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Short Note

Smooth inversion of VSP traveltime data

Daniel Lizarralde∗ and Steve Swift‡

INTRODUCTION

Vertical seismic profile (VSP) direct arrivals provide an in-
situ measurement of traveltime with depth into the earth. In
this note, we describe a weighted, damped least-squares inver-
sion of VSP traveltimes for a smooth velocity/depth function
that inherently reveals the resolution of the data. Smooth ve-
locity/depth profiles of this type are suitable for migration or
as a starting models for waveform inversion or tomography.
The application of this inversion is particularly simple, requir-
ing only the value of the damping parameter to be determined,
and this value is determined from residual statistics.

Velocity with depth in a borehole is constrained by the
difference in VSP direct-arrival traveltimes between stations
at different depths. In principle, resolution of vertical veloc-
ity structure increases with decreasing VSP station spacing
in the borehole. Station-to-station interval velocities become
increasingly sensitive to arrival-time picking errors as station
spacing decreases, however, and the bandwidth and the signal-
to-noise ratio of the seismic signal ultimately limits the real-
izable vertical velocity resolution. Lack of resolution at the
station-spacing scale enables a vast set of velocity/depth func-
tions to be consistent with the traveltime data. Regularized
inversion provides a means of selecting velocity profiles from
among this set. In particular, the Occam’s inversion regular-
ization scheme (Constable et al., 1987) seeks the smoothest
model consistent with the data and their errors. Here, we out-
line the application of this approach to the analysis of VSP
traveltimes.

VSP TRAVELTIME INVERSION

The determination of seismic velocity from VSP traveltimes
has been the subject of several papers (Stephen and Harding,
1983; Stewart, 1984; Pujol et al., 1985; Schuster, 1988; Schuster
et al., 1988). The simplest of this class of problems is the deter-
mination of interval velocities (velocities between VSP station
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depths) from VSP first-arrival times and involves solving the
linear equation

T = ZU,

or
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where ti are the first-arrival times at each borehole station
depth, zi are the layer thicknesses (i.e., distances between
stations), and ui are the interval slownesses. Equation (1) as-
sumes a model in which the velocity of each interstation in-
terval is constant. This is a reasonable assumption for station
spacings that are small relative to a seismic wavelength. Verti-
cal wave propagation is also assumed. However, if the source-
offset/station-depth ratio is not zero but less than 1, then a
straight-ray geometry is a valid assumption (Schuster et al.,
1988), and equation (1) can be used with the zi divided by
cos θi terms.

Equation (1) can be solved directly, or Z can be diagonalized
and equation (1) solved based on differential (between-station)
traveltimes, as is quite common. In either case, the solution
for U is an even-determined problem with imprecise data, and
some form of regularization is required. A common regulariza-
tion approach is a damped least-square inversion employing a
penalty function based on some smoothing criterion such as
the length of the first or second derivative of the estimated
slowness, Û. The least-squares solution is obtained in the usual
way, by minimizing

L = ‖T− ZÛ‖ + ε2‖DÛ‖, (2)

where ‖ · ‖ represents the magnitude or L2 norm, DÛ is the
penalty function, D is a first- or second-difference matrix, and
ε is the damping parameter (or Lagrange multiplier) which
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governs the tradeoff between minimization of data misfit and
the penalty function. A typical minimized solution of equa-
tion (2) is given in standard books on inversion such as Menke
(1984). A solution of equation (2) including weighting accord-
ing to data variance is

Û = [ZT WeZ+ ε2DT D
]−1 ZT We T, (3)

where We is a diagonal matrix of data variances. Estimates of
traveltime data variance can be obtained from arrival times of
multiple shots recorded at a single depth.

A variety of criteria can be used to select the damping param-
eter ε. The criterion used in the Occam inversion is that ε should
be chosen to give the smoothest possible model consistent with
the traveltime data and their errors. Thus, equation (3) may be
evaluated along with the residual error, T−ZÛ, and the influ-
ence of the penalty function increased (i.e., ε increased) until
the residuals rise to some maximum acceptable value. Consta-
ble et al. (1987) suggest the χ 2 statistic as the statistic upon
which this determination should be based. If the data are in-
dependent measurements of random variables and the model
is physically appropriate, which are both true in this case, then
the residual error should follow a Gaussian distribution. The
expected value of the χ2 statistic for the residuals is M , the
number of observations; E[χ2]=M . The value of χ 2 resulting
from the inversion is

χ̂2 =
∑(

ti −
i∑

n=1

znuaan

)/
si , (4)

where si are the data variances at each station i . There is no rea-
son why χ̂ 2 should be smaller than E[χ 2]. Values of χ̂ 2 smaller
than the expected value suggest overfitting of the data. Equa-
tion (3) should be iteratively evaluated using different values of
ε until χ̂2 from equation (4) rises (or falls) to an acceptable level
of misfit with respect to E[χ 2], such as χ̂ 2

target= E[χ 2]+ 2σ ,
where σ is the standard error approximately equal to (2M)1/2

for χ 2. The ε that results in χ̂ 2= χ̂ 2
target can typically be found

in just a few tries, beginning with ε equal to 1 and increasing ε
if χ̂2 is less than χ̂ 2

target, and vice versa. The resulting slowness
profile, Û, can thus be characterized as the smoothest profile
with respect to the length of DÛ consistent with the traveltime
data and their errors.

Several comments about this approach can be made. First,
the formulation of the traveltime equation (1) uses integrated
traveltimes as data, ensuring the correct total traveltime to the
deepest VSP station. The diagonalized version of equation (1),
based on traveltime differences between stations, does not pre-
serve integrated traveltimes and will tend to propagate errors
with depth. Sonic logs also commonly do not yield correct in-
tegrated traveltimes to the base of a borehole. Second, the a
priori assumption about the smooth properties of the velocity
profile is not correct for large contrasts in velocity that might
be encountered at a sediment/basement interface or across a
stratigraphic gas trap, for example. In cases like these, con-
siderable error may accumulate in the vicinity of the contrast,
and data over other parts of the profile may in consequence
be overfit. Steps in velocity can be accounted for by modifying
the matrix D and thus removing the contribution to the penalty
function across a given depth interval. Resulting solutions will

be piecewise smooth. In general, the data residuals should be
examined for trends and outliers, and the weighting matrices
We and D adjusted accordingly to assure a uniform fit to the
data. Finally, the number of depth stations involved in a par-
ticular VSP experiment are usually small enough so that the
matrices in the solution (3) can be efficiently inverted directly
on most computers, and an acceptable solution can be obtained
with a few iterations in a matter a seconds.

DATA EXAMPLE

We demonstrate this inversion approach using VSP data
recorded in the Ocean Drilling Program (ODP) hole 504B
which was drilled into basaltic oceanic crust (Figure 1a) (Swift
et al., 1996). The average station spacing is 10 m. Up to 25
air-gun shots were fired at each station, and the first-arrival
times from the 5 best shots were picked and their means and
standard deviations calculated. The average standard deviation
of the first-arrival-time picks is less than 1 ms. The gray region
in Figure 1b defines the 2σ bounds on the observed traveltimes.

An infinite number of models can pass through the statis-
tically defined traveltime bounds of Figure 1b. An a priori
condition is required to select among the models that satisfy
the traveltime data, and we have chosen a condition based
on the smoothness of the slowness profile. (That is, we have
used the length of the second difference of the model to de-
fine smoothness in this case. Trials have shown that using the
length of the first difference of the model, sometimes referred
to as the flatness, produces essentially identical results.) Di-
rect solution of the traveltime equation (1) using the travel-
time means corresponds to evaluation of equation (3) with
ε= 0. This solution yields a nonphysical, wildly oscillating ve-
locity/depth profile with χ̂ 2∼= 0. Solutions with χ̂ 2= 0.6 E[χ 2],
E[χ2], E[χ 2]+ 1σ , and E[χ 2]+ 2σ are shown in Figure 1c, with
the traveltime fits to the models with 0.6 E[χ 2] and E[χ 2]+ 2σ
shown in Figure 1b. Note that the “best fitting” of these mod-
els with χ̂2= 0.6 E[χ 2], which consists of nonphysical velocity
fluctuations, results in a traveltime fit that is quite close to the
model with χ̂2= E[χ 2]+ 2σ , which is a good approximation to
the resolution limit of the data.

The normalized residuals of the model with χ̂ 2= E[χ 2]+ 2σ
are shown in Figure 1d. Residuals should be inspected for
trends and outliers that may leverage the overall fit statistics,
and the weighting and damping matrices should be adjusted ac-
cordingly. In this example, the residuals are random and show
no trend. For a discussion of the geologic significance of this
velocity profile and its relationship to sonic and other logs ac-
quired at hole 504B, see Swift et al. (1998).

SUMMARY

The first-arrival times of closely spaced VSP stations gen-
erally cannot be determined with sufficient accuracy to yield
meaningful velocity/depth profiles with resolution on the or-
der of the station spacing. These data can be effectively used,
however, to constrain regularized inversions for smooth ve-
locity/depth functions that are required as input to migration,
tomographic, and waveform-inversion algorithms. We have
presented a simple formulation of the weighted, damped least-
square inverse problem for VSP traveltimes at near-normal
incidence based on the concepts of Occam’s inversion. The in-
version is formulated in terms of integrated traveltimes and is
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FIG. 1. (a) VSP from ODP hole 504B acquired with two sources for stations above and below ∼1.5 km. (b) Reduced traveltime
data and fit. Gray region defines 2σ bounds on first-arrival picks. Curves within these bounds are fits of the smoothest and roughest
models in (c). (c) Inverted velocity profiles for a range of residual χ 2 values. The model with χ 2 < E[χ 2] overfits the data and maps
noise into the model. Model with χ2= E[χ 2]+ 2σ represents the statistical resolution of the data under the smoothing constraint.
(d) Residual of the E[χ2]+ 2σ model normalized by the data variance. Residuals should be inspected for trends and outliers that
may leverage the overall fit statistics and lead to overfitting some parts of the data. In this example, the residuals are random and
show no trend.

guided by both data and misfit statistics. The linear inversion is
not computationally intensive and can be fully automated and
performed on most small computers.
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