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Chapter 1

Fourier Analysis

1.1 Introduction

We will first review fundamental aspects of Fourier Analysis, which you have

already seen in a more theoretical manner in math classes. In particular, we

will first study orthogonal expansions. We will start with the Fourier series,

and then introduce the Fourier transform and its properties.

Along this course, we will deal with continuous and discrete signals.

In this chapter, we explore the treatment of continuous signals. These are

signals that depend on time t, which is considered a continuous variable.

The extension to the discrete signals (time is discrete) is covered in Chapter

2.

1.1.1 Orthogonal Functions

We first present the approximation of a function (in general a time-dependent

signal) in terms of a superposition of orthogonal functions.

A set of functions Φn(t), n = 1, 2, 3, . . . is said to be orthogonal in the

interval [t1, t2] if the following condition is satisfied

∫ t2

t1
ϕn(t)ϕm(t)dt = kmδm,n , (1.1)

1



Chapter 1

where δm,n is the Kronecker operator given by

δm,n = 0 if m ̸= n

δm,n = 1 if m = n .

In signal processing, one wants to represent a signal as a superposition of

simple functions. For instance, as a superposition of sines or cosines. The

convenience of this procedure will become clear as we learn about signal

processing. In general, one can say that the representation should be in

terms of functions with some attractive mathematical properties or with

some physical meaning. For instance, oscillatory signals can be represented

by the superposition of sines, cosines, or complex exponentials. Imagine the

variation of the surface temperature with time at a given location on the

earth; daily and seasonal variabilities can be represented by the sinusoidal

functions of different periods.

Let assume that we would like to approximate a function f(t) by a

superposition of n orthogonal functions in the following way

f(t) ≈
N∑

n=1

cnϕn(t) . (1.2)

The coefficients cn , i = 1 . . . N can be obtained by minimizing the mean

squared error (MSE) defined via the following expression

MSE =
1

t2 − t1

∫ t2

t1
(f(t)−

N∑
n=1

cnϕn(t))
2 dt , (1.3)

the last equation can be expanded as follows

MSE =
1

t2 − t1

∫ t2

t1
( f(t)2 +

N∑
n=1

c2nϕn(t)
2 − 2

N∑
n=1

cnϕn(t)f(t)) dt . (1.4)

I have omitted the cross-products of the form ϕn(t)ϕm(t) because according

to the definition given in equation 1.1 they cancel up. The last equation can

be written as

2 GEOPH 426/526 - MD Sacchi
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MSE =
1

t2 − t1

∫ t2

t1
f(t)2 dt+

N∑
n=1

c2nkn − 2
N∑

n=1

cnγn , (1.5)

where

γn =

∫ t2

t1
ϕn(t)f(t) dt . (1.6)

The term outside the integral in equation (1.5) can be rewritten as follows

N∑
n=1

(c2nkn − 2cnγn) =
N∑

n=1

(cn
√
kn − γn√

kn
)2 −

N∑
n=1

γ2n
kn

.

We are now in the condition of rewriting the MSE via the following expres-

sion

MSE =
1

t2 − t1

∫ t2

t1
f(t)2 dt+

N∑
n=1

(cn
√
kn − γn√

kn
)2 −

N∑
n=1

γ2n
kn

. (1.7)

It is clear that theMSE is minimum when the second term in the right-hand

side of the last equation is zero

cn

√
(kn) =

γn√
kn

, (1.8)

or, in other words, the coefficient ci is given by

cn =
γn
kn

=

∫ t2
t1
f(t)ϕn(t) dt∫ t2
t1
ϕ(t)2dt

. (1.9)

We have obtained an expression for the n-th coefficients of the expansion of

f(t). If the cn , n = 1 . . . N are chosen according to the last expression, the

mean squared error becomes

MSE =
1

t2 − t1

∫ t2

t1
f(t)2 dt−

N∑
n=1

c2nkn . (1.10)

GEOPH 426/526 - MD Sacchi 3
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It can be shown that if N → ∞ the mean squared error vanishes (MSE →
0). In that case, the last expression becomes “Parseval’s Theorem”

1

t2 − t1

∫ t2

t1
f(t)2dt =

∞∑
n=1

c2nkn . (1.11)

Parseval’s theory basically tells us that the total ”energy” of the signal is

equal to the coefficients’ total ”energy.”

1.1.2 Complex orthogonal functions

In our previous analysis we have considered orthogonal functions ϕn(t) that

are real functions of the variable time. The representation of the signal f(t)

can also be in terms of orthogonal functions that are complex functions. If

ϕn(t) are complex, expression 1.1 is given by

∫ t2

t1
ϕn(t)ϕ

∗
m(t)dt = kmδm,n (1.12)

where ∗ stands for the conjugate operator. In this case the coefficients

required to represent f(t) are given by

cn =
γn
kn

=

∫ t2
t1
f(t)ϕ∗n(t) dt∫ t2
t1

|ϕ(t)|2dt
. (1.13)

1.1.3 Fourier Series

In this section we will represent periodic signal such as the one portrayed in

Figure 1.1 Consider the orthogonal set given by complex exponentials also

called harmonic functions

ei nω0t , n = 0,±1,±2,±3, . . . (1.14)

with the symbol i =
√
−1 indicating the unit imaginary number. It is easy

to show that this set is orthogonal in t ∈ [t0, t0 +
2π
ω0
]. To prove the last

statement we need to evaluate the following integral

4 GEOPH 426/526 - MD Sacchi
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Figure 1.1: A periodic signal of period T can be represented via Fourier

series.

I =
∫ t0+2π/ω0
t0 ϕn(t)ϕ

∗
k(t) dt

=
∫ t0+2π/ω0
t0 einω0te−ikω0t dt

= 1
iω0(n−k)e

i(n−k)ω0t0(ei2π(n−k) − 1) .

(1.15)

It is easy to see that the integral takes the following values for any value of

t0

I =

 0 if n ̸= k

2π
ω0

if n = k
(1.16)

We have shown that the functions einω0t , n = 0,±1,±2±3, . . . are orthogo-

nal functions. When representing oscillatory phenomena, complex exponen-

tials are attractive functions because if you multiply two complex exponen-

tials, the result is a new complex exponential. For instance, eix.eiy = ei(x+y).

I must point out that one could have used an expansion that uses sin or

cos functions, but as you can imagine the algebra will become cumbersome.

Practicality and simplicity make complex exponentials attractive functions

to represent oscillatory phenomena.

When a signal is expanded in terms of exponentials we have a Fourier series

GEOPH 426/526 - MD Sacchi 5
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f(t) =
∞∑

n=−∞
Fne

inω0t , (1.17)

where the coefficients of the expansion are given by

Fn =
ω0

2π

∫ t0+2π/ω0

t0
f(t)e−inω0t dt (1.18)

given that T = 2π
ω0
, Fn can also be written as follows

Fn =
1

T

∫ t0+T

t0
f(t)e−inω0t dt . (1.19)

The coefficient Fn is the complex Fourier coefficient associated with the

harmonic function of frequency nω0. In this case, the signal f(t) is con-

sidered to be periodic of period T = 2π/ω0. The periodic signal f(t) has

been decomposed into a superposition of complex exponentials of frequency

ωn = ω0n and complex amplitude Fn. We usually refer to the plot of n or

ωn versus |Fn| as the spectrum of f(t), which is discrete because we have

energy at discrete frequencies nω0.

To analyze non-periodic signals, we need to introduce the Fourier

Transform. In this case, the signal is represented in terms of a continu-

ous spectrum of frequencies.

1.2 The Fourier Transform

So far we have found an expression that allows us to represent a periodic

signal of period T = 2π/ω0 in terms of a superposition of elementary func-

tions (complex exponentials). We have seen that the Fourier series can be

used to represent a periodic or a non-periodic signal. We have to realize,

however, that the Fourier series does not properly represent a non-periodic

signal outside the interval of [t0, t0 + T ]. In fact, outside [t0, t0 + T ] the

Fourier series provides a periodic extension of f(t).

6 GEOPH 426/526 - MD Sacchi
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We have also shown that a periodic signal has a discrete spectrum

given by the coefficients of the expansion in terms of the Fourier series,

which we have called Fn, n = 0,±1,±2, . . ..

In this section, we will provide the representation for a non-periodic

signal f(t) in t ∈ (−∞,∞) utilizing a continuous spectrum of frequencies.

Let us assume that f(t) is a periodic signal in the interval [−T/2, T/2]; we
have learned that a periodic signal can be represented by a Fourier series as

follows

f(t) =
∞∑

n=−∞
Fne

i nω0tdt , with ω0 =
2π

T
, (1.20)

where the coefficients are given by

Fn =
1

T

∫ T/2

−T/2
f(t)ei nω0tdt . (1.21)

We can substitute equation (1.21) into (1.20) and obtain the following ex-

pression

f(t) =
∞∑

n=−∞

1

T

∫ T/2

−T/2
f(t)e−inω0tdteinω0t . (1.22)

Now we can make T → ∞1, we will also assume that the fundamental

frequency ω0 → dω, where dω is a differential frequency. In this case, we

can transform the discrete variable nω0 into a continuous one ω, and finally,

since now we have a summation on a continuous variable ω we will convert

the sum
∑

into an integral
∫

f(t) =

∫ ∞

−∞

dω

2π
(

∫ ∞

−∞
f(t)e−iωtdt)ejωtdω . (1.23)

The integral in brackets is called the Fourier transform of f(t):

1We do this to extend our periodic signal into a non-periodic one

GEOPH 426/526 - MD Sacchi 7
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F (ω) =

∫ ∞

−∞
f(t)e−iωtdt . (1.24)

It is clear from equation (1.23) that the formula to represent the signal in

terms of F (ω) is now given by

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωtdω . (1.25)

The pair (1.24) and (1.25) are used to compute the Fourier transform and its

inverse, respectively. Equation (1.25) is also refereed as the inverse Fourier

transform.2

It is important to stress that the signal in (−∞,∞) now has a continu-

ous spectrum of frequencies. The Fourier transform is, in general, a complex

function that can be written as follows

F (ω) = |F (ω)|eiθ(ω) (1.26)

where |F (ω)| is the amplitude spectrum and θ(ω) is the phase spectrum.

We will come back to the importance of amplitude and phase when dealing

with seismic signals.

1.2.1 Properties of the Fourier Transform

We will not prove these properties here. Most of them can be easily demon-

strated by using the definition of the Fourier Transform (several demonstra-

tions will be part of an assignment).

We shall use the following notation to indicate that F (ω) is the Fourier

Transform of f(t)

f(t) ↔ F (ω)

2In fact, one can think that equation (1.24) is a forward transform or a transform to go

to a new domain (the frequency domain), whereas equation (1.25) is an inverse transform

or a transform to come back to the original domain (time) from the frequency domain.

8 GEOPH 426/526 - MD Sacchi
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Symmetry.

F (t) ↔ 2πf(−ω)

Linearity. If

f1(t) ↔ F1(ω)

f2(t) ↔ F2(ω)

then

f1(t) + f2(t) ↔ F1(ω) + F2(ω)

Scale. If

f(at) ↔ 1

|a|
F (
ω

a
)

Convolution. If

f1(t) ↔ F1(ω)

f2(t) ↔ F2(ω)

then ∫ ∞

−∞
f1(u)f2(t− u)du↔ F1(ω)F2(ω)

or in a few words:time convolution ↔ frequency multiplication.3

Convolution in frequency. Similar to the previous one, but now

f1(t).f2(t) ↔
1

2π

∫ ∞

−∞
F1(v)F2(ω − v)dv

or in different words, time multiplication ↔ frequency convolution.4

3This is a very important property and we will make extensive use of it. Most physical

systems can be described as linear and time invariant systems, this leads to a convolution

integral.
4We will use this property to estimate the Fourier Transform of a signal that has been

recorded in a finite temporal window.

GEOPH 426/526 - MD Sacchi 9
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Time delay. I like this one, we can use it to delay or advance a signal in

time:

f(t− τ) ↔ F (ω)e−iωt0

Modulation. This property is used by AM radios where a low frequency

signal f(t) is is multiplied by a carrier signal of frequency ω0 and the spec-

trum of f(t) is shifted to higher frequencies:

f(t)ejω0t ↔ F (ω − ω0)

Time derivatives. This is used to compute derivatives (actually, using

the discrete Fourier transform which we have not seen at this point of the

course):

df(t)

dt
↔ iωF (ω)

It is clear that to take the derivative of f(t) is equivalent to amplify the high

frequencies of f(t).

The property can be extended to derivatives of order n:

dnf(t)

dtn
↔ (iω)nF (ω)

or even to compute fractional derivatives. If a is not an integer, one can

define a fractional derivative as follows

daf(t)

dta
↔ (iω)aF (ω)

.

1.2.2 The Fourier Transform of some signals

A Boxcar

We will compute the Fourier Transform of the following function which

is called a boxcar

10 GEOPH 426/526 - MD Sacchi
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f(t) =

 1 |t| < T/2

0 otherwise
(1.27)

We substitute f(t) into the definition of the Fourier Transform (equation

(1.24)) and solve the integral

F (ω) =
∫ T/2
−T/2 1.e

−iωtdt

= 1
−iω (e

−iωT/2 − ejωT/2)

= Tsinc(ωT/2) ,

(1.28)

where in last equation sinc(x) = sin(x)/x. The Fourier Transform of the

boxcar function is a sinc function. We will come back to the importance

of the knowing the Fourier Transform of the box car function when dealing

with the spectrum of signal that have been truncated in time.

In Figures (1.2.2) and (1.2.2), I have displayed the Fourier transform

of two boxcar functions of width T = 10 and 20 s, respectively. Notice that

the width of F (ω) increases when the width of f(t) decreases.

Delta function:

We will compute the Fourier Transform of the delta function

f(t) = δ(t) .

The δ function is defined according to∫
g(u)δ(u)du = g(0) .

It easy to see from the above definition that the Fourier Transform of the

delta function is given by

F (ω) =

∫ ∞

−∞
δ(t)e−iωtdt = 1

Therefore, we have

GEOPH 426/526 - MD Sacchi 11
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Figure 1.2: The Fourier transform of a boxcar function of width T = 10 s.

δ(t) ↔ F (ω) = 1∀ω

Similarly, if we apply the “time delay” property, one can compute the Fourier

Transform of a delayed delta function

δ(t− τ) ↔ 1 e−iωτ .

The delayed delta function has amplitude |F (ω)| = 1 and phase θ(ω) = −ωτ .
This phase is often called a linear phase because it depends linearly on ω.
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Figure 1.3: The Fourier transform of a boxcar function of width T = 20 s.

It is clear that the δ function has a continuous amplitude spectrum

that contains all frequencies. The delta function is also the ideal seismic

wavelet that one would like to have in seismic exploration. Clearly, one

cannot physically designed a delta function as it will require a device that

can produce frequencies in the range −∞ < ω <∞.

A complex exponential:

We will compute the Fourier transform of the complex exponential of

GEOPH 426/526 - MD Sacchi 13
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frequency ω0

f(t) = eiω0t −∞ < t <∞ (1.29)

We can combine the Fourier Transform of the delta function with the sym-

metry property to obtain the Fourier Transform of a complex exponential.

Using the Fourier Transform of the delayed delta function

δ(t− τ) ↔ 1e−iωτ

and after applying the symmetry property leads to

F (t) ↔ 2πf(−ω) .

from where we obtain

eiω0t ↔ 2πδ(ω − ω0)

In other words, the FT of complex sinusoid of frequency ω0 is a delta at the

corresponding frequency ω = ω0. The above can be used to compute the

Fourier transform of cos(ω0t) and sin(ω0t).

1.2.3 Truncation in time

Given f(t) t ∈ (−∞,∞), with f(t) ↔ F (ω), how do we obtain the FT of

the signal when the signal is recorded in a finite interval t ∈ [−T/2, T/2]?
First, we call fT (t) the observed signal in t ∈ [−T/2, T/2] and f(t)

the ideal signal in t ∈ (−∞,∞). The signals fT (t) and f(t) are related via

a truncation operator bT (t)

fT (t) = f(t) .bT (t) (1.30)

where bT (t) is a box function like the one already analyzed (see equations

1.27 and 1.28). Using the frequency convolution theorem,

fT (t) = f(t).bT (t) ↔
1

2π

∫ ∞

−∞
F (v)BT (ω − v)dv ,

14 GEOPH 426/526 - MD Sacchi
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we can write

FT (ω) =
1

2π

∫ ∞

−∞
F (v)BT (ω − v)dv =

1

2π
F (ω) ∗BT (ω) , (1.31)

where BT (ω) = Tsinc(ωT/2). This is remarkably interesting result (it is?).

We are saying that our observation window is affecting the Fourier Transform

of the signal. We want to know F (ω) but since we are recording the signal

in a finite interval, we have only access to FT (ω). The latter is a distorted

version of F (ω) which is given by

FT (ω) =
1

2π
T

∫ ∞

−∞
F (u)sinc((ω − u)T/2)du . (1.32)

It is clear from the above that one does not see F (ω) but its convolution

with a sinc function.

Let us consider a simple example where f(t) = eiω0t for −∞ < t <∞
and fT (t) = f(t).bT (t). The Fourier Transform of fT (t) is given by

FT (ω) =
1

2π
T

∫ ∞

−∞
2πδ(ω − ω0)sinc((ω − u)T/2)du (1.33)

which leads to

FT (ω) = Tsinc((ω − ω0)T/2) . (1.34)

Expression 1.34 is a sinc function with a peak at ω = ω0. In Figure (1.2.3)

we portray the superposition of two complex sinusoids of the form

fT (t) = eiω1t + eiω2t , t ∈ [−10, 10] s .

The Fourier transform of the two complex exponents if measured in an infin-

ity time interval is given by two delta functions at frequencies ω1 and ω2. But

since we are observing the signal in a finite length interval, the ideal Fourier

Transform of f(t) is convolved with BT (ω) (The Fourier Transform of the

boxcar function). For this example, I have chosen the following frequencies

ω1 = 0.5 rad/sec and ω2 = 1. rad/sec.
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Figure 1.4: The Fourier transform of a the superposition of two complex

exponentials observed in a window of length T = 20s. Up: real part of the

signal. Centre: Imaginary part of the signal. Bottom: Amplitude spectrum

of the Fourier Transform (|F (ω)|).

1.3 Symmetries of the F (ω) for real signals.

Before continuing with the Fourier transform and its applications a few

words about the symmetries of F (ω) are needed. This is very important
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in the discrete case because it allows to write faster algorithms for signal

processing.

Let us start with the definition of the Fourier transform,

F (ω) =

∫
f(t)e−iωtdt . (1.35)

If the signal f(t) is a real signal, we can write

F (ω) = R(ω) + iG(ω) (1.36)

where

R(ω) =

∫
f(t)cos(ωt)dt (1.37)

and

G(ω) = −
∫
f(t)sin(ωt)dt . (1.38)

Since cos is an even function and sin an odd function

R(ω) = R(−ω) , (1.39)

and

G(ω) = −G(−ω) . (1.40)

If you know F (ω) for ω ≥ 0, you can compute F (ω) for ω < 0 by applying

the above identities.

In fact, we can always write

F (ω) = R(ω) + iG(ω) (1.41)

and

F (−ω) = R(−ω) + iG(−ω) (1.42)

by combining last equation with equation (1.40) we obtain

F (−ω) = R(ω)− iG(ω) . (1.43)

The last equation can be used to compute the negative semi-axis of the

Fourier transform. This property is often referred as the Hermitian symme-

try of the Fourier Transform. You can also write the latter as follows
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F (−ω) = F (ω)∗

where the ∗ is used to denote complex conjugate. This property is only valid

for real time series. The symmetry of the Fourier Transform explains why

we often plot one semi-axis (in general the positive one) when displaying the

Fourier amplitude or phase spectrum of a real signal.

The symmetry of the real and imaginary parts of the Fourier transform

can also be used to obtain the symmetry of the amplitude and phase of the

Fourier transform:

F (ω) = |F (ω)|eiθ(ω) .

It is east to prove that the amplitude is an even function

|F (ω)| = |F (−ω)| . (1.44)

Similarly, the phase is an odd function

θ(ω) = −θ(−ω) . (1.45)

I stress again that the symmetries discussed in this section are valid for

signals that are real functions.

1.4 References

Gabel R. and Roberts R., 1991, Signal and Linear Systems, Wiley; 3rd

edition
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Discrete Signals

So far, we have described the Fourier transform of a continuous (analog)

signal. Now, we will start to study discrete signals, which are also called time

series. I will provide the connection between the continuous and the discrete

world, which is essential because it will lead to numerical implementations

to utilize field data.

2.1 Nyquist-Shannon sampling theorem

We will designate f(t) the analog signal and fs(t) the associated discrete

signal. One can think that fs is obtained by sampling f(t) every ∆t seconds

fs(t) = f(t)
∞∑

k=−∞
δ(t− k∆t) . (2.1)

By the frequency convolution property we can obtain the Fourier Transform

of the sampled signal

Fs(ω) =
1

2π
F (ω) ∗ ω0

∞∑
k=−∞

δ(ω − kω0) , ω0 =
2π

∆T
(2.2)

19



Chapter 2

where in the last equation, I have assumed that we know how to compute the

Fourier Transform of the sampling operator
∑∞

k=−∞ δ(t − k∆t) (Papoulis,

1962). After a few mathematical manipulations, it is easy to see that

Fs(ω) =
1

∆T

∞∑
k=−∞

F (ω − nω0 . (2.3)

One can observe that the Fourier Transform of the sampled signal is a pe-

riodic function with period ω0. If one wants to compute Fs(ω) in such a

way that F (ω) can be completely recovered, the signal f(t) must be a band-

limited signal. This is a signal where the spectral components outside the

interval [−ωmax, ωmax] are zero. When the following condition is satisfied

ω0 ≥ 2ωmax

there is no overlap of spectral contributions and therefore Fs(ω) , ω ∈ [−wwmax, wmax]

is equivalent, within a scale factor 1/(∆T ), to the Fourier Transform of the

analog signal F (ω). The last condition can be written as follows:

2π

∆T
≥ 2× 2πfmax

which reduces to

∆T ≤ 1

2fmax
.

The last equation is also designated as the Sampling theorem or Nyquist–Shannon

sampling theorem. It basically tells us that to recover the Fourier Trans-

form of the original signal we need to sample the data according to the last

inequality.

Real-world signals are continuous and become discrete after going

trough acquisition systems (i.e., digital seismograph). To avoid alias, an

analog filter is usually placed in the acquisition system before sampling.

The data are first band-limited using analog filters, then sampled and fi-

nally, stored digitally.

The aliasing effect is described in Figures (2.2)-(2.5). Figure (2.2)

corresponds to the Fourier transform of a continuous signal. We can observe
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Sampler

t (seconds) Samples n 

f(t)                                                                        f0, f1, f2, f3, f4, ........ fN

Continuous Signal                                                  Time series 

Figure 2.1: Discretization of a continuous signal.

that to properly recover the Fourier transform of the continuous signal, we

need to sample our data according to ω0 ≤ 2ωmax. This is true for Figures

(2.3) and (2.4). In these two figures, it easy to see that the Fourier transform

of the original (continuous) signal is precisely represented by the Fourier

transform of the discretized signal in the interval [−ωmax, ωmax]. In Figure

(2.5), we portray an example where the data has been under-sampled and,

therefore, the Fourier transform of the continuous signal cannot be recovered

from the Fourier transform of the discretized signal (the signal is said to be

aliased).

2.2 References

Papoulis A., 1962, Fourier Integral and Its Applications, McGraw-Hill.

Oppenheim A., and Schafer R.W., 1975, Digital Signal Processing, Prentice-

Hall, Inc.,
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Figure 2.2: The Fourier Transform of a continuous signal.
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Fourier transform of the discretized signal

Figure 2.3: The Fourier Transform the continuous signal after being dis-

cretized, in this case ωmax = 10 and ω0 = 30
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Fourier transform of the discretized signal

Figure 2.4: The Fourier transform the continuous signal after being dis-

cretized, in this case ωmax = 10 and ω0 = 20. The Fourier transform of the

continuous signal is perfectly represented in the interval [−ωmax, ωmax].
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Figure 2.5: The Fourier transform the continuous signal after being dis-

cretized, in this case ωmax = 10 and ω0 = 15. The signal is aliased. Note

that the Nyquist–Shannon theorem is not satisfied. The Fourier Transform

of the continuous signal cannot be recovered from the Fourier Transform of

the sampled signal.
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Linear systems, the z

transform, and convolution

This chapter will discuss liner systems (a simple way of describing a physical

system). A continuous-time and time-invariant linear system will lead to the

convolution integral and, in the discrete case, to the convolution sum. I will

also present the z-transform, a tool to represent discrete series.

3.1 Linear systems for continuous signals

Linear systems are useful to define input-output relationships for continuous

and discrete signals. Let us assume that we have a linear system where the

input to the system is the continuous signal x(t) and the output is given by

y(t)

x(t) → y(t) .

If the system is linear, the following properties must be satisfied

P1 : For any scalar α

αx(t) → αy(t) .
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P2: If

x1(t) → y1(t)

and

x2(t) → y2(t)

then

x1(t) + x2(t) → y1(t) + y2(t) .

P3: Properties P1 and P2 can be combined into a single property

αx1(t) + βx2(t) → αy1(t) + βy2(t) .

We will say that the linear system is time-invariant if and only if

x(t− T ) → y(t− T ) ,

and this is true for any arbitrary T . In other words, if the input signal is

delayed by an amount of T , the output signal is delayed by the same amount.

We will represent our linear system as follows

H[x(t)] = y(t) . (3.1)

Where H represents the linear system in an operator form. If the system is

linear, the function H has the following general expression

y(t) = H[x(t)] =

∫ ∞

−∞
h(t, τ)x(τ)dτ . (3.2)

It is easy to prove that the above expression defines a linear system (satisfies

Property P3). When the system is linear and time-invariant the following

property should also be satisfied

y(t− T ) = H[(x(t− T )] . (3.3)

In this case, we need to rewrite equation 3.2 to satisfy the requirement

mentioned above. For this purpose we write h(t, τ) as follows

h(t, τ) = h(t− τ) . (3.4)
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If we replace h(t− τ) in equation (3.2) we end up with the following expres-

sion

y(t) =

∫ ∞

−∞
h(t− τ)x(τ)dτ . (3.5)

It is clear that the above equation defines a linear system, but it is not clear

that it is also a time-invariant system. To prove that 3.5 corresponds to the

input-output relationship of a time-invariant linear system we will apply the

following change of variables

u = t− τ .

Then,

y(t) = −
∫ −∞

∞
h(u)x(t− u)du =

∫ ∞

−∞
h(u)x(t− u)du = H[x(t)] , (3.6)

substituting t by = t− T

y(t− T ) =

∫ ∞

∞
h(u)x(t− T − u)du = H[x(t− T )] . (3.7)

We have proved that the convolution integral defines a time-invariant linear

system. Using the convolution theorem, “convolution in the time domain

−→ multiplication in the frequency domain”, we can rewrite the convolution

integral as follows

Y (ω) = H(ω) .X(ω) .

The function h(t) is also called the impulse response of the system. The

Fourier transform of the impulse response, H(ω), is the system’s transfer

function. If the input to a system is given by x(t) = δ(t) the output is

given by y(t) = h(t). This statement can be easily proved by substituting

x(t) = δ(t) into the convolution integral:

y(t) =

∫ ∞

−∞
h(u)δ(t− u)du = h(t) . (3.8)

It turns out that if you do not know h(t), it can be obtained by exciting

the system with a δ function and measuring the output signal y(t) = h(t)

(Figure 3.3).
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x1(t) y1(t)

y2(t)x2(t)

x1(t)+x2(t) y1(t)+y2(t)

h

h

h

Figure 3.1: A linear system. The symbol h is the impulse response of the

system.

3.1.1 Discrete convolution

When working with discrete signals, we define a linear system where a con-

volution sum describes the input-output relationship. In this case, we can

turn the convolution integral into a sum

yk =
∞∑

n=−∞
hnxk−n . (3.9)

In general, we will be concerned with finite length signals. For in-

stance, let us consider the convolution of the discrete signals xn (input) and

hn (impulse reponse) that yields the new signal yn (output) . The length of

the signals mentioned above are
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h

h

y(t)

(t)δ

x(t)

h(t)(t)

(t)

x(t) : Input,      y(t): Output,     h(t): Impulse response

Time Invariant Linear System 

Figure 3.2: A continuous linear time invariant system. The input x(t)

produces an output signal denoted by y(t). If the input to the system is

x(t) = δ(t) the output is y(t) = h(t). The signal h(t) is the impulse re-

sponse of the system.

xn, n = 0 : NX − 1 is a signal of length NX

yn, n = 0 : NY − 1 is a signal of length NY

hn, n = 0 : NH − 1 is a signal of length NH .

In this case the convolution sum will be composed only of samples defined

in the above intervals, i.e., xn, n = 0 : NX − 1. One can write, therefore,

convolution as follows

yk =
p2∑

n=p1

hk−nxn , k = q1, . . . , q2 , (3.10)

where p1, p2, q1 and q2 indicate finite summation limits and the limits of the

output signal. A simple example clarifies what are these limits. We usually
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x : Input,      y: Output,     h: Impulse response

 (discrete case)

1,0,0,0,0,...

Time Invariant Linear System 

x0,x1,x2,x3,... h0,h1,h2,h3,.... y0,y1,y2,y3,...

h0,h1,h2,h3,.... h0,h1,h2,h3,....

Figure 3.3: A discrete linear system. The input signal is a discrete signal xn

and the output signal is the discrete signal yn. When the system is excited

with a unit impulse signal δn the output is the impulse response hn.

indicate the convolution sum with the symbol ∗

yk = hk ∗ xk . (3.11)

Assuming that x = [x0, x1, x2, x3, x4] and h = [h0, h1, h2], and after carrying

out the convolution sum one arrives to the following expression
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y0 = x0h0

y1 = x1h0 +x0h1

y2 = x2h0 +x1h1 +x0h2

y3 = x3h0 +x2h1 +x1h2

y4 = x4h0 +x3h1 +x2h2

y5 = x4h1 +x3h2

y6 = x4h2

. (3.12)

Notice that to arrive to the system 3.12, I carefully ommitted tems that we

do not have. For instance, terms that involve multiplications with x5 or h3

are zero because those samples are considered zero.

The output time series is given by y = [y0, y1, y2, ..., y7].
1 Note that

the above system of equations can be written as follows



y0

y1

y2

y3

y4

y5

y6



=



x0 0 0

x1 x0 0

x2 x1 x0

x3 x2 x1

x4 x3 x2

0 x4 x3

0 0 x4




h0

h1

h2

 . (3.13)

The last equation can be written in compact matrix-times-vector form

y = Xh . (3.14)

Where I have used lowercase bold fonts to indicate vectors y and h and up-

percase bold fonts to indicate the matrix X. I will try to use this convention

throughout the course. The matrix X is the convolution matrix of the signal

1Please, take a look at the length of the new time series NY = NX +NH − 1.
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(vector) x. This matrix is also called a Toeplitz matrix or diagonal-constant

matrix, named after Otto Toeplitz, a German mathematician.

3.1.2 An algorithm to compute the convolution sum

One can see that the convolution sum can be carried out as a matrix-times-

vector multiplication. However, there is a cheaper way of doing it. Take

your time and look at the system given in expression 3.12. For instance,

consider y3

y3 = x3h0 + x2h1 + x1h2 ,

the output index 3 is equal to the sum 3+ 0 (indices of the first term of the

sum), 2 + 1 (indices of the second term of the sum) and 1 + 2 (indices of

the third term of the sum). The latter leads to a straightforward algorithm

where we loop over the indices of the signal xl and hk to produce the output

index yl+k.

Please, remember that Fortran and MATLAB have a vector indexing

system that looks like

x(1) x(2) x(3) x(4) ..... x(NX)

where x0 =x(1), x1 =x(2), .... xNX−1=x(NX). This has to be taken into

account at the time of writing the computer code. For example, below I

provide MATLAB, Fortran and Python codes to perform the convolution of

two series. You can also use the built-in MATLAB function verb+conv+ to

perform the same task.

The following MATLAB scripts allows to convolve two signals. It

follows the logic explained above
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%

% Convolution of x with h - Matlab

% This code uses row vectors

%

x = [2, 1, 2, 3, -1];

h = [2,-1, 2];

nx = length(x);

nh = length(h);

ny= nx + nh - 1;

y = zeros(1,ny);

for j = 1:nh

for n = 1:nx

y(j+n-1) = y(j+n-1) + h(j) * x(n);

end

end

The code in Fortran looks like

subroutine convolution (nx,x,nh,h,ny,y)

c

c Convolution of two time series

c

real x(100),y(100),h(100)

ny = nx+nh-1

do k=1,ny

y(k) = 0.

enddo

do j = 1,nh

do n = 1,nx

y(j+n-1) = y(j+n-1) + h(j) * x(n)

enddo

enddo

return

Last, I also provide the program in Python. Careful with Python, the first

element is x[0]. Also range(0,3) stops at 3, which means 0,1,2.
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import numpy as np

x=(2,2,1)

h=(2,-1)

nx = 3

nh = 2

y = np.zeros(nx+nh-1)

for k in range (0,nx):

for j in range (0,nh):

y[k+j]=y[k+j] + x[k]*h[j]

These codes can be used to compute the convolution of two time series.

You can also form the matrix-vector multiplication as I explained in 3.14.

3.1.3 The convolution sum commutes

Consider equation 3.13 which leads to convolution expressed in matrix-

times-vector form

y = Xh

where X is the convolution matrix with entries given by the elements of the

signal x. It is easy to reorganize the system 3.13 in the following way

y = Hx

where now H is the matrix formed with the elements of h. In other words,

yk = xk ∗ hk → y = Xh

yk = hk ∗ xk → y = Hx

which shows that hk ∗ xk = xk ∗ hk.

3.2 The Z transform

A digitized seismogram, a gravity profile, a time series of monthly averages

of temperature, etc. is a sequential collection of samples (a series). For
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instance, a 4 points times series is represented by the following collection of

samples

x0, x1, x2, x3 . (3.15)

In the following, xn indicates the sample at time n∆t. This signal can be

obtained by uniformly sampling a continuous signal periodically every ∆t

seconds.

The z transform of xk, k = 0, 1, 2, . . . is defined as

X(z) =
∞∑
k=0

xnz
n (3.16)

For a finite length time series xk, k = 0, . . . , N − 1 we write

X(z) =
N−1∑
k=0

xnz
n . (3.17)

A simple example is a time series composed of 4 samples

x = 4
↑
, 12,−1,−3 , (3.18)

where the arrow indicates the sample x0. The z transform of this series is a

polynomial in the variable z of degree 3

X(z) = 4 + 12z − 1z2 + 3z3 . (3.19)

Now, let us assume that we have a noncausal sequence2

x = −1, 3, 4, 3
↑
, 5, 6,−10 . (3.20)

2I will use the arrow to indicate the sample corresponding to t = 0, the absence of the

arrow indicates that the first sample is the t = 0 sample.
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In this case, the z transform is given by

X(z) = −z−3 + 3z−2 + 4z−1 + 3 + 5z + 6z2 − 10z3 . (3.21)

3.2.1 Convolution and the z transform

Let us examine the example that we already used to prove that convolution

is equivalent to matrix-times-vector multiplication. Again, we consider two

times series, x = [x0, x1, x2, x3, x4] and h = [h0, h1, h2]. The z transforms of

these series are

X(z) = x0 + x1z + x2z
2 + x3z

3 + x4z
4

H(z) = h0 + h1z + x2z
2 .

Now, let us compute the product of the above polynomials

X(z).H(z) = x0h0 + (3.22)

(x1h0 + x0h1)z +

(x2h0 + x1h1 + x0h2)z
2 +

(x3h0 + x2h1 + x1h2)z
3 +

(x4h0 + x3h1 + x2h2)z
4 + (3.23)

(x4h1 + x3h2)z
5 +

(x5h2)z
6

From the expressions in 3.12 one can see that the coefficient of this new

polynomial are the samples of the time series y = [y0, y1, . . . , y6] obtained

by the convolution of x and h, in other words, X(z) .H(z) is also the z

transform of the time series yk

Y (z) = X(z) .H(z) . (3.24)
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Therefore, to convolve two time series is equivalent to multiply their z trans-

forms

yk = hk ∗ xk y = Hx Y (z) = H(z).X(z) .

It is interesting to notice that we have learned three ways of doing the

convolution sum. We can code up the formula, use matrix-time-vector mul-

tiplication, or use polynomial multiplication via the z transform.

3.3 First encounter with deconvolution

We will come back to this point when dealing with seismic signals. It is clear

that the convolution process via the z transform entails the multiplication

of two polynomials. This is only feasible for short time series.

In the convolution process two time series are convolved to produce a

new time series

yk = hk ∗ xk → Y (z) = H(z) .X(z)

In the deconvolution process we will attempt to estimate xk from yk and xk.

Using the z transform, this is equivalent to polynomial division

X(z) =
Y (z)

H(z)
. (3.25)

The inverse operator is defined as

F (z) =
1

H(z)
, (3.26)

therefore, the signal X(z) can be recovered via

X(z) = F (z) . Y (z) . (3.27)

It is clear that if one is capable of finding F (z) =
∑

k fkz
k, then the coef-

ficients fk define the discrete inverse filter in time domain that recovers xk

via convolution

xk = fk ∗ yk . (3.28)
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This is quite important in seismological data processing. We will assume

that the observed seismogram is composed of two time series: the Earth’s

impulse response, and the seismic wavelet (also called the source function).

sk: Seismogram (this is what you measure)

qk: Earth’s impulse response (this is your unknown)

wk: Wavelet (well... assume that you know it!)

where

sk = wk ∗ qk . (3.29)

In the deconvolution process we attempt to design an inverse to remove the

wavelet

sk = wk ∗ qk .→ S(z) =W (z).Q(z)

If we apply the inverse filter of the wavelet to both sides of last equation we

have

fk ∗ sk = fk ∗ wk ∗ qk .→ F (z).S(z) = F (z).W (z).Q(z)

it is clear that if F (z) = 1
W (z) the output sequence is the impulse response

(our unknown)

qk = fk ∗ sk .

In the following sections we will analyze the problem of inverting the unde-

sired signal (wk).

3.4 Elementary signals: dipoles

In this section we will analyze the deconvolution of very simple signals. We

will see that by understanding how to work with simple signals we will be

capable of dealing with more complicated signals.
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3.4.1 Minimum phase dipoles

A simple manner of visualizing the properties of a time series in the z domain

is by decomposing the polynomial into dipoles or elementary polynomials of

the form

1 + az (3.30)

As an example, we compute the Z-transform of the series x = [4, 12,−1, 3]

X(z) = 4 + 12z − 1z2 + 3z3 = 4(1 +
1

2
z)(1− 1

2
z)(1 + 3z) . (3.31)

We have already seen that two multiply the z transform of two time series

is equivalent to convolve the time series in the time domain. Therefore, the

above expression can also be expressed as convolution of several time series

4, 12,−1, 3 = 4[ (1,
1

2
) ∗ (1,−1

2
) ∗ (1, 3z) . (3.32)

In order to simplify the problem, we will analyze the properties of a single

dipole. The extension to time series that require the multiplication of several

dipoles is straightforward.

Let us assume that the dipole, which I will call D(z), is given by

D(z) = 1 + az . (3.33)

This dipole corresponds to a time series composed of two elements: 1, a.

Now, let assume that we want to compute the inverse of the dipole, in other

words we would like to compute a function F (z) such that

F (z)D(z) = 1 . (3.34)

This problem can be solved by expanding the inverse of the dipole in a series
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F (z) =
1

D(z)
=

1

1 + az
, (3.35)

if |a| < 1, the denominator can be expanded according to the following

expression 3:

F (z) = 1− az + (az)2 − (az)3 + (az)4 . . . . (3.36)

Since |a| < 1 the above series is a convergent series. F (z) is the z transform

of the time series fk, k = 0, . . . ,∞ given by

1
↑
,−a, a2,−a3, a4, . . . (3.37)

which represent the inverse filter of the dipole. The convolution of the dipole

with the filter yields

(1
↑
, a) ∗ (1

↑
,−a, a2,−a3, a4, . . .) = 1

↑
, 0, 0, 0, 0, 0, . . . (3.38)

which represent a single spike at n = 0.

The dipole (1, a) is a minimum phase sequence provided that |a| < 1.

We have shown that a minimum phase dipole has a casual inverse given by

1,−a, a2,−a3, a4, . . . If |a| ≈ 1 < 1 the coefficients of the inverse filter will

slowly tend to zero. On the other hand if |a| ≈ 0, only a few coefficient will

be required to properly model the inverse of the dipole.

We can visualize this fact with a very simple example. Let us compute

the inverse of the following dipoles: (1, 0.9) and (1, 0.01). In the first case

we have a = 0.9

F (z) =
1

1 + 0.9z
= 1− 0.9z + 0.81z2 − 0.729z3 + 0.6561z4 . . . . (3.39)

In the second case, we have

3A geometric series.
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F (z) =
1

1 + 0.1z
= 1− 0.1z + 0.01z2 − 0.001z3 + 0.0001z4 . . . . (3.40)

It is clear that when a = 0.1, we can truncate our expansion without affecting

the performance of the filter. To show the last statement we convolve the

dipoles with their truncated inverses. In both examples, we truncate the

inverse to 5 coefficients

(1, 0.9) ∗ (1,−0.9, 0.81,−0.729, 0.6561) = (1, 0.0, 0.0, 0.0, 0.59) (3.41)

(1, 0.1) ∗ (1,−0.1, 0.01,−0.001, 0.0001) = (1, 0.0, 0.0, 0.0, 0.0) . (3.42)

It is clear that the truncation is negligible when a = 0.1. This is not true

when a ≈ 1. In this case, a long filer is needed to properly invert the dipole.

The shortcoming above can be overcome by adopting a least-squares strategy

to compute the inverse filter (this is the basis of spiking deconvolution.)

So far we have define a minimum phase dipole as a signal of the type

(1, a) where |a| < 1. It is important to stress that the z transform of this

signal has a root, ξ, which lies outside the unit circle,

X(z) = 1 + az ⇒ X(ξ) = 1 + aξ = 0 ⇒ ξ = −1

a
(3.43)

since |a| < 1, the root satisfies the following |ξ| > 1.

A seismic signal is more complicated than a simple dipole. But we

can always factorize the z transform of any signal in terms of elementary

dipoles. If the signal is minimum phase, the decomposition is in terms of

minimum phase dipoles

X(z) = x0+x1z+x2z
2+x3z

3 . . . = A(1+a1z)(1+a2z)(1+a3z) . . . . (3.44)
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If |ai| < 1, ∀i, the signal is a minimum phase signal. In this case, all the

zeros lie outside the unit circle

X(ξ) = 0 ⇒ ξi = − 1

ai
⇒ |ai| < 1 ⇒ |ξi| > 1 . (3.45)

Now, let us assume that X(z) is a minimum phase signal of length N , that

can be factorized in terms of minimum phase dipoles. The inverse filter F (z)

of X(z) must satisfy the following expression

X(z)F (z) = 1 (3.46)

(1 + a1z)(1 + a2z)(1 + a3z) . . . . F (z) = 1 .

From the above equation, we can write

F (z) = (1 + a1z)
−1(1 + a2z)

−1(1 + a3z)
−1 . . . (3.47)

= [(1− a1z + (a1z)
2 − (a1z)

3 . . .][(1− a2z + (a2z)
2 − (a2z)

3 . . .]

[(1− a3z + (a3z)
2 − (a3z)

3 . . .] . . . .

The inverse operator can be written as

f0, f1, f2, f3, . . . = (1,−a1, a21,−a31) ∗ (1,−a2, a22,−a32) ∗ (1,−a3, a23,−a33) . . .
(3.48)

In Figures 3.4, 3.5 and 3.6 we examine the inverse of various minimum phase

dipoles. In the first case (Figure 3.4), the root is close to the unit circle,

and therefore the inverse filter requires a large number of the coefficient to

avoid truncation artifacts. In Figures 3.5 and 3.6, we have used dipoles with

roots at ξ = 2 and ξ = 10, respectively. In these examples, the truncation

artifacts are minimal.

3.4.2 Maximum phase dipoles

Elementary signal of the form (1, b), |b| > 1 are called maximum phase

dipoles. A maximum phase dipole has a zero inside the unit circle
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Dipole, d = (1,0.9) Truncated inverse filter, f Output,  d ⊗ f

Figure 3.4: Inversion of a minimum phase dipole. The slow convergence of

the inverse filter is a consequence of having a zero close to the unit circle.

Dipole, d = (1,0.5) Truncated inverse filter, f Output,  d ⊗ f

Figure 3.5: Inversion of a minimum phase dipole.

D(z) = 1 + bz ⇒ D(ξ) = 1 + bξ = 0 ⇒ ξ = −1/b . (3.49)

Since |b| < 1, it is easy to see that |ξ| < 1. In this section we will prove

that the inverse of a maximum phase dipole is a noncasual sequence. The

inverse of the maximum phase dipole can be computed by expanding the

denominator in series
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Dipole, d = (1,0.1) Truncated inverse filter, f Output,  d ⊗ f

Figure 3.6: Inversion of a minimum phase dipole. In this case the zero of

the dipole is far from the unit circle, this explains the fast convergence of

the inverse filter.

F (z)D(z) = 1 ⇒ F (z) =
1

D(z)
=

1

1 + bz
. (3.50)

If last equation is expanded in a series of positive powers of z we have

1

1 + bz
= 1− bz + (bz)2 − (bz)3 . . . (3.51)

The later is a series that does not converge; the magnitude of the coefficients

of the operator (1,−b, b2,−b3 . . .) increases as we add more terms. The trick

to overcoming this problem is to compute a stable non-casual operator.

First, we rearrange expression (3.50)

F (z) =
1

1 + bz
=

1

bz(1 + (bz)−1)
(3.52)

this expression admits a stable expansion of the form

F (z) = (bz)−1(1− (bz)−1 + (bz)−1 − (bz)−3 . . .) . (3.53)

Now the inverse is stable and noncasual, the associated operator is given by

f = . . . ,−b−3, b−2,−b−1, 0
↑
. (3.54)

46 GEOPH 426/526 - MD Sacchi



Chapter 3

Dipole, d = (1,2)

0

Truncated inverse filter (non−casual) , f

0

Output,  d ⊗ f

0

Figure 3.7: A maximum phase dipole. Its noncasual truncated inverse, f ,

and the output d ∗ f .

The following example will clarify the problem. First, given the maximum

phase dipole (1, 2) we compute the noncasual inverse sequence (truncated

to 6 coefficients):

f = (−0.0156, 0.0312,−0.0625, 0.125,−0.25, 0.5, 0
↑
) (3.55)

the convolution of f with the maximum phase dipole produces the following

output sequence

d ∗ f = (−0.0156, 0.0312,−0.0625, 0.125,−0.25, 0.5, 0
↑
) ∗ (1

↑
, 2)(3.56)

= (−0.0156, 0, 0, 0, 0, 0, 1
↑
, 0) .

Figure 3.7 provides an example where we compute the stable (convergent)

inverse of a maximum phase dipole.

3.4.3 Autocorrelation function of dipoles

The autocorrelation function of a sequence with z-transform X(z) is defined

as

R(z) = X(z)X∗(z−1) (3.57)
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In this section, we will analyze properties of minimum and maximum

phase dipoles that are very useful at the time of designing deconvolution

operators.

We will consider two dipoles. First, a minimum phase dipole of the

form (1, a), |a| < 1 and then a maximum phase dipole of the form (a∗, 1)4.

In the z domain, these two dipoles are expressed as follows

Dmin(z) = 1 + az (3.58)

and

Dmax(z) = a∗ + z . (3.59)

The autocorrelation function of the minimum phase dipole is given by

Rmin(z) = a∗z−1 + (1 + |a|2) + a z . (3.60)

Similarly, the autocorrelation function of the maximum phase dipole is given

by

Rmax(z) = a∗z−1 + (1 + |a|2) + a z . (3.61)

We have arrived at a significant conclusion

Rmax(z) = Rmin(z) = R(z) (3.62)

or, in other words, two different sequences can have the same autocorrelation

function. The autocorrelation sequence in both cases is the following time

series

a∗, (1 + a2)
↑

, a (3.63)

or

4Note that for real dipoles, a∗ = a
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rk =



a if k = 1

1 + a2 if k = 0

a∗ if k = −1

0 otherwise

(3.64)

If the dipoles are real (a = a∗), the the autocorrelation function is given by

a symmetric sequence about zero. Note that the autocorrelation function

R(z) is the z-transform of the autocorrelation sequence

R(z) = r1z
−1 + r0 + r1z

−1 = a∗z−1 + (1 + a2) + az−1 . (3.65)

In general, for more complicated signals (so far, we have only considered

dipoles), the autocorrelation function of the signal is the Z-transform of the

autocorrelation sequence which is given by

rk =
∑
n

x∗nxn+k , (3.66)

R(z) = X(z) .X∗(z−1) , (3.67)

where k is the time-lag of the autocorrelation function.

Let us assume that we are only able to measure the autocorrelation

of a dipole. Given the autocorrelation of the dipole, you are asked to find

the associated dipole. You have two possible solutions. One is the minimum

phase dipole; the other is the maximum phase dipole. It is also true that

these two sequences have the same amplitude spectrum. We define the

amplitude spectrum using the Discrete-time Fourier Transform (DTFT)5

R(ω) = R(z)|z=e−iω ω ∈ [−π, π] (3.68)

5This is the Fourier Transform for discrete series
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or

R(ω) = [X(z) .X∗(z−1)]z=e−iω (3.69)

To evaluate the amplitude spectrum of the signal, we replace z by e−iω.

This is equivalent to adopt Discrete-time Fourier transform instead of the

z transform. We will come back to this point in again when deriving the

Discrete-time Fourier Transform. If the signal is a minimum phase dipole,

it Fourier transform is given by

Dmin(z) = 1 + az ⇒ z = e−iω ⇒ Dmin(ω) = 1 + ae−iω . (3.70)

Whereas for the maximum phase dipole

Dmax(z) = a+ z ⇒ z = e−iω ⇒ Dmax(ω) = a+ 1e−iw (3.71)

Now can now evaluate the amplitude and phase spectrum of the minimum

and maximum phase dipoles

RDmin(ω) =
√
1 + 2a cos(ω) + a2 (3.72)

θmin(ω) = arctan(
a sin(ω)

1 + a cos(ω)
) . (3.73)

For the maximum phase dipole, we have

RDmax(ω) =
√
1 + 2a cos(ω) + a2 (3.74)

θmax(ω) = arctan(
sin(ω)

a+ cos(ω)
) . (3.75)
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Figure 3.8: Amplitude and phase spectrum of a minimum phase dipole 1+az

and a maximum phase dipole a ∗+z, |a| < 1.

In Figure (3.8), we portray the amplitude and phase spectrum for a minimum

phase dipole of the form (1, 0.5) and a maximum phase dipole (0.5, 1). Note

that the amplitude spectra of these signals are equal, and their phase spectra

are different.

We will see this has implications when estimating wavelet from au-

tocrorelation functions, a classical problem in exploration seismology.

3.4.4 Least-squares inversion of a minimum phase dipole

We have already seen that one of the problems of inverting a dipole via a ge-

ometric series is that the filter results in a long operator. This is particularly

true when the dipole has zero close to the unit circle.

Our problem is to find a filter where, when applied to the dipole,
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its output resembles the ideal output one would have obtained by using

an infinite number of terms in the series expansion of the filter F (z) =

1/(1 + az) = 1− az + (az)2 − (az)3 + . . ..

In our case, we want to invert the minimum phase dipole (1, a), |a| <
16. In preceding sections we found an expression for the ideal inverse filter,

the z transform of the ideal inverse filter satisfies the following equation

D(z)F (z) = 1 . (3.76)

Now, our task is to construct a finite length filter with the following

property

D(z)FN (z) ≈ 1 , (3.77)

where FN (z) denotes the z transform of the finite length operator of length

N . If we assume a filter of length N = 3, the above equation can be written

in the time domain as

(1, a) ∗ (f0, f1, f2) ≈ (1
↑
, 0, 0, 0) . (3.78)

The latter can be written in matrix form as follows



1 0 0

a 1 0

0 a 1

0 0 a




f0

f1

f2

 ≈



1

0

0

0


. (3.79)

The last system of equations corresponds to an over-determined system of

equations. The length of the filter is N = 3, the length of the dipole is

M = 2; therefore, the length of the desired output is 4 = M + N − 1. To

avoid notational clutter, we will represent the last system as follows

6Let us consider that a = a∗, (a is real)
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Cf ≈ b , (3.80)

where C is the matrix that contains the dipole padded adequately with zeros

to appropriately represent the convolution (∗). The unknown inverse filter

is denoted by the vector f and the desired output by o. I have used the

symbol ≈ to stress that the filter of length N convolved with the dipole

with approximate the desired (ideal) output because an infinite length filter

is approximated by one of finite length. Equation 3.80 can also be expressed

as follows

Cf − b = e , (3.81)

f is where e is the approximation error. The least-squares inverse filter

is obtained via the least-squares method where the filter is computed by

miniminzing the sum of the squeres of the errors e 7

J = ∥e∥22 = ∥Cf − o∥2 . (3.82)

The least-squares solution is obtained by minimizing J respect to f . The

latter leads to the following system of normal equations

CT Cf = CT o . (3.83)

Now, we have a system of the equations where the solution is computed by

inverting the square matrix CT C,

f̂ = R−1CT o , (3.84)

where R = CT C. The story does not end here, it turns out that the matrix

R has a special structure,

7The cost function J can be written as follows J =
∑

k
e2k = ∥e∥22 = eT e .
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Dipole, d = (1,0.9)

0

Least squares inverse filter , f

0

Output,  d ⊗ f

0

Figure 3.9: Inversion of a minimum phase dipole using the least-squares

method.

R =


1 + a2 a 0

a 1 + a2 a

0 a 1 + a2

 . (3.85)

One can see that each row of the matrix R is composed of elements of the

autocorrelation sequence given by equation (3.64)

R =


r0 r1 0

r1 r0 r1

0 r1 r0

 . (3.86)

The above matrix is a Toeplitz form. One interesting feature of a Toeplitz

matrix (in this case, it is symmetric Toeplitz matrix) is that only one row

of the matrix is needed to define all its elements. It is also a constant diag-

onal matrix. This unique structure is used by a fast algorithm, Levinson’s

algorithm, to solve equation 3.83 in N2 operations where N is the length of

the filter.
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Dipole, d = (1,0.5)

0

Least squares inverse filter , f

0

Output,  d ⊗ f

0

Figure 3.10: Inversion of a minimum phase dipole using the least-squares

method.

3.4.5 inversion of minimum phase sequences

So far, we have discussed the problem of inverting elementary dipoles, and

we have observed that minimum phase dipoles accept a casual and stable

inverse.

This is also valid for more complicated signals (i.e., a seismic wavelet).

In this case, the convolution matrix columns are given by the wavelet of

length NW padded adequately with zeros to represent convolution.

Given a minimum phase wavelet, this a signal that can be decomposed

trough factorization in minimum phase dipoles8, the goal is to find the in-

verse filter of the wavelet. This is, again, the filter that converts the wavelet

into a spike via convolution. Given the wavelet wk, k = 0, . . . , NW − 1, the

filter fk, k = 0 . . . , NF − 1, the goal is to find a filter such that

(w0, w1, . . . wNW−1) ∗ (f0, f1, . . . , fNF−1) ≈ (1, 0, . . . , 0) , (3.87)

where the output is a signal of length NW +NF − 1. In matrix form, we

can write the following expression (assuming NW = 7 and NF = 4)

8In other words, the zeros of the z transform of the wavelet are outside the unit circle.
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w0 0 0 0

w1 w0 0 0

w2 w1 w0 0

w3 w2 w1 w0

w4 w3 w2 w1

w5 w4 w3 w2

w6 w5 w4 w3

0 w6 w5 w4

0 0 w6 w5

0 0 0 w6





f0

f1

f2

f3


≈



1

0

0

0

0

0

0

0

0

0



. (3.88)

Again, this system is written in matrix form as Cf ≈ d. We will compute

the inverse filter by minimizing the error function (mean squared error) ϵ:

J = ||e||2 = ||Cf − o||2 . (3.89)

The Euclidean norm of the error vector e = Cf −b can be written down as

J = eT e = (Cf − o)T (Cf − o) . (3.90)

The cost function J is minimized with respect to the unknown filter f

dϵ

df
= 0 . (3.91)

Taking derivatives with respect to the filter coefficients and equating them

to zero leads to the following system of normal equations

CT Cf = CT o . (3.92)
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It is clear that the inverse filter is solved by inverting the Toeplitz form

R = CT C, but this matrix (which depends on the wavelet) might have a

set of close eigenvalues to zero.

If the matrix is ill-conditioned, a set of eigenvalues are zero or close to

zero. This will lead to numerical instabilities at the time of the inversion.

This shortcoming can be avoided by using a regularization strategy. Instead

of minimizing the misfit function J we will minimize the following penalized

objective function

J = ∥Cf − o∥22 + µ∥f∥2 . (3.93)

The solution is now given by a penalized least-squares estimator where the

parameter µ is also called the regularization parameter 9 The condition

dJ

df
= 0 , (3.94)

leads to the following solution

f̂ = (R+ µI)−1CTd . (3.95)

The parameter µ provides protection against small eigenvalues, which

may lead to an unstable filter. It is important to note that we are trying to

accomplish two different goals in the objective function J . On the one hand,

we want to minimize the error energy ∥Cf − o∥22∥22. On the other hand, we

try to keep the filter’s energy ∥f∥2 bounded. When µ→ 0, the error function

will be minimum, but the filter may have an undesired oscillatory behaviour.

When µ is large, the filter’s energy will be small, and the error’s energy will

be large. In this case, we have the so-called matching filter of the form

f̂ = µ−1CTd . (3.96)

9mu is also called ridge regression, damping, or pre-whitening parameter.
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Filter, f

µ=1.e−4

µ=1.e6

Output, w⊗f

Figure 3.11: A minimum phase wavelet inverted using different tradeoff

parameters (µ).

Last equation was obtained by applying the following replacement (R+µI) ≈
µI, which is valid only when µ is large.

In Figure (3.11) we illustrate the effect of the tradeoff parameter in the

filter design and in the actual output of the deconvolution. It is clear that

when µ is small, the output of the sequence is a spike. When we increase

µ the output is not as sharp as when µ is closed to zero. This concept is

fundamental when dealing with noisy signals. We will come back later to

this problem when we analyze the deconvolution of reflectivity sequences.

In Figure (3.12) we portray the so-called tradeoff curve. This is a curve

where we display the error norm ∥Cf−o∥22 versus the norm of the filter ||f ||22
for varying value of the tradeoff parameter µ. This curve is also called the

Tikhonov curve 10 or the L-curve. This curve represents the tradeoff that

exists between resolution and variance reduction in linear inverse problems.

10After Russian Mathematician Andrey Nikolayevich Tikhonov.
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Figure 3.12: Tradeoff curve for the previous example. The vertical axis

indicates the norm of the error ∥e∥22, and the horizontal axis is the norm of

the filter ∥f∥22.
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3.5 MATLAB examples

3.5.1 Inversion of dipoles

% Dipole.m

% This code is used to invert a minimum phase dipole via

% geometric series filter. The inverse filter is truncated

% to N samples

N = 5;

a = 0.1;

t = 1:1:N;

d = [1 a];

f = (-a).^(t-1);

o = conv(d,f)

% Plot The dipole, the filter and the output

figure(1); stem(d); figure(2); stem(f); figure(3); stem(o);
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3.5.2 Amplitude and phase of dipoles

% A MATLAB code to compute amplitude and phase

% of min and max phase dipoles

a = 0.2;

% Min phase dipole

d_min = [1,a];

% Max phase dipole

d_max = [a,1];

% Compute amplitude and phase using an FFT

D_min = fft(d_min,256);

A_min = abs(D_min); theta_min = angle(D_min);

D_max = fft(d_max,256);

A_max = abs(D_max); theta_max = angle(D_max);

% Plot the results

n = 256/2+1;

subplot(221);

plot(A_min(1:n));title(’Amplitude of 1+0.2z’)

subplot(222);

plot(A_max(1:n));title(’Amplitude of 0.2+z)’)

subplot(223);

plot(unwrap(theta_min(1:n))); title(’Phase of 1+0.2z)’)

subplot(224);

plot(unwrap(theta_max(1:n))); title(’Phase of 0.2+z’)
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3.5.3 Least-squares inverse filter of a dipole

% LS_dipole.m

% Least-squares inverse of a

% minimum phase dipole

NF = 5;

a = 0.5;

d = [1,a]’;

ND = max(size(d)) ;

NO = ND+NF-1

b = [1,zeros(1,NO-1)]’;

C = convmtx(d,NO-1);

R = C’*C;

rhs = C’*b;

f = inv(R)*rhs;

o = conv(f,d);

figure(1); stem(d); figure(2); stem(f); figure(3); stem(o);
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3.5.4 Least-squares inverse filter of a wavelet.

function [f,o] = LS_min(w,NF,mu);

% LS_min.m

% Given an input mimimum phase wavelet w this programs

% computes the wavelet inverse filter

% and the actual output o.

% NF is the filter length.

% Note that w is a column wavelet

% mu is the pre-whitening

NW = max(size(w));

NO = NW+NF-1

b = [1,zeros(1,NO-1)]’;

C = convmtx(w,NF);

R = C’*C;

rhs = C’*b;

I = eye(NF);

f = (R+mu*I)\rhs;

o = conv(f,w);

return

3.6 The autocorrelation function

Consider a time series of the form

X(z) = x0 + x1z + x2z
2

and compute the following function (autocorrelation function)

R(z) = X(z)X∗(z−1) (3.97)
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R(z) = x0x
∗
2z

−2+(x0x
∗
1+x1x

∗
2)z

−1+(x0x
∗
0+x1x

∗
1+x2x

2
2)+(x1x

∗
0+x2x

∗
1)z+x2x

∗
0z

2 .

(3.98)

The function R(z) is the Z-transform of a sequence rk that we call the

autocorrelation sequence

R(z) =
∞∑

k=−∞
rkz

k (3.99)

where

r−2 = x0x
∗
2

r−1 = x0x
∗
1 + x1x

∗
2

r0 = x0x
∗
0 + x1x

∗
1 + x2x

∗
2

r1 = x1x
∗
0 + x2x

∗
1

r2 = x2x
∗
0

rk = 0 otherwise .

(3.100)

It is easy to show that for a time series of length NX

x0, x1, x2, x3, . . . , xNX−1

the autocorrelation coefficient can be computed using the following formulas

r−k =
∑NX−1−k

i=0 xix
∗
i+k k = 1, 2, 3, . . . , NX − 1

r0 =
∑NX−1

i=0 xix
∗
i

rk =
∑NX−1−k

i=0 xi+kx
∗
i k = 1, 2, 3, . . . , NX − 1 [Note]11

(3.101)

Properties of the autocorrelation sequence:
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1. Hermitian Symmetry: rk = r∗−k k = ±1,±2, . . .

2. r0 > |rk| k = ±1,±2 . . .

3. r0 represents the energy of the signal; for a zero mean stationary

stochastic process r0/NX is an estimator of the variance of the pro-

cess:

σ̂2 =
r0
NX

=

∑NX−1
k=0 |xk|2

NX
.

4. If x0, x1, . . . , xNX−1 is a real time series then, rk = r−k.

3.6.1 The Toeplitz matrix and autocorrelation coefficients

We adopted the least-squares method to find an inverse operator that enables

us to collapse a wavelet into a spike. We have seen that the least-squares

filter is computed by solving a system of equations of the form

CTCf = Cb . (3.102)

Where C is a matrix with entries given by the wavelet properly pad with

zeros and shifted to represent a convolution operator, in our example

C =



w0 0 0 0

w1 w0 0 0

w2 w1 w0 0

w3 w2 w1 w0

w4 w3 w2 w1

w5 w4 w3 w2

w6 w5 w4 w3

0 w6 w5 w4

0 0 w6 w5

0 0 0 w6



(3.103)
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This is the convolution matrix for a wavelet or length NW = 7 and a

filter of length NF = 4. It is easy to see that the Toeplitz matrix R = CTC

is given by

R =



r0 r1 r2 r3

r1 r0 r1 r2

r2 r1 r0 r1

r3 r2 r1 r0


(3.104)

where the elements of R are given by

rk =
NW−1−k∑

i=0

wi+k wi k = 0, 1, 2, 3, . . . , NF − 1 . (3.105)

The coefficients rk are the correlation coefficients of the the wavelet. It

is interesting to note that the zero lag autocorrelation coefficient (k = 0)

represents the energy of the wavelet

r0 =
NW−1∑
k=0

w2
k . (3.106)

It is important to stress that at the time of computing the Toeplitz the

matrix we do not need to compute the product CTC; it is more efficient

to compute the elements of the Toeplitz matrix using the expression of the

autocorrelation coefficients.

The following code can be used to compute the autocorrelation se-

quence of a real time series.
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function [r0,r] = correlation(x);

%

% Function to compute the autocorrelation sequence

% of a real series

% IN x: time series

% OUT r0: zero lag autocorrelation

% r : vector containing autocorrelation samples

% for lags k=1,2,3...nx-1

%

r0 = sum(x.*x);

nx = length(x);

for k=1:nx-1;

r(k) = 0;

for j = 1:nx-k

r(k) = r(k) + x(j) * x(j+k);

end

end

3.7 Inversion of non-minimum phase wavelets: op-

timum lag spiking filters

Minimum phase wavelets are inverted using the least-squares method using

the desired output of the form (1, 0, 0, . . .). The resulting filter is often called

the Wiener filter or the spiking deconvolution operator. In general seismic

wavelets are not minimum phase (some roots might lie inside the unit circle,

they are mixed-phase). An appealing feature of the least-squares inversion

approach is that the filter is also a minimum phase signal.

If the wavelet is not a minimum phase signal, the actual output (the

filter’s convolution with the wavelet) does not resemble the desired output

(1, 0, 0, . . .). The problem can be alleviated by defining an optimum lag

Wiener or Spiking filter. This is an inverse filter where the desired output

is the following sequence
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(0, 0, 0, 0 . . . , 1, 0, 0, 0, . . .) (3.107)

In essence, we delay the 1 in the desired output sequence to generate a filter

that turns the wavelet into a delayed spike.

The filter design problem is equivalent to what has already been stud-

ied in the preceding section. However, now the right side term in the vector

of the desired output o is a spike that has been delayed by an amount we

called L (lag). The optimal lag Lopt is given by the value of L where the

actual output resembles the desired output. We need to define a measure

capable of measuring how close the actual output is to the desired output.

This is done by defining a filter performance norm

P = 1− E (3.108)

E =
1

r0
||C f̂ − b||2 (3.109)

where E is the normalized mean square error, r0 is the zero lag autocorre-

lation coefficient. It can be shown that

0 ≤ E ≤ 1m.

When E = 0, we have a perfect filter where the desired and the actual output

are equal. When E = 1, there is no agreement between the desired and the

actual output. On the other hand, the filter performance is maximized,

P = 1, for the optimal filter. In practical applications, we search for the

value of L that maximizes the filter performance P , the value L where P is

maximized is usually called the optimum lag.
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Discrete Fourier Transforms

This chapter presents the transition from the z transform to the Discrete

Fourier Transform (DFT). The DFT is used to compute the Fourier trans-

form of discrete data.

4.1 The discrete-time Fourier Transform

We first consider the case where the signal xn, −∞ < n < ∞ is discrete

and given at time samples n with associated time t = n∆t. We understand

that ∆t is the sampling interval, which satisfies the Nyquist condition. We

have already discussed Nyquist-Shannon sampling, where we showed that a

discrete signal has a periodic spectrum that represents the spectrum of the

continuous signal counterpart. The periodic spectrum of the discrete signal

represents the original continuous signal accurately in ω ∈ [−π, π] when
Nyquist condition is satisfied fmax < fNyquist = 1

2∆t . Then the discrete-

time Fourier transform is given by the following pair

X(ω) =
∞∑

n=−∞
xne

−iωn (4.1)

xn =
1

2π

∫ π

−π
X(ω)eiωndω . (4.2)
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At this point, we have defined X(ω) as the discrete-time Fourier transform

because the time series xn is only discrete in its time variable. Clearly, the

variable ω is continuous. The inverse transform to evaluate xn from X(ω)

requires the solution of an integral. This is not an ideal transform pair to

operate numerically in our computers. Therefore, we will introduce a new

transform where time is discrete, and the frequency axis ω is also discrete.

This new transform is called the Discrete Fourier Transform (DFT) and

plays an important role in signal and imaging processing because it per-

mits to evaluate numerically both the forward discrete Fourier transform

(transform to go from the time domain to frequency domain) and the in-

verse discrete Fourier transform (the transform to return from the frequency

domain to the time domain) 1

4.2 The z transform and the Discrete Fourier Trans-

form (DFT)

We have already defined the Z-transform of a time series as follows

X(z) =
N−1∑
n=0

xnz
n . (4.3)

The z transform provides a representation of our time series in terms of a

polynomial. Let us introduce the following change of variable

z = e−iω (4.4)

in this case the z transform becomes

X(ω) =
N−1∑
n=0

xne
−iωn . (4.5)

1I am using time (t) and frequency ω but consider that I could have also used space

x and wavenumber k if the signal depends on the spatial variable x such in the case of

gravity and magnetic profiles.
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We have evaluated the z transform on the unit circle. The variable z can

be written as z = ρeiθ where ρ and θ represent the amplitude and phase of

the complex z, respectively. If we consider the particular representation of

z given by z = e−iω, one is basically evaluating z on the unit circle ρ = 1.

The phase of z is interpreted as the angular frequency ω which is given in

radians. It is easy to make an analogy with the Fourier transform (Fourier

integral) for continuous-time signals

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt . (4.6)

In the last equation the frequency is given in radian/sec when the time is

measured in seconds. A continuous-time signal is multiplied by the Fourier

kernel e−iωt and integrated over time to yield the Fourier transform. In the

DFT, the integration is replaced by summation and the Fourier kernel is

now e−iωn. Since n does not have units, ω must be given in radians.

So far, the frequency ω is a continuous variable, but let us assume

that one wishes also to discretize ω in the same way we have discretized the

temporal variable t. The limits of ω are given by [0, 2π). Remember that

ω is an angular frequency and the spectrum of a discrete signal is periodic

in (−π, π] or equivalently [0, 2π). If the time series is a signal of length N

points , we can discretize the frequency axis as follows

ωk = ∆ω k =
2π

N
k , k = 0, 1, . . . , N − 1 . (4.7)

In other words, we are sampling ω every ∆ω = 2π/N radians. Now we can

define the DFT as follows

X(ωk) =
N−1∑
n=0

x(n)e−iωk n , k = 0, 1, . . . , N − 1 . (4.8)

or

X(ωk) = Xk =
N−1∑
n=0

x(n)e−i2π k n , k = 0, 1, . . . , N − 1 . (4.9)
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Clearly, the DFT is a transformation of a N points signal into N Fourier

coefficients Xk = X(ωk). We can also write down our transform in matrix

form



X0

X1

X2

...

XN−1


=



1 1 . . . 1

1 e−i2π/N e−i2π2/N . . . e−i2π(N−1)/N

1 e−i2π2/N e−i2π4/N . . . e−i2π2(N−1)/N

...
...

...
...

...

1 e−i2π(N−1)/N e−i2π2(N−1)/N . . . e−i2π(N−1)(N−1)/N


.



x0

x1

x2
...

xN−1


(4.10)

The last equation can be written in compact form as follows

X = F .x . (4.11)

The DFT can be interpreted as a matrix-times-vector operation where a

discrete-time domain signal is mapped to the frequency domain via a simple

operation Fx.

TheN -dimensional vector representing the time-domain signal is trans-

formed into another N -dimensional vector representing discrete samples of

the Discrete Fourier Transform coefficients. Imagine a table of coefficients

X0, X1, X2, . . . , XN−1 that correspond to complex amplitudes associated to

frequency indices 0, 1, 2, . . . N−1 or angular frequencies ω0, ω1, . . . ωN−1 (See

table 4.1).

4.2.1 Inverse DFT

The remaining problem entails the invertibility of the DFT. We need a

transform to come back from the frequency domain to the time domain. In

other words, we need F−1.

We propose the following inverse transform
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k Xk ωk = 2πk/N

0 X0 0

1 X1
π
4

2 X2
π
2

3 X3
3π
4

4 X4 π Nyquist

5 X5
5π
8

6 X6
3π
2

7 X7
7π
4 almost 2π

Table 4.1: Fourier coefficients and angular frequencies for N = 8.

xn =
N−1∑
l=0

αle
i2πln/N , (4.12)

where the coefficients αl must be determined. This formula is analogous

to the one used to invert the Fourier transform. However, it is important

to note that we have interchanged the integration symbol by a summation.

The parameters αk are our unknowns. To find the unknowns, we proceed

as follows. First we replace the last equation into equation (4.8),

Xk =
N−1∑
n=0

N−1∑
l=0

αle
i2πn(l−k)/N . (4.13)

The last equation can be rewritten as

Xk =
N−1∑
l=0

αl

N−1∑
n=0

ei2πn(l−k)/N =
N−1∑
l=0

αlsl−k , (4.14)

where the sequence sl−k is given by

sl−k =
N−1∑
n=0

ei2πn(l−k)/N . (4.15)
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At this point, we realize the last equation is the geometric series2 with sum

given by

N−1∑
n=0

un =

 N if u = 1

uN

1−u if u ̸= 1
. (4.16)

In equation (4.15) we can identify u = ei2πn(l−k)/N , therefore

sl−k =

 N if l = k

0 if l ̸= k
, (4.17)

after introducing the final result into equation (4.14) we obtain the following

expression for our unknown coefficients αk

Xk = Nαk, k = 0, . . . , N − 1 . (4.18)

Therefore, our inversion formula becomes

xn =
1

N

N−1∑
l=0

Xle
i2πln/N . (4.19)

This equation can also be written as follows

x =
1

N
FHX . (4.20)

The matrix FH is the Hermitian transpose of the matrix F. It is clear that

the N ×N matrix F is an orthogonal matrix,

FH F = N IN , (4.21)

2We have used a geometric series to find the inverse of a dipole in Chapter 2
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where IN is an N×N identity matrix. Finally, we have a pair of transforms,

the DFT and the IDFT (inverse DFT) which are given by

Xk =
N−1∑
n=0

xne
−i2πkn/N , k = 0, . . . , N − 1 , (4.22)

xn =
1

N

N−1∑
k=0

Xke
i2πkn/N n = 0, . . . , N − 1 . (4.23)

The DFT is used to map a discrete signal into the frequency domain.

The IDFT is used to map the DFT coefficients Xk back to the time domain.

Because the DFT is an orthogonal transformation, the inverse is computed

using the conjugate transform (we don’t need to calculate the inverse).

The cost of inverting an N × N matrix is proportional to N3; the

cost of multiplying a matrix by a vector is proportional to N2. Therefore,

computing the DFT or the IDFT has a cost proportional to N2 operations.

We will further diminish the computation cost of the DFT by using the Fast

Fourier Transform (FFT).

4.2.2 Zero padding

The DFT allows us to transform an N -points time series into N frequency

coefficients Xk, where the index k is associated to the discrete frequency ωk,

ωk =
2πk

N
= ∆ωk , k = 0, 1, . . . , N − 1 .

The frequency axis is sampled every ∆ω radians. At this point, it appears

that ∆ω is controlled by the number of samples of the time series N . Zero

padding can be used to decrease the frequency interval ∆ω, in this case, we

define a new time series that consists of the original time series followed by

M −N zeros,

x = [x0, x1, x2, . . . , xN−1 0, 0, . . . , 0︸ ︷︷ ︸
M−N

] .

The new time series is an M -points time series with a DFT given by
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Xk =
N−1∑
n=0

xne
−i2πnk/M =

M−1∑
n=0

xne
−i2πnk/M , k = 0, . . . ,M − 1 (4.24)

The sampling interval of the frequency axis is now given by

∆ω =
2π

M
<

2π

N
.

In general, the trick of zero padding is used to oversample the frequency

axis when plotting the DFT. It is also vital to pad with zeros at the time of

performing discrete convolution using the DFT. We will return to the last

point when examining frequency domain deconvolution.

In Figures (4.1) and (4.2) we portray the effect of padding a time

series. In Figure (4.1) we have the original time series and the associated

DFT (the real and imaginary part). In Figure (4.2) the original time series

after zero padding (20 zeros) is used to compute the DFT.

In the following example I show how to pad with zeros a time series.

This codes was utilized to generate Figures (4.1) and (4.2).

% Zero padding - Example

N = 30; % Length of the TS

L = 20; % Number of zeros to pad

n = 1:1:N;

x = sin(2.*pi*(n-1)*0.1);

x = x./n;

if L>=1; x = [x, zeros(1,L)]; % Pad with zeros if L>0

N = length(x);

n = 1:1:N;

end;

X = fft(x); % Compute the DFT

w = 2*pi*n/N; % Compute the freq. axis in rads in [0,2pi).

subplot(311); plot(n,x); xlabel(’n’); ylabel(’x’);

subplot(312); stem(w,real(X)); xlabel(’\omega [rad]’); ylabel(’Real[X_k]’)

subplot(313); stem(w,imag(X)); xlabel(’\omega [rad]’); ylabel(’Imag[X_k]’)
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Figure 4.1: A time series and the real and imaginary parts of the DFT. Note

that freq. axis is given in radians (0, 2π)

4.2.3 The Fast Fourier Transform (FFT)

The FFT is not a new transform; the FFT is just a fast algorithm to compute

the DFT. The FFT is based on the halving trick, that is a trick to compute

the DFT of a length N time series by using the DFT of two sub-series of

length N/2. Let’s start assuming that we have a time series of length 2N

z0, z1, z2, z3, . . . , z2N−1 .

First, we will assume that one wants to compute the DFT of the time

series z. Using the definition

Zk =
2N−1∑
n=0

zn e
−i2πnk/(2N), k = 0 : 2N − 1 , (4.25)
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Figure 4.2: A time series and the real and imaginary parts of the DFT.

In this case the time series was padded with zeros in order to decrease the

frequency interval ∆ω.

we can rewrite the last equation in terms of two time series composed of even

samples x = z0, z2, z4 . . . and odd samples y = z1, z3, z5 . . ., respectively.

Zk =
N−1∑
n=0

z2n e
−i2π2nk/(2N) +

N−1∑
n=0

z2n+1 e
−i2π(2n+1)k/(2N) . (4.26)

The right hand side term can be written in terms of the DFTs of x (even

samples) and y (odd samples)

Zk = Xk + e−i2πk/(2N) YK , k = 0 : N − 1 . (4.27)

The last equation provides a formula to compute the first N samples of the

DFT of z based on the N samples of the DFT of x and y. Now, note that
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we need another formula to retrieve the second half of the samples of the

DFT of z,

Zk =
2N−1∑
n=0

zn e
−i2πnk/(2N) , k = N, . . . , 2N − 1 . (4.28)

In the last equation we apply the following substitution: j = k −N

Zj+N =
2N−1∑
n=0

zn e
−i2πn(j+N)/(2N) , k = N, . . . , 2N − 1 . (4.29)

After rewriting the last expression in terms of x and y we end up with the

following formula

Zj+N = Xj − e−i2πk/(2N) Yj , j = 0, N − 1 . (4.30)

Now we have two expressions to compute the DFT of a series of length 2N

as a function of two time series of length N . Good FFT algorithms repeat

this trick until the final time series are series of length 1. The recursions

given in (4.27) and (4.30) are applied to recover the DFT of the original

time series. It can be proved that the total number of operations of the

FFT is proportional to N ln2(N) (for a time series of length N). This is an

important saving compared to the standard DFT, which involves a number

of operations proportional to N2.

A simple modification to formulas (4.27) and (4.30) will permit us to

compute the inverse DFT.

I would recommend always padding your signal with enough zeros so

that the length of the signal given to the FFT algorithm is 2K , whereK is an

integer. The latter leads to signals of length 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024...

and to extremely efficient FFTs. For instance, if your signal has Nt = 99

points, I advise you to pad it with enough zeros to take it to N = 128 > Nt

points. You might want to make ∆ω really small for plotting purposes;

therefore, you could also choose to pad to a length N = 256 or N = 512.

I will use the name DFT when referring to the transform itself, which

transforms data from discrete-time to discrete-frequency. However, when I

write computer code, I will use the FFT. Results are equivalent; the only
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difference is that the FFT is a fast implementation of the DFT. There are

applications where one might need to write a simple DFT sum, such as

when the input signal is unevenly sampled, but this is probably a topic for

discussion in a more advanced portion of a geophysical signal processing

course.

4.2.4 Working with the DFT/FFT

Symmetries of the DFT are essential and often a real headache when de-

veloping codes. Getting them right is critical. Consider a real-time series,

for instance, particle velocity of the ground measured by a geophone and

sampled every ∆t seconds. This signal is input to the DFT to carry out a

given process in the frequency domain, such as filtering; once you apply the

frequency filter and return to the time domain via the inverse DFT, the sig-

nal must be real. If you don’t consider the DFT symmetries for real signals,

you might end up with an output signal that contains an imaginary part

and possibly the wrong real part. Trying to fix this in Matlab or Python

by extracting the real part of the output will only hide a coding error under

the carpet.

Symmetries

Let us start with the DFT of a real time series of length N

Xk =
N−1∑
n=0

xne
−i2πnk/N , k = 0, . . . , N − 1 (4.31)

the frequency in radians is given by

ωk = 2πk/N , k = 0, 1, . . . , N − 1 .

Using the following property

ei2π(N−k)n/N = e−i2πkn/N (4.32)

we can re-write equation (4.31) as follows:

XN−k =
N−1∑
n=0

xne
−i2πn(N−k)/N =

N−1∑
n=0

xne
i2πn(N+k)/N = X∗

k . (4.33)

80 GEOPH 426/526 - MD Sacchi



Chapter 4

The following example is used to illustrate the last point. The time series is

x = [2, 3, 1, 3, 4, 5,−1, 2] The DFT is given by

Sample k X_k N-k (N=8)

0 19.0000 8

1 -4.1213 - 1.2929i 7

2 6.0000 - 3.0000i 6

3 0.1213 + 2.7071i 5

4 -7.0000 4

5 0.1213 - 2.7071i 3

6 6.0000 + 3.0000i 2

7 -4.1213 + 1.2929i 1

The first N/2+1 samples are required to define the remaining N/2−1

samples of the DFT. For a real-time series of length N where N is even, one

has N/2+1 independent DFT coefficients. It is important to note that the

first N/2 + 1 samples correspond to positive frequencies. The remaining

correspond to negative frequencies, which also correspond to frequencies in

(π, 2π). Stay tuned for the next subsection.

The frequency axis

In the previous example I compute the DFT, Xk in terms of samples k. We

have already mentioned that k is related to angular frequency as follows:

ωk = 2πk/N . Let us define the sampling interval of the frequency axis as

∆ω = 2π/N , therefore, ωk = ∆ω k, k = 0, . . . , N − 1. In the previous

example we have

k omega_k X_k

0 0 19.0000

1 0.7854 -4.1213 - 1.2929i

2 1.5708 6.0000 - 3.0000i

3 2.3562 0.1213 + 2.7071i

4 3.1416 -7.0000
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ω3

ω5

ω6

ω7

ω4=π

ω2

ω1

ω0

ω0=0 ω1 ω2 ω3 ω4=π ω5 ω6 ω7

ω0=0  ω1 ω2 ω3 ω4=π

1 2 3 4 5 6 7 8

ω6−2π

1 2 3 4 5678

2-

1-

ω5−2π 

ω7−2π

Figure 4.3: Distribution of frequencies of the DFT. The DFT can be plot-

ted as in the [0, 2π) interval or in the (−π, π] interval. The output of the

DFT (or FFT) organizes Fourier coefficients in [0, 2π) but humans prefer to

visualize the coefficients versus a frequency axis in (−π, π] which leaves the

X0 complex amplitude in the centre (almost the centre, there is no centre

because N is even) of the plot for frequency ω = 0.

5 3.9270 0.1213 - 2.7071i

6 4.7124 6.0000 + 3.0000i

7 5.4978 -4.1213 + 1.2929i

Note that the central frequency is ω4 = π, the last frequency is almost

2π which is also he first negative frequency ∆ω − 2π in the axis (−π, π].

It does not make much sense to talk about frequencies above π radians.

In fact, the frequency ω = π is the Nyquist frequency in rads. What is the

meaning of frequencies above ω > π?. Well, this simply reflects the way

we have discretized the frequency ω when computing the DFT. The DFT

discretizes the frequency ω in the interval [0, 2π) radians which can also be

represented in the interval (−π, π] as shown in Figure ??.
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4.3 The 2D DFT

The 2D Fourier transform is defined as follows via the following expression

F (ω1, ω2) =

∫ ∫
f(x1, x2)e

−i(ω1 x1+ω2 x2)dx1 dx2 , (4.34)

similarly, we can define the inversion formula

f(x1, x2) =

∫ ∫
F (ω1, ω2)e

i(ω1 x1+ω2 x2)dω1 dω2 . (4.35)

Whereas the 1D FT is used to decomposed signals in a decomposition of

sin and cos, one can image the 2D FT as a decomposition of a signal in

terms of plane waves. It is important to stress that for our signal processing

applications we will be dealing with the 2D DFT (this is the discrete version

of the FT). Let us first consider a 2D discrete signal such as a gravity map

in discrete form xm,n

xm,n, n = 0, . . . , N − 1, m = 0, . . . ,M − 1 .

The formulas for the forward and inverse DFT in the 2D case are given by

Xk,l =
M−1∑
m=0

N−1∑
n=0

xm,ne
−i2πkm/Me−i2πln/N , k = 0, . . . ,M, l = 0, . . . , N .

(4.36)

xk,l =
1

N M

M−1∑
m=0

N−1∑
n=0

Xm,ne
i2πkm/Mei2πln/N , k = 0, . . . ,M, l = 0, . . . , N .

(4.37)

The 2D DFT is computed by calling 1D DFT along columns and rows of

xm,n. This is very simple: you first compute the DFT of all the columns

of xn,m, then you compute the DFT to rows of the previous result. In

fact, 2D DFT codes are just 1D FFTs codes working on rows and columns.

The 2D DFT is important at the time of filtering 2D images (i.e., gravity

maps, seismic records). Notice that in the 2D DFT we need to consider 2D

symmetries.
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4.4 Frequency domain filtering and finite impulse

response filters

So far, we have studied operators (filters) capable of collapsing a wavelet

into a spike. These filters are often called spiking filters or Wiener filters.

In this section, we will examine the problem of designing frequency domain

filters and FIR (Finite Impulse Response) filters. These are filters that are

used to eliminate undesired spectral components from our data.

4.4.1 Frequency domain filtering

Assume an input discrete signal xn, n = 0, . . . N − 1 with DFT Xk, k =

0, . . . N − 1. One can filter (exclude) frequency components by multiplying

Xk by a filter Bk that eliminate amplitude belonging to frequencies indices

k.

Say you have N frequencies and the sampling rate of the signal is ∆t

and you want to eliminate frequencies between f = 30hz and f = fNyquist.

How do you compute Bk? First, let’s be clear that we don’t want to in-

troduce phase distortions, we simple want to multiple Xk by 1 for those

frequencies we want to preserve and by 0 those that we want to eliminate.

The first problem is how to convert f = 30hz to a sample k = kc. It

is clear that the Nyquist frequency corresponds to ω = π radians or to

fNyquist = 1/(2∆t).

Recall the relationship between ωk and fk

ωk =
2π

N
k

fk =
ωk

2π∆t
=

k

∆tN
.

Hence you can find the sample corresponding to f = 30Hz by doing the

following

kc = [30×∆t×N ]

where [.] means round to the nearest integer of the argument. It is clear

that for the Nyquist frequency we have
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kn = [
1

2∆t
×∆t×N ] =

N

2
.

Therefore, we can have the following Operator Bk

Bk = 1, k = 0 : kc − 1

Bk = 0, k = kc : N/2

Once you have obtained Bk, k = 0, . . . N/2 you simple compute Yk =

Xk.Bk,k = 0, . . . N/2. Then you use the symmetry property of the DFT

for real signals to compute Yk, k = N/2 + 1 . . . N − 1. Finally, you use

the IDFT of Yk to compute the filtered signal. If symmetries were properly

considered, the output of the IDFT must be a real signal because the input

was real.

4.4.2 Low Pass FIR filters

In this case we want to design a filter that operates in the time domain with

a amplitude spectrum with the following characteristics

B(ω) =

 1 −ωc ≤ ω ≤ ωc

0 otherwise
(4.38)

We will assume that the filter phase is zero. In the previous expression ωc

is the cut-off frequency. This filter can be either applied in the frequency

domain or in the time domain. It is clear that if the signal to be filtered is

called X(ω), then the filtered signal is given by

Y (ω) = X(ω) . F (ω) (4.39)

In general, it is more convenient to design short filters in the time domain

and applied them via convolution3

y(t) = x(t) ∗, b(t) (4.40)

3note that we are working with continuous signals.
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where the sequence bk is the Impulse Response of the filter with desired

amplitude response B(ω). We can use the inverse Fourier transform to find

an expression for b(t),

b(t) =
1

2π

∫ ωc

−ωc

B(ω)eiωt .dω (4.41)

Evaluating the last integral leads to the following expression for the filter

f(t):

b(t) =
ωc

π

sin(ωc t)

ωc t
=
ωc

π
sinc(ωc t) , ∞ < t <∞ . (4.42)

This is the impulse response of the continues system with amplitude

response B(ω). We need to discretized the previous expression to obtain the

impulse response of a discrete system

bn = ∆t b(t)|t=n∆t (4.43)

the factor ∆t comes from equation (1.44); this is a scaling factor that allows

us to say that the Fourier transform of the discrete and continuous signals

are equal in [−π/∆t, π/∆t]. The final expression of the digital filter is given

by

bn = ∆t
ωc

π
sinc(ωc n∆t), n = . . . ,−3,−2,−1, 0, 1, 2, 3 . . . . (4.44)

It is clear that this is a IIR filter (infinite impulse response filter). A FIR

filter is obtained by truncating the IIR filter:

bn = ∆t
ωc

π
sinc(ωc nδt), n = −L . . . ,−3,−2,−1, 0, 1, 2, 3 . . . L . (4.45)

In this case we have a filter of length 2L + 1. When the filter is truncated

the actual amplitude spectrum of the filter is not equal to the desired or
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ideal amplitude spectrum (4.38). This point has already been studied in

Chapter 1 where we examined the spectral artifacts that are introduced

when a signal is truncated in time. In Figure (4.4) we display the impulse

response of a filter of cut-off frequency fc = 50Hz for filter lengths (2L+1)

21, and 41. We also display the associated amplitude response. It is easy to

see that the filter truncation has introduced the so called Gibbs phenomenon

(Oscillations).

One way to minimize truncation artifacts is by smoothing the trun-

cated impulse response with a taper or window.

bwn = bn.wn

now bwn is the truncated impulse response after applying a taper function.

The taper is used to minimize truncation effects at the end point of the

impulse response; a popular taper is the Hamming Window

wn = 0.54− 0.45 cos(2π(n− 1)/(N − 1)) , n = 1 : N

In figure (4.5) we analyze the effect of tapering the impulse response

of the filter before computing the amplitude response. It is clear that the

oscillations around the transition band have been eliminated. It is important

to stress that tapering will also increase the width of the transition band;

therefore filters that are too short might not quite reflect the characteristics

of the desired amplitude response.

4.4.3 High Pass filters

Knowing how to compute low pass filters allows us to compute high pass

filters. If the amplitude response of a low pass filter if given by BL(ω) we can

design a high pass filter with the same cut-off frequency using the following

expression:

BH(ω) = 1−BL(ω) (4.46)

that suggests that one can compute the impulse response of the low pass filter

an then transform it into a high pass filter using the following expression
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Figure 4.4: Impulse response of two finite length filters and the associated

amplitude response. The filter were obtained by truncating the ideal infinite

length impulse response sequence.

bHk = −bLk k ̸= 0

bHk = 1− bLk k = 0 .
(4.47)
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Figure 4.5: Impulse response of two finite length filters and the associated

amplitude response. The filter were obtained by truncating the ideal infi-

nite length impulse response sequence. In this case the truncated impulse

response was taper with a Hamming window. Tapering helps to attenuate

side-lobe artifacts (Gibbs phenomenon)
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Figure 4.6: A Hamming taper (window) of length 2L+ 1.
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Deconvolution of reflectivity

series

5.1 Modeling normal incidence seismograms

In this chapter, we study deconvolution again but now focus on estimating

the reflectivity series. First, we present a model that describes reflections

associated with plane waves impinging on horizontal layers. The plane wave

is impinging at normal incidence and reflected at horizontal geological inter-

faces. The latter will lead to the so-called convolution model used in applied

seismology.

5.1.1 Normal incidence

Consider a plane wave impinging at an angle of propagation i = 0 with

respect to the normal (see Figure (5.1) ). In this case, we have three waves:

• Incident wave: ↓ in medium 1

• Reflected wave: ↑ in medium 1

• Transmitted wave: ↓ in medium 2

Let us assume that the amount of incident wave is equal to 1, the

amount of reflected wave is given by r, and the amount of the transmitted
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wave is denoted by t. At the boundary, the following condition should be

satisfied (continuity of displacements)

1 + r = t

This equation has two unknowns; to compute the r and t, we need an extra

equation. We will consider the conservation of energy. In the acoustic (ver-

tical incidence case) conservation of energy leads to the following equation:

A1 × 1 +A1 × r2 = A2 × t2 .

The quantities A1 and A2 are called admittances

A1 = (ρ1 v1)
−1

A2 = (ρ2 v2)
−1

where ρ1 and ρ2 are the densities of the material above and below the in-

terface and v1 and v2 the P-velocities, respectively. The inverse of the ad-

mittance is the Acoustic Impedance, so I1 = A−1
1 and I2 = A−1

2 . After

combining the equations of continuity of displacement and conservation of

energy, we obtain the following expressions

r =
I2 − I1
I2 + I1

Reflection coefficient (5.1)

t =
2I1

I2 + I1
Transmission coefficient (5.2)

The above analysis is valid for an incident plane wave propagating down-

wards (Claerbout, 1976). Let us consider the case of an incident wave prop-

agating upwards (Figure (5.2) ).

• Incident wave: ↑ in medium 2

• Reflected wave: ↓ in medium 2

• Transmitted wave: ↑ in medium 1
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In this case, the reflection and transmission coefficients are given by

r′ =
I1 − I2
I2 + I1

(5.3)

t′ =
2I2

I2 + I1
(5.4)

From the above equations, it is clear that

r′ = −r (5.5)

5.1.2 Impulse response

Let us assume that we run a zero offset experiment in a stratified earth model

composed of four layers plus a half-space of impedances given by I1, I2, I3, I4

and I5. (Figure (5.3) ). At t = 0, a delta-like source emits energy into the

earth. The energy is transmitted and reflected from the layers. If we do not

consider multiple reflections, our seismogram will have 4 arrivals (4 primary

reflections).

To simplify the problem, I will show how to compute the amplitude

of the wave recorded at the surface of the earth generated (reflected) at the

interface 4. First, we have to compute the amplitude transmitted to each

layer until reaching the layer number 4. This is given by the product of

the transmission coefficients of each layer. In Figure (5.3) the transmission

coefficients t are replaces by their equivalent expression (1 + r).

The amplitude of the wave when it reaches the layer 4 is

1× t1 × t2 × t3 = (1 + r1)(1 + r2)(1 + r3)

when the wave is reflected in the layer 4, the total amplitude at that point

(the expression above) needs to be multiplied by the reflection coefficient of

interface 4,

1× t1 × t2 × t3 × r4 = (1 + r1)(1 + r2)(1 + r3)t4

Note that now the reflected wave is propagating upwards. Therefore, the

transmission coefficients are given by
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I1

I2

1 r

t

r: reflection coefficient

1+r=t

t: transmition coefficient

Figure 5.1: P-wave normal incidence. The incident wave propagates down-

wards.

1 + r′ = 1− r

The final amplitude after propagating the wave to the surface of the earth

(this is what the receiver is measuring!) is given by

(1 + r1)(1 + r2)(1 + r3)︸ ︷︷ ︸
Transmission ↓

× r4︸︷︷︸
Reflection

× (1− r1)(1− r2)(1− r3)︸ ︷︷ ︸
Transmission ↑
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I1

I2

1 r’

t’

r’: reflection coefficient

t’: transmition coefficient

1+r’=t’       r = -r’

Figure 5.2: P-wave normal incidence. The incident wave propagates up-

wards.

The final expression for the amplitude of the wave reflected in the interface,

4 can be written down as follows

(1− r21)(1− r22)(1− r23)r4 .

It is clear that reflections occur at all the layers

Amplitude of the reflection generated at the interface 1

a1 = r1
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z3

z4

z2

z1

z=0

(1+r1)(1+r2)(1+r3)

(1+r1)(1+r2)

1+r1

1 (1+r1)(1+r2)(1+r3)r4(1-r3)(1-r2)(1-r1)

(1+r1)(1+r2)(1+r3)r4(1-r3)(1-r2)

(1+r1)(1+r2)(1+r3)r4(1-r3)

(1+r1)(1+r2)(1+r3) r4

I1

I3

I4

I2

Reflection at interface 4

I5
Interface 4

Interface 1

1+ri = Transmition coef. 

1-ri = Transmition coef.

Ii = Acoustic impedance of the layer i

Figure 5.3: Amplitude of a wave plane wave propagating in a layered

medium. Analysis of the wave reflected in the interface 4.

Amplitude of the reflection generated at the interface 2

a2 = (1− r21)r2
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Amplitude of the reflection generated at the interface 3

a3 = (1− r21)(1− r22)r3

Amplitude of the reflection generated at the interface 4

a4 = (1− r21)(1− r22)(1− r23)r4

We can write a general expression for the amplitude of a reflection generated

at the k-th interface

a1 = r1

ak =
k−1∏
i=1

(1− r2i ) rk ≈ rk k = 2, 3, 4, . . .

How do we interpret these results? If we assume that the earth is excited

with a delta function and neglect the presence of multiples, our zero-offset

seismogram will be a collection of delta functions (spikes) at arrival times

given by the two-way travel time to each interface. The strength of each

arrival will be proportional to the amplitude ak

However, having a source resembling a delta function is impossible in

seismic exploration. The source signature is called a wavelet. The latter is

a finite-length function denoted as w(t). In this case, the seismogram is rep-

resented by a superposition of wavelets arriving at times tk and amplitudes

proportional to a.

In our model with 4 interfaces (Figure (5.3) ) we will have 4 arrivals

of amplitude a1, a2, a3 and a4. The seismogram can be expressed as follows

s(t) = a1w(t− t1) + a2w(t− t2) + a3w(t− t3) + a4w(t− t4) (5.6)

where t1, t2, t3 and t4 are the arrival times of each reflection 1

Notice that if we neglect transmission effects, the amplitude ai can

be replaced by the reflection coefficient of ri. Furthermore, we will assume

1Notice that w(t− τ) is w(t) after being delayed τ seconds.
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an earth model that consists of micro-layers of ”length” ∆t. Hence, time

becomes discrete and is given by t = (n− 1) ∗∆, n = 1, . . .. In this case, we

can write the seismic trace model as a convolution between two-time series:

a wavelet and the reflectivity sequence.

sn = wn ∗ qn . (5.7)

For instance, in our 4-layer example,

q = (0, 0, 0, . . . , 0, r1, 0, 0, . . . , 0, 0, 0, r2, 0, 0, . . . , 0, 0, r3, 0, 0, . . . , 0, 0, r4, 0, 0, 0)

Where non-zero reflectivity amplitudes are placed at the corresponding time

samples ni, ti = (ni − 1)∆t, i = 1 . . . 4.

5.2 Deconvolution of reflectivity series

So far, we have discussed the problem of designing a deconvolution operator

for a seismic wavelet. We have also examined a toy problem involving in-

verting wavelets of length 2 (dipoles) via series expansion and least-squares

inversion.

In general, the convolutional model is a well accepted model to de-

scribe a seismic trace. In this model, we say that the seismic trace (zero-

offset trace) can be written down as a convolution of two signals: a seismic

wavelet (this is the source function) and the reflectivity series.

The reflectivity series is our geological unknown. In fact, reflectivity

is a sequence of spikes that indicates the time position of the layers in the

subsurface. Each spike’s strength or amplitude is proportional to how much

energy is reflected back to the receivers during the seismic experiment. Let

us write the seismogram as a simple convolution between a wavelet wn and

a reflectivity sequence qn

sn = wn ∗ qn . (5.8)

In this simple model, we have neglected the noise. We will assume that

deterministic noise (multiples and ground roll) has been attenuated, and

therefore what is left is random noise
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sn = wn ∗ qn + nn . (5.9)

It is clear from the above equation that one has a problem with one equa-

tion (one observable) and two unknowns (the wavelet and the reflectivity).

Therefore, the seismic deconvolution problem involves the solution of two

subproblems:

• Wavelet Estimation

• Inverse filter design

We refer to methods of estimating the seismic source as wavelet estimation

methods. These statistical techniques explode some properties of the re-

maining unknown (the reflectivity). We also have deterministic processes

based on the wave equation that can be adopted to estimate seismic sources

in the marine case. These methods are beyond the scope of this course.

5.2.1 The autocorrelation sequence and the white reflectiv-

ity assumption

We have seen that the design of a Wiener or inverse filter of the wavelet

involves the inversion of an autocorrelation matrix with Toeplitz structure.

To clarify the problem, let us assume that we have a 3-point wavelet and

we compute its autocorrelation matrix. We first write down the convolution

matrix2:

C =



w0 0

w1 w0

w2 w1

0 w2


. (5.10)

The autocorrelation matrix is given by

2This is the matrix you would have used to design a 2-point inverse filter
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R = CTC =

 r0 r1

r1 r0

 . (5.11)

Now we can try to write the autocorrelation coefficients in terms of the

sample of the wavelet wn. In this case, we have

rw0 = w2
0 + w2

1 + w2
2 (5.12)

rw1 = w0w1 + w1w2 (5.13)

The first coefficient is the zero-lag correlation coefficient, this is also a mea-

sure of the energy of the wavelet. The second coefficient 3 rw1 is the first lag

of the correlation sequence.

The correlation coefficients can be written using the following expres-

sion:

rwj =
∑
k

wkwk+j , j = 0,±1,±2 . . . . (5.14)

In the inverse filter the matrix R is an N × N a matrix where N is the

length of the filter, in this case we will need to compute the autocorrelation

coefficients

rwj , j = 0, N − 1 .

To design the inverse filter, we first need to know the wavelet. Unfortunately,

the seismic wavelet is unknown. To solve this problem, we use the white

reflectivity assumption. Under this assumption, the seismic reflectivity (the

geology) is considered a zero-mean white process (Robinson and Treitel,

1980).

A zero-mean white process is an uncorrelated process; in other words

if rqj is the autocorrelation function of the reflectivity, then

3Please, note that the supra-script w is used to stress that this is the autocorrelation

of the wavelet
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rqj =

 Pq j = 0

0 j = ±1,±2,±3, . . .
. (5.15)

The autocorrelation measures the similarity of a time series with itself. The

zero-lag coefficient measures the power of the signal Pq. The first coefficient

(lag j = 1) measures the similarity of the signal with a one-sample shifted

version of itself. If the reflectivity is a zero-mean white noise process, the

following remarkable property is true

rsj = Pq r
w
j . (5.16)

In other words: the autocorrelation function of the trace is an estimator

(within a scale factor) of the autocorrelation of the wavelet. It is clear that

now we can estimate the autocorrelation of the wavelet from the autocorre-

lation of our observable: the seismic trace.

We have managed to compute the autocorrelation function of the

wavelet, but what about the wavelet. The Z-transform of the autocorre-

lation sequence of the wavelet can be used to calculate the seismic wavelet.

In this case, we need to make a new assumption; we will assume that the

wavelet is a minimum phase wavelet. Generally, this is a reasonable assump-

tion to deal with sources generated by explosions (dynamite).

It is easy to show that the Z-transform of the autocorrelation the

sequence can be decomposed as follows

Rw(z) =
∑
j

rwj z
j =W (z)W (z−1) . (5.17)

The latter is valid for a real wavelet. In this case, the autocorrelation func-

tion provides information about the wavelet but cannot define the phase of

the wavelet. After factorizing the above equation, one can select the ze-

ros outside the unit circle (the minimum phase dipoles!!). In this way, we

can recover the minimum phase wavelet consistent with the given spectrum

Rw(z).
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Estimating a minimum phase wavelet from the autocorrelation is often

called the spectral factorization problem. It can be solved using different

techniques:

• Kolmogorov factorization (see my code in SeismicLab)

• Factorization via roots finding. Compute the roots of the Z-transform

of the autocorrelation as indicated above, and keep the roots outside

the unit circle to synthesize the minimum phase wavelet.

• Double inverse filter.

5.2.2 What do we do with the noise?

We start with our noisy seismogram in the time domain

sn = wn ∗ qn + nn . (5.18)

The deconvolution process aims to recover qn from the data, sn. To achieve

this goal, a filter fk must be computed such that fk ∗wk = δk. Generally, of

course, we can only compute an estimator of the filter f̂k, where f̂k∗wk = ak,

where ak is called the averaging function. The latter resembles a delta

function only in the ideal case. Applying f̂k to both sides of equation (5.18),

yields the estimated output of the deconvolution process

q̂k = ak ∗ qk + f̂k ∗ nk
= qk + (ak − δk) ∗ qk + f̂k ∗ nk .

(5.19)

Since our main requirement is to estimate a reliable model q̂t which is close

to the actual reflectivity, it is important to design a filter such that the error

terms in equation (5.19) are as small as possible. Or in other words, one

seeks a solution with the following properties

ak = wk ∗ fk ≈ δk , (5.20)

and
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fk ∗ nk ≈ 0 . (5.21)

The last two expressions can also be written in matrix form

Cwf ≈ d (5.22)

and

Cnf ≈ 0 (5.23)

where Cw and Cn denote the convolution matrices for the wavelet and the

noise, respectively. Both equations are honoured when we minimize the

following objective function

J = ∥Cwf − d∥2 + β||Cnf ||2 , (5.24)

where β is a tradeoff parameter. The second term in the last equation can

be written as

||Cnf ||2 = fTCT
nCnf , (5.25)

where the matrix CT
nCn is the noise autocorrelation matrix. If the noise is

uncorrelated, we can replace CT
nCn by

E[CT
nCn] = σ2nI . (5.26)

where σ2n is the variance of the noise. Now the objective function J is given

by,

J = ||Cwf − d||2 + µ||f ||2 , (5.27)
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Reflectivity, q

seismogram (No noise)

Deconvolved reflectivity µ=0.001

Figure 5.4: Deconvolution of a clean seismogram.

where µ = σ2n × β. This is the objective function used to design the inverse

filter, and the solution is given by

f = (Rw + µI)−1CT
wd . (5.28)

In Figures (5.4), (5.5) and (5.6) we test the performance of the least-squares

inversion when dealing with noise-free and noisy data. It is clear that the

pre-whitening parameter plays a crucial role in the deconvolution of noisy

data.

5.2.3 Deconvolution in the frequency domain

A procedure similar to the one outlined in the previous section can be used

to deconvolve data in the frequency domain. Taking the Discrete Fourier

Transform (DFT) of equation (5.19) yields
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Reflectivity, q

Noisy seismogram 

Deconvolved reflectivity µ=0.001

Figure 5.5: Deconvolution of a noisy seismogram. The tradeoff parameter

is too small, then the resulting solution is unstable.

Q̂k = Qk + (Ak − 1)Qk + F̂kNk. (5.29)

Since ak should be a good approximation to a delta function, it turns out

that the filter should be designed to satisfy the following requirement

WKFk = Ak ≈ 1 ∀k. (5.30)

Furthermore, to maintain the noise at a small level, we also wish to minimize

the

FkNk ≈ 0 ∀k . (5.31)
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Reflectivity, q

Noisy seismogram 

Deconvolved reflectivity µ=0.05

Figure 5.6: Deconvolution of a seismogram contaminated by additive noise.

The tradeoff term has been adopted to stabilize the solution.

We can combine these two requirements into a single one. To achieve this,

let us construct the following objective or cost function

J =
∑
k

|Ak − 1|2 + α
∑
k

|FkNk|2. (5.32)

Minimizing the objective function with respect to the filter coefficients leads

to

F̂k =
W ∗

k

|Wk|2 + α|Nk|2
. (5.33)

Finally, the reflectivity estimate is given by
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Q̂k = Dk
W ∗

k
|Wk|2+α|Nk|2

= Dk
W ∗

k
|Wk|2+µ

.
(5.34)

Since the noise has a flat spectrum (|Nk|2 = σ2n) we can replace α|Nk|2 by

another constant µ. An estimate of the variance of the reflectivity estimator

in the frequency domain is given by

V ar(Q̂k) = |F̂k|2σN 2. (5.35)

after a few manipulations, we end up with

V ar(Q̂k) =
|Wk|2σN 2

(|Wk|2 + µ)2
. (5.36)

When µ = 0 the variance V ar(Q̂k) can be too high at the frequencies k at

which the wavelet power is small. Similarly, we can find an expression for

the norm of the reflectivity estimator in the frequency domain

N =
∑

k |Q̂k|2

= 1
σN

2

∑
k |Sk|2V ar(Q̂k)

(5.37)

The misfit function is

Φ =
∑

k |Sk −WkQ̂k|2

= 1
σN

2

∑
k |Sk|2(

µ
|Wk|2+µ

)2
(5.38)

Regularization error and noise magnification

If Ek denotes the deviation of the filter from the right inverse filter, defined

by

Ek = 1− F̂kWk (5.39)
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we can write equation 5.34 as follows

Q̂k = F̂kWkQk + F̂kNk

= (1− Ek)Qk +
1−Ek
Wk

Nk

(5.40)

then, the difference between the actual reflectivity Qk and the reflectivity

estimate Q̂k is given by

Q̂k −Qk = −EkQk︸ ︷︷ ︸
RE

+
1− Ek

Wk
Nk︸ ︷︷ ︸

NAE

(5.41)

where RE stands for regularization error and NAE for noise amplification

error. The NAE is independent of the data and can be expressed as a

function of the wavelet:

W ∗
k

|Wk|2 + µ
.

It is clear that the more the filter resembles the inverse the wavelet W−1
k ,

the larger this error will be. The RE introduces data-dependent degradation

(i.e., ringing).

5.2.4 References

Robinson E. A. and S. Treitel, Geophysical Signal Analysis, 1980, Prentice

Hall.

Clearbout, J., Fundamentals of Geophysical Data Processing, 1976, McGraw-

Hill.
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Signal-to-noise-ratio

enhancement via f − x

deconvolution

6.1 f − x filters

Signal-to-noise-ratio enhancement in the f − x (also called ω − x) domain

has been proposed by Canales (1994) as a method for random noise atten-

uation. The technique is widely accepted and used to process prestack and

poststack seismic data from a reflection seismology experiment. The tech-

nique is instrumental in attenuating random noise; it is easy to implement

and efficient in the computational sense. You will find this method often

named f − x deconvolution or f − x decon.

Before developing the theory of f−x deconvolution filters, a few back-

ground sentences are in order. Signal predictability has been extensively

studied in the context of AR (Autoregressive) filters and harmonic retrieval

via ARMA (Autoregressive Moving Average) models (see, for instance, Ul-

rych and Clayton, 1976). In general, AR and ARMA models are adopted

for parametric spectral analysis. In this chapter, we will use them for the

prediction of the seismic signal is space.

The idea is quite simple and can be summarized as follows. In the

f − x domain, events with linear moveout or quasilinear events manifest
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themselves as a superposition of harmonics. You have already studied in

GEOPH 326 that reflections in common-mid-point (CMP) and common-

shot gathers (CSG) have hyperbolic moveout. However, if you consider a

small spatio-temporal window of seismic data in any domain (including CSG

and CMP gathers), one can approximate seismic events by a superposition of

constant dip signals, or in other words, events with linear moveout. Hence,

f −x filters are often run in overlapping spatio-temporal windows of seismic

data to validate the linear moveout assumption under which these filters are

designed.

If noise is taken into account, an optimal model to predict a superpo-

sition of harmonics is an ARMA model (AR: Autoregressive, MA:Moving

average). However, given the the fact that ARMA models might not be

very stable (they involve the solution of an eigenvalues problem), we will

propose to replace the ARMA model with a long AR filter. In this case,

the predictability is not optimal, but the problem can be easily solved using

predictor error filters of the type, we have already analyzed in the context

of deconvolution.

We will start this lecture by introducing the concept of predictability

via a straightforward model composed of a superposition of harmonics in x.

6.1.1 The signal model

The signal model is based on the assumption that seismic data can be repre-

sented as a superposition of events with linear moveout. In general, a seismic

section can be divided into overlapping windows where this assumption is

valid.

One single event (dip)

We first consider a seismic section that consists of a single dip or single event

with linear moveout

s(t, x) = w(t− t0 − px) . (6.1)

It is clear that the signal s(t, x) represent an event with linear moveout in x

because the wavelet of amplitude w(t) is delayed an amount t0+p x where p
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is the dip (or local ray parameter) and x is distance. The frequency domain

representation of s(t, x) is given by1

S(f, x) =W (f) e−i2πft0e−i2πfpx , (6.2)

We can simplify last equation by absorbing all terms that do not depend on

space x into a single term

S(f, x) = A(f) e−i2πfpx , (6.3)

where W (f) indicates the source spectrum, and A(f) =W (f)e−i2πft0 , with

f the temporal frequency, x the spatial variable or offset and p the apparent

slowness or dip. We will assume that the spatial variable x is regularly

discretized according to x = (k−1)∆x , k = 1, . . . N where N is the number

of traces in the window of analysis. For any temporal frequency, f , we can

write

Sn = Ae−iαn, n = 1, . . . N (6.4)

where α = 2πfp∆x. The following recursion is obtained by combining Sn

and Sn−1

Sn = a1Sn−1 . (6.5)

where a1 = exp(iα). The last equation is a first order difference equation

that allows us to recursively predict the signal along the spatial variable

x = (n− 1)∆x.

Superposition of L linear events

Now we assume a superposition of L events of different dip

s(t, x) =
L∑

k=1

αk w(t− t0k − pk x) . (6.6)

In this case, we are also assuming that each events has an amplitude given

by αk. Last expression can be transformed to the f − x domain

1Remember the time delay theorem: f(t− τ) ↔ F (ω)−iωτ .
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S(f, x) =
L∑

k=1

αkW (f) e−i2πft0ke−i2πfpk x , (6.7)

where the later correspond to the superposition of L complex harmonics in

x for a given frequency f . Similarly to the case where we analyze one dip

(L = 1), it can be shown that the superposition of L complex harmonics (L

linear events in x − t) can be represented by a difference equation of order

L

Sn = a1Sn−1 + a2Sn−2 + . . . apSn−L . (6.8)

where the coefficients a1, a2 . . . aL are related to the dip p1, p2, p3 . . . pL. The

last equation can be written in prediction error form as follows

L∑
k=0

gkSn−k = 0 , (6.9)

where the coefficients of the prediction error filter are related to the coeffi-

cients ak in equation (4) by the following expressions

g0 = 1, gk = −ak, k = 1, . . . L .

In the absence of noise, the prediction error filter gk is a signal annihilator.

In other words, the convolution of the gk with Sk as expressed in equation

7.19 is equal to zero (annihilates the output). So far, we have been able to

define a recursive expression to predict a noise-free superposition of complex

harmonics. In real applications, however, additive noise will corrupt the

data, hence we write

Yn = Sn + En , (6.10)

where En represents a white noise sequence and Yn is the spatial signal

corrupted by noise (Yk is the measured signal in f − x domain). The noise

En is considered white noise in space. Substituting Sn−k = Yn−k − En−k

into equation (7.19) leads to the following system of equations that defines

the signal model in terms of the prediction error filter

∑L
k=0 gkYn−k =

∑L
k=0 gkEn−k

= en .
(6.11)
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The latter is model of the type called ARMA(L,L) in which the AR and

MA components are identical. The signal en in equation (6.11) designates

the non-white innovation sequence
∑p

k=0 gkEn−k. It is non-white because it

the output of filtering gk with white noise Ek.

6.1.2 f − x deconvolution derivation via the AR model

Rather than trying to solve the ARMA equations, one can replace the

ARMA model with a long AR (autoregressive) model. In other, words we

simplify equation 6.11 into

Yn − a1Yn−1 + a2Yn−2 . . .+ apYn−L = Nn . (6.12)

Where ak are the coefficients of the AR(L) model. In general, L is not equal

to the number of dips in the data. The latter was valid for the ARMA

model. The parameter L is the model’s order also called the length of the

f − x decon filter which should be large enough to represent the original

ARMA model. In other words, the expression given by 6.11 where the

white noise En was convolved by the filter is simplified by assuming that

the term
∑p

k=0 gkEn−k is equivalent to a white noise innovation Nn. The

determination of L involves using trial-and-error methods where we examine

the output and adjust the filter to avoid signal leakage or by criteria based

on statistical assumptions such the AIC method (Automatic information

criterion also is known as Akaike information criterion).

The last equation can be written in matrix form as follows (assume L = 3),



y1 0 0

Y2 Y1 0

Y3 Y2 Y1

Y4 Y3 Y2

0 Y4 Y3

0 0 Y4




a1

a2

a3

 −



y2

Y3

Y4

0

0


=



w2

N3

N4

0

0


. (6.13)
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We wave already seen a similar equation in the previous chapter when we

analyze inverse filters. The last equation can be written as

Ya− d = n (6.14)

The least-squares filter a is computed by minimizing the power of the inno-

vation noise N, in this case our cost or objective function is given by

J = ||Ya− d||22 . (6.15)

Taking derivatives of the cost function with respect to filter coefficients and

equating the result to zero leads to

YH Y f = YH d (6.16)

Note that the matrix YH Y is a Toeplitz form which can be efficiently solved

using Levinson’s recursion. Then, the estimated filter â is given by

â = (YH Y)−1YH d . (6.17)

Once the filter has been estimated, we apply it to the data vector d to obtain

the clean data vector d̂

d̂ = Y â . (6.18)

The estimate d̂ is the predicted data, the predicted noise sequence is given

by

n̂ = d̂ − d . (6.19)

In general we need to regularize the filter by adding a small perturbation to

the diagonal of the Toeplitz matrix,

f̂ = (YH Y + µI)−1YH d . (6.20)
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The process is called f − x deconvolution because one can make an analogy

with the deconvolution process.

6.1.3 The convolution matrix

We have adopted a convolution matrix to design our filter. But bear in mind

that other data matrices can be used to estimate the data prediction filter.

Canales (1984) original formulation uses the following model,



Y1 0 0

Y2 Y1 0

Y3 Y2 Y1

Y4 Y3 Y2

0 Y4 Y3

0 0 Y4




a1

a2

a3

 =



Y2

Y3

Y4

0

0


. (6.21)

Ulrych and Clayton (1976) proposed the transient-free convolution matrix.

This is a matrix where zero extension is avoided. In other, words only

available data is used to estimate the filter. In Canales’ method missing

data is treated as zeros. In our simple example (L = 3) the transient-free

matrix formulation is given by



Y3 Y2 Y1

Y4 Y3 Y2

Y5 Y4 Y3

Y6 Y5 y4




a1

a2

a3

 =



Y4

Y5

Y6

Y7


. (6.22)

The solution of the above system gives a filter-free of truncation errors.

However, the matrix YH Y is not a Toepiltz form.

It is essential to mention that the above analysis only involved forward

prediction filters. In other words we are trying to predict the future samples

of the signal based upon past values of the signal. Now, talking about future
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doe snot make sense because we are working with spatial signal. By future

I meant prediction Yk from Yk−1, Yk−2, . . .. A correct name for the latter is

forward prediction. Similarly, one could have written equations where one

can do backward prediction which means prediction Yk from Yk+1, Yk+2, . . ..

In space, once the data has been acquired, one can write forward prediction

and backward predcition equations. A more sophisticated scheme involves

the simultaneous minimization of a forward and a backward prediction error.

In this case, one can show that the system of equations in the transient-free

matrix has the following aspect (we assume a filter of length L and a signal

composed of N samples)



YL . . . Y1

. . . . .

. . . . .

. . . . .

YN−1 . . . YN−L

Y ∗
2 . . . Y ∗

L+1

. . . . .

. . . . .

. . . . .

Y ∗
N−L+1 . . . .Y ∗

N





a1

a2

.

.

.

aL


=



YL+1

.

.

.

YN

Y ∗
1

.

.

.

Y ∗
N−L



. (6.23)

6.1.4 Examples

In Figures 6.1 and 6.2 two synthetic windows where we examine the pre-

dictability of a single harmonic.

Two dimensional simulations are displayed in Figures 6.3 and 6.4. No-

tice that in spite the method being developed for signal with linear moveout,

it can also be used for waveforms where the curvature of event is varying

slowly as it is shown in Figure 6.4.

The algorithm to perform the f − x noise attenuation is summarized
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as follows:

1. Transform the data into the f − x domain

Data(t, x) → Data(f, x)

2. for each frequency f solve the AR prediction problem outline in the

preceding section to estimate the AR prediction filter.

3. Apply the filter to the data (convolution of the filter witht the data).

4. Transform back to t− x domain

Data(f, x) → Data(t, x)

5. end

In you are interested in knowing more about f −x deconvolution, there is a

nice review paper by Gülünay (2017) that you should read.
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Prediction of  harmonics using AR filters p=20
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Figure 6.1: Prediction of a single harmonic (no noise) using AR filters.

Bottom figure is the observed signal from where we compute the prediction

filer ak of length L. In this case L = 2 because a real sin requires two

exponentials. Central signal is the predicted signal from the filer coefficients

ak. The signal at the top is the prediction error. Clearly the first sample of

the signal cannot be predicted.
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Prediction of  harmonics using AR filters p=20
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Figure 6.2: Prediction of a single harmonic (σnoise = 0.2) using AR filters

(linear prediction). The signal containing noise (Bottom signal) was used

to estimate the prediction filter which is used to estimate the central signal.

You can observe the noise has been partially removed. Finaly, the top

signal is the predicted error or predicted noise which is the noise that has

been extracted from the observed signal.
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Figure 6.3: FX filtering of a single linear event immersed in noise.
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Figure 6.4: f − x filtering of a single linear hyperbolic event immersed in

noise. Notice that the curvature of the hyperbolic event is relatively small

and, hence, the f−x filter can model the signal and produce an output with

attenuated noise.
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The KL transform and

eigenimages

In this chapter, we will discuss another technique to improve the information

content of seismic data. The application of eigenimage analysis in seismol-

ogy was proposed by Hemon and Mace (1978). In their approach, they use

a particular linear transformation called the Karhunen-Loeè (KL) transfor-

mation. The KL transformation is also knows as the principal component

transformation, the eigenvector transfomation or the Hotelling transofma-

tion. Of particular relevance to the ensuing discussion is the excellent paper

by Ready and Vintz (1973), which deals with information extraction and

SNR improvement in multispectral imagery.

In 1983, the work of Hemon and Mace was extended by a group of re-

searchers at the University of British Columbia in Canada which culminated

in the work of Jones and Levy (1987).

In 1988 Freire and Ulrych applied the KL transformation in a some-

what different manner to the processing of vertical seismic profiling data.

The actual approach which was adopted in this work was by means of sin-

gular value decomposition (SVD), which is another way of viewing the KL

transformation (the relationship between the KL and SVD transformations

is discussed in this chapter).

A seismic section which consists of M traces with N points per trace

may be viewed as a data matrix X where each element xij represents the
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ith point of the jth trace. A singular value decomposition (Lanczos, 1961),

decomposes X into a weighted sum of orthogonal rank one matrices which

have been designated by Andrews and Hunt (1977) as eigenimages of X. A

particularly useful aspect of the eigenimage decomposition is its application

in the complex form. In this instance, if each trace is transformed into the

analytic form, then the eigenimage processing of the complex data matrix

allows both time and phase shifts to be considered which is of particular

importance in the case of the correction of residual statics.

7.1 Mathematical framework

We consider the data matrix X to be composed of M traces with N data

points per trace, the M traces forming the rows of X. The SVD of X is

given by, (Lanczos (1961)),

X =
r∑

i=1

σiuiv
T
i . (7.1)

where T indicates transpose, r is the rank of X, ui is the ith eigenvector

of XXT, vi is the ith eigenvector of XTX and σi is the ith singular value

of X. The singular values σi can be shown to be the positive square roots

of the eigenvalues of the matrices XXT and XTX. These eigenvalues are

always positive owing to the positive definite nature of the matrices XXT

and XTX. In matrix form equation (7.1) is written as

X = UΣVT (7.2)

Andrews and Hunt (1977) designate the outer dot product uiv
T
i as the ith

eigenimage of the matrix X. Owing to the orthonormality of the eigen-

vectors, the eigenimages form an orthonormal basis which may be used to

reconstruct X according to equation (7.1).

Suppose, for example, that X represents a seismic section and that

all M traces are linearly independent. In this case X is of full rank M , all

the σi are different from zero and a perfect reconstruction of X requires all
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eigenimages. On the other hand, in the case where all M traces are equal

to within a scale factor, all traces are linearly dependent, X is of rank one

and may be perfectly reconstructed by the first eigenimage σ1u1v
T
1 . In the

general case, depending on the linear dependence which exists among the

traces, X may be reconstructed from only the first few eigenimages. In this

case, the data may be considered to be composed of traces which show a high

degree of trace-to-trace correlation. Indeed, XXT is, of course, a weighted

estimate of the zero lag covariance matrix of the data X and the structure

of this covariance matrix, particularly the distribution of the magnitudes

of the corresponding eigenvalues, indicates the parsimony or otherwise of

the eigenimage decomposition. If only p, p < r, eigenimages are used to

approximate X, a reconstruction error ϵ is given by

ϵ =
r∑

k=p+1

σ2k . (7.3)

Freire and Ulrych (1988) defined band-pass XBP, low-pass XLP and

high-pass XHP eigenimages in terms of the ranges of singular values used.

The band-pass image is reconstructed by rejecting highly correlated as well

as highly uncorrelated traces and is given by

XBP =
q∑

i=p

σiuiv
T
i , 1 < p ≤ q < r . (7.4)

The summation for XLP is from i = 1 to p − 1 and for XHP from

i = q + 1 to r. It may be simply shown that the percentage of the energy

which is contained in a reconstructed image XBP is given by E, where

E =

∑q
i=p σ

2
i∑r

i=1 σ
2
i

. (7.5)

The choice of p and q depends on the relative magnitudes of the singular

values, which are a function of the input data. These parameters may, in

general, be estimated from a plot of the eigenavalues λi = σ2i as a function

of the index i. In certain cases, an abrupt change in the eigenvalues is easily
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Figure 7.1: A flat event immersed in nose and the recostruction by means

of the first eigenimage

recognised. In other cases, the change in eigenvalue magnitude is more

gradual and care must be exercised in the choice of the appropriate index

values.

In Figures 7.1 and 7.2 we illustrate the reconstruction fo a flat event

immersed in noise using the first eigenimage of the data. In this example only

the most energetic singular value was retained. When the data exhibit some

type of moveout, one eigenimage is not sufficient to properly reconstruct the

data. This can be observed in Figures 7.3 and 7.4.

As we have seen, decomposition of an image X into eigenimages is

performed by means of the SVD of X. Many authors also refer to this

decomposition as the Karhunen-Loève or KL transformation. We believe

however, that the SVD and KL approaches are not equivalent theoretically

for image processing and, in order to avoid confusion, we suggest the adop-

tion of the term eigenimage processing. Some clarification is in order.
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Figure 7.2: Spectrum of singular values for the data in Figure 7.1.

A wide sense stationary process ξ(t) allows the expansion

ξ̂(t) =
∞∑
n=1

cnψn(t) 0 < t < T (7.6)

where ψn(t) is a set of orthonormal functions in the interval (0, T ) and the

coefficients cn are random variables. The Fourier series is a special case of

the expansion given by equation (7.6) and it can be shown that, in this case,

ξ(t) = ξ̂(t) for every t and the coefficients cn are uncorrelated only when ξ(t)

is mean squared periodic. Otherwise, ξ(t) = ξ̂(t) only for |t| < T/2 and the

coefficients cn are no longer uncorrelated. In order to guarantee that the cn

are uncorrelated and that ξ(t) = ξ̂(t) for every t without the requirement of

mean squared periodicity, it turns out that the ψn(t) must be determined

from the solution of the integral equation
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Figure 7.3: A Parabolic event immersed in nose and the reconstruction by

means of the 1,2 and 3 eigenimages

∫ T

0
R(t1, t2)ψ(t2)dt2 = λψ(t1) 0 < t1 < T (7.7)

where R(t1, t2) is the autocovariance of the process ξ(t).

Substituting the eigenvectors which are the solutions of equation (7.7)

into equation (7.6) gives the KL expansion of ξ(t). An infinite number of

basis functions is required to form a complete set. For a N × 1 random

vector x we may write equation (7.6) in terms of a linear combination of

orthonormal basis vectors wi = (wi1, wi2, . . . , wiN)T as

xk =
N∑
i=1

yiwik k = 1, 2, . . . , N (7.8)
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Figure 7.4: Spectrum of singular values for the data in Figure 7.3.

which is equivalent to

x = Wy (7.9)

where W = (w1,w2, . . . ,wN). Now only N basis vectors are required for

completeness. The KL transformation or, as it is also often called, the KL

transformation to principal components, is obtained as

y = WTx (7.10)

where W is determined from the covariance matrix Cx of the process

Cx = WΛWT (7.11)
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Let us now turn our attention to the problem of the KL transformation

for multivariate statistical analysis. In this case we consider M vectors

xi, i = 1,M arranged in a M × N data matrix X. The M rows of the

data matrix are viewed as M realizations of the stochastic process x and

consequently the assumption is that all rows have the same row covariance

matrix Cr. The KL transform now becomes

Y = WTX (7.12)

An unbiased estimate of the row covariance matrix is given by

Ĉr =
1

M − 1

M∑
i=1

xix
T
i (7.13)

assuming a zero mean process for convenience. Since the factor M − 1

does not influence the eigenvectors, we can see from equation (12) and the

definition of U that W = U. Consequently, we can rewrite equation (11) as

Y = UTX (7.14)

Substituting equation (7.1) into equation (7.14), we obtain

Y = UTUΣVT = ΣVT (7.15)

The principal components contained in the matrix Y may be viewed

as the inner product of the eigenvectors of XXT with the data, or as the

weighted eigenvectors of XTX.

Since X may be reconstructed from the principal component matrix

Y by the inverse KL transformation

X = UY (7.16)

we may combine last two equations to obtain
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X = UΣYT (7.17)

Last equation is identical with equation (7.1), showing that, providing

we are considering a multivariate stochastic process, the SVD and the KL

transformation are computationally equivalent.

7.2 Eigenimage analysis of common offset sections

We investigate the application of eigenimage analysis to common offset sec-

tions. Our principal goal is to show that often, common offset sections can

be efficiently compressed using eigenimages. A subsidiary goal is to improve

the S/N ratio of pre-stack data by eigenimage filtering of common offset

sections.

We consider the data matrix X to be composed of nx traces with nt

data points per trace, the nx traces forming the columns of X. The Singular

Value Decomposition (SVD) of X (Lanczos, 1961), is given by:

X =
r∑

i=1

λi ui v
T
i , (7.18)

where r indicates the rank of the matrix X, ui is the i-th eigenvector

of XXT , vi is the i−th eigenvector of XT X and λi is the i-th singular

values of X. Andrew and Hunt (1977) called the outer product ui v
T
i the

i-th eigenimage of the matrix X.

Suppose that X represents a seismic section and that all the nx traces

are linearly independent. In this case the matrix X is of full rank and all

the singular values are different from zero. A perfect reconstruction of X

requires all eigenimages. On the other hand, in the case where all nx traces

are equal to within a scale factor, all traces are linearly dependent, X is of

rank one and may be perfectly recovered by the first eigenimage, λ1u1 v
T
1 .

The eigenimage decomposition can be used to optimally extract later-

ally coherent waveforms. In general, common offset sections exhibit a good

lateral coherence. Our approach in this paper is to first decompose the

pre-stack data cube into common offset sections and then apply eigenimage

analysis to compress each common offset section and improve the S/N ratio.
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Our strategy is summarized as follows:

1. The pre-stack data cube is decomposed into common offset sections,

in our examples we construct 10 common offset sections containing

traces with offsets indicated in Table 1.

2. Each common offset section is decomposed into eigenimages. 3- Only

the eigenvectors that correspond to the first p singular values are kept.

3. Equation (7.18) is used to reconstruct the common offset section. If

the misfit is acceptable, we save the vectors ui, vi, λi, i = 1 . . . p.

It is interesting to note that the amount of data compression that can be

achieved using this procedure is remarkably high. Using the SVD we can

represent each common offset section by n2 floats:

n2 = p× nt + p× nx + p .

We define the compression ratio as follows

C = (n1 − n2)/n2,

where n1 = nx × nt is the total number of floats required to represent the

common offset section, X.

In Table 1 we summarize the compression ratio for the ten common offset

sections in which we have decomposed the data cube. In this example p

corresponds to the number of singular values that account for 30% of the

total power encountered in the spectrum of singular values. In Figure 7.51 we

portray the spectra of singular values. We note that the eigen-decomposition

is in terms of a few energetic singular values that correspond to coherent

events in the common offset domain.

In Figures 7.6 and 7.7 we display the common offset section #2 after

and before eigenimage filtering. Since the evenst are fairly flat, we can

always retain the information content of the section in a few eigenimages.

compression and S/N ratio enhancement

In Figures 7.8 and 7.9 we display a CDP after and before performing

the eigenimage analysis in common offset domian. It is clear that we cannot
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COS# Offset [m] p C = (n1 − n2) / n2

1 0-221 9 13.7

2 221-427 6 20.0

3 427-633 4 18.7

4 633-839 5 17.8

5 839-1045 4 23.7

6 1045-1250 5 21.2

7 1250-1456 6 18.2

8 1456-1662 6 14.4

9 1662-1868 6 15.2

10 1868-2780 7 13.0

Table 7.1: Compression ratios for 10 common offset sections. The variable

p indicates the number of singular values used in the eigen-decomposition.

use eigenimages in the CDP domain, but after filtering in the common offset

domain an sorting in CDPs we note that some high frequency noise at near

offset traces was eliminated.

In summary, by sorting the data into common offset section we have

been able to apply the eigenimage analysis on individual common offset

traces. The pre-stack volume is reconstructing with a minimal distortion.
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Figure 7.5: Spectra of singular values for the 10 common offset sections used

to test the algorithm.
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Figure 7.6: Common offset section #2.
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Figure 7.7: Common offset section #2 after eigenimage filtering
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Figure 7.8: Original CDP.
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Figure 7.9: CDP after Eigenimage filtering in the common offset domain
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7.2.1 Eigenimages and application to Velocity Analysis

Eigen-decomposition of seismic data (hyperbolic windows in CMP gathers)

can be used to design coherence measures for high resolution velocity anal-

ysis. The idea is to replace the semblance measure by a norm that is a

function of the eigenvalues of the covariance matrix of the gate of analysis.

In this section we will derive a very simple algorithm that can be used to

compute high resolution coherence measures for velocity analysis.

Techniques that exploit the eigen-structure of the covariance matrix

have been borrowed from the field of array processing (Bienvenu and Kopp,

1983; Wax et al., 1984), and applied to velocity analysis by different re-

searchers (Biondi and Kostov, 1989; Key and Smithson, 1990; Kirlin, 1992).

The seismic signal, in the presence of noise, at receiver i may be mod-

eled using the following equation:

xi(t) = s(t− τi) + ni(t) i = 1, N , (7.19)

where τi = (t20 + d2i /v
2)1/2 − t0 is the delay of the signal between the i-th

receiver and a receiver having d0 = 0. If a waveform is extracted along

a hyperbolic path parametrized with velocity v, equation (7.19) may be

rewritten as

xi(t) = s(t) + ni(t) i = 1, N , (7.20)

noindent where, to avoid notational clutter, I used the same variable x(t) to

designate the delayed waveform (equation (6.19)) and the corrected wave-

form (equation (6.20)). The covariance matrix of the the signal is defined

as:

Ri,j(t) = E[xi(t)xj(t)] i, j = 1, N , (7.21)

where E denotes the expectation operator. If we assume the noise and signal

to be uncorrelated the data covariance matrix becomes:

Ri,j(t) = Rsi,j(t) + σ2n(t)δi,j , (7.22)

where Rsi,j(t) denotes the signal covariance matrix, and δi,j = 1, if i = j

and δi,j = 0, otherwise. Assuming a stationary source and a stationary
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noise process, we may drop the dependence on t. It is easy to verify that

the eigenvalues of the covariance matrix become

λi = λsi + σ2n i = 1, 2, . . . , N , (7.23)

where λsi are the eigenvalues of the signal covariance matrix. Assuming

that the signal is invariant across each trace, the signal covariance matrix is

rank 1, and we can write the following relationships:

λs1 = N.Ps

λsi = 0 i = 2, ..., N , (7.24)

where Ps = E[s(t)2] denotes the signal power. Using equation (6.23), the

eigenvalues of the data covariance matrix become

λ1 = N.Ps + σ2n

λi = σ2n i = 2, ..., N . (7.25)

For uncorrelated noise, the minimal N − 1 eigenvalues of the data are equal

to the variance of the noise. The largest eigenvalue is proportional to the

power of energy of the coherent signal plus the variance of the noise.

In real situations, the eigen-spectrum is retrieved from an estimate of

the data covariance matrix. If the stationary random processes xi(t) and

xj(t) are ergodic the ensemble averages defined in equation (7.21) can be

replaced by time averages (see for instance, Bendat and Piersol, 1971). The

estimator of the covariance matrix becomes:

R̂i,j =
1

2M + 1

M∑
k=−M

xi(k∆t)xj(k∆t) . (7.26)

Using the results given in equations (7.24) and (7.25) it is evident that an

estimator of the noise variance is

σ̂2n =
1

N − 1

N∑
i=2

λ̂i . (7.27)
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Similarly, an estimator of the signal energy is given by

P̂s =
λ̂1 − σ̂2n
N

, (7.28)

and equations (7.27) and (7.28) can be combined into a single measure, the

signal-to-noise-ratio:

Ĉ =
1

N

λ̂1 −
∑N

i=2 λ̂i/(N − 1)∑N
i=2 λ̂i/(N − 1)

. (7.29)

The coherence measure, Ĉ, was devised assuming the presence of a signal

and that the proper velocity is used to extract the waveform. In general the

coherence ,Ĉ, is computed for different gates and different trial velocities.

It is convenient to explicitly emphasize the dependence of the coherence

on these parameters by denoting Ĉ(t0, v). When the gate of analysis con-

tains only noise, the measure Ĉ(t0, v) tends towards zero. When the trial

velocity does not match the velocity of the reflection, it is not possible to

decompose the eigen-structure of the data into signal and noise contribu-

tions. In this case, the covariance matrix has a complete set of eigenvalues

different from zero; therefore it is not possible to recognize which part of the

eigen-spectrum belongs to the noise and which belongs to the signal process.

Key and Smithson (1990) proposed another coherence measure based

on a log-generalized likelihood ratio which tests the hypothesis of equality

of eigenvalues,

Ŵml =M logN
[
(
∑N

i=1 λ̂i/N)N∏N
i=1 λ̂i

]
. (7.30)

In the absence of signal, λi = σ2n, i = 1, N and hence Wml = 0. In the

presence of a single reflected signal, λ1 ̸= 0, λi = 0, i = 2, N and Wml → ∞.

Therefore, Wml provides a strong discrimination between signal and noise.

Key and Smithson (1990) combined equation (7.29) and (7.30) into a single

measure, Kml, given by the product:

K̂ml = Ŵml Ĉ . (7.31)

It is important to point out that only one eigenvalue, λ1, is required

to estimate the coherence measure, Ĉ. Since
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Trace(R̂) = λ̂1 + λ̂2 + . . .+ λ̂N (7.32)

where

Trace(R̂) =
N∑
i=1

R̂i i . (7.33)

It is easy to see from equations (6.32) and (6.33) that only λ̂1 is needed to

compute the coherence measure, Ĉ.

It is also important to mention that the velocity panel obtained via

the SNR coherence measure can be further improved by adopting a boot-

strap procedure (Sacchi, 1998). In this case, the seismic traces are randomly

sampled to produce individual estimates of the coherence measure. From

this information one can obtained an average coherence measure and a his-

togram (in fact a density kernel estimator) of the position of the peak that

optimizes the coherence. The improve SNR coherence obtained with this

techniques is portrayed in Figure (6.11).

142 GEOPH 426/526 - MD Sacchi



Chapter 7

Figure 7.10: Left: Semblance of a CMP gather. Right: High resolution

coherence analysis (SNR measure).
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Figure 7.11: Left: Average SNR measure obtained via bootstrapping indi-

vidual realizations. Right: Frequency distribution of the peak that maxi-

mizes the coherence after 50 bootstrap realizations.
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7.3 A Matlab Code for Eigenimage Analysis

% A Code to filter data using the Eigenimage approach

% Generation of the model. Single

% event with parabolic moveout.

dt = 4./1000; w = ricker(20.,dt); nw=max(size(w));

nx = 32; nt = 128;

DATA = zeros(nx,nt);

for i=1:nx

for j=1:nw

c= fix(0.05*i*i);

DATA(i,20+j+c) = w(j);

end

end

% Add noise to the model

NOISE = 0.2 * randn(nx,nt);

DATA = DATA + NOISE;

[U S V] = svd(DATA);

% Reconstruction with 3 eigenimages

p = 4; % Keep 1,2,3.

q = min(size(S));

for i = p:q;

S(i,i) = 0;

end

% Filtered image
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DATA = U*S*V’;
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ing, 35, 12-32.

Lanczos, C., 1961, Linear Differential operators, D. Van Nostrand Co.

Sacchi, M.D., 1998, A bootstrap procedure for high-resolution velocity anal-

ysis: Geophysics, 65, 1716-1725.

146 GEOPH 426/526 - MD Sacchi



Chapter 8

Radon Transforms

In this chapter, we study the numerical implementation of the Radon trans-

form. We will analyze the problem using the inverse problem formalism and

study the problem of designing a high-resolution Parabolic Radon trans-

forms for multiple suppression.

8.1 Slant Stacks

Radon transforms with linear integration paths are generally called slant

stacks.

Different techniques have been devised to identify and/or filter linear

events. Generally, they have the following common framework. First, they

assume that linear events are recorded on an array with discrete and limited

coverage. Secondly, they assume that the noise is uncorrelated with the

signals. In geophysics, linear event identification has been an active field

of research. Two classic examples are vertical seismic profiles (VSP) and

slowness vector estimation in seismographic arrays for earthquake detection

and location. In VSP processing, linear event detection estimation is used

to identify and separate the principal components of the VSP data: the

up-going and the down-going waves.

A general strategy for event identification-estimation involves the fol-

lowing approach. First, the data are transformed into a new domain where

each component may be isolated. After masking the undesired parts, the

data are mapped back to the original domain retaining only the desired
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information.

In seismic processing, the Radon transform is commonly known as the

τ − p (τ denotes time and p ray parameter) or slant stack transform. The

original idea developed by Radon in 1917 (Deans, 1983), has provided a

basic framework for many problems of image reconstruction in physics, as-

tronomy, medicine, optics, non-destructive testing and geophysics. In image

processing, it is also called the Hough transform (Pratt, 1991), which may

be regarded as a transformation of a line in Cartesian coordinate space to a

point in polar coordinate space.

In geophysics, the properties of the Radon transform are examined

by Phinney et al. (1981), Durrani and Bisset (1984) and Tatham (1984).

Chapman (1981) developed exact formulas for a point source in Cartesian or

spherical coordinates, and for a line source in cylindrical coordinates. The

relationship between the Radon transform and the plane wave decomposition

is also well-established (Stoffa et al., 1981; Treitel et al., 1982). Least-

squares procedures to compute the Radon transform were investigated by

Thorson and Claerbout (1985), Beylkin (1987) and Kostov (1990). These

authors showed how to mitigate the smearing caused by the finite aperture.

Recently, Zhou and Greenhalgh (1994) linked the least-squares solution to p-

dependent Wiener filters. These researchers derived the slant stack formulas

in the continuous domain, but the resulting algorithms are identical to those

obtained by other researchers ( Beylkin, 1987; Kostov, 1990).

The problem of computing the Radon transform may be posed in the

frequency-space domain (f − x) to avoid the inversion or large matrices.

This technique was adopted by Beylkin (1987), Kostov (1990), Foster and

Mosher (1992), and recently by Zhou and Greenhalgh (1994). This allows

us to solve several small problems in the band that comprises the signal.

Some stability concerns arise when the problem is tackled in this manner.

Particularly, a least-squares solution can be extremely unstable at low fre-

quencies. Besides, it is interesting that slant stacks can also be computed

in the time-space domain. Thorson and Claerbout (1985) and, recently Yil-

maz and Tanner (1994) have presented high-resolution least-squares slant

stack operators designed in the time-space domain. Their procedures use

an iterative inversion scheme especially devised to solve large linear sparse
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operators. Thorson and Claerbout (1985) have also shown how to update

each iteration the variances of the model to drive the solution to minimum

entropy.

8.1.1 The slant stack operator (conventional definition)

Let u(h, t) represent a seismic signal. Throughout this chapter the variable

t designates the time and h the offset or range. For a the continuous array,

we define the slant stack using the following transformation

v(p, τ) = (Lu)(p, τ) =
∫ ∞

−∞
u(h, t = τ + h p)dh . (8.1)

Where p and τ denote the slope or ray parameter and the intercept time,

respectively. v(p, τ) is used to designate the signal in the τ −p domain. The

adjoint transform L∗ is given by

ũ(h, t) = (L∗v)(p, τ) =

∫ ∞

−∞
v(p, t = τ − hp)dp . (8.2)

In the frequency domain, the pair of transformations are given by,

V (p, ω) =

∫ ∞

−∞
U(h, ω)eiωphdh, (8.3)

Ũ(h, ω) =

∫ ∞

−∞
V (p, ω)e−iωphdp, (8.4)

substituting (2.3) into (2.4) yields

Ũ(h, ω) =

∫ ∞

−∞
U(h′, ω)

∫ ∞

−∞
e−iωp(h−h′)dp dh′ (8.5)

which may be written as follows

Ũ(h, ω) = U(h, ω) ∗ ρ(h, ω) , (8.6)
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where ∗ denotes convolution and the function ρ is given by

ρ(h, ω) =

∫ ∞

−∞
e−iωphdp , (8.7)

making the substitution z = −ωp equation (8.7) becomes

ρ(h, ω) =

∫ ∞

−∞

1

|ω|
eihzdz =

2π

|ω|
δ(h) . (8.8)

The convolution operator is a delta function with respect to the variable h.

Using the property of the δ function,

Ũ(h, ω) = 2π
|ω|U(h, ω) ∗ δ(h)

= 2π
|ω|U(h, ω)

(8.9)

the inversion formula becomes,

U(h, ω) =
|ω|
2π
Ũ(h, ω) . (8.10)

The inverse is computed in two steps. First, the adjoint is used to evaluate

Ũ(h, ω). Then, Ũ(h, ω) is multiplied by the ρ filter frequency response. The

conventional slant stack pair in the frequency domain results in,

V (p, ω) =

∫ ∞

−∞
U(h, ω)eiωphdh,

U(h, ω) =
|ω|
2π

∫ ∞

−∞
V (p, ω)e−iωphdp . (8.11)

Now, consider that the range of p is a finite interval, p ∈ [−P, P ]. This case
leads to the following ρ filter,

ρ(h, ω) =

∫ P

−P
e−iωphdp = 2P

sin(ωPh)

ωPh
. (8.12)

Substituting (8.12) in (8.6),
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Ũ(h,w) = 2P

∫ ∞

−∞
U(h′, ω)

sin(ωP (h− h′))

ωP (h− h′)
dh′. (8.13)

The data may be recovered after solving a deconvolution problem. Spatial

deconvolution is required since the infinite range of the variable p is trun-

cated to a finite range. The wavenumber domain response of the ρ filter has

the following expression:

ρ(k, ω) =

∫ ∞

−∞
ρ(h, ω)eikhdh

=

∫ ∞

−∞

∫ P

−P
e−i(ωp−k)hdhdp

=

∫ P

−P
δ(ωp− k)dp

=
1

ω

∫ ωP

−ωP
δ(k′ − k)dk′ (8.14)

=


1
ω k ≤ |ωP |

0 , otherwise

According to the last equation, the spatial deconvolution will be unstable

if the wavenumbers in the data lie outside the range [−ωP, ωP ]. Equation

(2.14) also shows that the deconvolution is unstable at low frequencies.

8.1.2 The inverse slant stack operator

The definition of the forward slant stack operator and its adjoint maybe

changed to construct another slant stack pair,

u(h, t) = (L∗v)(p, τ) =

∫ ∞

−∞
v(p, t = τ − hp)dp (8.15)

ṽ(p, τ) = (Lu)(h, t) =
∫ ∞

−∞
u(h, t = τ + hp)dh, (8.16)

the pair of transformations can be posed in the frequency-offset domain,
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U(h, ω) =

∫ ∞

−∞
V (p, ω)e−iωphdp, (8.17)

Ṽ (p, ω) =

∫ ∞

−∞
U(h, ω)eiωphdh . (8.18)

Substituting, (8.17) into (8.18) yields,

Ṽ (p, ω) =

∫ ∞

−∞
V (p′, ω)

∫ ∞

−∞
e−iωh(p−p′)dhdp′ , (8.19)

where now, the convolution is with respect to the variable p, and the con-

volutional operator is given by

γ(p, ω) =

∫ ∞

−∞

1

|ω|
eihpdh =

2π

|ω|
δ(p) . (8.20)

The γ filter is a delta function with respect to the variable p. Therefore,

equation (8.19) becomes,

Ṽ (p, ω) =
2π

|ω|
V (p, ω) (8.21)

or equivalently

V (p, ω) =
|ω|
2π
Ṽ (p, ω) . (8.22)

From the above derivation, it is clear that the ρ and the γ filters have the

same frequency response. Finally, the slant stack pair becomes,

V (p, ω) =
|ω|
2π

∫ ∞

−∞
U(h, ω)eiωphdh,

U(h, ω) =

∫ ∞

−∞
V (p, ω)e−iωpdp . (8.23)

Assuming that h ∈ [−H,H] (finite aperture), the γ filter has the following

structure
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γ(p, ω) =

∫ H

−H
eiωphdh = 2H

sin(ωHp)

ωHp
. (8.24)

Hence, V (p, ω) may be calculated by solving the following the integral equa-

tion,

Ṽ (p, ω) = 2H

∫ ∞

−∞
V (p′, ω)

sin(ωH(p− p′))

ωH(p− p′)
dp′ . (8.25)

After a comparison of the slant stacks pairs, equations (8.11) and (8.23), a

deconvolution procedure is required in both cases. In the conventional slant

stack transform, deconvolution is necessary to recover the data from the

τ − p space. In the inverse slant stack operator the deconvolution process is

required to estimate the τ − p space. The truncation effect of the variable p

may be alleviated by choosing the proper region of support of the transform.

The truncation of the variable h is associated with the transform’s resolu-

tion and cannot be alleviated. Generally, both the variables h and p are

truncated. Thus, deconvolution should be carried out in both the forward

and inverse transform (Zhou and Greenhalgh, 1994). However, the range of

p may be chosen so that most of the energy in the signal lies within this

range.

8.1.3 The sampling theorem for slant stacks

Assuming that the wavefield is evenly sampled according to U(n∆h, ω), n =

0,±1,±2, . . ., the relationship between the τ−p and the h−t spaces is given
by

U(n∆h, ω) =
|ω|
2π

∫ ∞

−∞
V (p, ω)e−iωpn∆hdp , (8.26)

where V (p, ω) denotes the slant stack corresponding to a continuous wave-

field U(h, ω). The integration domain can be decomposed into small subdo-

mains as follows,
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U(n∆h, ω) =
|ω|
2π

∞∑
k=−∞

∫ (2k+1) π
ω∆h

−(2k−1) π
ω∆h

V (p, ω)e−iωpn∆hdp

=
|ω|
2π

∞∑
k=−∞

∫ π
ω∆h

− π
ω∆h

V (p+ 2k
π

ω∆h
, ω)e−iω(p+2k π

ω∆h
)n∆hdp(8.27)

since e−i2πnk = 1 ∀nk, the last equation may be written in the following

form

U(n∆h, ω) =
|ω|
2π

∫ π
ω∆h

− π
ω∆h

Vd(p, ω)e
−iωpn∆hdp, (8.28)

where the relationship between the slant stack of the continuous signal and

the one corresponding to the sampled wavefield, Vd(p, ω) , is given by

Vd(p, ω) =
∞∑

k=−∞
V (p+ 2k

π

ω∆h
, ω). (8.29)

Thus, the discrete signal has a ω − p representation with support in the

p ∈ [− π
ω∆h ,

π
ω∆h ] range. The components with slope p−2 π

ω∆h , p+2 π
ω∆h , p−

4 π
ω∆h , p+ 4 π

ω∆h , . . . will appear to have slope p and every slope outside the

range (− π
ω∆h ,

π
ω∆h) will have an alias inside this range. If the continuous

signal has all the components inside that range, the aliased components do

not exist, and therefore, we can write Vd(p, ω) = V (p, ω). It is clear from the

above discussion that spatial sampling must be chosen to avoid the aliasing

effect. If P = Pmax = −Pmin, the following relationship guarantees the

absence of aliasing,

∆h ≤ 1

2Pfmax
, (8.30)

where fmax = ωmax/2π is the maximum temporal frequency of the seismic

signal. The product P fmax is also the maximum wavenumber. Similarly, if

∆h is given, the maximum ray parameter that can be retrieved ed without

alias is given by
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Pmax =
1

2∆hfmax
. (8.31)

For a non-symmetric slant stack, Pmax ̸= −Pmin, equation (8.30) is

modified as follows (Turner, 1990),

∆h ≤ 1

P ′fmax
, (8.32)

where P ′ = |Pmax − Pmin|.

8.2 Discrete slant stacks

Discrete versions of equations of the continuous Radon pair are obtained

by replacing integrals with summations and imposing finite limits. First,

assume that the seismogram contains N = Lf − Ln traces, where the indices

Lf and Ln denote far and near offset traces, respectively.

v(p, τ) = (Lu)(p, τ) =
Lf∑

l=Ln

u(hl, τ + hlp)∆hl, (8.33)

where ∆hl = (hl+1 − hl) for l = Ln, . . . , Lf − 1. Similarly, we approximate

the continuous Radon transform by the following expression

ũ(h, t) = (L∗v)(τ, p) =
Jmax∑

j=Jmin

v(h, t− hp)∆pj (8.34)

where ∆pj = (pj+1 − pj) for j = Jmin, . . . , Jmax − 1. Taking the Fourier

transform of the above equations yields

V (p, f) =

Lf∑
l=Ln

U(hl, f)e
2πifhlp∆hl (8.35)
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Ũ(h, f) =
Jmax∑

j=Jmin

V (p, f)e−2πifhpj∆pj . (8.36)

Using matrix notation, it is possible to rewrite the slant stack and its adjoint

as follows (f is omitted to avoid notational clutter),

m = LHd (8.37)

d̃ = Lm (8.38)

The operators L and LH form an adjoint pair. The matrix L is the

forward operator, and L∗ denotes the adjoint operator. The vector m indi-

cates the Radon space V (p, f) at discrete values of p and fix frequency f ,

whereas the vector d indicates the data U(h, f) at discrete values of h and

fix frequency f .

8.2.1 The discrete slant stack operator (conventional defini-

tion)

The slant stack operator, equation (8.37), maps the t − x space into the

τ − p domain; the adjoint, equation (8.38), maps the τ − p domain into the

t − x domain. It is clear that since L is non-orthogonal L and LH do not

constitute an inverse pair. Given m = Ld, the problem is how to recover

d. A relationship between d and d̃ is obtained after substituting (8.37) into

(8.38)

d̃ = LLH d . (8.39)

Equation (2.41) is uniquely invertible in f ∈ B provided that det(LLH) ̸= 0

in the band B,
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d = (LLH)−1d̃

= G−1d̃ .
(8.40)

The N × N matrix G = LLH represents a discrete version of the ρ filter.

The pair of transformations which map a signal from f − h to f − p and

vice-versa is given by

m = Ld

d = G−1Lm .
(8.41)

The vector m always exists since it is obtained using simple mapping. Both

expressions constitute an inverse pair when the inverse of G exits. The

forward and inverse pair do not permit us to model the signal when additive

noise is present adequately. If the data are contaminated with noise, the

noise is mapped to the Radon domain.

8.2.2 The least squares solution

Assume that the data is the result of applying a Radon operator (slant stack)

to a m.

d = Lm (8.42)

The idea is to find m such that the following objective function is

minimized (Yilmaz, 1994),

J = ||d− Lm||2 (8.43)

The solution to this problem is the least squares solution

m = (LHL)−1LHd (8.44)
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The inverse needs to be stabilized using a damping parameter.

m = (LHL+ µI)−1LHd (8.45)

In general, this is the approach that is used to compute slant stacks and

parabolic Radon transform. Other techniques to improve the resolution of

these operators were proposed by Sacchi and Ulrych (1995).

8.2.3 Example

In Figure (8.2), we display 3 panels. The first panel is the ideal τ − p

signal; the second is the τ − p signal transformed to offset − time. These

are two linear events with a positive and negative slope. The third panel

(left) is the inverted τ − p signal using least-squares. Artifacts have been

created in the inverted τ−p. The alias generates these artifacts. As we have
already seen fmax, the maximum ray parameter and the spatial sampling

must satisfy a Nyquist condition (equation (7.30)). This condition is not

satisfied; therefore, the τ − p domain exhibits aliasing.

In Figure (8.2)I muted the τ − p domain, eliminating all the contri-

butions where p > 0. The muted τ − p domain is used to reconstruct the

data; this is displayed in Figure (??) [Left]. This procedure can be used to

discriminate down-going and up-going wavefields in Vertical Seismic Profiles

(VSP).

Figures (8.2.3) and (8.4) displayed a simulation similar to the one

described above, but now the original signal in t− offset has spectral com-

ponents that are contained in the 5 − 35Hz band. In other words, I have

eliminated the alias artifacts.

8.3 Parabolic Radon Transform (Hampson, 1986)

This is a simple modification to the slant stack instead of integrating along

curves of the form

t = τ + ph

we use curves of the type
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Figure 8.1: Left: Ideal τ − p panel. Center: Data generated by forward

transforming the ideal τ − p panel. Right: Inverted τ − p panel.

t = τ + qh2

.

This is an excellent approximation to process data containing hyper-

bolic events after NMO correction Parabolic Radon Transform is utilized to

remove multiple reflections. After NMO correction, the moveout of the pri-

maries is zero. The residual move out of the multiples follows in a first-order

approximation, a parabolic moveout. The transform isolates multiples from

primaries to mute (filter) them out.

Assume you have two events in a CMP (common midpoint gather):

a primary and a multiple. Let we assume that the intercept time of these

events T0 is the same.

The travel-time curve for the primary is given by:

Tp =
√
(T 2

0 + h2/v2p) (8.46)
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Figure 8.2: Left: Inverted τ − p panel after muting. Right: Data recon-

structed by forward modelling the inverted/muted τ − p panel.

,

and the traveltime for the multiple is given by:

Tm =
√
(T 2

0 + h2/v2m) . (8.47)

If the multiple is generated by a shallow layer or by the water column

we can consider vp > vm.

Now suppose that we apply NMO correction to the complete data set

with the NMO law that uses the primary velocity. The NMO correction

entails applying the following time shift to the data

∆TNMO = T0 −
√
(T 2

0 + h2/v2NMO) , (8.48)
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Figure 8.3: Left: Ideal τ−p panel. Center: Data generated by forward trans-

forming and band-limiting the ideal τ − p panel. Band-limiting is needed to

eliminate alias. Right: Inverted τ − p panel.

therefore, the time of the primary after NMO is

Tp(After) = Tp +∆TNMO (8.49)

It is clear that is the NMO velocity is the velocity of the primary, the time

of the primary becomes

Tp(After) = T0 . (8.50)

In other words, the primary has the same time for all offsets (a flat event).

What is the time of the multiple after NMO?. Let us try to compute it,

Tm(After) = Tm + T0 −
√
(T 2

0 + h2/v2NMO) , (8.51)
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Figure 8.4: Left: Inverted τ − p panel after muting. Right: Data recon-

structed by forward modelling the inverted/muted τ − p panel. Note that

the alias artifacts have disappeared.

or after replacing Tm

Tm(After) = T0 +
√
(T 2

0 + h2/v2m)−
√
(T 2

0 + h2/v2NMO) (8.52)

The two square roots in the above equation can be expanded in the Taylor

series (Keeping only up to the second-order term) we have

Tm(After) ≈ T0 +
1

2T0 v2m
h2 − 1

2T0 v2NMO

h2 (8.53)

which can be re-written as
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Tm(After) ≈ T0 + qh2 (8.54)

where

q =
1

2T0
(
1

v2
− 1

v2NMO

) . (8.55)

A transform with a parabolic integration path can be constructed by simply

interchanging in the original slant stack h by h2. Some people prefer to

parameterize the parabola in terms of the residual moveout time at far

offset,

t = τ + q
h2

h2max

,

then it is clear that the parameter q is nothing else than the moveout in

seconds at the far offset trace. In Figures (8.56) and (8.57) we portrayed a

primary and a multiple before and after parabolic Radon transform filtering.

In this example, q is residual moveout at far offset.

8.4 High-resolution Parabolic Radon Transform

The high-resolution Parabolic Radon transform proposed by Sacchi and Ul-

rych (1995) entails utilizing a regularization technique that leads to an oper-

ator that does not exhibit a Toeplitz structure. In the original formulation

of the high-resolution Radon transform, the Radon operator is inverted via

Cholesky decomposition. This is quite expensive compared to the classical

least squares Radon transform that uses the Levinson recursion to invert a

Toeplitz form.

We can propose a method to achieve high resolution at a computa-

tional cost of the order of the conventional parabolic least-squares Radon

transform. This feature makes our new algorithm quite attractive for pro-

cessing large data sets.

The Parabolic Radon transform is a widely accepted technique for

multiple removal (Hampson, 1986). The method can be implemented in the
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Figure 8.5: Left:A Primary and a multiple after NMO correction. Inverted

τ − q panel.

frequency domain via a fast algorithm that exploits the Toeplitz structure

of the least-squares Radon operator (Kostov, 1990; Darche, 1990). Re-

cently, Sacchi and Ulrych (1995) proposed a high-resolution algorithm to

increment the transform’s ability to distinguish events with similar move-

out curves. This algorithm is based on a procedure that attempts to find a

sparse representation of the parabolic Radon domain’s reflections. A similar

algorithm has been proposed by Cary (1998). In this case, the Radon panel

is constrained to be sparse in both the Radon parameter and the intercept

time. The high-resolution parabolic Radon transform can be used to isolate

multiples interferences within a few milliseconds of residual moveout at far

offset. This is a problem frequently encountered when dealing with multi-

ple short-period reflections generated by carbonate targets in the Western
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Figure 8.6: Left: Inverted τ − q panel after muting. Right: Data recon-

structed by forward modelling the inverted/muted τ − q panel. In this

example, the multiple has been eliminated by muting in the τ − q domain.

Canadian Basin (Hunt et al., 1996).

One of the advantages of the high-resolution parabolic Radon trans-

form is that the focusing power of the transform is considerably increased

with respect to the classical least-squares parabolic Radon transform. Un-

fortunately, the high resolution parabolic Radon transform leads to the in-

version of an operator that is Hermitian but does not exhibit a Toeplitz

structure. The resulting Hermitian operator is inverted using Cholesky de-

composition. The Cholesky method for solving Hermitian linear systems of

equations requires operations that is proportional to M3, where M is the

dimension of the Hermitian operator.
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8.4.1 Least-squares Parabolic Radon transform

Common midpoint (CMP) gathers after normal moveout (NMO) correction

can be modelled as a superposition of events with parabolic moveout:

d(xj , t) =
M∑
k=1

m(qk, τ = t− qk x
2
j ) , j = 1, N , (8.56)

where d(xj , t) denotes the CMP gather, xj the offset, m(qk, τ) is the Radon

panel, qk the discrete Radon parameter and τ the intercept time. The data

consist of N seismic traces which do not need to be regularly sampled. The

Radon parameter is uniformly discretized according to qk = q0 + ∆q (k −
1), k = 1, . . . ,M .

Equation (8.56) is essentially a decomposition of the CMP gather in terms

of parabolic events distributed in the plane τ, q. It is computationally more

convenient to rewrite the last equation in the frequency-offset domain. Tak-

ing Fourier to transform with respect to the temporal variable t, we arrive

at the following expression

d(xj , f) =
M∑
k=1

m(qk, f) e
i2πfqkx

2
j , j = 1, . . . , N . (8.57)

The calculations can be carried out independently for each frequency f .

Equation (8.57) can be written in matrix form as follows:

d(f) = L(f)m(f) . (8.58)

To avoid notational clutter, we will drop the frequency dependency in equa-

tion (8.58) and write d = Lm .

The least-squares Radon operator is estimated by minimizing the fol-

lowing cost function.

J = ||d− Lm ||2 + µ||m||2 . (8.59)

The regularization term µ||m||2 is used to control the roughness of the

solution. It can be shown that this term is one of the major sources of

amplitude smearing in the Radon panel (Sacchi and Ulrych, 1995).
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Taking derivatives of J with respect to m and equating them to zero

yields

(LH L + µI)m = LHd

= madj .
(8.60)

In the last equation madj denotes the low-resolution Radon transform ob-

tained using the adjoint or transpose operator LH . The least-squares solu-

tion becomes

m = (LH L + µI)−1madj

= (R + µI)−1madj .
(8.61)

At this point, some observations are in order. First, it is clear that R =

LH L+ µI is a Toeplitz form (Kostov, 1990), with elements are given by

{R+ µI}l,m =
N∑
k=1

e−i2πf∆q(l−m)x2
k + µδl,m . (8.62)

Solving this equation using the Levinson recursion requires approximately

4M2+7M operations and storage of only the first row of the Toeplitz matrix

(Marple, 1987). This feature yields a very efficient algorithm to compute

the parabolic Radon transform.

8.4.2 High-resolution parabolic Radon transform

In the high resolution, parabolic Radon transform, the vector m is retrieved

by solving the following equation:

(R + WHW)m = madj . (8.63)

The matrix W is a diagonal matrix with elements that depend on m (Sacchi

and Ulrych, 1995). This leads to an iterative algorithm where W is boot-

strapped from the result of a previous iteration. In general, the iterative

procedure is not required if we can design W from a priori information.

The matrix of weights W is a diagonal matrix with elements given by

{W}l,m = wl δl,m, l,m = 1, . . . ,M . (8.64)
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The elements of the diagonal form R+WH W become:

{R+WH W}l,m =
N∑
k=1

e−i2πf∆q(l−m)x2
k + w2

l δl,m . (8.65)

It is clear that the addition of a diagonal matrix with non-constant e el-

ements has destroyed the Toeplitz structure of the operator. The above

matrix can be inverted by the Cholesky method in operations proportional

toM3. From the computational point of view, it is more convenient to com-

pute the Radon transform using a constant diagonal regularization (equation

(8.60)). However, if we want to estimate a high-resolution Radon operator,

the regularization term must be a diagonal form with non-constant elements.

The elements of W are used to emphasize the Radon parameters qk that

need to be constrained to be zero. The matrix W is bootstrapped from the

data iteratively. The procedure, as mentioned above, is described in Sacchi

and Ulrych (1995).

In our synthetic example, the elements of the diagonal matrix WHW

are given by

w2
k =

 100. if qk /∈ Q

0.0001 if qk ∈ Q ,
(8.66)

whereQ indicates the set of parameters qk where the reflections are localized.

These weights can be interpreted as the inverse of variance in model space.

If w2
l is large, 1/w2

l is small, and therefore, the algorithm will constrain

the areas of no reflections in the τ, q space to be zero. It is clear that the

resolution is enhanced by inhibiting the creation of smearing in the Radon

panel.

8.4.3 Conjugate gradients and circulant matrices

To solve equation (7.63) we adopt the method of conjugate gradients, which

is summarized below.

We want to solve (R+D)m = madj , where D = WHW.

Start with an initial solution m0, set p0 = r0 = madj − (R+D)m0,

αi+1 = (ri, ri)/(pi, (R+D)pi)
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mi+1 = mi + αi+1pi ri+1 = ri − αi+1(R+D)pi

βi+1 = (ri+1, ri+1)/(ri, ri)

pi+1 = ri+1 + βi+1pi

where i = 0, 1, 2, . . .K denotes the iteration number.

The cost of the conjugate gradients algorithm is dominated by multi-

plying a matrix by a vector. In general, matrix times vector multiplication

is an O(M2) process. In our problem, we will use the Toeplitz structure of

R to find a fast manner to compute the operation as mentioned earlier.

The product (R+D)x can be decomposed into two products: Rx+

Dx. The first product can be efficiently computed using the Fast Fourier

Transform (FFT), the second product involves only 2M operations (M prod-

ucts plus M additions) and does not substantially increase the computa-

tional cost of the inversion.

The first product, y = Rx, is evaluated by augmenting the system as

follows:  y

y′

 = Raug

 x

0

 , (8.68)

where Raug is the original Toeplitz matrix after being properly folded to

become a circulant matrix (Strang, 1986; Schonewille and Duijndam, 1998).

The right-hand side can be computed by multiplying the Fourier transform

of the first row of Raug by the Fourier transform of vector [x ,0]T , and

taking the inverse Fourier transform of this product. Now our matrix times

vector operation takes O(M ′ logM ′) operations where M ′ is the size of the

augmented matrix (M ′ = 2M). We have found that the conjugate gradients

algorithm convergences after a few iterations (K ≈ M/5). Therefore, the

inversion becomes an O(KM ′ Log(M ′)) process. This is more efficient than

the direct inversion of equation (7.63) by the Cholesky method.

8.4.4 Example

In Table 8.1 we present a comparison of CPU times in seconds for 3 different

algorithms. The times in Table 1 correspond to the total computational cost

for 512 frequencies. These simulations were performed on an SGI Origin

2000.
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In both cases, we have 4 parabolic events which were mapped to the

Radon domain u sing the following algorithms:

1. Lev: Classical least-squares parabolic Radon transforms are imple-

mented via the Levinson recursion (valid for constant damping).

2. Chol: High-resolution Radon transform implemented via the Cholesky

decomposition.

3. CG+FFT: High resolution parabolic Using the FFT, radon trans-

forms are implemented via conjugate gradients plus matrix times vec-

tor multiplication.

It is clear that the new algorithm can achieve high resolution at a com-

putational cost comparable to the one of the classical least squares Radon

transform computed with the Levinson recursive solution.

In Figure (7.1), we portray the results obtained for the 256 × 256

simulation. Note that the differences between the high resolution Radon

transforms computed with the Cholesky decomposition and the proposed

algorithm are minimal.

N ×M Lev Chol CG+FFT

128× 128 2 6 3

256× 256 8 42 12

Table 8.1: CPU times in seconds for the 3 algorithms tested in this study.

N denotes the number of traces and M the number of q parameters.

8.5 Programs for Slant Stack and Parabolic Radon

Transforms

The following two programs are MATLAB implementations of the Radon

transform in f − x and f − p. The inverse transform is solved using Least-
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Figure 8.7: A synthetic CMP gather composed of 4 parabolic events is used

to test 3 different algorithms to compute the Radon transform. Lev. indi-

cates the classical solution using least squares with a constant damping term;

the Levinson algorithm is used to invert the resulting Toeplitz form. Chol.

indicates the high-resolution solution using non-constant damping (8)). This

solution is computed through the Cholesky decomposition. CG+FFT in-

dicates the proposed fast algorithm to compute the high-resolution Radon

transform. In this example, the size of the Radon operator is 256 × 256.

CPU times in seconds are given in Table 7.1

squares. The high-resolution implementation using circulant matrices is a

little bit more tricky and requires more then a few lines of Matlab.

Forward Transform

Operator to compute the forward linear and parabolic Radon transform.
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function [d]=for_taup(m,dt,h,q,N,flow,fhigh);

%INV_TAUP An inverse Radon transforms. Given the seismic data, this

% function computes the Radon panel by inverting the Radon operator

%

% [d] = for_taup(m,dt,h,q,N);

%

%

% IN m: the Radon panel (d(nt,nq)

% dt: sampling in sec

% h(nh) offset or position of traces in mts

% q(nq) ray parameters to retrieve or curvature

% of the parabola if N=2

% N:1 Linear tau-p

% :2 Parabolic tau-p

% flow, fhig: min and max freq. in Hz

%

% OUT d: the data

%

%

% SeismicLab

% Version 1

%

% written by M.D.Sacchi, last modified December 10, 1998.

% sacchi@phys.ualberta.ca

%

% Copyright (C) 1998 Signal Analysis and Imaging Group

% Department of Physics

% The University of Alberta

%

nt= max(size(m));

nh = max(size(h));

M = fft(m,[],1);
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D = zeros(nt,nh);

i = sqrt(-1);

ilow = floor(flow*dt*nt)+1; if ilow<1; ilow=1;end;

ihigh = floor(fhigh*dt*nt)+1;

if ihigh>floor(nt/2)+1; ihigh=floor(nt/2)+1;end

for if=ilow:ihigh

f = 2.*pi*(if-1)/nt/dt;

L = exp(i*f*(h.^N)’*q);

x = M(if,:)’;

y = L * x;

D(if,:) = y’;

D(nt+2-if,:) = conj(y)’;

end

D(nt/2+1,:) = zeros(1,nh);

d = real(ifft(D,[],1));

return;

Inverse transform

Operator to compute the LS inverse Radon transform. Notice that this is

an “academic” implementation. A fast implementation involves replacing

inv by a fast solver (i.e., Levinson’s recursion).

function [m] = inv_taup(d,dt,h,q,N,flow,fhigh,mu);

%INV_TAUP An inverse Radon transform. Given the seismic data,

% this subroutine computes

% the Radon panel by inverting the Radon operator

%

% [m] = inv_taup(d,dt,h,q,N,flow,fhigh,mu)

%

% IN d: seismic traces (d(nt,nh)

% dt: sampling in sec

% h(nh) offset or position of traces in mts

% q(nq) ray parameters to retrieve or curvature
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% of the parabola if N=2

% N:1 Linear tau-p

% :2 Parabolic tau-p

% flow: freq. where the inversion starts in HZ (> 0Hz)

% fhigh: freq. where the inversion ends in HZ (> Nyquist)

% mu: regularization parameter

%

% OUT m: the linear or parabolic tau-p panel

%

%

% SeismicLab

% Version 1

%

% written by M.D.Sacchi, last modified December 10, 1998.

% sacchi@phys.ualberta.ca

%

% Copyright (C) 1998 Signal Analysis and Imaging Group

% Department of Physics

% The University of Alberta

%

nt= max(size(d));

nq = max(size(q));

nh = max(size(h));

D = fft(d,[],1);

M = zeros(nt,nq);

i = sqrt(-1);

ilow = floor(flow*dt*nt)+1; if ilow<1; ilow=1;end;

ihigh = floor(fhigh*dt*nt)+1;

if ihigh>floor(nt/2)+1; ihigh=floor(nt/2)+1;end

for if=ilow:ihigh

f = 2.*pi*(if-1)/nt/dt;

L = exp(i*f*(h.^N)’*q);

174 GEOPH 426/526 - MD Sacchi



Chapter 8

y = D(if,:)’;

x = L’*y;

MATRIX = L’*L;

tr=real(trace(MATRIX));

Q =mu*tr*eye(nq);

x = inv(MATRIX+Q) *L’* y;

M(if,:) = x’;

M(nt+2-if,:) = conj(x)’;

end

M(nt/2+1,:) = zeros(1,nq);

m = real(ifft(M,[],1));

return

8.6 Time variant velocity stacks (Hyperbolic time-

domain Radon Transform)

We will discuss in this section the computation of time-variant operators

that can be used as an alternative to the parabolic Radon transform.

The parabolic Radon transform is a time-invariant operator, therefore

it can be implemented in the frequency domain. This trick permits one

to solve several small problems, one at each frequency, instead of a large

problem involving all the time-offset-velocity samples at the same time.

It is clear that in the case of the parabolic Radon transform time

invariance is achieved by means of an approximation. It might happen that

the parabolic the approximation is not properly satisfied and consequently,

travel times (especially at far offsets) need to be properly modelled.

In this part of the course, we will focus our attention to the compu-

tational aspects of Hyperbolic Radon operators.

We have already mentioned that the data in the CDP domain can

be modelled as a superposition of hyperbolas. User this assumption a hy-

perbolic stack operator can be used to map hyperbolas (reflections) into

time − velocity pairs. In other words, our operator is used to map data

from offset − time to velocity − time space. In the new space, we can
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identify multiple reflections and filter them out. We can also use this type

of operator to reduce random noise and to enhance the overall aspect of the

seismic reflection, which might be hidden by a strong ground-roll (in a CSG)

or any other type of deterministic noise.

The time-variant velocity-stack operator is defined in terms of sum-

mation along Dix hyperbolas, m(τ, v) is used to designate the velocity-stack

and d(t, h) the CMP gather:

d(t, h) =

∫
m(τ =

√
t2 − h2/v2, v) dv , (8.69)

where h is source-receiver offset, t is two-way travel-time, v is the rms ve-

locity, and τ is two-way vertical travel-time. After discretization and lexi-

cographic arrangement, equation (8.69) can be written as

d = Lm . (8.70)

The vectors d and m have nt × nh and nτ × nv elements, respectively.

The dimension of the operator L is (nt × nh) × (nt × nτ). The forward

or modelling operator, L, picks a wavelet in velocity space and produces

a hyperbola in data space. The transpose operator LT is a simple NMO

followed by a stacking operator.

To find the inverse operator, we consider the problem

Minimize {ϕ = ||Lm− d||22}

Differentiating ϕ with respect to m yield the least-squares solution

m̂ = (LTL)−1LTd = (LTL)−1m0 , (8.71)

where for simplicity, we have assumed that L is full rank. In equation (8.71)

m0 is the low-resolution velocity stack computed by means of the adjoint or

transpose operator (Sacchi and Ulrych, 1995). The velocity stack computed

after inversion, m̂, possesses more resolution that m0. Unfortunately, the

computation of m̂ involves the inversion of LT L. Assuming a typical CMP
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gather of 48 channels and 1000 samples per trace. In addition, suppose

that 48 traces and 1000 samples were used to discretize the velocity, v,

and the intercept time, τ , respectively. In this case, LTL has dimension

24000× 24000. Direct methods cannot be applied to this type of problem.

8.6.1 The conjugate gradients algorithm

The trick here is to use a semi-iterative technique to find an approximate

solution to our problem. The advantage of the CG algorithm is the matrix

L does not need to be stored. L is not a matrix but an operation performed

on a vector. To apply the CG algorithm, we must first define the operations

L and LT .

It is clear that L is an operator that picks a wavelet in the τ − v and

produces a hyperbola in t − h. The operator LT (the adjoint or transpose

operator) does the opposite; it gathers information in t−h along a hyperbolic

path and collapses this information into a point in τ − v.

Let us assume that we have a code capable of performing the following

operations (as I have already mentioned L and L′ do not need to be matrices)

y = Lx x′ = LT y .

To solve the problem ||Lx−y||2 with an initial solution x0, we use the

following Conjugate Gradients (CG) algorithm:

Set initial values: r = y − Lx0 , g = LT r , s = g

for i = 1:ITERMAX {

ss = Ls , δ = ||ss||2

α = γ/∆

x = x+ α s

r = r − α ss

g = LT r

s = g + β s
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• }

The CG algorithm will find the least squares solution for the over-determined

problem in N iterations where N is the total number of observations. In

the under-determined problem, the CG converges to the minimum norm

solution. The technique gives the exact answer for exact arithmetics, but of

course, round-off errors will affect the convergence of the algorithm. This is

why the CG is often referred as a semi-iterative technique.

In the computation of the velocity stacks, we will use on a few itera-

tions. How many iterations?. We can say that we will use enough iterations

to properly model the hyperbolic events. The CG method allows us to ex-

plore our solution efficiently by stopping the algorithm at any number of

iteration and then, if the solution is not optimal, we can re-start the algo-

rithm until a satisfactory misfit is obtained.

8.6.2 Example

We will analyze the performance of the CG with synthetic and real data

examples. In Figure (8.8a), we portray a synthetic CMP gather. The model

comprises 2 primaries reflections of 1500m/s (water column) and a primary

of 1700m/s at 0.65 s. In Figure (8.8b), we portray the velocity gather ob-

tained using the adjoint operator. This gather does not offer enough resolu-

tion to properly identify and separate the multiple events at 0.65 s from the

primary. In Figure (8.8c), we portray the velocity obtained after inverting

the data using the CG algorithm. Figure (8.8d) is the primary obtained

after muting the velocity gather.

In Figure (8.9), I displayed the velocity gather obtained via the CG al-

gorithm after amplitude clipping. In this panel, we also portray the artifacts

that arise from finite aperture and sampling (alias).
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Figure 8.8: (a) Synthetic data. (b) Velocity gather obtained using the ad-

joint operator. (c) The velocity gather computed using the least-squares

inversion. (d) Recovered data (primary) obtained after the de-multiple pro-
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Figure 8.9: Clipped version of Figure (8.8)b showing finite aperture and

sampling (alias) artifacts.
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The following subroutine permits to compute forward and adjoint Hy-

perbolic Radon operators. I have included a linear interpolation step. See

how do I define the adjoint of interpolation. It is important to stress that

the forward and adjoint pairs must pass the dot product test. Otherwise,

the CG inversion will not work. Once you have your forward and adjoint

operators encapsulated in a subroutine it’s quite simple to put together a

CG inversion code.

subroutine Hyperbolic_Radon(dt,nt,v,nv,h,nh,m,d,c)

c

c Compute velocity panels when c = ’a’ (Adjoint Hyper. Radon)

c Compute CMP gathers when c = ’f’ (Forward Hyper. Radon)

c c is character * 1

c INPUT

c dt : sampling in sec

c nt : number of time samples (also number of tau samples)

c v(nv) : axis of the Radon panel (velocity in m/s). It can be

c changed by 1/vel^2 or moveout at far offset

c h(nh) : offset in meters

c h(1) is offset of trace 1, h(2) is offset of trace 2....

c

c INPUT/OUTPUT

c d(nh,nt) : cmp or super-cmp input if c = ’a’

c m(nv,nt) : Radon panel output if c = ’a’

c

c d(nh,nt) : cmp or super-cmp output if c = ’f’

c m(nv,nt) : Radon panel input if c = ’f’

c

real d(300,2000), m(300,2000),h(300)

real v(300)

character * 1 c

if(c.eq.’a’) call clean(m,nv,nt) ! initialize m with zeros
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if(c.eq.’f’) call clean(d,nh,nt) ! initialize d with zeros

do ih =1,nh

do iv=1,nv

do itau=1,nt

ttt=(itau-1)*dt

time=sqrt(ttt**2+(h(ih)/v(iv))**2)

it1 = int(time/dt)

a = time/dt - float(it1) !Coeff. of the linear interp.

it2 = it1 + 1

if(it1.lt.nt.and.it1.ge.1) then

if(c.eq.’a’) m(iv,itau) = m(iv,itau)+(1.-a)*d(ih,it1)+a*d(ih,it2)

if(c.eq.’f’) d(ih,it1) = d(ih,it1)+(1.-a)*m(iv,itau)

if(c.eq.’f’) d(ih,it2) = d(ih,it2)+ a *m(iv,itau)

endif

enddo ! end offset loop

enddo ! end velocity loop

enddo ! end tau loop

return

end
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8.7 High Resolution Radon Transform

We can construct a solution m that consists of a few isolated spikes in

velocity space. This is what we often call a sparse solution. We have al-

ready outlined a procedure to compute sparse solutions using the Parabolic

Radon transform. In that case, the spareness constraint was used to in-

vert the Radon operator in the frequency domain. When using hyperbolic

Radon transforms, the sparseness constraint has to be imposed in the τ − v

domain. In general, one can use any measure of sparseness (we have seen

various norms that can be used to retrieve sparse models when dealing with

impedance inversion in Chapter 4). Let’s assume we use a Cauchy-like norm

(Sacchi and Ulrych, 1995). In this case, we minimize

J = ||Lm− d||22 + µ
∑
k

ln(1 +m2
k/b) (8.72)

where mk indicates an element of m(τ, v) after lexicographic arrange-

ment (transformation of a matrix into a vector). The parameters µ and b

are the hyper-parameters of the problem.

Taking derivatives of J with respect to mk and equation them to zero

leads to the following system

LT Lm− LT d+Qm = 0 (8.73)

where Q is a diagonal matrix with elements given by

Qi =
2µ

b+m2
i

It is clear that the system needs to be solved in an iterative manner (Q

depends on the unknown model m). We can rewrite our solution as follows:

mk = (LT L+Qk−1)−1 LTd . (8.74)

where k indicates the iteration. The matrix of weights Q is computed

from the result of the previous iteration. In general, one solve the problem

for a given matrix of weights Q using CG, then after enough iteration to

reach convergence, Q is updated and a CG is run again to solve the linear

problem. The procedure is continues until we find the minimum of the cost
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Figure 8.10: CMP gather # 1000 from a data set from the Gulf of Mexico.

function J . This algorithm can be very expensive, and in general a good

felling for the µ and b is required to reach a sparse solution. When working

with real data the parameters needed for the inversion (µ, b, number of

iterations) are estimated by trial an error from a single CMP gather, the

same parameters are used to invert the rest of the CMPs in the seismic

volume.

In Figures (8.10), (8.11), (8.12), and (8.13) we test the high resolution

hyperbolic Radon transform with a data set from the Gulf of Mexico (data

provided by Western Geophysical to test multiple attenuation codes).

184 GEOPH 426/526 - MD Sacchi



Chapter 8

2

3

4

5

6

7

T
im

e
 (

s
)

4000 6000 8000
Velocity (ft/s)

Figure 8.11: Velocity panel obtained by inversion of the Hyperbolic Radon

transform using least-squares. CMP gather # 1000 from a data set from

the Gulf of Mexico.
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Figure 8.12: Velocity panel obtained by inversion of the Hyperbolic Radon

transform using sparse inversion. CMP gather # 1000 from a data set from

the Gulf of Mexico.
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Figure 8.13: Stack section of the Gulf of Mexico data set before multiple

removal.
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Figure 8.14: Stack section after multiple removal.
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8.8 Interpolation problems

The parabolic and hyperbolic Radon transform can be used to interpolate

CMP gathers. This is quite simple and entails mapping back the velocity

stack to a data space using a new geometry. To interpolate pre-stack data in

receiver-source space (or midpoint-offset) a more sophisticated approach is

required. Various research group in the area of signal analysis have proposed

algorithms to interpolate 1D data. These algorithms assume that the data

are band-limited. One can extend these ideas to the problem of reconstruct-

ing pre-stack data. In geophysics Duijndam et. al (1999) and Hindriks et. al

(1997) have introduced a least-squares algorithm to invert the fourier trans-

form of the data. We will review some basic features of these algorithms

and introduce a regularization term that enables us to recover large gaps in

our pre-stack data set.

We define the discrete 2-D inverse Fourier transformation in source

and receiver coordinates as

u(xs, xr, ω) =
1

MN

M−1∑
m=0

N−1∑
n=0

U(ks(m), kr(n), ω)e
jks(m)xsejkr(n)xr , (8.75)

where xs and xr are the spatial variables along source and receiver coordi-

nates, ks and kr are the corresponding wave-numbers and ω is the temporal

frequency. Equation (8.75) gives rise to a linear system equations

u = AU (8.76)

where

Amn =
1

MN
ejks(m)xsejkr(n)xr , (8.77)

u and U denote the known data and unknown coefficients of the DFT, re-

spectively.

Therefore, the interpolation problem can be posed as finding, from the in-

complete data, the 2D-DFT (U) by solving

u = AU + n (8.78)
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where n denotes the noise in the data. A unique solution may be obtained

by minimizing the following expression

J =∥ AU − u ∥22 +ϵ ∥ U ∥22 (8.79)

and the solution can be shown to take the form:

Û = (ATA+ ϵI)−1ATu, (8.80)

where T denotes the transpose of a matrix.

Next, we derive a similar result but using a weighted DFT-domain norm

introduced in the previous section. In this case the function to be minimized

is

J =∥ AU − u ∥22 +ϵ ∥ U ∥2P (8.81)

The solution takes the form:

Û = (ATA+DI)−1ATu, (8.82)

where D is a diagonal matrix with diagonal elements corresponding to ϵ
|P (ks,kr)|2

and |P (ks, kr)|2 is a vector that contains the amplitude spectrum of U in

lexicographic form. Ideally, one should know the amplitude spectrum of the

data. Unfortunately, U is the unknown of our problem. The latter can be

overcome by defining an initial D in terms of the DFT of the irregularly

sampled data ATu and smoothing the result to attenuate the artifacts in-

troduced by the irregularity of u (Ning and Nikias, 1990).

The scheme can be summarized as follows:

• Start with an initial Û .

• Compute D = S(Û∗Û) , where S is a smoothing filter.

• Solve Û = (ATA+DI)−1ATu using Conjugate Gradients.

• Iterate until convergence.
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An example of reconstruction is demonstrated on 15 synthetic shot

gathers. Figure 8.15 shows six of the shot gathers with the shots #3 and

#7 removed. The reconstruction is performed using the minimum weighted

norm method with adaptive weights. Figure 8.16 shows the reconstructed

shot gathers (only six shots are shown). The missing shots have been com-

pletely reconstructed.
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Figure 8.15: Six shot gathers with shots #3 and #7 removed.

Figure 8.16: Reconstructed shot gathers using the minimum weighted norm

algorithm.
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