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1. Introduction

For infectious diseases progressing through a long infectious period, infectivity or infectiousness can vary greatly over
time. The progression of a typical HIV infection can take eight to ten years before the clinical syndrome (AIDS) occurs, and
the progression goes through several distinct stages, marked by drastically different CD4™ T-cell counts and viral RNA levels.
HIV-infected individuals are highly infectious in the first few weeks after infection, then remain in an asymptotic stage of
low infectiousness for many years, and become gradually more infectious as their immune system becomes compromised,
until they develop AIDS.

Since the advent of highly active antiretroviral therapy (HARRT) in 1996, there has been remarkable improvement on the
survival rate of HIV-infected patients. On an individual level, the viral load of averted treatment can help patients ameliorate
to higher CD4+ counts and prolong patients’ lives. On the population level, treatment can prolong the infectious period of
HIV-infected individuals during which they may continue transmission and may even resume risky sexual or drug activities.
This can have negative effects to the control and interventions of the epidemics. To fully evaluate the overall effectiveness
of the antiretroviral therapies on the disease spread of HIV/AIDS, it is important to investigate the long term impact of
amelioration on the population dynamics of the HIV transmission.

Mathematical modeling is a useful tool in better understanding disease dynamics, making prediction of disease outbreak
and evaluations of prevention or intervention strategies. In [1,2], models of HIV infection in vivo were studied. Global
properties of disease models in cellular levels were analyzed in [3,4] and recently, small world networks was derived for
HIV modeling by discrete event simulation models [5].

Variability of infectiousness over time has been modeled in the literature by Markov chain models, or staged-progression
(SP) models (see e.g. [6-17]). Longini et al. [ 14] used six stages of HIV infection for individuals who have not developed full-
blown AIDS to model the progression of HIV infection. Current HAART treatments are able to significantly lengthen patients’
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Fig. 1. The transfer diagram for model (1).
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life spans. It is possible for ameliorated HIV patients to move from advanced stages back to any earlier infectious stages
[8,15]. In this paper, we present a 6-stage SP model with arbitrary amelioration so that ameliorated patients can move to
any of the less advanced stages. Our model is a natural generalization of those in [18,15,19], in which amelioration can only
occur one stage at a time. Our goal is to establish the global dynamics of the 6-stage model with arbitrary amelioration and
to investigate the effects of amelioration on the disease dynamics.

We prove that the global dynamics is completely determined by the basic reproduction number Ry. If Ry < 1, then the
DFE is globally asymptotically stable and the disease always dies out. If Ry > 1, then DFE becomes unstable, and a unique EE
exists in the interior of feasible region. For the case of bilinear incidence, we prove that EE is globally asymptotically stable.
Our results contain earlier global-stability results in [18,15,19] when the number of stages is less than or equal to 6.

The paper is organized as follows. The 6-stage SP model is presented in Section 2 and its basic properties are given in
Section 3. In Section 4, the basic reproduction number is derived using the method of next generation matrix. The global
stability of EE for the bilinear incidence is proved in Section 5.

2. A 6-stage SP model with arbitrary amelioration

To formulate an SP model with disease progression and arbitrary amelioration, the total host population is partitioned
into the following compartments: the susceptible (S), the infectious (I;}) whose members are in the i-th stage of the disease
progression, i = 1,...,6, and the terminal compartment (T), where individuals are non-infectious due to inactivity. In
the case of HIV infection, the terminal compartment consists of people with active AIDS and they typically either become
sexually inactive or isolated from the infection process, thus their infectivity is negligible. One also assumes that there is no
recovery from the disease, and thus the only exit from the compartment T is death. Let §;; (i > j, i = j + 1) be the mean
progression rate from the j-th stage to the i-th stage and ; (i < j) the rate of amelioration from the j-th stage to the i-th
stage, respectively, fori, j = 1, 2, ..., 6. Here, we allow individuals in the j-th stage to be able to move to any other i-th stage
as the result of HARRT treatment. Let X; be the transmission coefficient for the infection of a susceptible from an infectious
in the class I;, which takes into account of average number of contact and probability of infection for each contact, then the
total incidence is given by A = Z?zl MiliSf(N), where N = S + Z?:] I; is the total active population. Here we assume that
the density dependence of the incidence is given by a function f(N) which will be specified below (see also [18]). Average
death rate for susceptible compartment is dg, d; for the compartment I;, which may include death due to infection, and dr
for the active disease compartment. It is assumed that the inflow to susceptible is a constant A. The population transfer
among compartments are schematically depicted in the transfer diagram in Fig. 1. All parameters in the model are assumed
to be positive. We remark that if A; = 0 for some i, then the compartment I; will be regarded as a latent compartment. Thus,
our model includes, as a special case, models of SE; - - - Ep,I; - - - IR type, for m + k = 6. Obviously this 6-stage model can be
extended to any finite n-stage model, and SE; - - - EjI; - - - IR type models as a special case, form + k = n.

Based on the preceding assumptions and the transfer diagram, the following system of ordinary differential equations is
derived for the SP model with variable amelioration

S =A—dyS—AS,

I} = &S — (dq + 82011 + 81202 + 81315 + S14ls + 81515 + 166,

I, = 8111 — (da + 812 + 832) 2 + 82313 + 824l + 82515 + 2616,

I = 8325 — (d3 + 813 + 823 + 843)I5 + 834l4 + 83515 + 83616, (M
I = 84313 — (da + 814 + 824 + 834 + S54)la + Sasls + Sagls,

I; = 8s4ls — (ds + 815 + 825 + 835 + 845 + 865)]5 + 85616,

I = 86515 — (dg + 816 + 826 + 836 + 846 + 856 + 876) 15,

and T’ = 876l — drT. The incidence form is AS, where the force of infection

6
=F(N) D hl 2
i=1

is density dependent. We assume that the function f (N) satisfies the following assumptions.

(H)f(N) >0, f/(N) <0, and |Nf'(N)| <f(N), forN > 0.
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The assumptions that f(N) > 0 and f'(N) < O are biologically motivated (see [18]). It can be verified that the class
f(N) = N, 0 < a < 1, satisfies (H). This class contains the standard incidence (¢« = 1) and the bilinear incidence
(¢ =0).
Adding the equations in (1) we obtain
N,ZA—dos—dlll —"'—d615—87516 < A—dN,
where d = min{dy, di, ..., dg}. It follows that lim;_, o, sSup N(t) < A/d. Similarly, from the first equation of (1) we obtain
S’ < A — d,S, and thus lim;_, o, sup S(t) < A/dy. The feasible region for (1) can be chosen as the closed set

A A
F={(5’117~'~716)€R1:O§s§d, 0§S+11+“'+16§d}»
0

which can be verified to be positively invariant with respect to (1).
3. Equilibria and stability

For notation convenience, define

i+1 i—1
Si=di+ » Su=di+ Y S+ i=1....6 3)
k=1,ksi k=1

We rewrite the model (1) in compact form

6
S'=A—doS— Y MliSFN).

i=1

6 6
I = ZMI,‘Sf(N) + 251:'11 —éul, )
i=1 i=2
6
I = Z Bielie + Sii1lic — Gili, 1=2,...,6.
k=it1

An equilibrium (S, I, . . ., Ig) of (4) satisfies

6
0=A—doS— > AliSFN),

i=1

6 6
0= Z)Lilisf(N) + 23111:‘ — il (5)
i=1 i=2
6
0= Z Sikl + 8ii—1licq — 8ili, i=2,...,6.
k=i+1
The disease-free equilibrium Py = (A/dy, 0, ..., 0) always exists for all non-negative parameter values. An endemic

equilibria P* = (5%, 17, ..., I}) satisfiesS* > 0, I >0, i=1,...,6.Let

_811 812 813 814 615 516

821 —6xn O3 84 s 826

83 —833 83 I3 O3
B = s 6
043 —0as 45 046 (6)

ds4  —0855  Jsp

865  —J66

where §;; is denoted in (3) and all other entries in B are zeros. Then —B is an M-matrix. Thus —B~! exists and is non-negative.
Furthermore, there exists o > 0 such that —B~'x > « x for x > 0 (see Appendix). It follows that

/3i_()"17'--5)"6)3_1(1503-'~70)T>07 (7)
where superscript T denotes the transposition. Define the basic reproduction number of (4) as
Ro=pf( 2 (8)
TP’ \do )

We have the following results on the existence of endemic equilibrium and stability of disease-free equilibrium.
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Theorem 3.1. Assume that f satisfies (H). If Ry < 1, then Py is the only equilibrium in I" and is globally asymptotically stable. If

Ro > 1, then Py is unstable, and a unique endemic equilibrium P* exists in the interior of I'.

For the proof, we refer the reader to Theorems 3.1 and 4.1 in [18].

4. The basic reproduction number R,

Theorem 3.1 establishes Ry as a sharp threshold parameter. If Ry < 1, the disease dies out irrespective of the initial
number of cases. If Ry > 1, then the disease persists in the feasible region and there is a unique endemic equilibrium. Such
a role of threshold parameter is expected of the basic reproduction number, the average number of infections caused by
a single infective in a population at the disease-free equilibrium [20-22]. It is then reasonable to regard the parameter Ry
defined in (8) as the basic reproduction number. Next we derive the basic reproduction number by the method of next

generation matrix [22].

Sety = (I3, ..., I, S)T. Then model (4) can be written as
y=F+vQy),
where
_ 6 _
Z S1ili — 11hh
AS =2
0
— Sl + Saili — 8ol
F@y) = R V() = | 22" ;211 2202
0 .
36515 — Sg6ls
L A —dgS — AS -
At the disease-free equilibrium in the new coordinates, 130 =(0,0,...,0, A/dy),
0F - Fsxe O
Ty(PO) — [ 0 ol
where
1 Ay -+ —Ag
p 0 0 A
6x6 = g 4 )
0 0
and g(N) = Nf(N). Moreover,
0
0V -~ Vexe .
5 (Po) = ) 0
T e ()
18 do n& do 0
Here Vs« = B, where B is defined in (6). Therefore, the next generation matrix is
C1 Cy cee Cg
0 --- --- 0 A
Fvl=1. el =)
: : do
0 --- --- 0
where
(C1s €2y eeny CG) = _()“17 )\'27 sy )“G)B_l'
Thus

1 =—(1, A2, ..., 26)B71(1,0,---,00" =B > 0.

The basic reproduction number is defined in [22] as the spectral radius, p(FV 1), of the matrix FV 1. It is easy to see that

p(FV™1) = qg(é) = ﬁAf<A>-
do do’ \ do
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5. Stability of the endemic equilibrium P*

In this section, for f(N) = 1, i.e., the bilinear incidence, we prove the global stability of the endemic equilibrium P*
when Ry > 1. The proof utilizes a global Lyapunov function. The following equilibrium equations are useful for the proof of
propositions.

The equilibrium equations (5) for P* = (S*,If, ..., I§) are

r 6
doS* + Y MS T = A

i=1
6
D NS+ 81l + 81315 + Sualy + 8151 + Silg = Sul},

i=1
82117 + 82315 + 82al} + 8251 + 8a61E = 82215,
83215 + 834l + 83512 + 836l = 83315,
8a3ly + 8asl3 + Sasli = Saal},
8saly + Ss6lg = 85512,
_8651; = 86(51;,

where §; is defined in (3).

Theorem 5.1. Assume that f(N) = 1and Ry > 1. Then the endemic equilibrium P* is asymptotically stable. Furthermore, all
solutions in the interior of I" converge to P*.

Setx=(S,I1,h,...,Ig) e I' C R;r. Consider a Lyapunov function
W=Wx =S-S5 _§In> +Y AlL-1 _pmi
= = S* L 1 1 i i I'* ’
where x* = P* = (§*, I}, ..., 1) and A; > 0 are constants to be determined later. We note that W (x) > 0, for x € Int[l",

the interior of I', and W (x) = 0 <= x = x*. So function W is positive definite with respect to the endemic equilibrium
x* = P*. Computing the derivative of W along solutions of system (1), we obtain

dw S* 3 I
—=[(1-=)¢ Ail1—L1)I. 11
i~ (1=5)5 e 2a (=) o
Using (4) and the first equation of (10), we have
s*\ J AS* J .
(1—?>s =A—dOS—ZA,-I,-S— < +;A,-1is

dOS*Z 6 S*Z
_dOS*+ZAIS —dOS—Zus —

AI* + doS* + AIS*
S

i=1 i=1 i=1

2

6 *
:dos*<2————> Zus+2us* Zus* Zu*s (12)

Similarly, using (4), fori = 1, ..., 6, we obtain

6 6 6 6
Iy Iy
Aq <1 - *) I = A |:Z AiliS — 811l + 2511'11‘ - Z}"'I’ST] +dnly — 2511‘11'11],
i— i—D i1 1 i— 1
< - IL> I' A1|: Z di ka + 51 i— 111 1= Z 81I<II< 1 i— 111 1 + 8111 :|

1 k=i+1 k=i+1

Substituting (12), (13) into (11) and rearranging terms we obtain

6 6 6 6 2
S*
——ds* 2———— + |- AilS + AiliS™ + ALFS™ — ML —
(25 §) [ G S B -
6 6 6 I‘T 6 IT
Ar| D kS — 81l + ;511'11‘ - ;Amsi +8ul} — ;&ihi

i=1
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I
+ ZA |:Z 81k1k+511 111 1= Z 8klk 11 111 1 +5111]

k=i+1 k=i+1

6 6
= dpS* <2 - Si - 7) ( Zu,s + A ZAI, ) + (Z MIES* + Avdy I + ZA;&J,*)
i= i=2
(Z)\ 115* +A1 251111 + ZA 811 111 1+ ZAl Z 51k1k ZA 51111>

i=2 k=i+1

2
( Zu*i—mZus ZASH i ﬁ—ZA Z Sitli~— )

i=1 k=i+1
= Wo+ Wy + Wy + W3 + W, (14)
In the last step, we have used the following relation

6
- A Stklk* = —A (SliIiI Al 81I<]k:-
I

i=1 k=i+1 i=2 i=2 k=i+1

Note that W, in (14) contains all constant terms and W, all negative nonlinear terms. W5 contains all linear terms of I;. Next
we will show that W, and W5 disappear with appropriate choice of A;. The following proposition determines the coefficients
A; of the Lyapunov function.

Proposition 5.2. Let (A, ..., Ag) be the unique solution to the linear system

AS* 4+ Ay — A1d11 = 0,

AaS* 4+ A3b3 + A1d12 — A8, =0,

A3S™ 4 AsSa3 + A1813 + A2823 — A3ds3 = 0,

AaS* + As854 + A1814 + A2824 + A3834 — AsSaa = 0,

A5S™ + AgBes + A1815 + A2825 + A3835 + Asdas — Asbss = 0,
A6S™ + A1816 + A2826 + A3836 + A4bss + Asbse — Agdes = 0.

Then A; > 0, i = 1,...,6. In particular, Ay = 1. Furthermore, with these choices of A;, W; = 0,W3 = 0 for all
(11, ...,16) € RZ.

(15)

Proof. Let B be the matrix in (6) and BT be its transposition. Then system (15) can be written as
A, A1S*

—B"| : = .

| As AgS*

Since —(B")~! is a M-matrix, and hence system (15) has a unique positive solution

Aq A1S*
D=6
As AeS™

In particular, using the definition of 8 in (7) and the relation 8S* = 1 (see proof of Theorem 3.1 in [18]) with f = 1, we
obtain
AS*
1=88"=—04S* ..., 0SB | . | =—(1,0,...,00B)""| : |=4.

6 AeS*
Furthermore, in W3, we observe that the coefficients for each I; sum up to zero, by (15). O

In order to simplify W5, we need the following lemma.

Lemma 5.3. Foranyi =2, ..., 5, we have the relation

6 i—1 6 6
Al =D MdiST+ Y A Y Sl + ALY Sulf. (16)
k=i k=1 j=i

k=i+1
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Proof. It follows from (15) that

MIES* 4 Adonls = Adil,
Al3S™ 4 Asdaaly + A1812L5 = Ardl5,
M3I3S™ + Asbasly 4 A1813l5 4 Arda3li = Asdssly,
AalyS™ + AsSsaly + A1814l; + A82al} + A3S3al} = Asbuaaly,
AsIES* + AeSesli + ArdislE + AxSasly + Asdssli + Agdasli = Asdssl,
A6IES™ 4 ArS16lE + Al + Asdsslt + Asdasly + Asdsely = Aedesly:.
Multiplying both sides by A; for each equation in (10) except the first one and A; = 1, we get

6

Z MITS* + A1812l5 + A181315 + A181aly + A18151E + A1S16lE = Ardnl],

i=1

Arbonl} + Axda3ly + Axdaaly + AxbasIE + Axbagly = Ardnly,

A3d3ols + A3dsall + Asdssli + Asdssly = Asdsls, (18)

Auba3ly + Audasly + Audagly = Asdaal},

As8s4ly + Asdsglf = AsdsslZ,

Ae8ssli = AsSesly -
Foranyi(i = 2,...,5),adding all equations in (17) except the first i — 1 equations and substracting the sum of all equations
in (18) except the first i equations, we have

6 6
Al = ZAk3kk1ff - Z Al
e

k=i+1

= Zxkzks* + ZAkZ(Sk“ + A Z‘ Sul. (19)

k=i =1 k=i+1

This finishes the proof. O

Proposition 5.4. W, in (14) can be simplified as
Wy = 200S* + 30,055 + AAsIS™ + 5A4LiS* + BAsIIS* + TAgl:S™
+ 2A181215 + 3A181315 + 4A1814l) + 5A181515 + 6A18161E
+ 2A282315 + 3A2824l; + 4A28251F + 5A28261
+ 2A3834l; + 3A383515 + 4A38361¢
+ 2A48451% + 3A484617
+ 24585615 (20)

Proof. Substituting the first equation of (18) into W, we have

W, = 22111 S* + A 225“1* ZzA Sl + AsSesl. (21)
1= 1= 1=

By Lemma 5.3,

(=2}

Adply = MIFS™ 4+ A 25111 + A 2521 AN
i—2

6
Asdsaly =) " i *S*+A1Zw +A2282,1 +A3Z(S3,

= (22)
Adualy =) 0 *S*+A1Z(S1,I +A2282,I +A3263,I +A4Z<S4,,,

i=4

6

AsSssl = ZA I¥S* + A Z(S],I* + A, 282,1* + As 283,1* + Ay 254,1 + As Z Ssil*
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From the last equation of (17) we obtain

6 6 6 6 6 6
Asdesly = D MliS* + ALY Sull +Ay Y Sailf +As Y O3l +As Y Suli +As Y sl (23)
i=6 i=6 i=6 i=6 i=6 i=6

Substituting (22) and (23) into (21), we have

6 6
Wa =23 MIFS* + ALY il
i=1 i=2
6 6 6
+ ZAJ,-*S* + A4 Z(S],‘Ii* + A 2821'11‘*
i=2 i=2 i=3
6 6 6 6
Y NS ALY Sulf Ay Y Sl + A3 Y Saill
i=3 i=3 i=3 i=4
6 6 6 6 6
F Y IS ALY Sull + Ay Y Saulf + A3 Y Sl +As Y Sal
i=4 i=4 i=4 i=4 i=5
6 6 6 6 6 6
Y NS ALY Sulf A Ay Y Sl +As Y Suli +As Y Suill +As Y Ssil}
i=5 i=5 i=5 i=5 i=5 i=6
6 6 6 6 6 6
F Y NS ALY Sulf A Y Sailf +As Y Ssil] +As Y Saill +As Y Ssil. (24)
i=6 i=6 i=6 i=6 i=6 i=6

Simplifying W, in (24), we obtain

6
= i+ DAIS* + 24180205 + 3A181315 + 44181l + 54181513 + 6A18161;
i=1

+ 2142(3231:;'< + 3A2824IZ + 411428251;k + 5A25261g + 2/43634]2< + 3143(3351;< + 4A3(S3GI§
+ 2A4(S451§K + 3A4545Ig + 2A58551§.

This finishes the proof. O
Proposition 5.5. The following groups of partition of unity hold:

@ — Merilicys S k=1 5) X = Ardrialics (k=6 10), x¥ > 0, Zx(z) (25)
k Apdoly seesd)s k ’ v TR Rk

A2821IT

3) _ )\I<+21f:+2s* 3) _ Alfs],klelt_z

, (k=1,...,4), X, , (i=5,...,8),

k= A38321; A3(S321*
A8y kgl 26)
x,(f) = Lsf_ﬁ, (k=9,...,12), x(3) > 0, and Zx(3)
A383212
YRAEY A8 il
A = B g 03), X =Z1Mkk (k=g 56),
A4643I3 A484313 27
@  Adarslp 3 @ _ As3i-elig @ _ @7
=2 (k=17,8,9), X, = —————, (k=10,11,12), x >0 and Zx
A4343I3 A4543I3
Aeral, oS* Ardy el Axba.ily
O 2 I o), KO =B o3y x® =22 (=56,
A585415 A5354I4 A5854I
(28)

oAbzl

O _ 5 _ Ayl k—aly_4
k AsBsql}

— (5) G) _
, (k=17,8), X, AsSoal; , (k=9,10), x,” > 0, and Zx
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X(S) _ )Lﬁléks* X(S) _ A18161§ x(6) _ A28261§ X(S) _ A38351§
Agdesly’ 2 AgSesly’ } AGSGSI*, 4 AsSesly’

Aybasl Asdsgl
26) 4046 XéS) — 5056 i’ X,({G) - 0 and ZX(G)
A6855I AG‘SSSIG

(29)

Proof. Combining (17) and (18) gives a system of equations

6
Asboly = Y il*S™ + Ardialy + A1disl; + Ardualy + Ardusls + Ardisly. Aal3S* + AsSsly + Ardral
i=2

= A2821IT + 1428231;k + A2824IZ + A28251;< +A28251g, )\.31;5* + A48431§ + A1813I;< +A2823I;

= A38321; + A38341§1k + A38351§F + A3836]§, )\.4125* + A5854[I + A1814IZ + 142524131< +A3834I:

= A4843I; + A48451§k + A48461g, )\.SI;‘S* + AGSGSI; + A]S]SI;k + A28251; + 1438351;< + A48451;<

= A5(354IZ + A58561g, )»GIS‘S* + A16151§ + Az(Sz@Ig + A38361g + A48461g + A58561;

= Agdgsl. (30)

The first equation of (30) gives (25). Adding the first two equations in (30) leads to

6 6 6
Asdsly = D MIFS* + ) Abuly + ) Agbail},
i=3 i=3 i=3

and thus (26) follows. Similarly, adding the first three equations in (30), we get

6 6 6 6
Adasly = D MIIS™ + ) Aduly + Y Adali + ) Asdsil},
i=4 i=4 i=4 i=4

which gives (27). Adding the first four equations in (30), we obtain

6 6 6 6 6
Asdsaly = > MlIS™ + ) Aduli + ) Abuli + ) Asdsli + ) Asdall,
i=5 i=5 i=5 i=5 i=5

and this leads to (28). Adding the first five equations in (30) gives
A6855I; = )»GISFS* + A](S]GIS +A28261§ +A38351§ +A45461£3k + A58561*,

and we arrive at (29). This finishes the proof. O

Proposition 5.6. The following partitions of unity hold:

i Siimliaalf iA Z @\ Siim1lialy 111 1 +iA 14221 @\ Siiclialf
I; i—2 l I

=2 k=1 i=2 k=8—i
6 21-3i 6 28—4i
. (i) i,i—11i—14; ) (i) i,i—11i—144
+ZA,< Z*")h +ZA,< Z.X")zi
i=3 k=15-2i i=4 k=22-3i
6 35-5i
o\ Oii—tliclf ) 965151
+ Y A X ) LR 4 k(O 2226 31
; l(k—;m‘ ‘ li T el

Proof. From Proposition 5.5, we have

10 12 10
2 3 5 6
A=Ay E XIE ), A3 :A3 E X,(<), =A E Xk s As :A5 E X,E,), = Ag E X().
k=1 k=1 k=1

Thus

i—tlialf
10 12 12
811} 831 LYEIEI
_ @ \ 0211113 @)\ 0321213 @) \ 043lsl;
= Az (Zxk ) 712 +A3 (Z Xy ) 713 +A4 (Zxk ) 714

k=1 k=1 k=1
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1 )\ O5alal? 8 ® \ O6slslg
+As (D % A > e
5 3

k=1 k=1
— i (i:‘ (1)) ii—1li— 11 +iA' (42 (1)) ii—1li- 11
i=2 k=8
& LU Siialialf 1Iz R ~ Sii—alioalf
eya ¥ P 3 ) et
i=3 k=15—2i =4 k=22—3i i
6 35-5i
A\ SiicqlioqI* Sesl51*
i ZAi ( Z X,({l)) i,i—14i—14; —i—AGXéG) 651516 ) (32)
i=5 k=29—4i I; ls

This completes the proof. O

Continuing the proof of Theorem 5.1, we want to show that W, < —W,. Noting A; = 1 and applying Proposition 5.6 to
Wy in (14), we have

6
—ZM:‘——AlZMsl ZM“ i 1 ZA, Z &klk

i=1 k=i+1
——E M*S* § MLiS E:A (2 0))1'1’1‘111'*
- : l 1,.

W,

2

Suddf & 'S0\ Siiilialy
_A] _ A: X Tt
; h ; 1 k=8—i ‘ l;
6 6 21-3i
Sorlel A\ SiicqlioqIF
_AZZ 2kk2_ZAi Xl((l) i,i—1li—11;
= b i=3 k=15—2i l;
6 6 28—4i
LETI Y A\ SiicqliqI*
_A3Z 3klki3 _ZAi xl((l) i,i—11i—14;
= B i—4 k=22—3i fi
6 6 35-5i
Sarlily @\ Siiclial?
a3 ) et
k=5 4 i=5 k=29—4i i
6
Ssiel X Sesl51*
_AS Z S5klk!s _ AGXéG) 65151¢g
= Is Is
=h+bh+h+I+Is+I. (33)

Using the inequalitya; + a + --- + a, > n¥aa, - - -a,, fora; >0, i =1, ..., n, we obtain

Wy = doS* ( 2 SN I 0 (34)
0o s s )=
Similarly, using (25)-(29), we have

Zu* Zus ZA (Z (”) %””I' < —26:(1'+ DA™, (35)
i i=1

k=1

Similarly,
Suhely d b=y @\ Sii—tlicalf
L =-A Z ZA Z Lkl
k=2 kg I
S1abl* o1l I S13lsl* N oY oY by
:_1&_,42 x,(f) 2005 _ g, 1331_A3 Xl(<3> 32013
Il k=6 12 I] k=5 13
8]4141 : (4) 84313 SISISIiF 4 5) 854141;k
- —A —A Xy ——
Z 1 11 5 Z k 15
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511 2 SeslsI*
916/6"1 — As x,(f) 65151g

k=2 16
S12hLIF S IX
(A 121213 Aé;:)znz)
I
8 LI* Sy I 83l I%
o13l3ly Azxgz) 211115 —A3x(53) 321215
I I
8 I S 12 831k YRV EY
O14laly 417 —A2X§2) 21111 —A3xg3> 320215 —A4xf14) 43131,
I I3 I4
81 o112 831k LYEYEY SsglalX
( o15lsly —AZXE,Z) 211115 —A3x§3) 320213 —A4x§4) 43131, —A5x(35) 5414 5)
I 3 Iy Is
811 81[ 811 811 511 Sesl51*
o16l6ly ~ Agx gzo) 2111 — Asx S) 3202 — Aux é4) 4313 — As Els) 5414 —Aexf) 65151¢
I 5 Is
< - [2A181212 + 3A181315 + 4A1814l; + 5A181515 + 6A1816l5 ] - (36)
Furthermore,
6 6 21 3i
Sorlils Ii1IF
I3=_AZZ ZkaZ_ZA1< (1)) HlIAill
k=3 2 i=3 =15—2i i

< — [2A282315 4 3A2824l + 4A28351% + 5A28261 | |

L~ A isgkm; —if‘ = 0 ) Buimthoalf
4 3 T 13 ' i Ii

22 3i
< [2,4\353414 + 3A38351* + 4A383516 (37)
Sailil; 35 3 NARISUSY;
s = -y e
k= Iy 29 4 l;
< [2A48451 +3A464616
Ssel6l: Seslsl:
ls = —As 561615 —Asxg‘” 65151
I5 Is
< —2Aséssly.

By Proposition 5.4 and (34)-(37), we arrive at

dw
?SW0+W2+W4§0,

for all solution (S(t), I; (¢), . .., Ig(t)) in Int I'". Furthermore, 4 W = 0, if and only if equalities hold in (34)-(37). This implies
S=S*andl; =al’, i=1,...,6,for some positive a. Substituting S = S*and ; = al{", i = 1, ..., 6 into the first equation
of system (4) we obtain

6
A=doS* +a) MlS™.
i=1

Since the right hand side is strictly monotone in a, the equality can only hold at a = 1, namely, at the endemic equilibrium
P*. This shows that the largest compact invariant set where dW /dt = 0 is the singleton {P*}, and thus P* is globally stable
in IntI” by the LaSalle’s Invariance Principle [23]. This completes the proof of Theorem 5.1. O

We note that in the case of no amelioration, namely, §; = 0,i < j, i = 1,...,5, Theorem 5.1 includes a global-
stability result in [24] for n = 6. In the case of partial amelioration, namely, §; = 0,j > 141, i = 1,...,4, but
8iiy1 # 0, i = 1,...,5, Theorem 5.1 includes a global-stability result of [18] for n = 6. Our global-stability results
generalized those in [18,15,25,26]. We remark that the proof of main theorem can be easily extended to an n-stage SP
model with amelioration, except for more complicated notations. The form of Lyapunov functions utilized in our proof have
been used in the literature of ecological models [27-29], and recently been applied successfully to epidemic models [30,24,
18,31,32,3].
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Appendix

The following definition and properties of M-matrices are used in our analysis. They can be found in most of the texts on
matrix theory, see e.g. [33].

Definition. B, is a M-matrix if

(1) Off-diagonal entries of B are non-positive, and
(2) Bis positively stable, namely, all eigenvalues of B have positive real parts.

Proposition. Properties of M-matrices

(1) B=al —P, P >0, a > p(P), the spectral radius of P.
(2) Bis nonsingular and B~ > 0.
(3) There exists 8 > 0 such that B~'x > B x for x > 0.
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