-1)"E_g® X(0+ )", 7(xg,) —~ (—1)"Ey® (0+8)" X!
T(ho)r) — FEon ® (5 — 8)r — (—1)TE11 X (ﬁ + 8)7"
Proof of proposition 6.2. Since T(zy,) = —E1n, ® (9 + B)" X1, we see that 7(sl, ) C sl,(Ag). (See remark

6.1.) That we have an equality can be checked as in the proof in [28] of theorem 6.1. Furthermore, ker(7) N
sl, 3 = {0} according to proposition 6.1, so T|;n 5 is an isomorphism. O
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7 PBW bases for affine Yangians

The Poincaré-Birkhoff-Witt decomposition of the enveloping algebra of a Lie algebra provides a nice vector
space basis and is of fundamental importance in Lie theory. In this section, we obtain a similar result for
Y, g and, consequently, for Ly 3. For Yangians of finite type, the existence of such a basis was proved in

[22].AIn this section, we fix A, 8 € C, set ¢ = N\, t =20 + ”7’\ — X and abbreviate ?Mg, La,g, He c(S1), He,c(S1)
by Y,L,H, H, respectively.

We recall that we can define a filtration on Y and L in the following way: we give Xfr and H;, degree

~

r and define F;(Y) as the linear span of the monomials in these generators of total degree < i. We set
F;(L) = LNF;(Y). We can filter H by giving Xiil, w € S; degree 0 and ); degree 1. This induces a filtration
on V! = H ®c(g,) V', the elements of V' having degree 0.

We need to fix some notation concerning the root system of sl,, [u*1]. We denote by A = {a;;|l < i #
j < n} C 0* the root system of sl, with choice of simple roots II = {o; = ;41,1 <4 < n —1} and by
A C 2* @ C$ the root system of type En_l, which is given by A= Arey ﬁim, the set of real roots A being
{a+ séla € A, s € Z} and the set of imaginary roots A"™ = {s6|s € Z\ {0}} (see the notation in [20]). The
set of positive roots is AT = {a = a+ s6[@ € A, s € Zsg or s = 0,@ € AT} U {sd]s € Zso}. The standard
root vector of g[n[uil] corresponding to @;; + sé is E;; ® u® and {H; @ u°|1 <i <n—1,s # 0} is a basis
of the root space of ;[[uil]n for the imaginary root sd. The simple roots for A are Il = {ag,@1,...,an—1}
where ag = —a, + 6.

Let @ = oy, + iy +.. .+, =+ 80 € Aret = Are A+, o, € II,@ € A, be a decomposition of a positive
real root « into a sum of simple roots such that X = [Xl-jf7 [Xi, o [XE L XE]---]] is a (non-zero) root
N p—1 P
vector of sl,[u*!] of weight +«. Writing r =71 + ...+ 7, as a sum of non-negative integers, we set
xE, = |xE, [xE

11,717 ig,re)

L XE X+t ]---]}, HE = +[X*

Gp—1,Tp—1" " ip,Tp a,r

XTglifae At (30)

We may also write X, for X1, if a € A+ and set Xor=X_,,ifac A-.
One important property of the module structure on V! is contained in the following two lemmas.

Lemma 7.1. Let h® v € Fy(V!),h € Fy(H),v € V& For 1 <i<n-1, X (h@v) =Y, _hV ®
Xii(k)(v) + K where k € Fypr—1(VY) - similarly for Hfr with Xii(k) replaced by Hl-(k). We have also

X&r(h@) v) = 22:1 WYX @ E;ke) (v) + K where k € Fyyr—1(V'), and the same for Hy, with E+y replace
by Hy, but without Xfctl.

Proof. We proceed by induction on r. First, assume that ¢ % 0. The statement of the lemma is clearly true
for r = 0,1 (see the definition of F in [17]). For the inductive step, we use equation (8).

l l
1 i .
> (H), Vi@ X Vb o) +r=t5 3 D0 B Yo XEP)hev) +
k=1 j.k=1
1 l l
= % STyt e [Hy, XE W (v) + 8 =3 byt @ X0 (v) + 4k
k=1 k=1

xX=*

z,r+1(h ® V) = =

N =

where k, K’ € Fryq(V?).

We consider now the case i = 0. The lemma is true if » = 0 and also if »r = 1 (see section 7 in [17]). We use
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again induction, relation (8) and the fact that (Ho1 — J(Hp))(h® v) € F4(V') - see [17].

[J(He), ViXE' @ EL))(h@v) + r

DO | =

X(;%r+1(h®v) = :I:

x>
=1
—

l
1
= 5 S RVEXE V@ (HoExo) ™ (v) F 5 Y hIIEXE @ (BxoH)P(v) + #

N | =
o~
Il
—

!
= Z AP Gl E(fe) (v) + k" where & € Fryiq(V?)
k=1

since h)}, [X,;H,yk] ® (HgE:F.g)(k) (v) € Fpa(V?Y). The result for H;, follows from H;, = [X;, X;]. O

1,177

Lemma 7.2. Leth®v € Fy(V!),h € Fy(H),v € V® and o € A™F. If « =@ + s6, then Xf . (hov)=

22:1 hy,:X;ts ®Xai(k)(v) + K where k € Fayr_1(VY) - similarly for Haim (if a € AT) with Xai replaced by
Hg.

Proof. We use induction on p (see equation (30)) the case p = 1 being the content of lemma 7.1. We prove
the case s = 0 first. Set XT = [Xi (XE - [XE Xi]] -+-]. For certain &, k', k" € Fyy,_1(V?),

137 p—1"

l

SixE e x;Mhev) +
k=1

Xofr(h ®V)

l l
= Y nyre X XFP) @)+ Y nr v e ;P x P vy + 8
_ k=1

l
= > hyeXifP(hov)+r”
k=1

We consider now the case s > 0. We will assume that i; = 0, the case i; # 0 being similar. As above, we
write [Xi, [(XE X+ Xi}]] = XZ where @ = & + (s — 1)d, so that « = @ + ag = a + (—0) + 6

i3) [ ip—1?

and @ € At. With this notation, we have XZ = [Exg, Xgi]

!
X mov) = Y prxiter®) v xi e x2P)mev) +
k=1
!
- hy X @ (EerXi W Z hYp X" ® (X%[EW)(M(V) + K"
k=1 k=1
!
— hy’”XiQ ®Xi(k)( )JFH//
k=1
The result for HE, follows immediately. 0

We need to construct elements in Y which specialize to central elements of sl,, [ut!,v] when A = 3 = 0.
Recall that the center of sl,[u®!, v] is isomorphic to Q!(C[u*!, v])/d(Clu®!,v]). A basis for this space is
{u*v"duls € Z,r > 1} U {u~ du}.
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It is possible to define elements J,.(z) € Y) (with Ji(2)
Jo(Ef) = X[, € F._1(Y)) and they act on F(H) by
K € Fr+d,2(VZ) if h e Fd(H)

= J(z)) for any r > 1 with the following properties:
Jr(z)hev) = >, hYr @ 2z (v) + k where

Forr > 1,5 #0,1 <i<n—1,set C;,, = :[Ks(H;),J,(H;)]. For h € F;y(H), there exists an element
K € Fyir_o(V!) such that:

l
— 1
Cirsh®v) = 5211[372,)@] (Bii + Big1,i41) Zh @ HOH® (v) + &
k=1 j;ék
1 I s—1r—1
= 5222*‘349% (Vi Xe] X377 V071 @ (Bii + Bigr,i01) P (v)
k=1 a=0 b=0
s—1r—1
1 byva s—a—1~yr—b—1 (k) £7(9)
+§ Zzhijk[ijXk]Xk V; ® H; " H; 7 (v) + K
j#k a=0 b=0
1
trs r_
= 5 2.0 "X} ® (Bii + Eip1,i01) P (v)
k=1
c s—1r—1 n
a s—a— r—b— k j k
DS R+ X)X Y e (Z(E&REE%E& 2B, d>> )
j#k a=0 b=0 d=1
s—1r—1
Zzzhy;; PIXE(X + X )X Ve (E(])E Ez(-]&-)l z+1Ez(-]&C-)1 i+1
];éka 0 b=0
k k
E’L( z)-l—lEz(+)1 i Ez(+)1 ZE’L( zl—l)(v) + r’ where k' € FdJrT*Q(Vl)

l
trs “1vs
= > hY X @ (Bi + Eip1,i) P (v)
k=1
s—1r—

1
+3 Z Z ( Z (S(XaidJr(sfafl)&,rfbfh Xadi+(a+1)§,b) + S(Xaitﬁ»(sfa)ﬁ,rfbfla Xadi—&-aé,&;;l)
a=0b=0 d=1,d#i,i+1

+S( Qjt1,da+(s—a—1)5,r—b—1> Xad,i+1+(a+1)6,b) + S(XaHl,d—&-(s—a)é,r—b—l, Xad,i+1+a6,b)) (32)

+4S(X0ti+1 1+(a+1)5 r—b—1> XOéiYi+1+(S—a—1)57b) + 4S(Xai+1,i+(s—a)6,b7 X(xi‘,-+1+a6,7"—b—1)) (h ® V) (33)

s—1r—1 n (k) .
Z Z Z hY ' XE® ( Z (Eaqa + Eii + Eqq + Eiq1,i41) +4E;; + 4Ei+1,i+1) (v)+ &
k 1a=0b=0 d=1

d#i,it1

where k" € Fyy,_o(VY).

Set Cjs = Cips — (31)" — (32)" — (33) where (33)’ is the expression on line (33) without h ® v, etc., and
set Cr s = Z;;l Cirs. (When i =n,Eq;11 = Eq, etc.) The element C, ; acts on V! by

1
Crsth®v)=rs(t—cn) Z hY, ' Xi ® v + k where & € Fypr—o(V').
k=1

We still have to define elements C). 0 which correspond to u~1v"du € ;[ [u*!,v] when A = 3 = 0. We would
like to define elements J,.(z) € F, ( ) for z € sl,, which act on V! in the follovvlng way: (h € Fy(H))

J(2)(h®v) = ZhS X3,V @29 (v) +

] 1
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where 1 € Fyy,_o(VY). When r = 0, J,(z) = K;(2). For r = 1, see section 7 in [17]. Let us assume that
r > 1 in the following series of computations leading to the definition of C, .

Consider the element
is equal to: (h € Fy(H

Set

t 1[J,(Hae), K1 (Eqe)] € Y where Hye = Egq — Eee. Then 1[J,(Hue), K1 (Eqe)](h © v)
)
l
1 ’I" T
§Zthk,y @ HVE ZhS LV @ ED (V) + Ry K € Fapr_a(VY)
B k;fj
ZZhy X5, ViV o HYE ZhS LV @ ED (V) + k
j;ﬁka 0

SR (( PNyt vy ((X’“?j”a)))®<E§QE§?—E&?E§’;>><v>

];ék a=0

+- ZhS Eéi) (v) + &’ where k' € Fyyp_o(V?)

1 l A r—1 N

3 250X ) ® B () + 5 D (S(ram1(Fae), Ja(Hae))
j=1 a=0

+S<Ja(Hde)7 Jrfafl(EdeD) (h (9 V) + Ii//

To(Bae) = S (Hae) K (Ea)] = 5 3 (0o 1 (Bac), Ju(Hae)) + SCuHa), Ty 1(Eac))
a=0

and 61’7”’0 = [j;(HZ),Kfl(HZ)] where j;n(Hl) = [Ei,iJrl, :]\;'-(EZ+171):| Then

Ci,olhev) = Zh( ( X‘;’y’“)>—<S<X’;’y’:))xk1>®(Eii+Ei+Lm)<k)(v)

(X;, )T .
+Zh [Xk_l, 32323)} ® Hi(])Hi(k)(v) + x where k € Fyy (V)
7k

!
1
= 1 ZhﬂX{l’yﬂXk - X0 X ) © (Bi + Eii1i01) M (v)

k=1
- Vi) ) (k)
+= Zh{Xk ,]@H H" ) + &
Jsék
I r—1
= *ZZhSO/k X'+ = Z (X4 +X Sjk)y;ziailan)®(Eii+Ei+1,i+1)(k)(V)
k=1a=0 2

_,Zzhs LVE G+ X s Y @ B H® (v) + 5

j#k a=0
tr l I r—1
= EZhy,Z—1®(Eii+Ei+1,i+1 ZZZ}I V(X +X )y]’(‘—a—lXj
k=1 k 1a=0 j#k

X0 X o (z (0 + B ) )
d=1
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r—1
¢ - - r—a— — — r—a—
8 DD h(GYVRGT XY T VX XY X @
j#k a=0

(B30 B+ 512

k i k i k
z+1,i+1Ei(+)1,i+1 - E'L(Jz)JrlEz(+)1z - Ei(i)l,iEi(,ill)(V) + ', K€ Fd+r—2(Vl)

l r—1

tr ._ c 4l —a— A~y —a—

= 3 E :hyii 1®(Eii+Ei+1,i+1)(k)(V)+§E E h(Vp X, ly;‘ ¢ IXj+2yky; ot
k=1 j#k a=0

+yZXky;717an71)® Z Eg;)Ei(j)—’_ Z Ecgl{i)ﬂEi(i)l,d (v)
d=1,di d=1,d2i+1

r—1
c —a— - a\)yr—a— a Yy — r—a— j
g 2 D BOEXRY; T NG 2RV VYT @ (B B
j#k a=0

+ED L ED ) (v) + K

!
tr _
= 3 E hY, ' ® (B + Eis1,41) " (v)
k=1

r—1 n

#1500 (2 (0ot Xoscss) + 25 (Ko Xovar-o-1) (34)
d#i,i+1

+8(Xats,r—a—1, Xagi—6,a) ¥ S(Xapra-6r—1-a> Xag1+6.a) ¥ 28Xt gr—a—1, Xag,11,a)  (35)

+5(Xai1 ator—a—1s Xagiri—6a) + 4(S(Xarsri—sr—1—a> Xaiss1+6,a) (36)

428(Xa s ira-1s Xon iira) + S(Xaror i 4or—a 1, Xaiym_g,a))) (h®v) (37)

(k)

l n n
cr -
7 S hyte | > (Baa+ Ei)+ Y (Baa+ Eis1i01) +4E; + 4B 11401 (v) +w"
=1 At it At it

Set Cir0=Cliro—(34) —(35) —(36)" — (37)" where (37)" is the expression on line (37) but without h® v,
set Cro = Z?:l Ciroand Coo=Hy+ Hy + ...+ H,,_1. The element C} o acts on V! by

!
Croth®v)=r(t—cn) Z hY; ' @ v+ & where k € Fyy,—o(V'), h € Fy(H).
k=1

We now have all the elements that we need to construct a PBW basis for Y. Set B = {(X*  HE H;orla€

a,T) " 7,8,1)

ﬁm*,r € Z>0,5 € Ls0,1 <i<n—1}U{C,4|r € Z>1,s € Z\{0} or s =0,r > 0} where H: =HZ

©,8,T a;+sé,r”

We need a total ordering on the set B. For instance, we could choose the following one: X_,
Hjor, < HJs,
Zso x {0}; X,
al < a?,s1 < s9,j1 < jo, respectively. Set BY =B \ {Copo}

L <H;2)T2 <
, <X;i'4r4 < C,. ¢ for any o' eAti=1,....4,r € Z>p,i=1,...,5,(r,8) € Z>1 x Z\ {0} U
< Xo, Hi, <H.

a2 ry) T Tal r a2 ry?

r

Crisn < Crysos Hj 0 < Hjy 0,0, if 1 <72 orif ry =7y and

Theorem 7.1. The set of ordered monomials in the elements of B (resp. BLY ) is a vector space basis of
Y g (resp. LYy ).

Proof. The monomials in B span Y since gr(Y) is an epimorphic image of $(sl, [u®!, v]), so we have to
prove that they are linearly independent.
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We prove the theorem for LY first. Suppose that we have a relation of the form

> > edrLHX, v Hp o cHye HE L XL ) Croe =0 (38)
d€ES] resy(d),I€53(d)
feS,(d)

where S, S2(d), S3(d), S4(d) are finite sets and

— (X~ X - 5 - _(g- "= - F
XA’TX’7 o (Xaly7'f('7)fl o (Xadx’f,rj)’(,if) T HI,TH7 o (Hihﬁ '7)f1 ' (HidH,f,T‘dHi—) “
C C H H
Crc,sc = (C'rlc,slc)fl e (Crfc,sdcc)fdca HJ = (Hjl,O,rf)fl T (deH,O,'ré'IH )de
X,+ X,+ H,+ H,+
X;,'I‘Xf*' = (X;177-f('+)f1 ".(X;_dx“*",,\;),{,tr)fdx’*—? H;;’THJr = (H/—ct,rfl'+) 1 ...(H};:HYJ”T;II;’*__F)de,-%—
and
d= (@6, d"%= a" dtt ¥t dC) e Sy c ZX8
r = (TX’77TH’77TH7 TH7+7TX’+’TC5 SC)7 I == (A7 I? J7 K7 B)7 f == (fX777 fH777 fH7 fH’+7 fX,+7 fC)
— - , , le]
So(d) CZZG X ZE 25 < XS X BEY T x (2 x 2T
S3(d) € (AT)*9 7 x ([n—1] x Zso) "™ x [n— 114" x (n — 1] x Zsg)*4" " x (AT)xd™"
and

xdX~ xdf— xdX+ xd®
Sa(d) Ccz3y  xZI5  x---xZ35 X L3

A= o TN = fin, g Yy = (iysTT) € [n— 1] x Zog, B = {BY,..., 87T =
{1, jan b K = {k1,.. . kqus bk = (ky,s0T) € [n— 1] X Zsg and [n — 1] = {1,...,n —1}. We
fix a particular choice d, ¥, I, f, of these index sets such that c(a, FIf ) # 0 and the corresponding monomial

M =X ‘H; ,_ -Hj.n HE Xt - Cro 0

ApX,— I,7H,— K,7H.+ B#Xo+
in (38) has the following properties:
. a7 e X, — X, — AT QU : . a" el H dt eg v H o+
L. Tt has maximum value for >3 _, f57r™ + 370 fooTrg T 43 flrg o [T+

Xt x4 X, a° cc,.C.
Z:gzl fg +Tg ++Zg:1 g Tgs

. . axt
2. and, among these, it has maximum value for 5+ = Zg:l f;(*;

. . _ a*— _
3. and, among these, it has maximum value for 6%~ = 29:1 ng’ ;

. . dHHr
4. and, among these, it has maximum value for 67>+ = 29:1 ng**';

. . _ = _
5. and, among these, it has maximum value for 67>~ = 2921 ng’ ;

H
6. and, among these, it has maximum value for 67 = Zzzl ng ;

C
7. and, among these, it has maximum value for §¢ = Z;l:l fgC.

Set 607 = 6%, 8= = §X - 4§ §H = G- 4 §H §HA = GH 5 §X0+ = I X0+ 50 = 5%+ 450
Consider the module V! with [ > §¢. We choose vi = v! @ --- @ v ,v; = 9! @ --- @' € (C")®! to be the
following elements:

If a9 = @—f—:ég‘d with CVTQV = Qp,q, € VA and égA € Z>0,1 < pg # q4 < n, we set vV = v, ,0” = v,, for
R T S e A /e
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Set v¥ :vl+...+vn,1~)”=vzg — Vi, 41 forgX’_—FffI’_—F...—kng_’l_ <V§5\X’_+ff’_+...—|—ng*_.
Set v”:v1+...+vn,z7”:ng —v; 41 for 5H’_+f1H+...+fgf£1 <V§5H>_+f1H+...+f;{.
= =g
Set v":vl—i—...—l—vn,'ﬁ”:vgg — Vg 11 for 5H—l—le’Jr—|—...—|—f;i1+ <1/§6H—|—f1H’++...+f;I’+.
If §7 = E@f& with 39 = p,q, € Aand 5 € o, wesset v¥ = vg,, 7 = vy, for S FOt 4+ 5T <
1/§5H’++flx’++...+f;(’+. For v > 651, weset v¥ =0 = vy +v2 + ...+ vUn.
Below, we will consider the basis of (C")®! given by the elements of the form v = 9! ® - -- ® ' where ¥¥ €

{v1,.. ., o} if1 <v < X~ orif 6H+ < v < gX"“, and 9% € {v1 —v9, V2 —V3,...,Vp—1—Upn, V1 +V2+...+ 0}
if 6%~ < v <t orif 55T < v <.

Because of our assumption,

oo Y ddrLHX, o Hy o cHyw HE L XE o Cee(l@v) =0 (39)

dES) resy(d),I€S3(d)

feSa(d)
Set . ) ) .
PO T T . B T R SR A B
_ 7T _ K3
SRS | | (ST S | |
9=1 p=f 4 4T =1 y=f 47T 1
gt ST T IS S S S i u
_ il _ s
& =11 11 oo e =11 11 X!
g=1 5X,— 4 fH.— g=1 $X,— 4 fH.—
v=6X -4 ff T 4T v=6X 4 ff T 4T
P A S R .
H — Tg
§y - yl/
9=l y=bH.~ 4 fH 4 +fH 41
g+ ST fE g+ ST fH
H+ T HeA 5
& =11 11 oot =11 11 Xy
9=1 p=FH L fit 4 4 fIT 1 9=l p=FH L {1t 40T
B L S B L O
X+ ' A ' 55
& =11 11 oot =11 11 Xy
9= y=FH 4 7T 4 T4 9=L p=FH A4 FF 4 4 FOTH
Jc ST e +fE . o SNt fC 4 fS o
C Ty C s
& =11 11 oo =11 11 X
9=l p=FX 4 fO+. +FC 41 9=l y=FX 4 fO+. 4+ FC 41

Set &y = 55555#55#5555’753, " and éx = £§§§’+£§’+£§’75§’7 and consider the coefficient of £3,¢x ®V on
the left-hand side of equality (39). Applying our particular choice of monomial M to 1® v and writing down
the element of V! thus obtained as a sum of basis elements of the type m(yl, . 7yl)m(Xlil, e Xlil) RV,
where m (Y1, ..., Y,) and m(XE . Xi ) are monomials, we see that, in M(1®v), the element éyéx @V
appears with coefﬁc1ent equal to ac(d r, I £)1¢ where @ is a non-zero scalar (which can be expressed in terms
of t,¢,n and the different values of 7, 3, f) and ¢ is equal to the multiplicity of C} oin M. (Here, we use our
assumption that ¢ # cn.) Moreover, the only other monomials in (38) which can produce a non-zero scalar
multiple of {y&x ® v; when applied to 1 ® v; must differ from M only by the multiplicity of Ch0-

Now choose any I; > [. We can apply the left-hand side of (38) to 1 ® v;, and expand the elements of
Vias a sum of basis vectors as above. The element {y§x ® v;, will appear in M(1 ® v) with coefficient
equal to ac(d,¥,I,f)I§. Therefore, we can view the coefficient of £y£x @ v; in (39) as a polynomial in [.
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Since this polynomial must be zero for infinitely many values of I because of the vanishing of (39), it must

vanish identically, hence c(a, P I f ) = 0. We can repeat this argument to conclude that all the coefficients
in relation (38) are zero.

We must now extend our proof from LY to Y. We will follow some of the ideas in [3]. We need to consider
a completion of Y. For k > 0, we denote by Y}, the span of all monomials of the form given in (38) with
max{max(A), max(H, —), max(H,+), max(B), max(C)} > k, where max(A) = max{s;, g = 1,...,d% "},
max(H, +) = max{s"*, g = 1,...,d"*}, max(B) = max{sF,g = 1,...,d" "}, max(C) = max{s{,g =
1,...,d°}. Welet Y be the completion of Y with respect to the system of neighborhoods of 0 given by the
Yk7S.

We can define an algebra homomorphism A fromA? to the completed tensor product Y®Y in the following
way. It is the usual coproduct on (sl [u*!]) C Y and, for 1 <i<n — 1,

A(Hip) = Hip®1+1@Hi + H;@Hi+ X Y > (0,0)(Bau™) @ (B_qu®)
aEAT s>1
A DD (@) (Boqu™®) ® (Bau®)
aEAT s>0
AX) = Xhel+1eX+A Z Z ([Bf, E_oJu™) @ (Equ®)
aEAT s>0
A DY D (Baum?) @ (B E_oJu?)
aEAT s>1
AX7) = X ®1+1@ X, +A> (B ®) @ (Hiw') =AY (Hiu™*) @ (B iu)
5>0 s>1
A DY (BT Eau™) @ (Bau’) =X D Y (Bau ") @ ([}, E-ou)
aEA+ s>0 aEAT s>1

The automorphism p of Y can be extended to an automorphism of Y®Y which we denote by 7. The maps
A and p, p are related in the following way :

BAXE)) = Alp(X), PA(H:,)) = Ap(H;,)) for i #0,1, 7= 0,1 (40)
PAAXTE)) = AP*(XT,), PH(A(HL,)) = A(p*(Hy,)) for r = 0,1 (41)

It is possible to extend A to all of Y by setting

ACXE,) =77 (A((XT)). AHE) =77 (A(p(Ho,)) ) for r=0,1.

We also need to construct a representation F of Y on which the central element Co,0 acts by a non-zero
scalar. We denote by U(gl,[s*']) the completion of U(gl,[s*']) with respect to the topology defined by

o~

the system neighborhoods of zero similar to the one for Y. We can define an algebra homomorphism
ev:Y — U(gl,[sT!]) in the following way: for 1 <4 < n — 1, it is given by

GU(HZ'J) = H;,+ % Z S(Eki, Ezk) + )\Z Z(Ekius) . (Eiku_s)

k<i ki s>1
)\ S —S
—3 Z S(Eriv1, Biv1) — A Z Z(Ek,i-HU ) - (Big1pu %)
k<itl k#itls>1
S —S8 S —S A
A (Biu®) - (Biu®) =AY (Bigrirau®) - (Bipripu®) — 5 = By — HY)
s>0 s>0
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The formula for ev(X fl) can be deduced from this one. The map ewv is related to p in the same way as A in
the equalities (40), (41) and can be extended similarly to all of Y.

Given a representation E of (gl [sT1]), we can pull it back to Y via ev and get a representation which we
denote also by FE.

Starting with a relation similar to (38), but this time with monomials including powers of Cj o, we can apply
the same argument as above to prove that the monomials are linearly independent, using the coproduct A
to turn £ ® V! into a representation of Y with E suitably chosen and with non-trivial central charge.

We have thus proved that, if 3 # 2 + 3, then ii(ﬁ[n [ut! v]) = gr(Y). It follows that this must be true
for all values of A, 8 € C by upper—semlcontlnuity, which completes the proof of theorem 7.1. O

Corollary 7.1. Fiz j € {0,...,n — 1}. The elements X
Y){B of :Y\'A,g (or of LY ) isomorphzc to Y.

H;, with i # j,r € Z>o generate a subalgebra

Z’I"

Proof. Using the automorphism p, we can reduce to the case j = 0. The proof of theorem 7.1 implies that
Y)?’ 5 has a PBW basis exactly like the basis for Y\ constructed in [22]. Therefore, the natural map Yy — Yf’ 3
must be an isomorphism. O

The main ingredient in the proof of theorem 7.1 can be stated explicitly in the following way. (The next
corollary, in the case of Yangians of finite type, has been known for a long time [4].)

Corollary 7.2. Suppose that 8 # "T’\ + % Let ®; : LY — Endc(V?) be the LY -module structure map of
V. Given X € LY, X # 0, there exists an | > 0 such that ®;(X) # 0.

Corollary 7.3. The canonical maps (sl [u*, v]) — gr(¥) and $(sL,[t1, t2]) — gr(L) where t; = u, ty =

u~ Y are isomorphisms.

As a consequence of corollary 7.2, we can prove that L (and therefore ?) contains infinitely many copies
of Y. This is in accordance with the following observation made in [14]. Let 71,72, € C; we have an
algebra embedding ¢ : H. — H, .(S;) that sends 4; = u; + %Zj# sign(j — i)s; to w; = yix; + 2y + Vi
and He D C[Sl] — CI[9] C He.c(S1). (In [14], ), is replaced by U; and @; by u;.) Consider the elements
Xi = nKX) + 72Q(X]) + J(X5), H; = nK(H;) + %Q(H;) + J(H;),i =1,...,n—1, of L. Set
Vi =H ®c[sy] V®!. Since the subalgebra of H generated by 31,...,3; and S; is isomorphic to H., we are led
to assert the following proposition. (It was also suggested in [2].)

Proposition 7.1. The subalgebra Y772 of L generated by Xzi,Hz, and by H; for1 < i <n-—1. is
isomorphic to Y.

Proof. Let ¥,(z) € Endc(V!) be given by ¥;(2)(h® v) = Zk L hi ® 2 (v),Vz € sl,. We know from
theorem 1 in [9] and the observation from [14] recalled in the previous paragraph that we have an algebra
homomorphism ; : Y — Endc(V!) given by 1(z) = z and v;(J(2)) = ¥;(2). An analog of corollary 7.2
holds for ;.

We know that V! is a module over L and that, if we denote by ¢; : L — Endc(V!) the algebra structure
map, then ¢;(x) = ¥ (J(XF)) and o (H;) = 1/)1( (H;)). Corollary 7.2 allows us to conclude the proof. O

8 Deformed double current algebras in type A

In section 5, we explained how affine Yangians are related to quantum toroidal algebras. Starting with the
affine Yangians and applying similar ideas, we arrive at a new class of algebras that we call deformed double
current algebras (of type A), as explained in section 12.
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Definition 8.1. Let A\,3 € C. We defined D g to be the algebra generated by elements XZ{[O,X?’I, Hio,Hi
for1<i<n-—1 and by Xj O,ng,xg’l , which satisfy the following relations:

(A) The elements with i # 0 satisfy those in definition 3.2 of (sl [v]) and those with r = 0 satisfy the Serre
relations for U(sl,[u]), so we have homomorphisms LU(sl,[u]) — Dx g, U(sl,[v]) — D and elements
Ei;, Rs(Ei;),Q,(E;;) € Dap corresponding to the elementary matrices in sl, and to E;; ® u®, E;; ® v",
respectively.

(B) We have [H; o, ng’li} = cwx;f for i # 0. The elements with i = 0 satisfy the following relations among
themselves:

[XI’J,XG‘YO] = 20E_pX{,, [X(T”fr, E_g] = AE?, and the same with X(J{’f instead of X(J{fr (42)

_ A
Xoi = Xgi =3 > S(E-s,Eijl, Eji) (43)
1<i#j<n—1

(C) When k =2,...,n—2, we have

A
Xd0: Xiol = 0= [XJ55 Xl Xaam, X ] = ) > S([Ew, Eul, X, Eal) (44)
2<i<n—1
X0 Xia] = Z S([Bu1, Eij), [Bji, BR)) (45)
1<'L7$_]<n
[era [XZT,XHOH =0= [X(J)r,m [X(—)’_O’XZTH forr=0,1 (46)
[X(J)r1ia [X(J)rli7 XM] =0= [Xk 0 [Xzov X+ i]] (47)

(D) We have some more complicated relations in the casesi =0, =n—1andi=0,j = 1.
[Xahwx;fl,ﬂ = *AEn,n—lEnla [X(T,’lJraXrll,o] =0, [X(-)F,mxl_,l] = —AEn1 Ea, [XIT,XI,O] =0 (48)

] ( ) —9X7i_71 0 6)@11 OE—0
[x1+,17x3r,0} [Xf0>x+ +] (8- )\)XTOE 0 — BE_ 0x10 50

[XZLLDXIO] - X5 o,Xoﬂ (49)

(50)

[XS‘{", [Xgl+,xi 1 OH = [Xi—1,07 [X:—1,0ax(—)~:71+]] =0= [Xai ,[X(T,i ,Xfo]] = [Xim [Xio,xa_,i_u (51)
(52)

(53)

49

[X1,17 [Xfuxar,oﬂ = QA[E—GaXfO]Xilv [X;Ll,u [Xj{q,lvxg—,oﬂ = 2)‘X271 1[XI71,0>E—9] 52

[Xg,m [X&O’XIIH = —2)\[E,0,Xi0]xb":07 [Xar,m [X(JJr,vai—l,IH = 2/\[ E_ 0]Xaro 53

n—1»

Remark 8.1. We set Xi = XliO,Hl = Hio. The elements X with i # 0 and X(Tfr (or Xo 1) generate
a subalgebra of D whzch is a quotient of the Yangian Yy, see lemma 3.9. (The main theorem of section
10shows that it is isomorphic to Yy.) In particular, we can define elements J(z) as the images of J(z) under

Yy — D . The algebra Dx—g =0 is the enveloping algebra ofsA[n [u,v]: see lemma 3.7.

9 Schur-Weyl functor for D, 3

Since D g is isomorphic to Ly g as proved in section 11, we have a Schur-Weyl functor § relating H; .(.S;)-
modules to D g-modules. In this section, we simply give the formulas for §.

We define elements w ot by

I
—

n

1 1
W(T’i = $Z (EnjEjl —+ Elenj) — Z(Eano + HOEnl)

I|
N

J
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and note that wy’~ = [E,_1.1,w, ;] and wi " = [wy, Enal.

Fixt,c € Candset A = ¢, 8 = £ —2¢4+£. Let M be arightmodule over Hy .(5;) and set (M) = M ®¢(s, V.
We let the elements X H;rfor 1 <i<n-—1,r=0,1act on (M) in the following way:

’LT’

Xi (m®v) ZmyJ®E ( ), Hir(m®v)= ZmyJ®H V)

It is easy to see that the relations in definition 8.1 involving the elements with ¢, j # 0 are all satisfied. We
now set

l l
Xg(mev) = mek ® Egk‘g)(v),xajii(m V)= Zij ® E(je)(v) — )\wg"i(m ®V)
k=1 j=1

Theorem 9.1. These formulas give M ®cig) Vel q structure of left module over Dp. Thus we have a
functor § : He o(S1) — modp — D g — mody,.

Proof. We leave it to the reader to check that all the relations in definition 8.1 are satisfied. O

10 PBW bases of deformed double current algebras

We would like to prove that D)5 has a basis of PBW type, following the same approach as in section 7. We
fix A\, 3,t,c such that c= A\, t = 2[3 —c+ % and abbreviate H; .(S;) by H, ®x 3 by ©. For 1 <i<n—1, we
set Xi = 1 =[Hi1, Hi1, -+ 5 [Hin, X ] ]] where H, 1 appears r times. In this section, we will need elements
Xo - Whlch we define inductively by Xa'r = [XS:T_17 Ho—11 +Hia],r > 1

We consider the following “set of roots” for the Lie algebra sly[u]: A = A7 U A" is the subset of A
given by A7 = {a = a + 35\04 € As € Zsoy and A™ = {sb|s € Zso}. We set At = AN AT,
A-=AnA-={@eA }and I=1L

Let @ = oy + i + ...+, =@+ 80 € Are+ Qi € ﬁ a € A,s > 0, be a decomposition of a positive
real root « into a sum of simple roots such that Xi [Xi [Xi, ce [Xij;_l,Xiip] ---]] is a (non-zero) root

vector of sl,[u] of weight +a =a + sd,@ € A;s > 0. (If s > 0, X, is not defined.) Writing r as a sum of
non-negative integers r = rq 4 ... 4+ 1y, we set

Xz ol if @€ AT and s > 0. (54)

Q1,717 Q2,727 ’ [ ip—1,Tp—1"" ip,Tp a,r

X, _{xi [xE X X ]---]}, H = X

Using the filtration on H obtained by giving z € h*,0 € 5; degree 0 and y € h degree 1, we obtain a filtration
Fo(V!) on V!, There is a filtration on D .8 obtained by giving XZ > Hir degree r for r = 0,1. We now prove
a series of lemmas which are analogous to, but simpler than, those in the proof of the PBW property of
affine Yangians.

Lemma 10.1. Let h®@ v € Fy(V'),h € Fy(H),v € V. We have X, (h@ v) = Y\ _ hypzy, @ B (v) + &
where k € Fyyn_1(VY).

Proof. We proceed by induction on r, the lemma being true for r = 0, 1.
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1 .
xaLaT(h ® V) 2 Z h[ijyz lxk] ® E’SL];:)(HI + anl)(J)(V)

i#k

h(yeyy ' or + v oeyr) © ER ) +r

“E‘{N

+

£
Il

1

!
= hyy, xk®E (v) + .
=1

x>

O
Lemma 10.2. If a = a+s6 with s > 0, then X} .(h@v) = Zk 1 hypei ® E(k)( )+ where k € Fyyp_1(VY)
- similarly for Ha» if @ € AT with Eg replaced by H;; if @ = ;.

Proof. We use induction on p (see equatlon (54)) We need only consider the case i; = 0. We write a = a—ag
and @ = a + (s — 1)d, so that « = &+ ap = a + (—0) + sd and & € AT U {0}. With this notation, we have
Eg = [En1, E<]. We find that:

l

XEhov) = SXE, o et e EY(hev) +
k=1
!
= Zhyz Mgt “ack®(En1E Zhyk zryy eyt ® (E&Enl)(k)(v)> + K
k=1

l
S hypas @ (B, B5® (v) + & = Z hypas © EX (v) + k"
_ k=1

The result for H, . follows immediately. O
We now have to define elements €, ; which, when A = 8 = 0, span the center of ﬁA[n [u,v]. We proceed as in
section 7. Recall that this center is isomorphic to Q(Clu, v])/d(Clu,v]) = {u*~to"dulr,s > 1}.

Forr,s>1,1<i<n-—1,set &, = %[ﬁS(Hi), H;,] and set €, . s = %[RS(HQ),QT(HQ)]. Then €; . s(h®@V)
is equal to:

1
1
§Zhyk7xk E“J'_E’L+l Z+1)( ) Zhyj,xk}@)ﬂ( )H(J)( )
ht J#k
1 I s—1r—1
T2 ZZZ hyp i lys, eeley ™"y @ (Bii + Bigrin) M (v)
k=1 a=0 b=0
1 s—1r—1 -
"3 > hybagly, wiley i e HYHD (v)
j#£k a=0 b=0
1 I s—1r—1
B EZ Zhy,ﬁx% t+czsjk A ® (Bii + Bit1,i11) ™ (v)
k=1 a=0 b=0 £k
c s—1r—1
_52 hyﬂksjkmi a—lyr—b= 1®H(k)H(J)( )
j£k a=0 b=0
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l
trs el s—
= — > hy eyt @ (Bii 4 i) M (v)

2
k=1
s—1r—1 n
a,s—a—1,r— j k k
TS S bt e (SR ¢ 2 ) 0
J;éka 0 b=0 d=1
s—1r—1
s—a—1,r k j k j k 1 k
“ZZZ*‘%W S 1®(Ei(i)Ei(i])+Ez(+)l z+1Ei(i)1,i+1_ElerlEi(i)lz_Eer)lesz)Jrl)( )
j#k a=0b=0

++ where & € Fyy,—o(V!)

l
trs
- T2 > hyp ey @ (Bt i)™ (v)
k=1
s—1r—1 n
r— k k
DI I > EQEY+ Y B, | )
J;eka 05=0 d=1,d#i d=1,d#i+1
s—1r—1
s—a—1,r a k k
+5 Zzzhyb 1yk bt (Ez(zi—lEz(—ji-)lz Ez(+)1 zEz(jZ)—&-l)( )+"{/
]#ka 0 b=0
trs e
= Z @ (i + B, H—l)( )(V) (55)
C - - n
1 Z Z ( Z (S(Xaid+(s—a—1)6,r—b—lvXadi+a5,b) (56)
a=0 b= d=1,d#i,i+1

+S(Xai+1,d+($—a—1)677'—b—1’ Xad,i+1+a57b)) + QS(XaHl,r&-aJ,T—b—la Xai,Hl—&-(s—a—l)é,b)) (h & V) (57)

r—1,_,s—1 (k) M
hy, @, ® ( Z 2Eqa + (n+2)Ei; + (n+ 2)Ei+1,i+1) (v)+r (58)

d=1
d#i,i+1

crs
4

MN

k

1

where k" € Fyir—2(V'). Set €, = €5 — (56) — (57), where (57)" is the expression on line (57) but
without h ® v, and set €, s = Z?zl Cirs. (When i =n,Eq;11 = Eqi.) The element €, ; acts on V! by

Csh®@v)=rs(t—cn) Zhyr 1$Z L ® v + Kk where k € Fd+r,2(Vl).
k=1

Set B = {XjE Hisrla € A rse Z>0,1 <i<n—1}U{€, s|r,s € Z>1} where H; s, = Ha, 455, We can

LT

put a total ordering on the set B as for B and we have the following analogue of theorem 7.1.

Theorem 10.1. The set of ordered monomials in the elements of B forms a vector space basis of ©.

Proof. The proof is very similar to the case of affine Yangians . First, we assume that 3 ”T)‘ + % As a
vector space, V! = Clyy, ..., y] ®c Clz1,...,z;] @c V!, which follows from the PBW property of H - see
[14]. We have an epimorphism $((sl, [u, v]) — gr(D A,3). Therefore, monomials in the elements of B span D,
so the main difficulty is to prove that they are linearly independent.

Suppose that we have a relation of the form (S, S2(d), S5(d), S4(d) are finite sets)

> > dd i LEHX, - Hyw XE - Coe e =0 (59)
deS| resy(d),1€53(d)
f€S4(d)
where - B " o
X:&,r* = (Xgl’r;)fl U (X;d* o )fd7 ’ HJ,T‘H = (Hj1,7’1H)f1 e (deH,TfH) att
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X§7T+ = (XT

B

)it . Vit Crege = (Cro )T (Cro o )i
and
d=(d,d" d*,d%) e 8, C ZX4,1=(A,J,B) € S3(d) C (AT)*? x ([n— 1] x Zs)*¥" x (A*)*",
r=(r", v rt ¢ 59 e Sy(d) Z§g7 X ZggH X Zg‘? x (Zs1 x Zzl)Xdc
Su(d) € 238 x 238" < 2XE < 2XA £ = (f, f7 1L £C)

and A = {al,...,adi},J = {jla-~-7jdH}aji = (ZZ,S?) S [n— 1] X ZZ()?B = {51,...,Bd+}, [TL— 1] =
{1,...,n—1}.

We fix a particular choice d,#,I,f of these index sets such that c(d,f,i,f') # 0 and the corresponding

monomial
V[ — H - . .
M X V’f_ . JH XB,’!' C,,ﬁC)gC

in (59) has the following properties:
: d- - d¥ dt €
L. It has maximum value for 37 _, fory +>7 ff?‘f + D=1 ford + > =1 fgc(rgc —1);
2. and, among these, it has maximum value for 6+ = Z;l; I
3. and, among these, it has maximum value for 6~ = Zg;l Iqs

H
4. and, among these, it has maximum value for 67 = 23:1 ng ;

C
5. and, among these, it has maximum value for §¢ = Z$=1 fgc .

Set 6~ = 6,68 =5~ +6H,6+ = §H +§+,6C = 6+ + 5C. Consider the module V! for I > 5C. We choose
vi=vl®--- @0, v, =0'®--- @70 € (C")® to be the following elements:

If &9 = &9 with &9 = ay,,q, € AT, set v = v, , VY = 1y, forff—l—...—l—f;_l<1/§f1_—|—...—|—fg_.

Set v¥ =wv1 + ... +v,,0" =05 —Ui+1for5_—|—ffl—|—...—|—ng_1<V§5_—|—f1H—|—...—|—ff.

If B9 :@—i—ég& With@:apgqg € A and 3, € Z>g, we set v = v, , 0" = v, for gH—i—ff—i—...—i—fgtl <
v<of 4+ i+ 4+ f)

For v > 01, weset v¥ = 0¥ = vy +v2 + ...+ vp.

Below, we will consider the basis of (C?)®! given by the elements v = 9! @ - -- ® 9 where ¥* € {v1,...,v,}
ifl<v<é orifd? <v <6t and 0¥ € {v; —vo, 09 — V3, ..., Vp_1 —Vp, 01 +V2+...+ v, }if 6~ <v < §H

orif 5t < v < l. In particular, the elements v;, v; above belong to this basis.

Because of our assumption,

> > edr LHX, - Hpw XE L Coee(1@vy) =0 (60)
dES) resy(d),Ies3(d)
fe5,4(d)
Set
i ety B LA S . PR S .
— T H T H S
ny = H H y,,g 3 Gy = H H yyg y @w = H H l’yg
9=l y=fi 4o iy 1 9= =8+ fH+. A+ FH 41 9= y=3—+fH+. +fH 41
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S f .+ f S f . A+ fF
o +

ar ar )
J:H H W' I:H H !

v=0H 4+ LysgH4fii+ 4741

pre] §++flc+,,_+fgc o Jc 5++flc+...+fgc .
o} ’f’_ —1 o} S —1
¢, =11 11 w' e =]1 11 v/
9= y=5t+fC+. S +1 9= y=5t+fC+. 47 +1

Set €, = & €H€+€C ¢, = ¢f¢rel and consider the coefficient of €,€, ® v; on the left-hand side of

y -y )
equality (60). Applymg our particular choice of monomial 9 to 1 ® v; and writing down the element of V'
thus obtained as a sum of basis elements of the type m(y1, ..., y)m(z1,...,z;) ® v, where m(y1, ..., y) and
m(x1,...,r;) are monomials, we see that, in M(1 ®v), the element €,&, ® v, appears with coefficient equal

to ac(d T, I f )le where @ is a non-zero scalar (which can be expressed in terms of t,¢,n and the different
values of 7, 3, f) and € is equal to the multiplicity of ¢; ; in 9. (Here, we use our assumption that ¢ # cn.)
Moreover, the only other monomials in (59) which can produce a non-zero scalar multiple of €, €, ® v; must
differ from 90 only by the multiplicity of €1,1. The rest of the proof is exactly the same as for the proof of
theorem 7.1. O

The main idea in the proof of theorem 10.1 is the content of our first corollary.

Corollary 10.1. Assume that 5 # ”T’\ + % Let Py : ® — Endc (V') be the D-module structure map of V'.
Given X € ©,X # 0, there exists an 1 > 0 such that P;(X) # 0.

Corollary 10.2. We have an isomorphism $i(sl,[u, v]) = gr(D).

As a corollary of the proof of theorem 10.1, we can show that © contains infinitely many copies of the
Yangian Y). This is also a consequence of theorem 11.1 and proposition 7.1.

11 Isomorphism between ©) 3 and L) g

We would like to define an algebra homomorphism f : ©, 3 — Ly g by the formulas:

fXF) =X, i=1,...,n—1, f(X{)=X7
(o1 ) = X1 Baora] = 22wy, F(XG17) = [Bnz, X1] = 22w "
f(X:fl) = [Ez-l, [Xo.1s EmHH, f(Xi1) = [Ei+171, (X015 Emﬂ fori=2,...,n—2
f(xh) = [X(;,17En2]a f<xf,1) = [E217 [X(;,17En1]]
f(xv—t—m) = [En—leXO_,l]v f(X;—m) = [[EnhXO_,l]’Eﬂ,n—l]

Remark 11.1. In the proof of theorem 11.1 below, the following observation will be very useful. Writing

Xp11=J(Bnn-1) = Aw,_y, we find that
_ Py A
f(xa_,i ): Z z:; TL]) 1 + S(EnlaHG)
Similarly, one can check that
A n—1 A
f(XJ’J) = J(En) + 1 ; S(En;, Ej1) + ZS(EM, Hy).

For an interpretation of these formulas, see the proof of lemma 3.9.
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Theorem 11.1. The map f extends to a well-defined algebra isomorphism D 5 — Ly 5.

Proof. We have to check that relations (42)-(53) are satisfied.

[FOXT) FXE)] = [[Bnas X14] — 22w, XJT] = =22 [wg T, XT] = 2AEn X = 2M(E,1)f(XT).
The rest of (42)-(43) is easy to verify and so are the first two relations in (44).
Fork=2,...,n—2,

FOETFOGED] = [[Bnz X7l [Brs XG0 Bapnl]] = 220 FOX )]

|[(Bnz, X7), Ba ), (XG0, Ben]]| + [ B, [z X701, Xg ), Bugn] | (61)
22 g A ) (62)

We compute the second term in (61):
[ But, [[1Buzy X0l Xaals Bnent] | = [But, [y X52) X, B
—I—[Em, [[En2, [Xl_,leO_,l]]?Emk'i'lH
= | B (B2 X5 ], B ], X

+ [ [z, B, [X71, X, 1] B (63)

The first term is zero since [[Eng, Xofl]7 En’kJ’,]} =0.

As for the term on line (63), we can write:
_ _ _ A o A _ _
[Er1s (X110, Xoa)] = [Brr, [Bar, Xoo]] + §[Ek1’S(X1 , Xo1)l = §S(X1 [Br1, Xo1])
since
[Brs (B2, X50]) = [[Evas [Bor, Xgl], Bar | = [[Bwr, Xoal, Bar] = [Bra, (X5, Banll,
which implies that [Ey1, [E21, Xg o] = 0. Thus, (63) simplifies to

A
(e, [[1Bnz, X7a), Xl Bers] | = 5 (Bt [[X01, Xqa]s Bnes] + (X, X1ls Buesa] B )

and (61)+(62) becomes
[f(xg,’;r)’ f(le)} = _)‘[[[En2vwf]7 Ekl] ) [X(;,lv En,kJrl]} - 2)‘[W(J)r’+a f(le)}

A _ _

+§<En1[[XklaXOJLEn,k—i-l] + [[thXO,l]’En,k—&-l]Enl)

= —AQ(Eni+1)Er1 — AEn1 Q(Er kt1) + AQ(En k1) Eri — AEp 141Q(Eg1)
+AE Q(Ek k41)

= —AE,;1+1Q(Er) = *Af(En,kH)f([X;pEk+1,1])

This proves that the third equality in (44) holds.
[FOX3) fFXi)] = {XSF» [Er1, [X(ipEn,kH]H = [Ek1,[Hoa, En k1]
_ A _
= [Er1, [[Hots Enn—1]s En—1 k1]l = [Br1, (X, 1 + §S(Xn71, Hy), Ep—1k41]]

A A
= —A[Bk1,[wy_1s Bae1,641]] — §S(Ek1>En,k+1) = *Es(f(Ekl),f(En,kH)) (64)
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This proves equation (45) in the + case and (46) follows from this one: the non-trivial case is the equality
[f(X;l), [f(X;l),f(Xf{)H = 0, which is a consequence of (64) and the fact that the subalgebra Ly of L is

isomorphic to (sl [s]). (This is explained in [17]; Ly is defined as the subalgebra of L generated by Xg
and by X H;,,1<i<n—1,7>0.)

[f(x(_)‘—)vf(ngl,l)] - |:X(3i_7 [[EnlaX(;l]7En,n—l]:| = [[EnlvHO,l];En,n—l} = [Enl, [HO,laEn,n—l]]
A
= [Enl,X;_Ll + ES(H07X,,:_1):| = —AE, n_1En1 = = MX_)f(En)
[F(X3), f(XT,)] = [Xar7 [Ean, [X(ilaEnIH:| = [Ea1,[Ho,1, Eni]] = [[Fa1, Ho ), En1]

A
= {X;l + 5S(X;,HO),EM} = —AE,1 By = —M(E,)f(X])

We have just proved that the first and third relations in (48) are satisfied. The other two can be easily
checked.

The expression [f(X}_, ;), f(X{)] — [f(XZfl),f(Xg)’f)] is equal to

net10 [ X110 Bn11] — 2/\“’(—;’_}

= —[En-12,[BE21,Honl] — J(Ep—11) + NEn—1n,wg "]

= [En-12,X14) 4+ BEn_11Ho+ (A= B)HoEn_11 — J(En-1.1) + AMEn_1n,wg "~
= “ABu-12,07] = BEn-11 + MHoBp_11 + A[En_1,00 |

[[En-1,1,Xo1), Xo | — [X,F

A A
= _§S(En—1,na En ) - ES(E’II—Ll)HO) - BEn—l,l
A A
+§(H0En—1,1 + E,_1,1Ho) + E[HO’ En_11]
A A

= _§(En—1,nEn1 + EnlEn—l,n) - /BEn—l,l + 5 n—1,1
= _/\EnlEn—l,n - ﬂEn—l,l

This proves that relation (49) is satisfied. The proof for (50) is identical. As for the relations in (51), they
follow immediately from remark 11.1.

Now we check (52) for X{;:
[f(xi1)7 [f(Xf’l)7 f(x(J)r)H = [[X(ilv En2]7 [[X(;,lv En2]7 XSLH - [[X(i17 En2]7 [HO,la EnZH
=~ (X6, Enal, Hoa), Buz] = [[[Xg0 XoJ, Hoals Bn-1.2], Enz| (65)

We know that [Xg,[Xg,, X, 4]] = 0 in Lyg, so applying [Xg, ] to it yields 2[Ho 1, [Xg 1, X, 4]] —
[[Ho,l,X(Zl],X;_J = 0, hence 2[H071, [XO_,l,X_ H + 2[X(;2,X;_1] + A[S(HO,X(Il),X;_l] = 0. From this

n—1
equation, we get
“[X()_,ler:—l]aHO,l]vE"—L?] = [[S(H()vXO_,l)vXn_—l]aEn—l,Q] =+ [XO_,27ETL2]

[S(Ho, Xq,1), En2] + [Xg 2, En2]

N> | >

Using this in equation (65) and the fact that [[X,,, X, 4], X, ;] = 0 gives

[f(xi1)7 [f(xil)v f(xg)“ = )‘S([Hm En2]7 [X(;,lﬂ EnQ]) = 2>‘f(En2)f(X14:1)'
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This proves the first relation in (52); the second one can be established in a similar manner.
Let us now consider (53) in the case of Xflz

[f(xa_)v [f(xg)vf(Xil)]] {X(—)‘r? [XS_7 [XO_,lvEn2H:| = {Xg_v [[HO,lvEn,n—lhEn—l,ZH

A
“X(;ralel,l + §S(H0,X;71)]7En71,2}
—AS(XG, X, 1), Bno12] = =22 ([En, XT1)FXT)

In conclusion, f is a well defined algebra homomorphism. Since L is generated by XfO,O <i<n-—1and
X1, the map f is surjective. It respects the filtrations on © and L, so it induces an algebra homomorphism
gr(f) : gr(®) — gr(L), which must be an isomorphism because of the PBW property of both algebras.
Therefore, f is injective. O

12 From affine Yangians to deformed double current algebras

As explained in section 5, affine Yangians can be viewed as limit forms of quantum toroidal algebras. In
this section, we want to explain how to obtain deformed double current algebras from affine Yangians via a
similar procedure.

We fix A\, 8. Let us start with Y and its usual filtration. Let R be the subring of Y ®c C[h] generated by
R"XE h"H;,,0<i<n—1,7>0. Set R =R/hR, so R = gr(Y) = U(sl,[u*",v]). Thus, we have a map

7,77

R — (s, [ut?, v]).

Consider the composite R —» R —» U(sl, [uTt v]) — 8U(sl,[v]), where the last map is obtained by setting
u = 1. Let K be its kernel. Let R be the C[h]-subalgebra of Y ®c() Clh, h~1] generated by R and %

Theorem 12.1. The algebra R/hR is isomorphic to the deformed double current algebra ©.

Proof. Our strategy is to define a surjective map ¢ : © — R/hR explicitly by the formulas below and then
to show that it is injective by using the functor § and corollary 10.1.

Set %Z—i’r = thfr and §; , = h"H; .. The map ¢ is defined in terms of the generators of ® in the following
way. For 1 <:<n-—1,r=0,1, we set go(X?’[T) =X (Hir) = $i,r and set

i,r?

%3_0 —FE_ — xa_l - [x_—l 1> En—l,l] x3_1 - [En27x1_1]
PX) == p(Xgy) == e R e

We must show that ¢ extends to an algebra homomorphism on all of ®. It is not difficult to see that ¢
yields algebra maps (sl [u]), (sl [v]) — R/hR. The relations involving H; o for i # 0 are easy to check.
In the following computations, the expressions on the right-hand side belong to R/hR: we first treat them
as elements of Y ®c Clh, h~!] and, after simplification, we consider their images in the quotient R/hR.

[P0 00N = 3 Xt — (B X0, X5 — B
= (P50 X1 = (B, X0, X3T] — X Bt + (B, X, B
= TGP+ (B Xia) Ban]) = 2 (X802 = Al B ), Bua])
= 2 —p) = A BB (x4 ) = ek ()
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since X§ = E,1 in R/hR. The other relation in (42) is easier.

e(XTi) —e(X$T) = [Xp_11 Bac11] = [Bn2, X7] = M[Ena,wi ] — Alw,_y, Eno1,1]
n—1
A
=5 > (EnjBj + EjnEyy)
i=2

The first two relations in (44) are not difficult to obtain, and for the third one we just have to compute
M[En2, wif], hXy,]. As for (45), we simply use [XS',X,:"I] =0 and compute [E,1,w]. Using (44) and (45),
relations (46) and (47) are easy to obtain.

+
The first relation in (48) says that [XD ;E"l, ;_171} = —[En1, X, _11] = A[Bn1,w, 1] = —=AEy n1En1 and

the other ones are as simple. We now turn to relations (49)-(53).
We find that [p(X}_, ,), O] = [P(XE_,), 9(X )] equals

= [X$—171>X6r - Enl] - [EnflmaX(fl - [X;—l,lvEnle]]

(B=NXg X = BX  Xg =X 11, Bl + [Baoim, [ X115 Enc11]]
(B- A)X(;FX:{A - ﬁX:{AXJ - [[Xril,p En,n,l], Enflyl]
+[[En71,mXr;m]aEnfl,l}

= (B=Ne(En)e(Xi_1) = Be(Xi_1)@(En1)

The equality corresponding to (50) via ¢ can be checked following the same steps. We now turn to relation
(52) with [p(X;}_; 1), [p(X;}_1 1), ©(X7)]] and find that it is equal to

= [:{:—1,1’ [X:—l,l’XS_ - EnIH = _h[XrT—l,h [X:LF—LMEMH = _h[XrT—le [[X:—l,laEn,n—l]aEn—l,IH

A
~h[X s (Hno13, Bao1al] = =h| X0 10 [Xo gy + 58 (Hat, X o), Buoa] |

A\h
= —7[Xri1,1, S(Hp-1,Bn-11)] = MS(X,7 | 1, En11) = 220X )(En-11)

In a similar way, one can check that [p(X7 ), [0(XT,), o(XJ)]] = 2Xp(En2)@(X{ ;). The second and fourth

relations in (51) can be deduced without difficulty from the defining relations of Y. The first relation in (51)
is a bit more complicated to check.

[P0, [0 0G0 = [, 7 X6 — B, X)X
1

2 [X(;fl - [En% Xlil]? [X(;r,lv X:Lll} + [E"*1»27X17,1]] =0 (66)

The vanishing of the expression on the last line requires some explanations. From the definition of \Af, we
know that [X, [X, X, 1] = 0 and [X{,, [En_12,X;,]] = 0 since [X{,, X7 ,] =0, [X{,, Epo12] = 0.
Moreover, [[En2, X1 ], X1 1] = 0 since [[Xy, X; ], X7 ;] = 0. It is also the case that [[En2, X1 ], En—12] = 0:
indeed, if n > 4 (the case n =4 is simpler) :

[[En2, X11), En12] = |:|:En37 [E32,X17,1H,En7172] = {En?,, I:[E327X1771LE7171,2]:|
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and
[[E32,X;1],En—1,2] = [Es, [Xfl,En—1,2]] = [E:sz, [En-13, [X1_717E32]]]
= —[Bn-12, (X171, E]] = —[[Es2, X1,1], En-1,2]
Comparing the first and last term, we conclude that [[E32, X| ], Ey—1,2] = 0, hence [[Epn2, X1 ], En—1,2] = 0.
To prove equality (66), we are left to check that [En2, X7, [X¢,, X, ] = 0. From the relations in Y, we
have [En2, X¢,] = [X1,, X ] = 0. Moreover, [X{y, [[Enz, X1 ], X;j_ Il = =[Xg4, [Bno1.2, X14]] = 0 since

[X(J,fl, E,_12] = [ngl, X1 1] = 0. This proves (66). The proof of the equality [@(XJ’{), [ap(Xary’f), (XM =0
is analogous.

We are left to verify the relations in (53) and we do it only for the second one.
[‘P(X(JJF)> [‘P(X(—)F)a <P(X:—1,1)H = [QD(XED, [X(;r - EnlaX'rT—l,lu
1
= (X I X ) = 2(XE 1B, X ] + (B, [Bar, X))

The first term is equal to 0. Writing X 1 = = J(En-1n) — Aw
—2)\En 1B 11

we find that [Enl, [Enl,X;LLlH =

n—1

As for the term [X{, [En1, X,7_ 1 ,]], which equals [E,1, [X§, X7, 1], we find that
[X(T’ [EnhX:L_—l,l” = [Enla [XO 17X+ ] ((B - )\)XS_X:’L_ ﬂ 1X—~_)}
= [En—l,laX(il] (B=NXTEw 11— BE, 11Xy = - AX{En11
Therefore,

[0 (X3 [ (XF), Xy )] = %(XJ — En)Ep—1,1 = 220(X{)@(Ep_1,1).

Proof that ¢ is surjective: The kernel K C R is generated by h"C; ., s, by the elements =} = .'{(TT -

r

X, o Bt 1L 2 = X, — [E1,n—1,x;t_1,r] and by ad(Xi[) o ad(Xi) 0...0 ad(Xi)("i) for any 0 <

_ =t
i1,...,ip <n—1,p > 1. Therefore, we have to show that h"'C; . and == (viewed as elements of R/hR)
belong to the image of .

If s # 0,7 > 1, we write h’“*léims = ﬁ[KS(Hi),h’"JT(Hi)] = i[Kg(Hz) — H;,h"J.(H;)]. We know
that hTJT(Hi),w € Image(y), hence h"~1C;, s € Image(p). If s = 0,7 > 0, then h""!1C;, =
L0 7. (Hy), Koy (Hy)]) = L[ T (H, i), K1 (Hy) — Hi) + + [A"1J.(H;), H;). We claim that h"J,.(H;) is in the
image of ¢. Indeed, in R/hR hTJ( H_U) = 1[h"J,(H;),K1(Ei41,)] since the difference Jr(Eiig1) —
ST (H:), K1 (Eiii1)] € Fro1(Y); s0 b J,(H;) = —W[Ez,zﬂaJr(Hi)]aKl(EHLi)] [hr (Hi), K1(H;)] =
—[R"[Eii1, Jr(H;)], Biv1d] + 5[h7J(H;), Hy] since K1(Fit1,) = Eiy1,i, Ki(H;) = H; in R/hR. The last
two terms are in the image of ¢, hence so is A" J(H;). To conclude that h"~1C; , s is in Image(y), we have
to see that [A™~1J,(H;,), H;] € Image(y) also. We write, in R/hR,

(W =VJ.(Hy), Hi] = HEi,iJrlahr_li"(EiJrl,i)]aHi}

hr—l
5 |:[Ei,i+17 [Jr(Hi),Ei+1,z‘]]7Hi] +

[[Brien, b7 i) = 5o (), B )], 1

(B o Fia) = 5 U H) K (B )], (67)

By definition of jr(EHM), the difference jr(Esz) — %[Jr(Hi), Ki(Eit1,4)] is in Fr_l(?). Therefore, the

expression on line (67) is in the image of ¢, thus so is [h"=1J,(H;), H;], which completes the proof that
h™1C; . s € Image(yp).
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(1
+

We proceed by induction to prove our claim about 5. Since E} = h" (X, — [X, ., En_11]),

=+
—r

[YJn—l,l,T] = W [Hp11,Xg, —[X0 10 En11]]

= - (X;TH + (A= B) X, Hyy + BHn 1 X, — 2X, 1 11, Enc11]

_A[S(X;_LrvH7L—1)7En—1,1] + [X;_Lrv [Hn—l,lvEn—l,lﬂ>
Xt - X B
B "}—ll’r“ 1) —h"(A=B)X(, Hn1 + BH, 1 X)) (68)
FART[S(X s Hoo1)y Eno1n) = BT ([X0 1 [Hoo 10, Bl = (X0 015 Eno1,1009)

The second term in (68) and the first term in (69) are in the image of ¢ and so is [$,—1,1, %} by induction.

The expression in parentheses on line (69) is in F,.(Y)) C F,(Y), so the whole expression in (69) is in R

=+
and, consequently, belongs to the image of ¢. In conclusion, hr(XafTH — X 11 Bao1a]) = =5 isin
the image of .

Proof that ¢ is injective: Let ¢ = A\t = 28 — A + % We can extend the map &; : SA(',\”@ — Endc(VY)
to 3?,\,5 ®c C[h, h~'] by replacing H; . with H; . ®c C[h, h™!]. The algebra map thus obtained restricts to
R — Endc(A ®c(g,) V®'), which factors through a; : R/AR — End¢(V!) according to lemma 4.1. The
composite a; o ¢ is exactly the map ® — Endc(V!) coming from the D-module structure on V! given in
section 9.

Corollary 10.1 says that, given X € ®, X # 0 and 8 # %4—%7 there exists some [ > 0 such that aq;o¢(X) # 0,
hence ¢ is injective also if 5 # % + % It then follows that ¢ must be an isomorphism for all value of A, 3. O

13 Another family of deformed double current algebras

Lemma 3.8 suggests to consider a possible different definition of deformed double current algebras. Compu-
tations involving the Schur-Weyl functor lead to the following definition.

Definition 13.1. Let A\, € C. We define Dy g to be the algebra generated by elements z,K(z), Q(z),P(2)
with z € sl,,, which satisfy the following relations: the elements z1,K(z2)Vz1, 22 € sl,, satisfy the relations
for (s, [u]) so that we have a map U(sl,[u]) — D g given by z @ u — K(z), and similarly for z1,Q(z2)
and U(sl,[v]). The elements z1,P(z2) satisfy the relations of the Yangians of finite type An,_1 as given in
definition 3.1 with J(z) replaced by P(2). Ifa2b=c#d#aora#b#c#d=a (soif [Ew, Eca] #0
but E.q # Epq '), then

[K(Eab), Q(Eea)l = P([Eab, Eea]) + (6 - 2) (0veEad + 0aaEep) + 2(6ad + 0be)S(Eab, Eea)
+% 1<§< S([EamEijL [EjiaEcd]) (70)

If [Ealn Ecd} = 0, then

[K(Eab)7 Q(Ecd)] = —AEuwaEep (71)
[Q(Eab)a P(EC )] = %(Q(Ead)Ecb + Q(Ecb)Ead) (72)
K(Eab), P(Eea)l = _g(K(Ead)ECb + K(Ecb)Ead) (73)

LAn error here in the published version has been found by Valerio Toledano Laredo and Yaping Yang. They have also
pointed out that relations (70) and (71) can be combined into one single relation by modifying slightly (70).
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Remark 13.1. In the case Eqq # Ebg and [Epq, Ecd] = 0, applying |-, Epq] to (70) or (71) yields an expression
for [K(Hap), Q(Eea)):

K (Hut). Q)] = P Be) + (8= 5 ) (B = o) + 7 305 0SB By o)
oy

(72), (73) follow from this. Indeed, assuming that [Eq.p, Ecq) = 0 and that a,b,c,d are all distinct, we apply
[Q(Eap), ] to the expression for [K(Hpe), Q(Eeq)] and for [K(Hye), Q(Eeq)] to deduce (72). If a,b, c,d are not
all distinct, we choose e # a,b,c,d and write E.q = [Ece, Eed] so that [Eqp, Ece]l = 0 = [Eup, Eed). If, say,
b=d,a # c, then

[K(Eab)7P(Ecd)] = [ ( ) [ (Ece)aEedH
= %[K(Ea )Ecb + K(Ecb)Eaea Eed] = _g<K(Ead)Ecb + K(Ecb)Ead)
Proposition 13.1. We can define an automorphism of D)\g by K(z —Q(2),Q(2) — K(2),P(z) —

—P(2),2 > z, Vz € sl,,, and an anti-involution by K(z) — Q(z'), Q(z) — (zt), P(z) = P(zt),z— 2!, Vz €
sl, where 2t is the transpose of z.

Proof. This is straightforward to verify. O

This should be compared with the involutions on Hy .(S;) described in [15].
The following proposition is an immediate consequence of lemma 3.8.
Proposition 13.2. We have an isomorphism Dy—g g—o — $0(sL, [, v]).

Corollary 13.1 (See proposition 7.1 in [17]). The following relation holds in Dy g :
[K(Eab), Q(Epe)] + [Q(Eab), K(Ebe)] = 2P(Eqc) if a # b # ¢ # a.

Proof. This follows immediately from relation (70). O

14 Schur-Weyl duality for D

There exist a duality of Schur-Weyl type between H, .(S;) and Dy g. The proof of this fact below is simpler
than the one given in [17] since we do not have to prove it first for affine Yangians.

Theorem 14.1. Suppose that A = ¢, = % — %+ 5. The functor F: M — M ®c[g, Vel sends a right
Hy,c(Si)-module to an integrable left Dy g-module of level  (as sl,-module). Furthermore, if | +2 < n, this
functor is an equivalence.

Proof. Suppose that ¢ = X and 8 = £ — ¢ + £ We would like to let K(z), Q(2),P(2) act on M ®¢(s,) V'
in the following way:

l l
K(z)(m @ v) mek 228 (v), Qz)mev)=> my. @M (v), PE)(mev)=>Y mYi@zH(v).
k=1 k=1
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Assuming that a Zb=c#d # a or a # b # ¢ # d = a, we find that [K(Ey), Q(Ecq)](m ® v) is equal to

l l
= Y mly e @ ESEG (V) + ey myjz; @ EY)(v) = daa Yy majy; @ By (v)

ik j=1 j=1
= Ym0 EVEG (v va ® (Ope Fad — 0adEer) (V)
Jj#k j=1
Obe () Sad @)
_7 m['rﬁyj} ®Ead 2 Zmy]"rJ Ecb (V)
j=1
= P([Eab’Ecd])(m®V) (5bc ab+5adEcd)(m®V —szs k@E( )E(J)( )
J#k
+5 D msii © (oeBY) +0,EG)(v)
J;ﬁk
t .
= P([Eaps Eca)) (m @ v) + 5 OveFBad + baa ) (m © v) - Y m® EXED (v)
£k
n
¢ (k) J) ¢
50D m& BB +26adZZm®Ew EY ()
j#k e=1 j#k e=1
_ t_cnyis s (k) ()
= P([Eavacd])(m®v) + 5 - Z ( velad + adEcb)(m®V) - sz®Ecb Ead (V)

i#k

c 2 c -
+15bc Z S(Eaea Eed)(m ® V) + Zéad Z S(ECS7 Eeb)(m ® V)

e=1 e=1

>

= (P([Eab7 D (ﬂ - > (chEad + 5adEcb) + (51)0 + 5ad)S(Eaba Ecd)

P20t b)Y (B Bl (B Eed) ) (m V)

1<i#j<n

Now let N be an integrable left module of level | over D) g and suppose that { +2 < n. We have to
show that there exists a module M over H such that F(M) = N. From the Schur-Weyl duality between
Clwy, ..., w] x S; and $4(sl,[u]), we know that there exist modules M?', M? over Clxy,..., ;] x S; and
Cly1,---,w] x S, respectively, such that F(M?') = N (resp. F(M?) =2 N) as U(sl,[u])-module (resp. as
$4(sl,, [v])-module). Since they must be isomorphic as S;-modules, we can denote them simply by M. We
must show that M is actually a module over H; .. We proceed exactly as in [17], so we will need the following
lemma.

Lemma 14.1. Ifv=v;, ® - - @ vy, and i; # i for any j # k, then m®@v =0 = m = 0.

Fix 1 <j,k <1I,j#k. Choose v=uv; @ - ®uvy; such that i, = 2,45 =n—1,4%. =r+2ifr <j,r #Ek,
ip=r+1ifr>jr#k Setv= E,(L];)Eﬁ)l_l(v). On one hand,

(Q(El,n—l)K(ETQ) - K(E )Q(Elm—l))(m ®V) =
l l l
SN may. 0 BE B ZZmyswwES;)E}sz,l(v) = mlapy — yan) ©V  (74)

s=1r=1 s=1r=

Using relation (71) for Eu, = Ei,—1 and E.q = Ep2, we find that [Q(E1,,-1), K(En2)] = AE12E, n—1, SO
Q(E1n-1), K(Ep2)](mev) = Am@E(k)Er(ljzkl( ) = Ams;;®V. Therefore, we conclude that m(zry; —y;zi—

Asji) ® Vv = 0. From lemma 14.1 and our assumption that A = ¢, we deduce that m(x,y; —y;xr —csji) = 0.
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We use equation (70) in the case Eup, = Ep1, Ecq = E1.,—1 and vice-versa. It implies that

n—2

K(Bur), QUBy 1)) — [QUEw) K(Bn 1)) = (26— NEun1+ 5 > S(Buts Ban 1) + 5 S(Bur, B )

A A
+§S(H07 En,n—l) + §S(En,n—17 (En—l,n—l - Ell))

Now fix k and let v be determined by i =n — 1, i; = j + 1 if j # k. Set v = E™

nn—1(v). Applying both
sides of the previous equality to m ® v, we deduce that

Aln+1
m(YkTr — TkYk) OV = (28 = A)m @ Ep (v )+¥m®En" 1 +>\ZZm®E7(jd)Edn 1(v)

Jj#k d=2
An A ~ ~
= m[yk, k] @V (25 /\+2+2>m®v+)\zmsjk®v
J#k
Lemma 14.1 and the assumption 28 — X\ + % + 5 =t imply that [ye, xx] =t + CD itk Sik- O

15 Equivalence of definitions 8.1 and 13.1

Theorem 15.1. The algebras Dy g and Dy g are isomorphic.

Proof. We define a surjective map f : ® — D by setting f(XF) = B, f(Xii’l) =Q(Ef) for 1 <i<n—1,
FXE) = K(BE+p), f(XSi’li) =P(E_p) — )\wa“i. We have to verify that all the relations in definition 8.1 are
satisfied. We give details only in the “4” case.

The relation [P(En1), K(En1)] = AE,1K(En1) implies [f(Xg 1), F(X$)] = 2Af (En1) £(X3); [P(En1), En1] =0
leads to [f(Xg”f),f(Enl)] = M(EZ)). Relation (43) follows from the definition of wi " and (44) is a

consequence of (72) and the definition of wy ™. As for (45),(46), they follow from (71), whereas (47) is a
consequence of remark 11.1. The same is true for the second and fourth relations in (48), whereas the first
and third relations follow from (71).

The relation [f(X_1 1), f(X3)] = [f(X_1,0), FXg1)] = (8 = N (B f(En-r.0) = BF (Bn1,0) f(Ena) is

equivalent to
= [Q(Enfl,n)a K(Enl)] = [Enfl,na P(Enl)] - )\[En 1, nawo ] (ﬁ >‘) nlEnfl,n - BEnfl,nEnl
A A
S QB 1) KED] = P(Er1a) = (8- 5 ) Bucsa = 5Bt i)

- Z S n—1,n, z] [EJME D

1<1;£]<n
The last equality is indeed satisfied in D. Relation (50) can be checked similarly.

We can verify that [f(x:’f), [f(XH’f),ﬂX*)]] 0 = [FXD), [F(XT), f(Xg1)]] (and similarly with X
replaced by X | and X0 ] par X0 1) by using remark 11.1.

The relation [f(X}_; 1), [f(XF_1 1), FOX = 2Af (X5 _1 1) f(En_1,1) is equivalent to
= [Q(En—l,n)a [Q(En—l,n)a K(Enl)]] = 2)\Q(E‘n—l,n)-En—l,l

A A
= [Q(En—l,n); P(En—l,l)] = §Q(En—1,n)En—l,l + §Q(En—1,1)En—1,n
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which is again true in D. The other relation in (52) can be verified similarly.

Finally, we verify (53), so we compute that [f(X7), [f(X{), f(X}_;1)]] equals

= [K(Em), [K(En1), Q(En—1.0)]]

= KB, P 1) = S8 (B K (B ) + S SOK(Bu), B ) + 2 (B2, K(Br))

= 20K(En1)En_11 =2\ f(En_1.1)f(X$)

The first equality in (53) can be verified similarly. That f is an isomorphism is a consequence of corollary

10.1. O
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