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ABSTRACT 

The present work describes an automatic procedure for 
diagnostics and prognostic issues, and its application to the 
evaluation of gearboxes residual lifetime. The Hidden Markov 
Models - HMM - technique has been used to create quasi- 
stationary and stationary models and to take advantages of the 
multiple sensor data acquisition architecture. At first, Markov 
models for diagnostics have been defined. The main advantage 
of the HMMs approach is that all vibration raw data measured 
by a multisensor architecture can be used without any pre-
processing. An effort to adapt the HMMs technique to the 
prognostic issue has also been carried out. To create Markov 
Models suitable for prognostics, the Viterbi Algorithm has been 
used to define the best sequence of model states and to 
optimize residual useful lifetime computation. Finally, 
experimental results are discussed, which encourage further 
research efforts according to the proposed approach. 

 
INTRODUCTION 

One of the main methods for performing Condition Based 
Maintenance is based on vibration signals collected from a 
machine. The main objective is the detection of vibration 
characteristics which correspond to physical changes in the 
machine which indicate abnormal operation. 

The primary challenge is to achieve a high degree of 
precision in classifying a machine’s health given that its 
vibrational characteristics will vary with many factors not all 
corresponding to defective components. For example two 
identical new machines may have different vibrational 
characteristics due to differences in the manufacturing process.  

It is important to differentiate between vibrational changes 
which are due to the machine component defects and those due 
to changing operating conditions. 
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In literature, several diagnostic techniques have been 
proposed in the past to detect the presence of fault in rotary 
machines. For such application, a Neural Network classifier 
seems to be an ideal candidate to correlate the input data to the 
presence of faults, thanks to its capability to learn complex and 
non linear mappings. Nevertheless, in most cases, an expert 
operator is needed to draw conclusions about the fault level by 
means of spectral analysis methods. Obviously, in order to 
reduce costs and simplify the diagnosis and prognostic stages, 
it would be desirable to make the fault detection and the 
estimation of residual lifetime fully automatic. 

 The Hidden Markov Models are suitable to perform 
detection and estimation operations for machine diagnostic and 
prognostic issues. In previous studies, these techniques have 
been applied to diagnose and forecast faults of mechanical 
components [1,2]. The motivation to use the HMM the 
Condition Based Maintenance comes from the success it 
provides in the area of speech processing. Today most 
commercial processing software tools for speech recognition, 
speaker identification and speaker verification are based on 
HMMs [3,4]. Such applications prove that HMMs are a 
successful instrument for speech processing. Furthermore, the 
processing method results robust to speaker variability and over 
populations of different speakers.  
  The major technical challenges in CBM which must be 
addressed by any processing methodology are summarized as 
follows. 
  In the CBM, machine vibration statistics are quasi-stationary 
and vary as a function of operating speed, torque, ambient or 
atmospheric conditions. CBM techniques must be able to 
distinguish between the normal changes and those due to 
defects. In the speech processing we have quasi-stationary 
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vibration statistics, varying as a function of the glottal source, 
the ambient or atmospheric conditions. 
  In the CBM, the machine character can be quite variable due 
to the differences in machining, part size, variations, fastener 
tightness, wear variations, replacement part variations, and 
aging. Machine monitoring techniques must be robust to these 
differences. In the Speech processing the voice character 
changes with the proper speaker voice. 
  Vibration features which are indicative of machine health can 
be hidden by vibration from other machine parts, a multiplicity 
of transmission paths, and ambient noise. Machine health 
monitoring techniques must be robust to multipath and must be 
effective in low signal -to-noise environments.  Since there are 
many similarities between the speech processing and the 
processing for CBM applications, signal processing 
methodologies used in speech processing have good potential 
for successful application also in CBM. 

In particular, one of the principal objectives of this research 
consists in evaluating the current condition of gearboxes, in 
order to estimate their residual useful lifetime. The 
effectiveness and reliability of the HMM to accomplish such a 
task is proven by experimental classification results on a 
gearbox system in different stages of the fault.  

EXPERIMENTAL SETUP 
 In this section the experimental setup, used for the 

application of Hidden Markov Models to the problem of 
Condition Based Maintenance is presented. The data set, 
suitable to the prognostics issues, has been provided by the 
Department of Mechanical engineering, University of Alberta 
[5]. This data set consists of vibration measurements from a set 
of two accelerometers placed on the Machine Fault Simulator 
for the Gearbox, manifactured by Spectra Quest. At first a light 
fault was caused on one tooth of the gearbox 5 and after that an 
overload has been inducted on the machinery to speed up the 
fault’s severity increasing. Data were collected during the 
whole gearbox working time from normal state to total fault 
state.  

 

 
Fig 1- Gear 5 and gear 6 with slide off 

 
The phenomena of the total fault are: 

• Gear 5 and gear 6 have slide off 
• Gear 5 and gear 6 have serious fault, especially gear 5 
• Fault modes are teeth bent, teeth broken, and teeth 

missing.  
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  The shaded area of the Fig.1 highlights the gear 5 shift. In this 
work, only the data relative to the slide off fault have been 
analyzed. 
Fig.2 presents the Acquisition System Architecture used in this 
experiment, where the vertical accelerometer in position A and 
horizontal accelerometer in position B are highlighted. 

Fig 2 – The experimental setup 

A

B 

 
Two accelerometers have been used to collect simultaneous 
vibrational data. Such simple multi-sensor architecture is 
suitable for the required application. In fact we need of more 
sensors to be sure that our Hidden Markov Models are trained 
well to correctly recognize different situations of fault.  
  Two sensors is the simplest architecture to be sure to acquire 
the most significant data to detect the fault, because it is not 
possible to know a priori best accelerometer position .  
 
HMM MODEL OF GEARBOX VIBRATION DATA 

To monitor machines health two types of signal models can 
be adopted: 

1. Deterministic models, where the specific properties of 
the signals are known through well characterized parameters 
like amplitude, frequency, etc., concerning the particular trend 
of wave. 

2. Statistical models, characterized by statistical 
properties. 
    The machine fault phenomena are very changeable, so they 
can be characterized properly by means of stochastic models, 
using statistical parameters. In literature there are many 
different models to estimate the stochastic models parameters. 
One type of the stochastic signal model is the Hidden Markov 
Model. The elements of the Hidden Markov Model are: 

a. N, numbers of states S= s1 s2,  ,sn. 
b. M, numbers of the distinct observation symbols per 

state Q=q1 q2 …qm. 
{ }ijA a=c. The state transition probability distribution , 

where (aij) is the probability of moving from state si at time t, to 
state sj at time t+1. It is an element of  

1A P q s q st j t i
⎛ ⎞= = =⎜ ⎟+⎝ ⎠

           Nji ≤≤ ,1 . 

 
d. The observation symbol probability distribution in 

state j, { })(kb j=B , where  
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( ) |k P at t qb vj k st
⎡ ⎤= − =⎢ ⎥⎣ ⎦j  ,   Nj ≤≤1 ,  Mk ≤≤1  

bj(k) is the probability staying in state j at time t.  
e. The initial state distribution { }ππ i= , where,  

( )i i iP q sπ = −   , Ni ≤≤1 . 
 
A HMM is defined by λ=(A, B, Π), giving the appropriate 

values of N, M, A, B and Π. The HMM can be used as a 
generator to give an observation sequence Θ= O1 O2…OT [3]. 

In this section the goal is to build HMM models which can 
be used to describe gearbox data. To build a correct Hidden 
Markov Model it is necessary to evaluate the following 
matrices [2]: 

1. States Transition Matrix, A. The States transition 
matrix describes the probability to move from a stationary state 
to another one.   

2. State Emission Matrix, B. The States Emission Matrix 
describes the statistics of the particular stationary model. Each 
element represents the probability distribution associated to 
each state. 

To obtain these two components it is necessary to 
experimentally identify the frequency of occurrence of each 
defect and the average time spent operating at each condition. 
Usually such two components are not available, so a model to 
estimate the Transition Matrix and the Emission Matrix has to 
be set up. 

Each state of the Markov chain associated to an HMM must 
have a state process model which specifies a state probability 
function. In the Hidden Markov Model literature the Gaussian 
distribution is often used although multi-modal distributions are 
also used by taking mixture Gaussian distribution [1, 2, 4, 6, 7, 
and 8]. Other choices are mixtures of autoregressive models 
and autoregressive moving average models [3, 7]. In the 
present work a simple multi-dimensional Gaussian mixture 
model has been used, because it is the best method for the 
adopted observation sequence.  

The main diagonal of the covariance matrix, used to 
calculate the mixture Gaussian distribution, is built with the 
vibrational power RMS of each sensor data. The other elements 
of a covariance matrix are the RMS crosspower between the 
different sensors. 

 The acquired data demonstrate that the vibrational power 
RMS represent a good indicator for the health condition of the 
gearbox. As showed in the fig. 3, the RMS displays  three 
different level of faults, thus, three classes have been modeled. 
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Fig 3 – Health condition of the gear box 

 
The most important step is implementing the Hidden 

Markov Model for each state. So three HMMs have been 
implemented to be used as a dictionary. The aim is to obtain 
models that can be matched with new sequence of vibration 
data. 

 

 
Fig 4 -  Architecture of Recognition System 

 
To create each model a training set of 60 arrays or patterns 

has been used. In Fig.5, the difference between the states can 
be seen. Typical vibration data for the state sequence from the 
healthy level to the faulty one are reported. 

A different Gaussian is estimated for each one of the three 
cases. Each Gaussian is bidimensional (due to the fact that raw 
data from two sensors have been used), and is estimated using 
the first 1000 samples of each of the operating condition. The 
mean vectors µk and covariance matrixes Λk for each of the 
K=1,2,3 cases have been obtained, using the following 
formulas [3]: 

          1 ( )N y nµ = ∑1k kN
                                   (1) 

      1/ [ ( ) ][ ( ) ]k 1
NN n ny yk k k kµ µ= − −∑Λ '  ,     (2) 

 
the Gaussian distribution formula is:  
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     3( ) ( , )( )1gm x g xw kk kµ=∑ Λ , K=1,2,3,        (3) 
 
where N = 1000 samples and yk(n) is a 2D-vector of 
observations at time n∆t for operating case k, wk is the weight 
of the mixture and all weights are positive with the respect of 

13
=∑k kw . 

 

 
Fig 5 – Typical observation sequence 

 
  A different covariance matrix for each operating condition is 
used, and the likelihood of the analyzed data can be observed in 
the Fig 6, where the bidimensional Gaussian distribution for 
each case is built. The Gaussian Mixture let to evaluate the 
Transition matrix and Emission matrix belonging to each state.  
 

 
Fig 6 – The bidimensional Gaussian distribution 
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During the Markov Models training process, a model index has 
been assigned to the gaussians group belonging to each state. 
Each gaussian group is individuated by the arrays of acquired 
data at any detected component conditions. The training 
process gives to any arrays a weight wk as bigger as that array 
is more similar to each other. In this way each gaussian 
distribution has its accurate space dislocation. 
  After founding the gaussian distribution it is very simple to 
found the array probability that such an array belongs to a 
determined model. These probabilities determine the emission 
matrix (probability to belong to a proper state) and the 
transition matrix ( probability to belong to the other states) for 
each array.  The three classes of Transition matrix and 
Emission matrix represent the Markov models concerning each 
health condition.  

The accuracy of the HMMs has been tested in three 
classification experiments in which the number of samples of 
data from each sensor has been changed. The first test is lead 
with 1000 samples number of each data set from each 
accelerometer. Forty-one data sets for each state, different from 
the ones training the models, have been used. The following 
figure shows the results of the first test. 

 

 
 

Fig 7 – Classification test, using the first 1000 samples of each 
array 

 
As you can see in the figure above, the test has only three 

bad classification in the third levels, they are marked with 
green circles. The percentage of correct classification is 97%.  

The second test is lead with 100 samples of each data set 
from each accelerometer and in this way you can see that the 
success of the correct classification is already decreased down 
to 95%.The third test is conducted decreasing the number of 
samples down to only 10. The results are coherent with the 
previous tests. The percentage of success of the correct 
classifications is decreased down to 89%. 

 The correct classifications decrease with the sample 
number of each observation sequence, that is due to the 
decreasing of the precision of the mean vector. In fact the mean 
vector plays an important role in training the function 
probability of the Gaussian distribution, also for calculating the 
covariance matrix. 
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Do
 Therefore, in this section, has been proved that is possible 
to apply the algorithms of the Hidden Markov Model to 
condition based maintenance and it can be a robust way to 
detect different conditions of gearboxes in laboratory 
environment. 

THE HIDDEN MARKOV MODEL FOR PROGNOSTIC 
An important problem in CBM is planning essential 

maintenance. Maintenance must be performed before the 
expiration of the remaining useful life of critical machine 
components. Thus the estimation of residual useful lifetime, 
known as prognostics, is an important and interesting problem. 

In the previous section we  assumed the importance of 
knowing the frequency of occurrence of each fault to 
understand the transition matrix. The transition matrix 
describes the probability to pass from one state to another one. 
The Hidden Markov Model can be trainde by the use of time 
data series to obtain the optimal state sequence leading from 
the health state to the faulty one. It is important to know  the 
exact sequence of the states to correctly predict the occurrence 
of a fault.  

The optimal choice  consists of selecting  the state sequence 
(or path) that  provides the maximum likelihood with respect to 
a given model. The  sequence can be determined recursively 
via the Viterbi Algorithm [3]: 

This algorithm makes use of two variables: 
1. δn(i) is the highest likelihood of a single path among 

all the paths leading to  state si  at time n : 
                    

( ) ( 1, 2,...., , , ,... / )max 1 2
1, 2,..., 1

i p q q qn s x x xn i n
q q qn

δ = = Θ
−

 

2. a variable ψn(i) which  keeps track of the “best path” 
leading to  state si at time n: 

1 2 1

1 1

,...,

( ) ( , ...., , , ... / )arg max
n

n n

q q q

i p q q s x xn i
−

= = ΘΨ  

where q1,q2,…qn is the observation sequence of the states, 
x1,x2,…xn are the values of observation sequence Θ.  

 
     The Trellis Diagram can be used to display the likelihood of 
calculations. Each column in the Trellis shows the possible 
states of machine health condition at a certain time n. Each 
state in a column is linked to the state of  the adjacent columns 
by the transition likelihood given by the elements aij of the 
transition matrix A. At the bottom is the observation sequence 
X={x1, x2,…xn}. bi,k is the likelihood of the observation xn=vk 
in state qn=si at time n [3]. The following figure represents the 
Trellis diagram for only three states in which you can visualize 
likelihood calculations of HMMs.  
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Fig 8 – The Trellis diagram 

  
The idea of Viterbi Algorithm is to find the most probable 

path for each state  in the Trellis Diagram. Every time  only the 
most likely path leading to each state si ‘survives’.  

 The RMS time data series have been chosen to find the 
most probable state sequence. 

 Given these two curves a function proposing the Viterbi 
Algorithm for HMMs with the Gaussian emission has been 
implemented. After calculating the observation likelihood for 
these sequences, the δ and ψ vectors have been stored in a 
matrix in the format of the observation likelihood matrix. The 
main result is the assignment of a state for all point of our 
curves. The following figure shows the optimal state sequence 
for the RMS from the Vertical and Horizontal accelerometer, 
computed by the Viterbi Algorithm. 

 

 
 

Fig 9 – Assignment of the optimal sequence of states to the 
RMS curves 

 
The above figures show that the Viterbi Algorithm correctly 

determines the most probable path and makes a mistake in only 
two points, where assigns the state 1 instead of the state 2, as 
focused on the following figure. 
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Do
 Fig 10 – Bad state assignment of two RMS points 
 
The green state is the state two and the red one is the state 1. 
The points marked with the yellow circles are the misclassified 
states. The color blue in Fig.9 is the third state. 
 The Viterbi Algorithm gives the optimal state sequence or the 
path with the observation likelihood matrix. With the optimal 
state sequence and the observation likelihood matrix it is 
possible to build the Transition matrix in each point of the 
RMS observation [9]. 

For prognostic application, the most correct Markov Model 
is the left-to-right model, showed in the Fig.11 

 

Fig 11 – Left-to-right Markov Model 
 
The matrix associated to this model is the Transition 

Matrix: 
 

    Transition Matrix=     
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(3300
)(23)(220

0)(12)(11

nP
nPnP

nPnP

 

 All the probabilities are function of the number of 
observation corresponding to the actual state  

 
When the actual state corresponds to the first point of the 

RMS observation, the P11(n) is maximum and the P12(n) is 
minimum; the other probabilities in the matrix are constants.        
Moving forward the next points of observation, the P11(n) 
decreases and the P12(n) increases according to the sum 
P11(n)+P12(n)=1. Passing to the second state the probability 
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P11 and P12 become 0. In the second state you can repeat the 
same procedure with P22(n) and P23(n) at the same way. So n 
different transition matrixes can be built.  

The Fig. 12 shows the function of the transition 
probabilities P12(n) and P23(n), varying the point of the RMS 
observation. 
 

 
Fig 12 – Probability P12(n) and P23 (n) trends 

 
The function built for prognostics, uses  the detected data to 

obtain the observation likelihood matrix with the path. After 
that it matches these two parameters with those stored in a 
function of the RMS, and gives us the remaining useful 
lifetime. The correct path describes the actual state , the 
observation probability indicates in which time-point of the 
time series the system is, and the transition matrix gives 
information about the remaining useful lifetime concerning the 
previous state and point. 

If the state N represents the state of zero remaining useful 
lifetime, then the mean time, t*, to reach this state N from the 
actual n, is calculated as a function of the mean number of steps 
required to go from state n to state N.  

 
t*=Σkpk 

 
where pk is the probability of going from state n to state N in 
exactly k steps 

Based on t*, reasonable maintenance plan can be made. 

CONCLUSIONS 
 In this work has been proved that the Hidden Markov 

Model is a good tool of analysis for the Condition Based 
Maintenance and it can be applied for diagnostic and 
prognostic issue. 

 Obtained results show that correct fault classification was 
obtained in 97% of cases, and that the estimation of remaining 
useful time is possible. 

The HMMs present two main features particularly useful in 
monitoring machine health: 
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1. Computationally efficient methods (Continuous 
observation densities, Autoregressive HMMs, etc. [3]) exist for 
computing likelihoods using HMMs. 

2. The HMMs can be used to build data-driven models of 
machines, able to identify health indicators of component 
defects and operating conditions.  

The observation sequence for the HMM are completely 
general and can consist of many combinations of data features. 
So any defect detection algorithm can easily be integrated into 
an HMM formalism. 

On going activities regard the application of the HMMs 
method to the detection and forecasting of bearing faults, using 
the data collected from the Machinery fault Simulator for 
bearing faults. As a matter of fact, by comparing the gearbox 
faults with the bearing ones, it may be noticed that there are 
many common points concerning the acquired vibration signal 
types and the opportunity to take advantage of the multiple 
sensor architecture of data acquisition. The experimental results 
encourage future work and show the validity of the proposed 
approach for the Condition Based Maintenance techniques and 
their applicability to many physical phenomena. 
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