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Notation

We define matrices by uppercase bold fonts and vectors by
lowercase bold fonts. Upper or lowercase non-bold fonts denote
scalars.

Ï α Scalar
Ï a Scalar
Ï x Vector
Ï A Matrix
Ï xi Element of a vector (a scalar)
Ï Mij Element of a matrix (a scalar)
Ï f (x) Scalar function with vector argument
Ï u = g(β) Scalar function with scalar argument
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Notation

Pay attention to notation and consistency of mathematical
expressions

Ï ci =∑
i aibi /

Ï c =∑
i aibi ,

Ï cj =∑
i aibi ,j ,

Ï ci =∑
i aibi ,j /

Ï ci ,j =∑
i aibi ,j /

Ï c = ‖x‖2
2 ,

Ï c = ‖xi‖2
2 /

Ï xi /
Ï c = ‖xi‖2

2 /
Ï Mi ,j = x /
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Matrix Multiplication

In matrix-vector form:

d=Am

d: N ×1 vector
A: N ×M vector
m: M×1 vector

In index form:

di =
M∑

j=1
Ai ,j mj i = 1 . . .N
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Matrix Multiplication

Always check size of vectors and matrices. Examples:

u and m are M×1, A is N ×M

d︸︷︷︸
N×1

= A︸︷︷︸
N×M

m︸︷︷︸
M×1

A vector

α︸︷︷︸
1×1

= uT︸︷︷︸
1×M

m︸︷︷︸
M×1

A scalar

v︸︷︷︸
M×1

= AT︸︷︷︸
M×N

d︸︷︷︸
N×1

A vector
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Matrix Multiplication

Check size of vectors and matrices:

y︸︷︷︸
N×1

= A︸︷︷︸
N×M

x︸︷︷︸
M×1

AT︸︷︷︸
M×N

y︸︷︷︸
N×1

= AT︸︷︷︸
M×N

A︸︷︷︸
N×M

x︸︷︷︸
M×1

if we let g=AT y and B=AT A then,

g︸︷︷︸
M×1

= B︸︷︷︸
M×M

x︸︷︷︸
M×1
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Norms
l2 norm of a vector to avoid programming problems:

‖x‖2 =
√√√√ M∑

i=1
x2

i

We usually work with the l22 :

‖x‖2
2 =

M∑
i=1

x2
i

‖x‖2
2 = xT x= (

x1 x2 x3 . . .xM
)

x1
x2
x3
...
xM


Clearly, l2 is a scalar.
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Norms

Example:

x=
 2
3
−2



‖x‖2
2 = xT x= (

2 3 −2
) 2

3
−2

= 22+32+ (−2)2 = 17

‖x‖2
2 =

∑3
i=1 x

2
i = 22+32+ (−2)2 = 17

[\
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Least-squares problem

Also consider a system where observations are related to model
parameters via the following expression

d≈Am

where N >M (Overdetermined problems).
The latter can be written as follow

d=Am+e

Where if d0 =Am is the ideal data, then

d= d0+e

Task of the method of least-squares is to find the solution m that
"best honours" the data d.
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Least-squares problem

"Best" is a subjective word and we need an objective criterion. In
the least-squares method we minimize the sum of the residuals

J = ‖e‖2 =
N∑

i=1
e2

i

J is call the cost function or objective function, a scalar function

J =∑
i
f (ei)

where f (·)= (·)2. Remember that you could change f to measure
the error ei in a different way.
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Least-squares problem

Get use to use describe cost functions with different notation

J = ‖e‖2 = eT e=
N∑

i=1
e2

i

Recall that d=Am+e. Then

J = ‖d−Am‖2
2

which shows that J is a function of the unknown m.
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Least-squares problem
Notation again. We often say that we minimize J respect to m
which is equivalent to finding the solution of the following problem

∂J
∂m = 01

The solution of the latter is

AT Am=AT d

From where you can do the following

m̂= (AT A)−1AT d

d̂=Am̂ and ê= d− d̂

·̂ indicates estimated solution, estimated data or estimated error.
1 Notice I made 0 Bold!
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Example
Let’s assume we want to fit one period T years period to a time
series. We use the following model

s(tk)≈ c0+c sin(2πtk/T +φ) tk = (k −1)∆t k = 1, . . .N

We eliminate the phase2

s(tk)≈ c0+Asin(2πtk/T )+Bcos(2πtk/T )

The unknowns are c0, A and B.
s(t1)
s(t2)
s(t3)
...

s(tN)


︸ ︷︷ ︸

d

≈


1 sin(2πt1/T ) cos(2πt1/T )
1 sin(2πt2/T ) cos(2πt2/T )
1 sin(2πt3/T ) cos(2πt3/T )
...

...
...

1 sin(2πtN/T ) cos(2πtN/T )


︸ ︷︷ ︸

G

c0
A
B


︸ ︷︷ ︸

m

m̂= (GT G)−1GT d ĉ0 = m̂(1), Â= m̂(2), B̂ = m̂(3)
2sin(x +y)= sin(x)cos(y)+cos(x)sin(y)
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Example

Ï Read data
Ï Form Matrix G
Ï Compute LS solution ĉ0 = m̂(1), Â= m̂(2), B̂ = m̂(3)
Ï Predict data ŝ(tk)= ĉ0+ Âsin(2πtk/T )+ B̂ cos(2πtk/T )
Ï Compute Error e(tk)= s(tk)− ŝ(tk)
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Example
T = 11.04 years

Not a nice result!
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Example

Solution with more periods

s(tk)≈ c0+
P∑

n=1
cn sin(2πtk/Tn+φn) tk = (k−1)∆t k = 1, . . .N

Again, we eliminate the phase

s(tk)≈ c0+
P∑

n=1
An sin(2πtk/Tn)+

P∑
n=1

Bn cos(2πtk/Tn)

The unknowns are c0, An and Bn. Total number of unknowns
N = 2P +1.
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Example
We now fit 7 periods
T = [11.04,9.97,98.33,10.53,11.92,8.48,59.81] years
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Example

f [c/y ] T [y ] Â B̂
0.090579 11.04 7.0724 -26.235
0.100301 9.97 7.0131 -18.569
0.010169 98.33 -5.8638 15.983
0.094966 10.53 -6.7136 12.929
0.083892 11.92 6.3522 12.1131
0.117925 8.48 -10.6224 -2.2551
0.016719 59.81 -5.7533 5.4210

ĉ0 = 49.771
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Convolution
Convolution between two series

st = (w ∗ r)t =
∑
k
wt−k rk

can be written in Matrix-times-vector form

s1
s2
s3
s4
s5
s6

=



w1 0 0 0
w2 w1 0 0
w3 w2 w1 0
0 w3 w2 w1
0 0 w3 w2
0 0 0 w3




r1
r2
r3
r4



s=Wr
Wavelet w is length Nw , Reflectivity r is length Nr then the
seismogram s is length Ns =Nw +Nr −1. We call W the
convolution matrix. The problem is overdetermined because the
matrix is of size N ×M with N >M
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Deconvolution

f This is time deconvolution (Frequency domain decon is not
discussed here)

f You measure a seismogram s and you have an estimated
seismic wavelet w, you want to estimate the reflectivity r. In
this model we also need to consider the presence of noise n.
We assume Gaussian noise (zero mean) and of variance σ2

n
f sk = (w ∗ r)k +nk

f s=Wr+n
f We estimate r by minimizing cost function

J = ‖n‖2
2 = ‖s−Wr‖2

2
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Deconvolution
Naive solution σn = 0

r̂= (WT W)−1WT s

Figure: True impedance and reflectivity, seismogram and estimated
reflectivity
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Deconvolution
Naive solution σn = 0.01

r̂= (WT W)−1WT s

Figure: True impedance and reflectivity, seismogram and estimated
reflectivity
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Deconvolution and Tikhonov Regularization
Regularized solution σn = 0.01, µ= 0.05.

r̂= (WT W+µI)−1WT s

Figure: True impedance and reflectivity, seismogram and estimated
reflectivity
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Deconvolution and formal derivation of Tikhonov
regularization

Tikhonov Regularization ≡ add a stability constraint that prevents
the norm of the solution becoming large.

Define new cost function:

J(r,µ)= ‖s−Wr‖2
2+µ‖r‖2

2

Solution is given by

r̂µ = argmin
r

J(r,µ)

r̂µ = (WT W+µI)−1WT s

Solution depends on trade-off parameter µ> 0.
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Deconvolution and Tikhonov Regularization
Consider out initial problem s=Wr+n and, let’s call the ideal data
s0 =Wr

r̂µ =(WT W+µI)−1WT s (1)
=(WT W+µI)−1WT (s0+n) (2)
=(WT W+µI)−1WT (Wr+n) (3)
=(WT W+µI)−1WT Wr+ (WT W+µI)−1WT n (4)

If µ= 0

r̂µ = r+ (WT W+µI)−1WT n
But µ 6= 0 (and assuming (WT W)−1 exists)

r̂µ =Rr+ (WT W)−1WT n
where R is the residual wavelet
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Deconvolution and Tikhonov Regularization

r̂µ = Rr︸︷︷︸
1

+(WT W+µI)−1WT n︸ ︷︷ ︸
2

1. Blurring increases as µ increases
2. Noise increases as µ decreases
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Deconvolution and Tikhonov Regularization

Figure: Tradeoff curve
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