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THEORY

Minimization of a quadratic cost function

Consider finding the solution of the following inverse problem

Lm+ η = d , (1)

where m is a M×1 vector of model parameters (the image) and d indicates an N ×1 vector
of observations (data) contaminated by noise η (m ∈ RM , d and η ∈ RN ). The matrix L has
dimensions N ×M and in our case represents a forward modelling operator. We will first
consider matrices but bear in mind that we will replace L by any general linear operator.
We attempt to solve our inverse problem by minimizing the following cost function

J = Jd + µJm

=
1

2
||Lm− d||2 +

1

2
µ ||Wmm||22 . (2)

The first term of the cost function is the misfit Jd, a measure that represents fitting fidelity.
The second term is the regularization term. The later is included to guarantee the stability
and uniqueness of the solution. The regularization term is often chosen to impose desirable
features onto the solution. The matrix (or linear operator) Wm represents weights applied
to the vector of model parameters. At this point we introduce the following new variable

v = Wmm (3)

we will also assume that Wm is invertible

m = W−1

m v = P v . (4)

Equation 2 can now be expressed as follows

J = Jd + µJm

=
1

2
||(LP v − d)||2

2
+

µ

2
||v||2

2
. (5)

The following interesting points about equation 5 are in order:

• First, we have reduced the cost function 2 to the the so called standard form. The
standard form corresponds to the cost function of the classical damped least-squares
problems. One can turn a solver for 5 into one to solve 2. An algorithm such as CGLS
can be used to find the solution v that minimizes 5 and then v can be used to obtain
m.
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• The solution that minimizes J is obtained by setting ∇mJ = 0 which leads to

v = (P TLTLP + µI)−1 P T LTd (6)

m = P v . (7)

• In general, Wm is a high-pass operator (roughening operator). Therefore, P must
behave like a low-pass operator (smoothing operator).

• The real advantage of using this formulation arises when we minimize J via iterative
or semi-iterative methods (for instance, steepest descent or CGLS). In this case, the
solution to the problem is attained by a finite number of steps (iterations) where
the application of LP or (LP )T to vectors in RM and RN dominates the cost of
each iteration. It is essential to realize that in many imaging and signal processing
problems we do not have explicit access to L. In other words, L is not a matrix; we
do only have access to the action of the linear operators LP and (LP )T on vectors
x ∈ RM and y ∈ RN , respectively.

Close form solutions of (2) and (7) are equivalent

The solution of (2) is (r: regularization)

mr = (LTL+ µW T
mWm)−1 LTd (8)

(9)

The solution of (7) (p: preconditioning) is

mp = P (P TLTLP + µI)−1 P T LTd (10)

(11)

mr = mp if P is invertible P−1 = Wm.

Quadratic misfit with non-quadratic regularization

Let us assume a non-quadratic regularization term such as the Cauchy criterion, the l1
norm, or the Huber norm. These are often used to impose sparsity on model parameters.

l1 regularization

We start by assuming the following cost function

J = Jd + µJm

=
1

2
‖(Lm− d)‖2 + µR(m) (12)
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where now R is the non-quadratic norm

R(x) =
M
∑

k=1

|xi|

Evaluating ∇mJ = 0 leads to

∇mJ = ∇mJd + µ∇mJm

= (LTLm− LT d) + µQ(m)m = 0 (13)

where Q(m) is a M ×M diagonal matrix that depends on model parameters

[Q(m)]ij =
δij

|mi|
(14)

with

δij =

{

1 if i = j

0 if i 6= j .

To void dividing by zero, we change the diagonal matrix Q as follows

[Q(m)]ij =
δij

|mi|+ ǫ
(15)

We now have to solve a non-linear problem; the solution m depends on Q(m). We can use
the following iterative scheme, starting with m0 = 0, we solve

(LTL+ µQ(mk−1))mk = LT d . (16)

Equation 16 is also the minimum of the following quadratic cost function:

Jk = ‖Lmk − d‖2
2
+ µ ‖W (mk−1)mk‖2

2

W (m)ij =
δij

√

|mi|+ ǫ
(17)

We can now use the pre-conditioning trick to transform (14) into the standard form for the
unknown v

[P ]ij = δij

√

|mk−1

i |+ ǫ (18)

Jk = ||P vk − d||2
2
+ µ ||vk||2

2
(19)

mk = P k−1vk (20)

The algorithm can be used to retrieve sparse solutions. We often called this algorithm
Iterative Re-weighted Least-Squares (IRLS). In our case, we have implemented IRLS via
pre-conditioning. In Fourier-based interpolation/reconstruction equation (19) is can be
iteratively solved via CGLS. From the iterative algorithm given in equations (18)-(20) it
is clear that in each iteration you need to solve equation (19) and this is done ”on the
flight” with CGLS. These tricks have been in used for solving Radon transforms and seismic
reconstruction problems (Sacchi and Ulrych, 1995; Sacchi et al., 1998; Trad et al., 2003; Liu
and Sacchi, 2004). Least-squares migration algorithms often use this style of preconditioning
(Wang et al., 2005).
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